
Concurrent specifications beyond linearizability

Éric Goubault
École Polytechnique
eric.goubault@lix.polytechnique.fr

Jérémy Ledent
École Polytechnique
jeremy.ledent@lix.polytechnique.fr

Samuel Mimram
École Polytechnique
samuel.mimram@lix.polytechnique.fr

Abstract
With the advent of parallel architectures, distributed programs are used intensively and the
question of how to formally specify the behaviors expected from such programs becomes crucial.
A very general way to specify concurrent objects is to simply give the set of all the execution
traces that we consider correct for the object. In many cases, one is only interested in studying a
subclass of these concurrent specifications, and more convenient tools such as linearizability can
be used to describe them.

In this paper, what we call a concurrent specification will be a set of execution traces that
moreover satisfies a number of axioms. As we argue, these are actually the only concurrent
specifications of interest: we prove that, in a reasonable computational model, every program
satisfies all of our axioms. Restricting to this class of concurrent specifications allows us to
formally relate our concurrent specifications with the ones obtained by linearizability, as well as
its more recent variants (set- and interval-linearizability).

2012 ACM Subject Classification Concurrency

Keywords and phrases concurrent specification, concurrent object, linearizability

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.23

Eligible for best student paper award

1 Introduction

A common setting to study distributed computing is the one of asynchronous processes
communicating through shared objects. It is of particular interest in the area of fault-
tolerant distributed computing [9], where we assume that some processes might crash during
the computation. The goal is to determine which concurrent tasks are solvable by wait-free
programs [8], depending on which shared objects the processes are allowed to use. In this
context, the question of how to formally specify the behavior of the shared objects arises:
what we want is an abstract, high-level specification, that does not refer to a particular
implementation of the object. To illustrate our discussion, let us first introduce a toy (and
running) example which we call the count object.

1.1 Counting processes
When a process calls the count object, it should return the number of processes that are
currently calling the object in parallel. This is similar, although not completely identical,

© Éric Goubault and Jérémy Ledent and Samuel Mimram;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eric.goubault@lix.polytechnique.fr
mailto:jeremy.ledent@lix.polytechnique.fr
mailto:samuel.mimram@lix.polytechnique.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Concurrent specifications beyond linearizability

to Java’s Thread.activeCount method, which returns “an estimate of” the current number
of running threads. A typical execution of this object is depicted below. Each of the three
processes P0, P1 and P2 is calling the count object twice. The horizontal axis represents
the real-time scheduling of the operations and the intervals between square brackets depict
the time span during which a process is executing the count() method: when two intervals
vertically overlap, the processes are running the method concurrently. For instance, the last
three calls are concurrent: the three processes should see each other and all return 3.

count() 2

count() 2

count() 1

count() 3

count() 3

count() 3

P0

P1

P2

The specification of count seems to be clear on this example. But what about the behaviors
depicted below? In execution (a), process P1 responds 3 since it has seen the two other
processes; but there is no point in time when the three processes are running concurrently.
Execution (b) represents the same situation, but this time P1 has seen two different calls
of P0. In execution (c), the two calls are concurrent, but for a very short time, so they did
not manage to see each other. In execution (d), process P1 managed to see process P0, but
not reciprocally. All of these executions may or may not seem correct depending on what
exact specification we have in mind. One could for example ask for a variant of the count
object that accepts executions (a) and (c), but rejects (b) and (d), and so on.

count() 2

count() 3

count() 2

P0

P1

P2

(a)

count() 2

count() 3

count() 2
P0

P1

P2

(b)

count() 1

count() 1
P0

P1

P2

(c)

count() 1

count() 2
P0

P1

P2

(d)

1.2 Specifying concurrent objects
A simple but very general way of specifying such objects was proposed by Lamport [13].
The specification of a concurrent object is simply the set of all the execution traces that we
consider correct for this object. For the count object example, if we draw every possible
diagram as in the pictures above and decide which ones we want or not, we will have a
well-specified object. Of course, we need a mathematical abstraction of these pictures, we
represent them by execution traces (Lamport originally used the happens-before partial
order; the trace formalism used here was introduced by Herlihy and Wing [10]).

count() 1

count() 2

count() 2

count() 2
P0

P1

P2

T = i0 · r1
0 · i2 · i1 · r2

1 · i0 · r2
2 · r2

0

(e)

É. Goubault and J. Ledent and S. Mimram 23:3

An implicit assumption of this representation is that invocations and responses are totally
ordered according to some global time clock. Another assumption is that only the relative
position of the events in time matters: the intervals can be moved around as long as the
overlapping pattern is conserved. In particular, we cannot tell how long processes overlap,
so execution (c) is indistinguishable from an execution where P0 and P1 are fully concurrent.

Although very powerful in terms of expressiveness, this idea of specifying a concurrent
object by giving the set of all correct executions can be cumbersome to work with in practice.

Very often, one is only interested in studying concurrent objects that have a “sequential
flavor”, i.e., objects that are concurrent versions of sequential data structures, such as lists or
queues. In this scenario, it is usually better to use one of the many correctness criteria found
in the literature such as atomicity [16], sequential consistency [12], serializability [19], causal
consistency [20], or linearizability [10]. In fact, those correctness criteria can be regarded as
convenient ways of defining concurrent specifications in the sense of Lamport. For example,
given the sequential specification σ of some object (say, a list), we can generate the set
Lin(σ) of linearizable concurrent traces, that is, the set of correct executions of a concurrent
list (according to linearizability). Thus, Lin(σ) is a concurrent specification (in the sense of
Lamport) which is parameterized by a sequential specification σ. Note that σ is a much
better-understood mathematical object than general concurrent specifications.

The drawback of these methods is that they cannot specify every concurrent object.
The original paper on linearizability [10] already remarked that Lamport’s approach is more
general, since it can express non-linearizable behavior. The count object described above is
a typical example of an object that exhibits intrinsically concurrent behavior, which cannot
be specified by sequential means. Many other examples are found in the area of distributed
computability [9], such as immediate snapshot, consensus or set-agreement objects. Another
notable example is Java’s Exchanger object. In order to specify those objects, many variants
of linearizability have been defined recently: local linearizability [6], set-linearizability [17]
(a.k.a. concurrency-aware linearizability [7]) and interval-linearizability [2]. The latter notion
is the most expressive one; in particular, they show that their framework allows to specify
every concurrent task, in the sense of distributed computability [9].

1.3 Contributions
In this paper, we define a notion of concurrent specification which is based on Lamport’s
idea of a set of correct execution traces; but we moreover impose a number of axioms that
should hold on this set. We advocate the relevance of this definition as follows.

Firstly, we define a reasonable computational model (thought of as the operational se-
mantics of a concurrent programming language with shared objects), and prove that in this
model, every program satisfies our axioms (Theorem 12). This means that our concurrent
specifications are the only relevant ones: a specification that does not verify our axioms could
never be implemented by a program. Thus, imposing those axioms is not very restrictive;
rather, they are desirable properties that concurrent specifications should satisfy.

