
Classifying covering types in homotopy type theory
Samuel Mimram #�

LIX, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

Émile Oleon #�

LIX, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

Abstract
Covering spaces are a fundamental tool in algebraic topology because of the close relationship they
bear with the fundamental groups of spaces. They are namely in correspondence with the subgroups
of the fundamental group: this is known as the Galois correspondence. In particular, the covering
space corresponding to the trivial group is the universal covering, which is a “1-connected” variant
of the original space, in the sense that it has the same homotopy groups, except for the first one
which is trivial. In this article, we formalize this correspondence in homotopy type theory, a variant of
Martin-Löf type theory in which types can be interpreted as spaces (up to homotopy). In passing,
we develop a an n-dimensional generalization of covering spaces. Moreover, in order to witness for
the applicability of our approach, we formally classify the covering of lens spaces and explain how to
construct the Poincaré homology sphere.
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1 Introduction

The notion of covering space is a fundamental tool in algebraic topology. Namely, it provides a
canonical way to remove the low-dimensional homotopy structure of a space (the universal
covering has a trivial fundamental group) and it bears a close relationship with the fundamental
group: coverings are classified by subgroups of the fundamental group of the original space,
which is known as the Galois correspondence. The setting of homotopy type theory [13] allows
one to perform geometric constructions in a synthetic way: all constructions on types correspond
to manipulations of spaces, and are guaranteed to be invariant under homotopy of spaces by
construction. It is thus natural to expect that the definition of covering space and associated
properties can be developed in this framework, and we explain here that this is indeed the case.
The notion of (universal) covering of a type was first introduced by Harper and Favonia in [8],
and the Galois correspondence was recently independently shown by Wemmenhove, Manea,
and Portegies [16]. Here, we develop further the theory of covering spaces, by explaining their
relationship with the connected/truncated factorization, generalizing to n-coverings (we recover
the usual case by setting n = 0), and computing their homotopy groups. Compared to [16], our
proof of the Galois correspondence departs the tradition one in algebraic topology [7], providing
arguments which are shorter, more conceptual, and should be amenable to generalizations (in
particular, we leave the general classification of n-coverings for future works, handling only
the case n = 0 here). Finally, we apply our constructions by classifying the covering spaces
of lens spaces (which provide deloopings of cyclic groups) and constructing important spaces
due to Poincaré (the hypercubical manifold and the homology sphere) as quotients of coherent
actions of their fundamental group on their universal covering.

Plan of the paper. After recalling basic notations and concepts in homotopy type theory
(Section 2), we define and study higher covering types (Section 3), and prove the classification
of covering types (Section 4). Finally, as an application, we classify the covering types of lens
spaces, construct the Poincaré homology sphere (Section 5) and conclude (Section 6).
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2 Homotopy type theory

We begin by briefly recalling the main notations and tools of homotopy type theory. Detailed
presentations can be found in [13, 12].

Universe. We write U for the universe type, whose elements are small types, which is supposed
to be closed under dependent sum and product types. Given a type A : U and a type family
B : A → U, we write ΣA.B or Σ(x : A).B x for dependent sum types and ΠA.B or Π(x : A).B x
or (x : A) → B x for dependent product types. As customary, we respectively write A×B and
A → B for product and arrow types, which correspond to non-dependent particular cases of
the previous constructions. We respectively write 0 and 1 for the initial and terminal types.

Identities. The type theory features a notion of definitional equality and we write t ≡ u when
two terms t and u are definitionally equal. It also features a notion of propositional equality:
given x, y : A, we write x = y for the type of identities or paths between x and y in A. For any
point x : A, there is a path refl : x = x witnessing for reflexivity. Given paths p : x = y and
q : y = z, we can construct paths p · q : x = z corresponding to concatenation or transitivity,
and p−1 : y = x corresponding to inverse or symmetry.

Pointed types. A pointed type is a type A together with a distinguished element, often
written ⋆A or even ⋆ (equivalently, the distinguished element can be specified by providing a
map 1 → A). A pointed map f : A → B between pointed types A and B is a map between
the underlying types together with an identification f(⋆A) = ⋆B. We write A →⋆ B for the
corresponding type of pointed maps.

Univalence. A map f : A → B is an equivalence when it admits both a left and a right inverse.
We write A ≃ B for the type of equivalences between A and B. Any identity between two
types canonically induces an equivalence between them. The univalence axiom states that the
corresponding map (A = B) → (A ≃ B) is itself an equivalence: in particular, any equivalence
induces an identity.

Homotopy levels. A type A is contractible when it is equivalent to 1. A type A is a proposition
(resp. a set, resp. a groupoid) when for any elements x, y : A the type x = y is contractible
(resp. a proposition, resp. a set). The type of sets is denoted Set. More generally, we can define
a notion of n-type for n ∈ {−2,−1} ∪ N by stating that a (−2)-type is a contractible one, and
an (n+1)-type is a type A in which x = y is an n-type for every x, y : A. We write isTypen(A)
for the predicate indicating that A is an n-type, which can be shown to be a proposition. We
write Un ≡ ΣU. isTypen for the type of n-types.