Secondly, this particular set of axioms allows us to relate formally our specifications
and the linearizability-based ones, by constructing Galois connections between them (Theo-
rem 16). In particular, as a corollary, we obtain that our concurrent specifications coincide
with the ones that are definable using interval-linearizability. Beyond the applications that
we show here, this theorem is also interesting in itself: it states formally in what sense
linearizability is the canonical way to turn a sequential specification into a concurrent one.
Indeed, given a sequential specification σ, linearizability gives the smallest possible concur-
rent specification, among the ones that both contain σ and satisfy our axioms.

OPODIS 2018

23:4 Concurrent specifications beyond linearizability

1.4 Plan
We begin by introducing our definition of concurrent specification (Section 2). Then, we
provide an operational model that validates our axioms (Section 3), and we establish Ga-
lois connections with various notions of linearizable specification (Section 4). Finally, we
conclude (Section 5).

2 Concurrent specifications

In the rest of the paper, we suppose fixed a number n ∈ N of processes and write [n] =
{0, 1, . . . , n − 1} for the set of process names (a process is identified by its number). We
also suppose fixed a set V of values which can be exchanged between processes and objects
(typically V = N). The set A of possible actions for an object is defined as

A = {ixi | i ∈ [n], x ∈ V} ∪ {ryi | i ∈ [n], y ∈ V}

An action is thus either
– ixi : an invocation of the object by the process i with input value x,
– ryi : a response of the object to the process i with output value y.
An execution trace is a finite sequence of actions, and we write T = A∗ for the set of those;
we also write ε for the empty trace and T · T ′ for the concatenation of two traces T and T ′.

Given a process i ∈ [n], the i-th projection πi(T) of a trace T ∈ T is the trace obtained
from T by removing all the actions of the form ixj or rxj with j 6= i. A trace T ∈ T is
alternating if for all i ∈ [n], πi(T) is either empty or it begins with an invocation and
alternates between invocations and responses, i.e., using the traditional notation of regular
expressions:

πi(T) ∈
(⋃
x,y∈V

ixi · r
y
i

)∗
·
(⋃
x∈V

ixi + ε
)

In the remaining of the paper, we will only consider alternating traces. If πi(T) ends with
an invocation, we call it a pending invocation. An alternating trace T is complete if it does
not have any pending invocation.

I Definition 1. A concurrent specification σ is a subset of T which is

(1) alternating: every T ∈ σ is alternating,
(2) prefix-closed: if T · T ′ ∈ σ then T ∈ σ,
(3) non-empty: ε ∈ T ,
(4) receptive: if T ∈ σ and πi(T) has no pending invocation, then T · ixi ∈ σ for every x ∈ V,
(5) total: if T ∈ σ and πi(T) has a pending invocation, there exists x ∈ V such that T ·rxi ∈ σ,
(6) has commuting invocations: if T · ixi · i

y
j · T ′ ∈ σ then T · iyj · ixi · T ′ ∈ σ,

(7) has commuting responses: if T · rxi · r
y
j · T ′ ∈ σ then T · ryj · rxi · T ′ ∈ σ,

(8) is closed under expansion: if T · ryj · ixi · T ′ ∈ σ with i 6= j then T · ixi · r
y
j · T ′ ∈ σ.

We write CSpec for the set of concurrent specifications.

A concurrent specification σ is the set of all executions that we consider acceptable: a
program implements the specification σ if all the execution traces that it generates belong

É. Goubault and J. Ledent and S. Mimram 23:5

to σ (this will be detailed in Section 3). The axioms (1-4) are quite natural and commonly
considered in the literature. They can be read as follows: an object gives answers to invoca-
tions of processes and a process has to wait for the response before invoking again the object
(1), an object can do one action at a time (2), an object can do nothing (3), invocations of
objects are always possible (4). The axiom (5) states that objects always answer and in a
non-blocking way; this is a less fundamental axiom and more of a design choice, since we
want to model wait-free computation.

The conditions (6), (7) and (8) might seem more surprising, and will be crucial to estab-
lish the Galois connection of Section 4. For example, one could expect to specify an object
whose behavior depends on which process was invoked first; but that would break condi-
tion (6). As we show in Section 3, in an asynchronous model, no program can implement
such a specification. Let us explain intuitively why the “closure under expansion” condition
holds. Suppose T · ryj · ixi ·T ′ is an acceptable execution of the object we are specifying. Then,
in the trace T · ixi · r

y
j ·T ′, where process i invokes its operation a little bit earlier, i might be

idle for a while and only start computing after j has returned, resulting in the same behav-
ior. Thus, the execution T · ixi · r

y
j · T ′ should also be considered acceptable. Alternatively,

we can also think of it as process j being idle for a while before it returns. Applied to the
count object example, the expansion property implies that execution (c) must be accepted,
since it is obtained by expanding a correct sequential execution. This expansion condition
reflects the idea that invocations and responses do not correspond to actual actions taken
by the processes, but rather define an interval in which they are allowed to take steps.

The conditions (6) and (7) above ensure that two invocations (resp. two responses) “com-
mute”: we say that two alternating traces T, T ′ ∈ T are equivalent, written T ≡ T ′, if one
is obtained from the other by reordering the actions within each block of consecutive invo-
cations or consecutive responses. Generally, in the rest of the paper, we are only interested
in studying traces up to equivalence.

It will prove quite useful to consider operations in traces, which are pairs consisting of
an invocation and its matching response. Formally,

I Definition 2. Consider an alternating trace T = T0 · · ·Tk−1. An operation of process i
in T is either
– a complete operation: a pair (p, q) such that Tp = ixi and Tq = ryi and Tq comes right
after Tp in πi(T), or

– a pending operation: a pair (p,+∞) where Tp is a pending invocation,
where p, q ∈ N, with 0 ≤ p, q < k, are indices of actions in the trace. We write opi(T) for
the set of operations of the i-th process and op(T) for the set of all operations.

The operations of a trace can be ordered by the smallest partial order � such that (p, q) ≺
(p′, q′) whenever q < p′. This partial order is called precedence and two incomparable
operations are called overlapping or concurrent. Note that for every i ∈ [n], (opi(T),�) is
totally ordered.

3 A computational model

In this section, we provide an operational model for concurrent programs communicating
through shared objects. The model itself is similar to other trace-based operational semantics
that can be found in the literature [4]. We assume given a set O of objects: they might
be, for instance, concurrent data structures that have already been implemented, and that
our programs are able to use in order to compute and communicate. We do not want to

OPODIS 2018

23:6 Concurrent specifications beyond linearizability

depend on a particular implementation of these objects, but on their specification. Thus,
each object comes with its concurrent specification (as in Definition 1), which is the set of
behaviors that it might exhibit. Note that our model does not have any special construct
for reading and writing in the shared memory: we assume that the memory itself is given
as an object in O, with an appropriate specification. Thus, the only meaningful action a
program can take is to call one of the objects; and possibly do some local computation to
determine what the next call should be.

To abstract away the syntax of the programming language, we use an automata-like
representation, which roughly corresponds to the control-flow graph of the program. In a
given state of the automaton, the decision function δ indicates which is the next object that
the program will call, and the transition function τ says what the next state will be depending
on the return value of the call. The example below shows an implementation of the count
object for two processes communicating using a wait-free variant of Java’s exchanger object:
either two processes call the exchanger concurrently and swap their values, or the process
fails after some timeout and gets back its own value.

count(x) {
y = exchanger (x);
if (y == x)

return 1;
else

return 2;
}

x = 0
y = 0
δ = 1

x = 0
y = 1
δ = 2

x = 1
y = 0
δ = 2

x = 1
y = 1
δ = 1

x = 0
δ = (exchanger, 0)

x = 1
δ = (exchanger, 1)

⊥
τ(0) τ(1)

τ(0) τ(1) τ(0) τ(1)

We suppose fixed a set O of objects, along with their concurrent specification spec(o) ∈
CSpec for o ∈ O. Here, a program (i.e., the implementation of an object) is basically a piece
of code which takes a value as input, makes several calls to the objects in O (using algebraic
operations to combine their results) and finally returns a value. Formally,

I Definition 3. A program is given by:
– a (possibly infinite) set Q of local states containing an idle state ⊥ ∈ Q,
– a decision function δ : Q \ {⊥} → (O × V) t V,
– a transition function τ : Q× V → Q \ {⊥}.

The idle state is the one where the program is waiting to be called with some input value x,
in which case it will go to state τ(⊥, x). After that, the decision function gives the next step
of the process depending on the current state: either call some object with some input value,
or terminate and output some value. In the case where an object is called, the transition
function gives the new local state of the process, depending on the previous state and the
value returned by the object.

A protocol P is given by a program Pi = (Qi,⊥i, δi, τi) for each process i ∈ [n]. The
global state of a protocol P is an element q = (q0, . . . , qn−1) of Q =

∏
iQi, consisting of a

state for each process Pi. The initial state is qinit = (⊥0, . . . ,⊥n−1). We now describe the
set A of possible actions for P , as well as their effect ∆ : Q×A → Q on global states.
ixi : the i-th process is called with input value x ∈ V. The local state qi of process i is changed

from ⊥i to τi(⊥i, x):

∆(q, ixi) = q[i← τi(⊥i, x)] (9)

É. Goubault and J. Ledent and S. Mimram 23:7

where the state on the right is q where qi has been replaced by τi(⊥i, x).
i(o)xi : the i-th process invokes the object o ∈ O with input value x ∈ V. This does not have

any effect on the global state:

∆(q, i(o)xi) = q (10)

r(o)xi : the object o ∈ O returns some output value x ∈ V to the i-th process. The local state of
process i is updated according to its transition function τi:

∆(q, r(o)xi) = q[i← τi(qi, x)] (11)

rxi : the i-th process has finished computing, returning the output value x ∈ V. It goes back
to idle state:

∆(q, rxi) = q[i← ⊥i] (12)

The actions of the form ixi and rxi (resp. i(o)xi and r(o)xi) are called outer (resp. inner) actions.
Given a trace T ∈ A∗ and an object o, we denote by To, called the inner projection on o,
the trace obtained from T by keeping only the inner actions of the form i(o)xi or r(o)yi . The
function ∆ is extended as expected as a function ∆ : Q × A∗ → Q, i.e., ∆(q, T · T ′) =
∆(∆(q, T), T ′) and so on. A trace is valid if at each step in the execution, the next action
is taken according to the decision function δ. Formally:

I Definition 4. A trace T ∈ A∗ is valid when for every strict prefix U of T , writing
T = U · a · V and q′ = ∆(qinit, U), with a ∈ A, we have:

– either a = ixi and q′i = ⊥i;
– or a = ryi and q′i 6= ⊥i and δi(q′i) = y;
– or a = i(o)xi and q′i 6= ⊥i and δi(q′i) = (o, x);
– or a = r(o)yi and q′i 6= ⊥i.
Moreover, we require that for every object o ∈ O, the inner projection To belongs to spec(o).
The set of valid traces for P is written TP ⊆ A∗.

A protocol P is wait-free if there is no valid infinite trace (i.e., all its prefixes are valid)
involving only inner-i-actions after some position. Given a trace T ∈ A∗, we write π(T) for
the trace obtained by keeping only outer actions.

I Definition 5. The semantics of a protocol P is the set of traces JP K = {π(T) | T ∈ TP }
and P implements a concurrent specification σ whenever JP K ⊆ σ, i.e., all its outer traces
are valid with respect to σ.

We will now show that if P is wait-free, then JP K itself is a concurrent specification
(Theorem 12). This means that in our model, the set of traces produced by a program
necessarily satisfies all the axioms of concurrent specifications. The wait-free assumption is
only used to prove totality; all the other axioms are true for any program. In the following,
we use uppercase letters T, T ′ to denote traces containing only outer actions, and lowercase
letters w,w′, r, s, t to denote traces that might contain both inner and outer actions.

I Lemma 6. The following commutativity properties hold:

– commutativity of invocations: for all T, T ′ ∈ A∗, i, j ∈ [n] and x, y ∈ V,

T · ixi · i
y
j · T

′ ∈ JP K implies T · iyj · ixi · T ′ ∈ JP K,

OPODIS 2018

23:8 Concurrent specifications beyond linearizability

– commutativity of responses: for all T, T ′ ∈ A∗, i, j ∈ [n] and x, y ∈ V,

T · rxi · r
y
j · T

′ ∈ JP K implies T · ryj · rxi · T ′ ∈ JP K.

Proof. Assume there is a word w ∈ TP such that π(w) = T · ixi · i
y
j · T ′. So, w is of the form

r · ixi ·s · i
y
j ·t where s does not contain outer actions. We will show that w′ = r · iyj · ixi ·s ·t ∈ TP ,

and the result follows. Since the inner projections are the same, the specifications of the
objects are satisfied. We have to show that the conditions regarding the decision functions
are respected. Write q = ∆(qinit, r) and q′ = ∆(qinit, r · ixi ·s). Then since w is valid, we have
qi = ⊥i and q′j = ⊥j .

Claim 1: s does not contain any action of process j. Indeed, only an outer action ryj can
set j’s local state to ⊥j , and s has no outer action: so j’s local state is ⊥j during all of s.
But inner actions can only be valid when the local state is not ⊥j .

Claim 2: Let u be a prefix of s and q′′ = ∆(qinit, r·ixi ·u) = ∆(q, ixi ·u). Then ∆(q, iyj ·ixi ·u) =
q′′[j ← τj(⊥j , y)]. This is proved by induction on the length of the prefix u and using Claim 1.