Truncation. The n-truncation ∥A∥n is the universal way of turning a type A into an n-type: it
comes equipped with a map |−|n : A → ∥A∥n such that any map f : A → B, whose target B is
an n-type, induces a unique map f̃ : ∥A∥n → B such that f̃(|x|n) = f(x) for x : A. A type A
is n-connected when ∥A∥n = 1. In particular, a type is connected (resp. simply connected)
when it is 0-connected (resp. 1-connected). The connected component of an element a of A is
Σ(x : A).∥a = x∥−1.

Loop space. The circle S1 is the free pointed type containing a path loop : ⋆ = ⋆. Given a
pointed type A, its loop space ΩA is ⋆ = ⋆, which can be shown to coincide with the type
S1 →⋆ A. Its fundamental group is the type π1(A) ≡ ∥ ΩA∥0, which is canonically equipped
with a group structure induced by path concatenation. When A is a pointed connected
groupoid, its loop space coincides with its fundamental group, so that it is a group. A delooping
of a group G is a type BG equipped with an isomorphism of groups Ω BG ∼= G (such a type
always exists and is unique, thus the notation). It is easily shown that a map BG → Set
corresponds to a set equipped with an action of G in the usual sense.
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Fiber sequences. Given a map f : A → B and y : B, the fiber of f at y is the type
fibf y ≡ Σ(x : A).(f(x) = y). When B is pointed, the kernel of f is ker f ≡ fibf ⋆. A
composable pair of morphisms F A B

f is a fiber sequence when F is the kernel of f and
the map F → A is the first projection. A map is n-connected (resp. n-truncated) when all its
fibers are.

The Grothendieck duality. A fundamental property in homotopy type theory is that, given
a type A, fibrations over A correspond both to types over A and to type families indexed
by A: this is the Grothendieck duality. We write U/A ≡ Σ(B : U).(B → A) for the type of
types over A and A → U for the type of type families indexed by A. We have a function
fib : U/A → (A → U), which to p : B → A associates the fiber fibp : A → U, and a function∫

: (A → U) → (U/A), which to a family F : A → U associates the first projection map
π : ΣA.F → A. The following is shown in [13, Section 4.8]:

▶ Theorem 1. Given a type A, the above functions induce an equivalence U/A ≃ (A → U).
Moreover, this correspondence is functorial in the sense that given p : B → A and q : C → A, a
morphism f : B → C with q ◦ f = p corresponds to a family of maps (x : A) → fibp x → fibq x

in a way which preserves identities and composition (and thus equivalences).

3 Higher covering types

3.1 Covering spaces in topology
We briefly recall here the traditional notion of covering space in topology and refer to standard
textbooks for details [7]. Given a topological space A, a covering is a space B together with
a map p : B → A which is locally trivial. This means that every point x : B admits an open
neighborhood such that the preimage p−1(U) is homeomorphic to a space of the form U × F ,
where F is a set equipped with the discrete topology and the restriction of p to p−1(U) is the
first projection. When B is connected, which will be the case of interest here, the cardinal
of F has to be the same for every point x and is called the number of sheets of the covering.
Below we have figured a covering with 3 sheets (on the left) and with countably many sheets
(on the right):

p
S1

p
S1

In order for the constructions of coverings to be well-behaved, we will implicitly assume
in the following that A satisfies reasonable assumptions (namely being connected, locally
path-connected, semilocally simply-connected). We will also assume that it comes equipped
with a distinguished point ⋆. An important feature of coverings is that they have the path
lifting property: given a path π : x⇝ y in A and an element x̃ ∈ Ã with p(x̃) = x there is a
unique path π̃ : x̃ → ỹ with p(π̃) = π. This implies that we have an action of the fundamental
group π1(A) on the fiber p−1(⋆) and, in fact, this characterizes coverings:

▶ Proposition 2 ([7, Section 1.3, p. 70]). Coverings of A are in bijections with sets equipped
with a action of π1(A).

The universal covering is the only covering p : Ã → A with Ã simply connected. For
instance, the universal covering of S1 is the “helix” pictured on the right above. This space
can be shown to be unique up to isomorphism and can be constructed as follows:
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▶ Proposition 3 ([7, Section 1.3, p. 64]). The universal cover Ã of A can be constructed as the
space whose points are pairs consisting of a point x : A and a path p : ⋆⇝ x up to homotopy,
equipped with a suitable topology, the map p : Ã → A being given by first projection.