Claim 3: ∆(q, ixi · s · i
y
j) = ∆(q, iyj · ixi · s). Take u = s in Claim 2.

Finally, let u is a prefix of w′ = r · iyj · ixi · s · t. If u ends in r or (by Claim 3) in t, the
global state after executing it is the same as for w, so the validity condition is verified. If
u ends in s, then by Claim 2 the global state only differs by its j component, but since by
Claim 1 the next action is not from j, the validity condition is also verified.

For commutativity of responses, the situation is very similar: suppose that w = r · rxi ·
s · ryj · t ∈ TP , and show that w′ = r · s · ryj · rxi · t ∈ TP . The analogue of Claim 1 says that
there is no action of process i in s. J

I Lemma 7. JP K has the expansion property.

Proof. The proof is again very similar to that of Lemma 6. Assume that there is a word
w ∈ TP such that π(w) = T · ryj · ixi · T ′. Thus, w is of the form r · ryj · s · ixi · t, where s does
not contain outer actions.

Then we have two ways of making the invocation and response commute:
– either show that w′ = r · ixi · r

y
j · s · t ∈ TP , as in the proof of the commutativity of

invocations,
– or show that w′′ = r · s · ixi · r

y
j · t ∈ TP , as in the proof of the commutativity of responses.

These two possible proofs correspond to the two ways that we can view the expansion
property that were explained in Section 2: either process i is invoked sooner and idles for a
while (first proof), or process j idles before returning (second proof). J

The key reason that makes Lemmas 6 and 7 go through is the fact that the actions ixi
and ryi do not have any effect besides starting a process or terminating it. Taking these
steps does not communicate any information to the other processes. For example, a process
might start running and then wait for a while before doing any “real” computation. Such
a process cannot be seen by the others. This is an arbitrary choice in how we designed our
computational model, but it reflects what really happens in practice: calling a function,
or returning a value, both consume some amount of clock cycles from the processor, and
they do not usually have any effect on the shared memory. Thus, one could possibly have a
process which has started running, but was immediately preempted by the scheduler before
it could perform any meaningful operation.

I Lemma 8. JP K is closed under prefix.

É. Goubault and J. Ledent and S. Mimram 23:9

Proof. TP is closed under prefix since for all o ∈ O, spec(o) is closed under prefix by
definition, and the conditions on the decision functions are also preserved. Then, JP K is also
closed under prefix. J

I Lemma 9. Every trace T ∈ JP K is alternating.

Proof. T must begin by an invocation because qiniti = ⊥i and the only i-action that can
occur with local state ⊥i is ixi . We then prove by induction on the length of w ∈ A∗ that
∆(qinit, w)i 6= ⊥i if the last outer i-action in w was an invocation, and ∆(qinit, w)i = ⊥i if it
was a response. This implies that no two invocations nor two responses by the same process
can occur consecutively in a valid trace. J

I Lemma 10. JP K is receptive.

Proof. Assume T ∈ JP K where πi(T) does not have a pending invocation. Let w ∈ TP such
that π(w) = T . The last outer i-action in w is a response, and thus we have τ(qinit, w)i = ⊥i
(cf. proof of Lemma 9). So w · ixi is valid for all x, and T · ixi ∈ JP K. J

I Lemma 11. JP K is total.

Proof. Assume T ∈ JP K where πi(T) has a pending invocation. Let w ∈ TP such that
π(w) = T . The last outer i-action in w is an invocation, so the local state of i after
executing w is qi 6= ⊥i. If δi(qi) = y ∈ V, then w · ryi is a valid execution, which concludes
the proof. Otherwise, δi(qi) = (o, x). Then w · i(o)xi is valid because the object o is receptive.
And since o is total, there exists y such that w · i(o)xi · r(o)

y
i is valid. The new local state of

i after executing this trace is q′i 6= ⊥i, so we can iterate the previous reasoning. Eventually,
we will reach some local state q′′i with δi(q′′i) = y′′ ∈ V, because P is wait-free (i.e., there is
no infinite execution ending with only inner i-actions). J

Putting all the previous lemmas together, we obtain Theorem 12:

I Theorem 12. The semantics JP K of a wait-free protocol is a concurrent specification.

This theorem ensures that the axioms of concurrent specifications are reasonable, in the
sense that they are validated in our model. Thus, our concurrent specifications are the only
ones of interest: specifications that do not satisfy these axioms cannot be implemented. For
instance, this theorem implies that any protocol implementing a count-like object must
accept execution (c), since it is obtained by expanding a valid sequential execution, and the
protocol’s behavior is closed under expansion.

4 Linearizability

The notion of linearizability has been introduced by Herlihy and Wing [10] as a correctness
criterion for concurrent implementations of sequential data structures. Linearizability is
very popular thanks to its locality property, which allows programmers to reason modularly
about each object. Here, we adopt a slightly unusual point of view on linearizability: instead
of a correctness criterion, it is a map that turns a sequential specification into a concurrent
specification, in our sense.

For ease of presentation, we begin by introducing a general notion called L-linearizability
which subsumes several variants found in the literature. It is actually quite straightforward
to check that the usual notions of linearizability, set-linearizability and interval-linearizability

OPODIS 2018

23:10 Concurrent specifications beyond linearizability

are recovered by instantiating L with the right set of traces. Thus, the definition of L-
linearizability should not be regarded as a contribution of this paper; it is merely a presen-
tation trick to avoid dealing with three variants of the same definition.

The main result of this section is stated in Theorem 16. We then explore its consequences
in three particular cases: standard, set- and interval-linearizability.

4.1 L-specifications
We first introduce a notion of specification, akin to the one of Definition 1, which is param-
eterized by a set L of traces, which we abstractly consider as the “linear” ones. To recover
the standard notion of linearizability, we let L be the set of sequential traces, in which case
L-specifications correspond to sequential specifications.

We always require L to be alternating, prefix-closed, non-empty and
– receptive for complete traces: if T ∈ L is complete then T · ixi ∈ L for all i ∈ [n] and x ∈ V,
– fully total: if T ∈ L and πi(T) has a pending invocation then T · rxi ∈ L for every x ∈ V.

I Definition 13 (L-specification). An L-specification σ is a set of traces in L which is
prefix-closed, non-empty and
– receptive within L: for all T ∈ σ, i ∈ [n] and x ∈ V, if T · ixi ∈ L then T · ixi ∈ σ,
– total: if T ∈ σ and πi(T) has a pending invocation, there exists x ∈ V such that T ·rxi ∈ σ.
We write SpecL for the set of L-specifications.

In particular, a concurrent specification is an L-specification for L the set of all alternating
traces, such that conditions (6), (7) and (8) are moreover satisfied.

4.2 Comparison with concurrent specifications
In order to compare L-specifications and concurrent ones, we define two functions as below:

SpecL CSpec

LinL

UL

a

The function UL is defined by keeping only linear traces in a specification: UL(τ) = τ ∩ L.
The converse will require us to consider traces which are linearizable with respect to L.

We write T T ′ when the trace T ′ can be obtained from the trace T by applying the
following series of local transformations (forming a string rewriting system):

ixi · i
y
j iyj · ixi rxi · r

y
j ryj · rxi ixi · r

y
j ryj · ixi for i 6= j.

This amounts to contracting the intervals, the opposite of expansion. In the picture below,
T is represented in black with square brackets, T ′ in blue with round brackets:

P0

P1

P2

I Definition 14. A trace T ∈ T is L-linearizable w.r.t. an L-specification σ if there exists a
completion T ′ of T , obtained by appending responses to the pending invocations of T , and
a trace S ∈ σ, such that T ′ S.

É. Goubault and J. Ledent and S. Mimram 23:11

It is not difficult to check that the above definition is equivalent to the usual one of [10]
(see Appendix A for a full proof); this local presentation as a rewriting system is sometimes
used in linearizability proofs using Lipton’s left/right movers [14]. Finally, given an L-
specification σ, we define LinL(σ) as the set of traces which are L-linearizable with respect
to σ. We now show that it is a concurrent specification.
I Proposition 15. Let σ ∈ SpecL be an L-specification. Then

LinL(σ) = {T ∈ T | T is linearizable with respect to σ}

is a concurrent specification.

Proof (Sketch). We prove the conditions (6), (7) and (8) of Definition 1, which are the ones
of interest in this paper. The closure under prefix is a bit technical, see Appendix B for a
detailed proof.
– Commutativity of invocations. Assume T = U · ixi · i

y
j ·V ∈ LinL(σ). So there is a sequence

of responses T̂ and S ∈ σ such that T · T̂ S. By rewriting one step (i 6= j because of
alternation), we get U · iyj · ixi · V · T̂ T · T̂ S. Thus, U · iyj · ixi · V ∈ LinL(σ).

– Commutativity of responses is similar.
– For closure under expansion, assume T = U · ryj · ixi · V ∈ LinL(σ) with i 6= j, and let T̂

and S ∈ σ be such that T · T̂ S. We want to show that T ′ = U · ixi · r
y
j · V ∈ LinL(σ).

But since T ′ · T̂ T · T̂ S, we are done. J

Proposition 15 shows that all the axioms that we impose on our concurrent specifications
are reasonable in the sense that they are naturally enforced by all the specification tech-
niques based on linearizability. Thus, linearizability is a canonical way of turning a weaker
specification σ (e.g., one specifying only sequential behaviors) into a concurrent specification:

I Theorem 16. The functions LinL and UL are monotonous w.r.t. inclusions, and form a
Galois connection: for every σ ∈ SpecL and τ ∈ CSpec,

LinL(σ) ⊆ τ ⇐⇒ σ ⊆ UL(τ).

Proof. The monotonicity of UL is trivial. For LinL, assume σ ⊆ σ′ and T ∈ LinL(σ).
Let S ∈ σ be a linearization of T . Since S ∈ σ′, we also have T ∈ LinL(σ′).

Now let σ and τ as in the theorem and assume LinL(σ) ⊆ τ . By monotonicity of UL,
UL(LinL(σ)) ⊆ UL(τ). But σ ⊆ UL(LinL(σ)) since every T ∈ σ is in L and is its own
linearization (if T has pending invocations, we can add any valid response using totality).

Conversely, assume σ ⊆ UL(τ), and let T be a linearizable trace w.r.t. σ. Let T ′ be an
extension of T and S ∈ σ ⊆ UL(τ) ⊆ τ such that T ′ S. So we can go from S to T ′
through a sequence of expansions and commutations, which gives us T ′ ∈ τ by applying
axioms (6-8) of concurrent specifications, and by prefix closure, T ∈ τ . J

In general, the posets SpecL and CSpec ordered by inclusion are not isomorphic, but
the above theorem shows that the next best thing one could expect happens: every L-
specification has a canonical approximation as a concurrent specification and conversely.
Note that Galois connections are widely used for comparing semantics of programs and
deriving program analysis methods [3], and are a particular case of adjunctions, which have
been promoted as the canonical way of comparing models for concurrency [18].

The right-to-left implication of Theorem 16 can be understood as follows: LinL(σ) is
the smallest concurrent specification which contains σ. Notice that the axioms (6-8) are

OPODIS 2018

23:12 Concurrent specifications beyond linearizability

crucial here: if one of them were missing, we could produce specifications smaller than or
incomparable to LinL(σ). In fact, the theorem states that LinL is a kind of free construction:
starting with the traces in σ, we add all the traces that are required to be in the specification
by our axioms, and no other trace than the required ones.

4.3 Sequential linearizability
A trace T is sequential when the poset (op(T),�) is totally ordered, we write seq for the
set of sequential traces. A sequential specification is a seq-specification (i.e., Definition 13
with L = seq). Note that a sequential specification is not a particular case of concurrent
specification: it does not satisfy the receptivity condition of concurrent specifications. In-
tuitively, a sequential specification does not specify which behaviors are allowed when some
of the processes run in parallel. Sequential linearizability is thus a canonical way to extend
a sequential specification to a concurrent one.

The notion of seq-linearizability coincides with the usual notion of linearizability, that we
call here sequential linearizability to avoid confusion. The Galois connection of Theorem 16
says that Linseq(σ) is the smallest concurrent specification whose set of sequential traces
contains σ. Moreover, it is a Galois insertion:

I Proposition 17. For every σ ∈ Specseq, we have Useq(Linseq(σ)) = σ.

Proof. The inequality σ ⊆ Useq(Linseq(σ)) is implied by the Galois connection. Let T ∈
Useq(Linseq(σ)), i.e., T is both sequential and linearizable w.r.t. σ. Let T ′ be a completion of
T and S ∈ σ such that T ′ S. Since T ′ is sequential, it is a normal form of the rewriting
system (i.e., no rule can be applied): so we must have T ′ = S. Moreover S is required to be
in σ, so T ′ ∈ σ and by prefix-closure, T ∈ σ. J

This implies that Specseq is a subposet of CSpec, which justifies calling linearizable a concur-
rent specification in the image of Linseq. This is however a strict subposet, as an application
of Theorem 16:

I Proposition 18. There are non-linearizable concurrent specifications.

Proof. From Proposition 17, any linearizable concurrent specification τ = Linseq(σ) satisfies
Linseq(Useq(τ)) = τ . Now, consider the concurrent specification set-count ⊆ T which is
the set of traces whose set of operations has a partition (Ei)i∈I such that every e, e′ ∈ Ei
are concurrent and their response value is the cardinal of Ei.