The fundamental group π1(A) of A is the group whose elements are homotopy classes of
paths ⋆⇝ ⋆ in A, with concatenation as multiplication and constant paths as neutral elements.
By the construction of Proposition 3, given x : A, the fiber p−1(x) is π1(A), we have an action
of π1(A) on this fiber given by left multiplication, which induces an action of π1(A) on Ã.

▶ Proposition 4 ([7, Theorem 1.38]). The quotient Ã/π1(A) of the universal cover under the
above action is precisely A.

The action can be shown to be free, so that the quotient above coincides with the homotopy
quotient.

3.2 The universal fibration
We begin by describing a situation in homotopy type theory, which is close to coverings, and
fundamental with respect to the characterization of identity types. This construction might
seem a bit artificial at first, but we will see that the point of view nicely generalizes to coverings,
in the sense that what we describe in this section is a kind of “universal ∞-covering”.

Suppose given a pointed type A. A pointed type over A is a pointed morphism p : B →⋆ A.
A morphism between two such pointed types p : B →⋆ A and q : C →⋆ A is a map f : B → C

together with an equality f ◦ p = q. Such morphisms compose in the expected way, which is
compatible with the composition of underlying maps.

▶ Definition 5. A pointed type p : B →⋆ A is universal when for every pointed type q : C → A,
the type of morphisms from p to q is contractible.

Since it satisfies a universal property, the universal pointed type is unique, and it exists thanks
to the following characterization:

▶ Proposition 6. A pointed type p : B →⋆ A is universal if and only if B is contractible.

Proof. By definition of morphisms and initiality of 1, the type 1 is initial among pointed types
over A. An universal pointed type p : B → A is also initial among pointed types over A, by
the universal property, and thus B is equivalent to 1, i.e. contractible. ◀

By immediate computations, we have:

▶ Proposition 7. The fiber of the universal pointed type p : 1 → A is ΩA.

It is very illuminative to translate the previous definitions and properties under the
Grothendieck duality (see Theorem 1). A pointed type over A corresponds to a fibration
P : A → U together with a distinguished element ⋆P of P⋆, and, by Proposition 6, such
a fibration is universal precisely when the total space ΣA.P is contractible. The universal
pointed type thus corresponds to the universal fibration, which is the map FA : A → U
defined by FA x ≡ (⋆ = x), and pointed by refl⋆. By Theorem 1, a morphism between
fibrations P,Q : A → U corresponds to a family of maps f : (x : A) → P x → Qx together with
an identification f ⋆ ⋆P = ⋆Q. The initiality property of universal pointed types (Definition 5)
then translates as the fundamental theorem of identity types [12, Theorem 11.2.2]:

▶ Theorem 8. Suppose given a type family P : A → U pointed by ⋆P : P ⋆, together with a
family of maps

F : (x : A) → (⋆ = x) → P x



S. Mimram and É. Oleon 5

and an identification F ⋆ refl⋆ = ⋆P . Then F is a family of equivalences if and only if the total
space ΣA.P is contractible.

Proof. Under the Grothendieck duality of Theorem 1, the type family P corresponds to the
pointed type p : ΣA.P → A over A, given by the first projection. The family of maps F then
corresponds to a morphism between the universal type over A and p, i.e. to a pointed map
f : 1 → ΣA.P . Then F is a family of equivalences if and only if the induced map f is an
equivalence, i.e. if and only if ΣA.P is contractible. ◀

▶ Remark 9. In the situation of the above theorem, the map P can be thought of as being
representable, in the sense that Px = (⋆ = x) (and identities can be thought of as homs in
types). This notion was actually used by Voevodsky [14] in order to first define identity types.

3.3 Higher covering types

We now introduce the notion of n-covering type, for any natural number n, which can be
understood as an n-truncated variant of the pointed types of previous section. The traditional
notion of covering is the particular case n = 0, as we indicate in remarks.

An n-covering of A is a map p : B → A whose fibers are n-types; such a map is also said
to be n-truncated. We write

Coveringn(A) ≡ Σ(B : U).Σ(f : B → A).(x : A). isTypen(fibf x)

for the type of coverings of A. Under the Grothendieck duality, those can also be defined as
families of n-types.

▶ Lemma 10. We have an equivalence Coveringn(A) ≃ (A → Un).

Proof. Follows immediately from Grothendieck duality (Theorem 1). ◀

▶ Remark 11. For n = 0, we recover the definition covering types of [8, Definition 1], as
maps A → Set. Since Set is a groupoid [13, Theorem 7.1.11], the universal property of groupoid
truncation provides us with an equivalence (A → Set) ≃ (∥A∥1 → Set). A covering of A thus
corresponds to a map ∥A∥1 → Set. Moreover, we have by Proposition 30 that ∥A∥1 is a Bπ1A,
from which deduce that a covering of A corresponds to a set equipped with an action of π1A.
We thus recover the traditional Proposition 2, which was formalized in homotopy type theory
in [8, Theorem 4].