Informally, Ei is a set of pairwise-concurrent processes that “saw” each other. Note that,
because of expansion, we cannot require that all processes running in parallel should see each
other: the execution (b) is accepted. All other executions (a), (c), (d) and (e) are rejected. In
a sequential trace T ∈ set-count, every response returns 1. Thus, Linseq(Useq(set-count))
only contains traces whose response is 1. But set-count also has traces with different
responses, e.g. ii · ij · r2

j · r2
i . Therefore, set-count is not linearizable. J

4.4 Set-linearizability
The idea behind set-linearizability [17] is to specify what happens when a set of processes call
an object at the same time. In this setting, an execution trace will be a sequence of sets of
processes. In each of these sets, all the processes start executing, then all of them must ter-
minate before we proceed with the next set of processes. Set-linearizability was also recently
re-discovered by Hemed et al. [7], who call it concurrency-aware linearizability. A typical

É. Goubault and J. Ledent and S. Mimram 23:13

example of a set-linearizable (but not linearizable) object is the immediate-snapshot proto-
col [1] widely used in distributed computability [9]. Another example is Java’s exchanger
that allows two concurrent threads to atomically swap values.

A trace T is set-sequential if it is of the form T = I1 · R1 · · · Ik · Rk, where each of
the Ii is a non-empty sequence of invocations, Ri for i < k is a sequence of responses with
the same set of process numbers as Ii, and Rk is a (possibly empty) sequence of responses
whose process numbers are included in those of Ik. We write set for the set of such traces.
If we consider L-linearizability with L = set, we recover the previously defined notion of
set-linearizability [17]. Of course, Theorem 16 still holds, but we do not have an analogue
of Proposition 17 here: given σ ∈ Specset, Uset(Linset(σ)) might actually contain more set-
sequential traces than σ. This is because set-sequential specifications are not required to
satisfy the expansion property nor the commutativity of invocations and of responses. The
linearizability map adds just enough set-sequential traces to make these properties verified.
A concurrent specification is set-linearizable if it is of the form Linset(σ) for some σ ∈ Specset.

I Example 19. The set-count specification defined in the proof of Proposition 18 is set-
linearizable. It is obtained as Linset(σ) where σ is the set of set-sequential traces of the form
I1 ·R1 · · · Ik ·Rk, where every response in Ri is returning the value |Ii|.

I Proposition 20. There are non-set-linearizable concurrent specifications.

Proof. This is again an application of Theorem 16: from the properties of Galois connec-
tions, a set-linearizable concurrent specification τ must be such that Linset(Uset(τ)) = τ .
Define the concurrent specification interval-count as the set of alternating traces such
that every operation e has a response of the form rki , where k is smaller or equal to the num-
ber of operations that are overlapping with e. This is a very permissive version of counting:
all executions (a)–(e) are allowed. In a set-sequential trace, all return values are at most n,
the total number of processes. Therefore, Linset(Uset(τ)) only contains traces whose response
is smaller than n. But τ also contains traces with greater responses, as in execution (b)
where process P1 responds 3 even though only two processes are running. We deduce that
interval-count is not set-linearizable. J

4.5 Interval-linearizability
Interval-linearizability was introduced in [2] with the aim of going beyond linearizability
and set-linearizability, in order to be able to specify every distributed task. They prove
that every task can be obtained as the restriction to one-shot executions of an interval-
linearizable object. We will show that this result actually extends beyond one-shot tasks:
every concurrent specification is interval-linearizable. An example of an interval-linearizable
(but not set-linearizable) object is the (non-immediate) write-snapshot object.

We write int for the set of all alternating traces. The notions of interval-sequential
specification and interval-linearizability defined in [2] coincide with L-specifications and L-
linearizability where L = int. Interval-sequential specifications are almost the same as
concurrent specifications, except that they do not require the commutativity of invocations,
commutativity of responses and expansion property to be satisfied. In fact, it is mentioned
in [2] that one can without loss of generality restrict to interval-sequential executions of the
form I1 · R1 · · · Ik · Rk, where the Ii (resp., Ri) are non-empty sets of invocations (resp.,
responses). This amounts to enforcing the commutativity of invocations and of responses.
We do not include it here since it will be enforced anyway after we apply linearizability.

OPODIS 2018

23:14 Concurrent specifications beyond linearizability

Uint is by definition the “identity” function. As in the case of set-linearizability, an
analogue of Proposition 17 does not hold, but we have the converse:

I Proposition 21. For every τ ∈ CSpec, Linint(Uint(τ)) = τ .

Proof. The inclusion Linint(Uint(τ)) ⊆ τ follows from the Galois connection. For the other
inclusion, recall that Uint is the identity, so we want to prove τ ⊆ Linint(τ). But this is trivial
since every trace is its own linearization. J

A concurrent specification is interval-linearizable if it is in the image of Linint.

I Proposition 22. Every concurrent specification is interval-linearizable.

Proof. This is an immediate corollary of Proposition 21: τ = Linint(τ), and τ is (in partic-
ular) an interval-sequential specification. J

Thus, interval-linearizable objects and concurrent specifications are one and the same. One
can see interval-linearizability as a convenient way of defining concurrent specifications in
practice: we do not have to worry about the expansion and commutativity conditions (6-8),
linearizability does that for us.

The results of the last three sections can be summed up in the following diagram, by
factoring Linseq and Linset as follows:

Specseq Specset Specint CSpec

Lin′
seq Lin′

set

U′
seq

Linint

Uset
′ Id

a

where the a symbol between Linint and Id indicates that they are related by a Galois con-
nection, and the primed functions are the expected ones. Moreover, the two other Galois
connections are obtained by composition (see Appendix C for details):

Linint ◦ Lin′set = Linset a Uset and Linint ◦ Lin′set ◦ Lin′seq = Linseq a Useq.

4.6 Other variants
Using the results of Section 4.2, it is easy to come up with new notions of linearizability. For
instance, say a trace T is k-concurrent if every prefix of T has at most k pending invocations.
Intuitively, a trace is k-concurrent if at any time, no more than k processes are running in
parallel. Let L be the set of k-concurrent traces. Then, given a specification that says how
an object behaves when it is accessed concurrently by at most k processes, L-linearizability
is a canonical way of extending this specification to any number of processes. In their paper
about concurrency-aware linearizability [7], Hemed et al. specify Java’s exchanger object
on traces that are both 2-concurrent and set-sequential, then they apply linearizability to
obtain the full concurrent specification.

5 Conclusion and perspectives

We have studied a class of concurrent specifications satisfying a number of desirable prop-
erties, and argued that those properties make sense computationally. This has allowed us
to formally compare different notions of linearizability in Theorem 16. Finally, we have

É. Goubault and J. Ledent and S. Mimram 23:15

explored some consequences and applications of this theorem. We believe that this should
be the starting point of a series of future works.

While we have illustrated the robustness of this notion, there are many possible small
interesting variants, such as removing the totality condition to model programs which are not
wait-free. In particular, it is often desirable to impose specifications to be deterministic: the
most simple definition (if the specification contains two traces T · rxi and T · ryi then x = y

should hold) does not play well with asynchrony, we think that a definition in the spirit
of [15] is however possible. Another direction worth considering is to get rid of the notion
of global time, inherent to the trace formalism. Very recent work generalize linerizability in
this direction, with applications to weak memory models [21] and relativistic effects [5].

We would also like to use our formalism in order to be able to reason about concurrent
programs in a compositional way. The model we introduce in Section 3 is (purportedly)
very close to the models of programming languages traditionally considered in game seman-
tics [11], and in particular the asynchronous variants [15], which are able to express the main
operational features of the languages while enjoying compositionality. We shall investigate
the compositional (categorical) structures enjoyed by our concurrent specifications in the
future.

References

1 E. Borowsky and E. Gafni. Immediate Atomic Snapshots and Fast Renaming. In Pro-
ceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’93, pages 41–51. ACM, 1993.

2 A. Castañeda, S. Rajsbaum, and M. Raynal. Specifying Concurrent Problems: Beyond
Linearizability and up to Tasks. In Distributed Computing - 29th International Symposium,
DISC 2015, Tokyo, Japan, Proceedings, pages 420–435, 2015.

3 P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record
of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles,
California, USA, January 1977, pages 238–252, 1977.

4 I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects.
Theoretical Computer Science, 411(51):4379 – 4398, 2010. European Symposium on Pro-
gramming 2009.

5 S. Gilbert and W. Golab. Making sense of relativistic distributed systems. In F. Kuhn,
editor, Distributed Computing, DISC 2015, volume 8784 of LNCS, pages 361–375. Springer
Berlin Heidelberg, 2014.

6 A. Haas, T. A. Henzinger, A. Holzer, C. M. Kirsch, M. Lippautz, H. Payer, A. Sezgin,
A. Sokolova, and H. Veith. Local linearizability for concurrent container-type data struc-
tures. In 27th International Conference on Concurrency Theory, CONCUR 2016, August
23-26, 2016, Québec City, Canada, pages 6:1–6:15, 2016.

7 N. Hemed, N. Rinetzky, and V. Vafeiadis. Modular Verification of Concurrency-Aware
Linearizability. In Distributed Computing - 29th International Symposium, DISC 2015,
Tokyo, Japan, Proceedings, pages 371–387, 2015.

8 M. Herlihy. Wait-free Synchronization. ACM Transactions on Programming Languages and
Systems, 13(1):124–149, Jan. 1991.

9 M. Herlihy, D. Kozlov, and S. Rajsbaum. Distributed Computing Through Combinatorial
Topology. Morgan Kaufmann Publishers Inc., 2013.

10 M. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

OPODIS 2018

23:16 Concurrent specifications beyond linearizability

11 J. M. E. Hyland and C.-H. Ong. On full abstraction for PCF: I, II, and III. Information
and computation, 163(2):285–408, 2000.

12 L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, 28(9):690–691, 1979.

13 L. Lamport. On interprocess communication. Distributed Computing, 1(2):77–85, 1986.
14 R. J. Lipton. Reduction: A method of proving properties of parallel programs. Communi-

cations of the ACM, 18(12):717–721, 1975.
15 P.-A. Melliès and S. Mimram. Asynchronous games: innocence without alternation. In

International Conference on Concurrency Theory, pages 395–411. Springer, 2007.
16 J. Misra. Axioms for memory access in asynchronous hardware systems. In S. D. Brookes,

A. W. Roscoe, and G. Winskel, editors, Seminar on Concurrency, pages 96–110. Springer
Berlin Heidelberg, 1985.

17 G. Neiger. Set-Linearizability. In Proceedings of the Thirteenth Annual ACM Symposium
on Principles of Distributed Computing, page 396, 1994.

18 M. Nielsen. Models for concurrency. In International Symposium on Mathematical Foun-
dations of Computer Science, pages 43–46. Springer, 1991.

19 C. H. Papadimitriou. The serializability of concurrent database updates. Journal of the
ACM, 26(4):631–653, 1979.

20 M. Raynal, G. Thia-Kime, and M. Ahamad. From serializable to causal transactions for
collaborative applications. In Proceedings of the 23rd EUROMICRO Conference, pages
314–321, 1997.

21 G. Smith, K. Winter, and R. J. Colvin. A sound and complete definition of linearizability
on weak memory models. ArXiv e-prints, Feb. 2018.

É. Goubault and J. Ledent and S. Mimram 23:17

A The usual definition of linearizability

We have defined the notion of L-linearizability in a slightly unusual way, using a rewriting
system. We detail here how to relate it to the usual definition given in [10]. To make it fully
formal, we need some preliminary definitions.

I Definition 23. Two alternating traces T, T ′ ∈ T are compatible if for all i ∈ [n], πi(T) =
πi(T ′).

When two traces T and T ′ are compatible, T ′ is a reordering of the actions of T that does
not exchange actions with the same process number. Thus, there is a canonical bijection
between op(T) and op(T ′) that sends the k-th operation of process i in T to the k-th
operation of process i in T ′. In the following, we keep this bijection implicit and we work
as if op(T) = op(T ′).

I Definition 24. A trace T ′ is a linearization of T if:
– T and T ′ are compatible, and
– if e �T e′ in op(T), then e �T ′ e′ in op(T ′).

I Lemma 25. Two traces are equivalent iff they are compatible and �T = �T ′ .

Proof. Remember that T ≡ T ′ when they only differ by a reordering of consecutive in-
vocations (resp. consecutive responses). Two equivalent traces are compatible because of
alternation: they cannot contain two consecutive invocations (or responses) with the same
process number. Moreover, the precedence ordering is preserved since it only compares the
position of an invocation with the position of a response. Conversely, assume T and T ′

are compatible but not equivalent. That means an invocation and a response have been
exchanged: let e and e′ be the two corresponding operations (e = e′ would break compati-
bility). Suppose w.l.o.g. that the invocation of e happens after the response of e′ in T and
are reversed in T ′, then e′ �T e but e′ �T ′ e. J

If T = U · ixi · r
y
j · V and T ′ = U · ryj · ixi · V for i 6= j, we say that T ′ is obtained from T by

one-step contraction, and we write T 1
 T ′.

I Lemma 26. T ′ is a linearization of T iff T T ′, i.e. we can go from T to T ′ by a
sequence of contractions and equivalences:

T ≡ T0
1
 T1 ≡ T ′1

1
 · · · 1

 Tk ≡ T ′

Proof. The right-to-left implication is due to the fact that T 1
 T ′ implies �T ⊆ �T ′ .

Indeed, two overlapping intervals have been separated, resulting in one more couple in the
precedence relation.