A morphism f between n-coverings p : B → A and q : C → A is a map f : B → C together
with an equality p = q ◦ f .

A pointed n-covering is a pointed map p : B →⋆ A between pointed types, whose underlying
map is an n-covering. This corresponds exactly to the following notion:

▶ Definition 12. A pointed n-covering is a factorization

1 B

A

a

i

p

of the pointing map a : 1 → A as a = p ◦ i where p is n-truncated.

In the following, we sometimes assimilate the covering to the map p : B → A leaving the
data of the pointing i : 1 → B of B implicit. As expected, a morphism f between pointed
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n-coverings p and q is a pointed map which is a morphism between the underlying n-coverings,
i.e. such that the factorization of the target is q ◦ (f ◦ i):

1 B C

A

a

i

p

f

q

▶ Definition 13. A pointed n-covering p : B → A is universal when for every n-covering
q : C → A there exists a unique map f : B → C of pointed n-coverings.

▶ Remark 14. For n = 0, we recover the characterization of pointed universal coverings as
being initial in the category of pointed coverings [8, Lemma 12].
We sometimes write Ã for the universal n-covering. This is justified by the fact that, being
defined by a universal property, it is uniquely characterized:

▶ Lemma 15. Any two universal pointed n-coverings are uniquely isomorphic.

We have the following characterization of universal n-coverings:

▶ Theorem 16. Given a pointed type A with pointing map a : 1 → A, any factorization
a = p ◦ i as n-connected map i and followed by an n-truncated map p exhibits p as a universal
n-covering. Moreover, such a factorization always exists and is unique.

Proof. By [13, Theorem 7.6.6], the map a : 1 → A admits a unique factorization a = p ◦ i as
required. Moreover, given a n-covering q : B → A pointed by b : 1 → B, we have a commuting
square as on the left

1 B

Ã A

i

b

a q

p

1 B

Ã A

i

b

q

p

The commutation of the two triangles being given by the fact that we have two pointed
n-coverings of A pointed by a. By [13, Theorem 7.6.7], because i is n-connected and p is
n-truncated, there is a unique map Ã → B making the two triangles on the right commute,
and p is thus universal in the sense of Definition 13. ◀

In practice, the universal n-covering can be constructed as follows. We recall from [13,
Definition 7.6.3] that, given a map f : B → A and a natural number n, its n-image is

imn f ≡ Σ(x : A).∥ fibf x∥n

We write in : B → imn f for the canonical map such that in(x) = (f(x), | reflx |n) and
pn : imn f → A for the first projection map.

▶ Proposition 17. The factorization a = pn ◦ in of the pointing map a as above, exhibits
pn : imn a → A as the universal covering of A.

Proof. By [13, Lemma 7.6.4], this factorization satisfies the conditions of Theorem 16. ◀

▶ Remark 18. For n = 0, we recover the usual definition of the universal covering space as the
type of homotopy classes of paths from the distinguished point:

Ã = Σ(x : A).∥⋆ = x∥0

For n = −1, the universal covering of A is its set of connected components. Finally, for n = ∞
(we adopt the convention that ∥A∥∞ ≡ A), we recover the universal pointed type of Section 3.2
by contractibility of singletons [13, Lemma 3.11.8].
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▶ Example 19. The universal covering of A ≡ S1 is Σ(x : A).(⋆ = x) (we can remove the
0-truncation because S1 is a groupoid) and thus contractible by [13, Lemma 3.11.8] (see
Lemma 26 for a generalization of this argument).

▶ Remark 20. The factorization results used above hold more generally for any map a : B → A

where B is not necessarily contractible. In this sense, given an arbitrary map a : B → A, we
can think of imn a as the “universal n-cover of A relative to a”.

The universal n-covering can also be characterized as the covering whose total space is
(n+1)-connected. This can be shown using the following lemma proved in appendix.

▶ Lemma 21. A pointed connected type A is (n+1)-connected (resp. (n+1)-truncated) if and
only if the pointing map 1 → A is n-connected (n-truncated).

▶ Theorem 22. Given a pointed connected type A, the universal pointed n-covering is the
(n+1)-connected pointed n-covering of A.

Proof. By Definition 12, a pointed n-covering p : B → A is a factorization of the pointing map
a : 1 → A as a = p◦i with p n-truncated. By Theorem 16, it is universal if and only if i : 1 → B

is n-connected which, by Lemma 21 is equivalent to the fact that B is (n+1)-connected. ◀

▶ Remark 23. For n = 0, we recover the fact that the universal covering is the only 1-connected
covering of a type [8, Lemma 11].

We now formalize the intuition that the universal n-covering Ã of A provides a way to
“kill” all the homotopy in dimension i ≤ n+ 1. This is based on what we call the fundamental
fibration associated to the universal n-covering:

▶ Theorem 24. Writing Ã for the universal n-covering, we have a fiber sequence

Ã A ∥A∥n+1
p |−|n+1

Proof. We have

ker |−|n+1 ≡ Σ(x : A).(| ⋆ |n+1 = |x|n+1) = Σ(x : A).∥⋆ = x∥n = Ã

where middle equality is [13, Theorem 7.3.12] and right one is Proposition 17. ◀

This was actually taken to be the definition of n-coverings in [2]. As a corollary, we have the
following characterization of the homotopy groups of the universal n-covering:

▶ Proposition 25. We have πi(Ã) = 1 for i ≤ n+ 1 and πi(Ã) = πi(A) for i > n+ 1.

In particular, this suggests that the universal covering should be contractible when A has no
homotopy in dimension i > n+ 1:

▶ Lemma 26. Given a (n+1)-truncated pointed type A, its universal n-covering is contractible.

Proof. Since A is supposed to be (n+1)-truncated, the pointing map a : 1 → A is n-trunca-
ted by Lemma 21 and the factorization a = a ◦ id1 of the pointing map as an n-connected
map followed by an n-truncated map has to be the factorization of the universal covering
(Theorem 16) by uniqueness. ◀

We would like to end this section with the following conjecture, which would allow con-
structing deloopings of higher groups based on the previous construction. Note that, below,
the coverings are not supposed to be pointed.

▶ Conjecture 27. Given a connected type A, the connected component of Ã in Coveringn(A)
is ∥A∥n+1.
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Provided that this conjecture holds, the connected component of Ã in A would be a pointed
(n+1)-connected groupoid, which can thus be thought of as a delooping of the fundamental
n-group of A. The following proposition shows that we have right underlying type (it would
remain to be shown that we have the right higher operations for the n-group):

▶ Proposition 28. Given a pointed connected type A, the type of automorphisms of the universal
n-covering Ã is ∥ ΩA∥n.

Proof. By universal property of Ã (Definition 5), an automorphism f : Ã → Ã is uniquely
determined by f⋆ which is an element of fibp ⋆. The type of automorphisms of Ã is thus fibp ⋆.
Now, by Proposition 17, we can consider that p is the first projection p : Σ(x : A).∥ fiba x∥n → A

whose fiber at ⋆ is ∥ fiba ⋆∥n by [13, Lemma 4.8.1], i.e. ∥ ΩA∥n. ◀

▶ Remark 29. Let us explain why the conjecture does hold in the case n = 0. Namely, writing

Comp(p0) ≡ Σ(p : Covering(A)).∥p0 = p∥−1

for the connected component of the universal 0-covering p0 : Ã → A, we have

Ωp0 Comp(p0) = Ωp0 Covering(A) = ∥ ΩA∥0 ≡ π1(A)

where the first equality follows from the fact that the canonical projection map from Comp(p0)
to Covering(A) is an embedding [13, Lemma 7.6.4], and the second one is due to Proposition 28.
Moreover, this identity is compatible with the group structures on both sets.

Given a group G, consider a delooping A ≡ BG. By Grothendieck duality, the type of
coverings of BG coincide with maps BG → Set (see Remark 11), i.e. with the type SetG of sets
equipped with an action of G [8, Theorem 4]. Moreover, under this identification, the universal
covering corresponds to the principal G-set PG, which is the set G equipped with the canonical
action induced by right multiplication. Namely, BG being a 1-truncated pointed type, its
universal covering is contractible by Lemma 26 and is thus the pointing map p : 1 → BG,
and the corresponding map ϕ : BG → Set is ϕ ≡ fibp ≡ (x 7→ ⋆ = x). In particular, we have
ϕ(⋆) = (⋆ = ⋆) = Ω BG = G. Moreover, given an element a of G, seen as path a : ⋆ = ⋆, we
have (ϕ=a)→(b) = ab by the formula for transport in identity types [13, Lemma 2.11.2]. We
thus have that the connected component of the principal G-set

Comp(PG) ≡ Σ(X : SetG).∥PG = X∥−1

is a delooping of G. This type is known as the type of G-torsors [1, 3, 6, 15].

4 The Galois correspondence

4.1 The Galois fibration
From now on, we restrict ourselves to the case n = 0 of n-coverings. In order to define the
Galois correspondence, we first need to define the action of the fundamental group π1(A) of a
pointed connected type A on its universal cover Ã. This means that we want to define a map
F : Bπ1A → U such that F⋆ = Ã. By the Grothendieck duality (Theorem 1), this amounts to
define a map f : X → BG, for some type X, whose fiber is Ã. Moreover, the source X has to
be the homotopy quotient of Ã under this action, which is known to coincide with the strict
quotient because the action is free, and should thus be A itself by Proposition 4, see Section 3.1.
Another important observation, is that we have a very convenient model for Bπ1A, namely:

▶ Proposition 30. Given a pointed connected type A, we have that ∥A∥1 is a Bπ1A.