For the converse, if �T = �T ′ , we are done by Lemma 25. So assume that we have
a strict inclusion �T (�T ′ . We will construct a trace T1 such that �T (�T1 ⊆ �T ′

and T 1
 T1 (up to equivalence). Since �T (�T ′ , there are two operations e, e′ such that

e �T ′ e′ but e and e′ are incomparable in op(T). Among such pairs (e, e′), we choose one
such that the difference q − p′ is minimal, where e = (p, q) and e′ = (p′, q′), with indexes in
T .

Claim: Up to equivalence, T is of the form U · ixi · r
y
j · V where rxi is the response of

e and iyj is the invocation of e′. Indeed, assume by contradiction that T is of the form
U · ixi · · · r′ · · · i′ · · · r

y
j · V , then we have two candidates for a smaller gap between invocation

OPODIS 2018

23:18 Concurrent specifications beyond linearizability

and response; a case analysis shows that at least one of them would work, thus contradicting
minimality.

By applying one step of contraction, we obtain T1 = U · ryj · ixi · V . The ordering �T1 is
�T with one more relation e � e′.

Starting from T , we repeat this reasoning until we reach T ′. This procedure terminates
since the sequence of orderings (�Tk

)k is strictly increasing and there are only finitely many
such relations (because op(T) is finite). J

Lemma 26 almost bridges the gap between our definition of linearizability and the original
one. There remains one minor difference: the completion T ′ of T of Definition 14 is usually
allowed to remove some of the pending invocations of T . This is not useful here since all our
specifications are total and non-blocking: a response to the pending invocations can always
be found.

B Proof of Proposition 15

I Proposition 15. Let σ ∈ SpecL be an L-specification. Then

LinL(σ) = {T ∈ T | T is linearizable with respect to σ}

is a concurrent specification.

Proof. Given an L-specification σ, we check that LinL(σ) satisfies the conditions of concur-
rent specifications.

– Linearizable traces are alternating by definition.
– Prefix-closure is a bit more tedious than other conditions, see below.
– The empty trace is linearizable.
– For receptivity, let T ∈ LinL(σ) be a linearizable trace such that πi(T) does not have a
pending invocation. Let T · T̂ be an extension of T and S ∈ σ such that T · T̂ S. We
want to show that T · ixi is linearizable. Since σ is an L-specification and S is complete,
by receptivity S · ixi ∈ σ, and by totality there exists y ∈ V such that S′ = S · ixi · r

y
i ∈ σ.

Take T ′ = T · ixi · T̂ · r
y
i as the extension of T · ixi required in Definition 14, then we can

check that T ′ S′.
– For totality, let T ∈ LinL(σ) be a linearizable trace such that πi(T) has a pending
invocation. Again, we write T · T̂ and S ∈ σ the two traces of Definition 14. The suffix T̂
contains some response ryi , and by reordering the responses in T̂ we get T · T̂ ≡ T · ryi · T̂ ′.
So we obtain an extension of T · ryi such that T · ryi · T̂ ′ S.

– Commutativity of invocations (resp. responses) this is obvious since whenever U · ixi · i
y
j ·

V · T̂ S, then U · iyj · ixi · V · T̂ S (and similarly for responses).
– For closure under expansion, suppose T = U · ryj · ixi · V ∈ LinL(σ) with i 6= j, and let T̂
and S ∈ σ be such that T · T̂ S. We want to show that T ′ = U · ixi · r

y
j · V ∈ LinL(σ).

But since T ′ · T̂ 1
 T · T̂ S, we are done.

As mentioned above closure under prefix is a bit more tedious to check. Suppose T · T ′ ∈
LinL(σ). There is an extension T · T ′ · T̂ which has a linearization S ∈ σ. We want to
show that T is linearizable. First, we need to extend T by adding responses to its pending
invocations. These invocations have responses either in T ′ or in T̂ : a first idea would be to
use these responses. But some of these responses might be “bad” in the sense that they rely
on actions of T ′ in order to be valid. Some of them might be “good” in the sense that some

É. Goubault and J. Ledent and S. Mimram 23:19

actions of T rely on them in order to valid. The picture below shows the trace T · T ′ · T̂ (in
black with squared brackets) and a linearization S (in blue with round brackets):

T T ′ T̂

“bad”

last(T)

q

“good”

Given an operation e ∈ op(T), we can view it as an operation of S, whose response happens at
index φ(e) in S. Let last(T) ∈ op(T) be the complete operation of T whose index φ(last(T))
is maximal, and let q be that index. We truncate S after index q to obtain S′ = S0 · · ·Sq.
Then S′ ∈ σ since σ is prefix-closed. S′ might have some pending invocations, but we can
complete it using totality to obtain a trace S′′ ∈ σ. Then all the complete operations of T
are in S′′, by definition of the index q. Moreover, all the other operations of S′′ correspond
to pending invocations of T (they are the “good” responses we want to keep). Indeed, an
operation e whose invocation is not in T satisfies last(T) ≺TT ′T̂ e, which implies last(T) ≺S e,
and so e /∈ op(S′′). Write T̄ for the trace T where the pending invocations whose operations
are not in op(S′′) (the “bad” ones) have been removed. Complete T̄ by appending responses
to match those of S′′, and we can check that S′′ is a linearization of T̄ . So, T̄ ∈ LinL(σ).
Since we have already proved receptivity, we can add the missing invocations at the end of
T̄ , and then we move them inside to their original place using expansions and commutations,
we finally get T ∈ LinL(σ). J

C Factorization lemma

We have the following factorization lemma:

I Lemma 27. Suppose L and K are two sets of traces satisfying the conditions in the
beginning of Section 4.1, such that L ⊆ K. Then the map LinL factors through SpecK as
shown in the following commutative diagram:

SpecL SpecK CSpecLin′
L

LinL

LinK

where Lin′L(σ) = {T ∈ K | T is L-linearizable with respect to σ}.

Proof. To show that Lin′L(σ) is a K-specification, we go through the proof of Proposition
15, and check that the new traces that we construct are still in K. Let σ ∈ SpecL, we show
that LinK ◦ Lin′L(σ) = LinL(σ). Let T ∈ LinK ◦ Lin′L(σ), and observe that if T S′ S

with S′ ∈ Lin′L(σ) and S ∈ σ, then T S. Conversely, suppose T S with S ∈ σ.
Since S ∈ L ⊆ K and S is its own L-linearization, we have S ∈ Lin′L(σ), so we obtain the
factorization T S S. J

OPODIS 2018

	Introduction
	Counting processes
	Specifying concurrent objects
	Contributions
	Plan

	Concurrent specifications
	A computational model
	Linearizability
	L-specifications
	Comparison with concurrent specifications
	Sequential linearizability
	Set-linearizability
	Interval-linearizability
	Other variants

	Conclusion and perspectives
	The usual definition of linearizability
	Proof of Proposition 15
	Factorization lemma