Proof. We take | ⋆ |1 to be the distinguished point of ∥A∥1. Connectedness is preserved by
truncation: we have ∥∥A∥1∥0 = ∥A∥0 = 1 (the first equality is [13, Lemma 7.3.15] and the
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second one is the fact that A is connected) and thus ∥A∥1 is connected. Finally, we have
Ω ∥A∥1 = ∥ ΩA∥0 ≡ π1A by [13, Corollary 7.3.13]. ◀

The previous discussion suggests defining:

▶ Definition 31. Given a pointed connected type A, the associated Galois fibration is the map
| − |1 : A → ∥A∥1, which we write gA in the following.

Namely, its target is Bπ1A by Proposition 30 and we have the expected fiber as the case n = 0
of Theorem 24:

▶ Proposition 32. We have ker gA = Ã, i.e. we have a fiber sequence Ã A Bπ1A
gA .

As an interesting immediate consequence of this result, we recover the fact that the fibers of
the universal covering are the fundamental group:

▶ Proposition 33. We have a fiber sequence π1A Ã A.

Proof. By [13, Section 8.4], the fiber sequence of Proposition 32 can be extended on the left
by Ω Bπ1A, which is π1A by definition of the delooping. ◀

A careful reader could wonder why the action encoded by Proposition 32 is actually the
“right” one in the sense that it corresponds to the traditional one in topology. Namely, we can
expect that there are other such actions, i.e. maps f : A → Bπ1A with ker f = Ã (what will
be important here is that Ã is 1-connected by Remark 23). In fact, it turns out is only one
possible such action, up to an automorphism of Bπ1A:

▶ Proposition 34. Given a pointed connected type A and 1-connected map f : A → Bπ1A,
there is an equivalence e : Bπ1A → Bπ1A for which there is a commuting triangle

A

Bπ1A Bπ1A

gA f

e
∼

Proof. By naturality of truncation [13, equation (7.3.4)], we have a commutative square

A ∥A∥1

Bπ1A ∥ Bπ1A∥1

f

|−|1

∥f∥1

|−|1

By definition, the upper map is gA. The lower map is an equivalence because Bπ1A is a group-
oid [13, Corollary 7.3.7]. The right vertical map is also an equivalence by [13, Lemma 7.5.14],
because f is supposed to be 1-connected. Finally, f is an equivalence as a composite of
equivalences. ◀

The situation above is a bit subtle. Namely, it states that a 1-connected map as f has to
be the Galois fibration. However, this is up to an automorphism of Bπ1A, which might
itself bear some information. Namely, pointed automorphisms of Bπ1A correspond to group
automorphisms of π1A which might be non-trivial. In all the applications below, insights from
the corresponding constructions in algebraic topology allow us to make sure that we indeed
have the right action.
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4.2 The Galois correspondence
In algebraic topology, we have seen in Proposition 4 that, given a nice pointed space A, there
is an action of its fundamental group on its cover. This is in fact the basis of a classification of
coverings: those correspond to the subgroups of the fundamental group, see for instance [7,
Theorem 1.38]. In homotopy type theory, the action is encoded by the Galois fibration
(Proposition 32) and our aim is now to develop a similar classification of coverings.

In this section, we write Covering(A) for the coverings of A which are pointed and connected,
i.e. whose total space is connected. Given a group G, we also write Subgroup(G) for the type
of subgroups of G, i.e. injective maps i : H → G for some group H.

▶ Lemma 35. Given a subgroup i : H → G, the fiber of B i merely is the set G/H.

▶ Theorem 36. There is an equivalence between subgroups of π1(A) and pointed connected
coverings of A:

Subgroup(π1(A)) ≃ Covering(A)

Proof. Given a subgroup i : G ↪→ π1(A), the corresponding covering X is obtained as pullback
of the Galois fibration along the delooping of the inclusion of groups:

CG BG

A Bπ1(A)

pG

⌟
B i

gA

We need to show that X is a connected covering, i.e. it is connected and pG has 0-truncated
fibers. The fiber of the covering is given by glueing pullbacks

FG CG BG

1 A Bπ1(A)

⌟
pG

⌟
B i

⋆ gA

and thus we have
FG ≡ ker pG = ker B i = π1(A)/G

by Lemma 35 (to be precise, we only have the existence of such an equality, which is sufficient
for our purposes exposed in next sentence). As a consequence, the fibers of pG are sets. Also,
by vertical preservation of the fiber,

Ã 1

CG BG

A Bπ1(A)

⌟

pG

⌟
B i

gA

we have the upper square which is a pullback, i.e.

Ã CG BG

which says, by action-fibration duality, that

CG = Ã//G

Therefore, CG is connected as a homotopy quotient of a connected space.
Conversely, given a connected covering f : X → A, we have

π1(f) : π1(X) → π1(A)



S. Mimram and É. Oleon 11

This is a mono, because we have the long exact sequence associated to the fibration:

π1(F ) π1(X) π1(A)π1(f)

where F ≡ ker f is a set (because f is covering) and thus π1(F ) = 1.
We now have to show that these two operations are mutually inverse. Given a connected

covering f : X → A, the associated connected covering (by performing the two operations) is
obtained as the pullback on the left, which can be rewritten as on the right

Cπ1X Bπ1X

A Bπ1A

pπ1X

⌟
B π1f

gA

Cπ1X ∥X∥1

A ∥A∥1

pπ1X

⌟
∥f∥1

|−|1

Moreover, we have a commuting square

X ∥X∥1

A ∥A∥1

f

|−|1

∥f∥1

|−|1

and thus a universal map e : X → Cπ1X such that

X

Cπ1X ∥X∥1

A ∥A∥1

f

|−|1

e

pπ1X

⌟
∥f∥1

|−|1

More explicitly,
Cπ1X ≡ Σ(a : A).Σ(y : ∥X∥1).(|a|1 = ∥f∥1(y))

and e(x) = (f(x), |x|1, refl|f(x)|1). Because the lower-left triangle commutes, e amounts to a
family of maps

ea : fibf a → fibπ1X a

(x, p) 7→ (f(x), |x|1, refl, p)

indexed by a : A, with p : a = f(x). Let us consider the case a ≡ ⋆. We have

fibπ1X ⋆ ≡ Σ(a : A).Σ(y : ∥X∥1).Σ(q : |a|1 = ∥f∥1(y)).(⋆ = a)

We can construct an inverse map

e′
⋆ : fibπ1X ⋆ → fibf ⋆

(a, y, q, p) 7→ (x, p · q̃)

where we assume that y = |x|1 because we are eliminating to fibf ⋆ which is a set (and thus a
groupoid). Above, we have p : |a|1 = ∥f∥1(x), which is equivalent to ∥a = f(x)∥0 and we can
thus suppose that q = |q̃|0 with q̃ : a = f(x) because we are eliminating to a set. We have

e′ ◦ e(x, p) = (x, p · refl) = (x, p)

Conversely,
e ◦ e′(a, |x|1, |q|0, p) = e(x, p · q) = (f(x), |x|1, refl, p · q)

(we can suppose that the second and third arguments are truncations as above, because we are
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eliminating to a set). We thus have to show

(f(x), |x|1, refl, p · q) = (a, |x|1, |q|0, p)

with p : ⋆ = a and q : a = f(x). Abstracting over a, we can suppose that q is refl by J, and we
conclude immediately.

Conversely, given a subgroup i : G ↪→ π1A, the associated subgroup (by performing the
two transformations) is

π1(pG) : π1CG → π1A

we thus have to show that π1CG = G and the map π1pG = i (note to be precise, we should
identify the sources and the targets of the maps up to equality). We have a pullback square

CG BG

A Bπ1A

pG

⌟
B i

gA

which can be extended as (see above)

Ã 1

CG BG

A Bπ1(A)

⌟

pG

⌟
B i

gA

The map CG → BG is 1-connected because the fiber is Ã which is 1-connected by The-
orem 22. By [13, Lemma 7.5.14], it thus induces an equivalence ∥CG∥1 ≃ ∥ BG∥1, and thus
π1(CG) = π1(BG) = G. We should have the fact that π1pG = i similarly, by applying π1 to
the above square (which is not anymore a pullback but remains commutative). ◀

▶ Example 37. Consider the case A ≡ S1. The associated Galois fibration is

S1 ∥ S1 ∥1 Bπ1 S1 ≃ BZ|−|1 ∼

and is thus an equivalence. The subgroups of Z are in : Z → Z with in(k) = n× k with n > 0
or i0 : 0 → Z. And thus covering of the circle are of the form

Cn BZ

S1 BZ

pn

⌟
B in

gS1

Since the lower arrow is an equivalence, the pullback is BZ, i.e. S1. And pn : S1 → S1 is the
pointed map sending the loop to loopn.

▶ Lemma 38. For any 1-connected map f : X → BG its 1-truncation ∥f∥1 : ∥X∥1 → BG is
an equivalence.

5 Applications

5.1 Coverings of lens spaces
Lens spaces were defined in homotopy type theory by the authors of this paper in [9]. We
briefly recall here their definition. Given natural numbers l and n with l prime with n, we
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write
ϕl

n : S1 → BZn

for the pointed map sending loop to the loop in BZm corresponding to l : Zm. We have a fiber
sequence

S1 S1 BZn
ϕl

n

which is obtained by delooping the exact sequence Z Z BZn
−×n −×l , see [9, Section 6.2].

▶ Definition 39. Given a sequence l1, . . . , lk of natural numbers all prime with n, the associated
lens space Ll1,...,lk

n is the source of the map

ϕl1
n ∗ . . . ∗ ϕlk

n : Ll1,...,lk
n → BZn

which we simply write as ϕl1,...,lk
n in the following.

It can be shown that the fiber of this map is S2k−1 [9, Section 6.2], which is thus 2k − 2
connected. In particular, we have that π1L

l1,...,lk
n = π1 BZn = Zn.

We now classify covering spaces of lens spaces. We have seen in Theorem 36 that they
correspond to subgroups of Zn, which are the Zm with m | n. Given such a Zm, the
corresponding covering Cm is obtained by taking the inclusion im : Zm → Zn, delooping it,
and pulling back along the Galois fibration:

Cm BZm

Ll1,...,lk
n BZn

pm

⌟
B im

g
L

l1,...,lk
n

In order to perform computations, we first note that, by Proposition 34, we can replace the
map g

L
l1,...,lk
n

at the bottom by ϕl1,...,lk
n (up to an automorphism of the target).

▶ Proposition 40. For natural numbers l,m, n, p with l prime with n, and n = mp, we have a
pullback square

S1 BZm

S1 BZn

sp

ϕl
m

⌟
B im

ϕl
n

where the vertical map sp sends loop to loopp.

Proof. We write X for pullback of ϕl
n and B im as shown on the left below:

X BZm

S1 BZn

(ϕl
n)∗ B im

(B im)∗ϕl
n

⌟
B im

ϕl
n

ΩX Zm

Z Zn

⌟
im

−×l

The type X is pointed (because both maps ϕl
n and B im are) and connected (this can be shown

as in [9, Lemma 26]). Finally, since loop spaces commute to pullbacks because they are right
adjoints, we have a pullback square of groups as on the right above. From this, we can deduce
that ΩX ∼= Z as follows. The preceding pullbacks means that we have

ΩX = Σ((a, b) : Z × Zm).(al =Zn
bp)

We write f : Z → ΩX for the map sending 1 to (p, l), and we claim that this is an isomorphism.
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First, f is injective because (p, l) is free. Indeed, suppose that f(x) ≡ (xp, xl) = 0. In
particular, xp =Z 0 and since p ̸= 0 we have x = 0. Second, f is surjective. Namely, fix
(a, b) : ΩX. There is y ∈ Z such that al = bp + yn = p(b + ym). Therefore p | al, but l is
prime with n and p | n so that l is prime with p and thus p | a. There thus exists x such
that a = px. Thus pxl − bp =Zn

0, i.e. p(xl − b) =Zn
0, that is mp ≡ n | p(xl − b) and thus

m | xl − b, i.e. b =Zm xl. Finally, (a, b) = (xp, xl) ≡ f(x) and f is surjective. The maps of the
pullback are the projections from ΩX and are thus the expected ones. ◀

▶ Theorem 41. For l1, . . . , lk natural numbers prime with n, and k > 1, the coverings of Ll1,...,lk
n

are precisely the Ll1,...,lk
m with m | n, and the projections maps are given by sp ∗B Zn

. . . ∗B Zn
sp.

Proof. By Theorem 36, the coverings of Ll1,...,lk
n correspond to subgroups of π1L

l1,...,lk
n , i.e. the

subgroups of Zn, and those are of the form Zm for m | n. More precisely, by Theorem 36, given
such a subgroup im : Zm → Zn, the corresponding covering space is given by the pullback of
the delooping this map along the Galois fibration:

X BZm

Ll1,...,lk
n BZn

⌟
B im

g
L

l1,...,lk
n

As remarked in Proposition 34, we can replace the bottom map by ϕl1,...,lk
n . By [9, Theorem 25],

pullback commute with joins of maps, so the map X → BZn can be computed as the iterated
join of the maps obtained by pulling back ϕli

n along B im, which, by Proposition 40, are
the ϕli

m : S1 → BZm. The pullback of ϕl1,...,lk
n along B im is thus ϕl1,...,lk

m . Similarly, by [9,
Theorem 25] and Proposition 40, the vertical map X → Ll1,...,lk

n is obtained as the join of n
instances of sp. Finally, we obtain the pullback square

Ll1,...,lk
m BZm

Ll1,...,lk
n BZn

s
∗k

B Zn
p

ϕ
l1,...,lk
m

⌟
B im

g
L

l1,...,lk
n

◀

5.2 Constructing the hypercubical manifold and the homology sphere
We would like to illustrate here another kind of situation where the Galois fibration occurs
when constructing types corresponding to well-known spaces, albeit in a somewhat hidden
way. The general idea is the following. Suppose that we have a group G and we want to define
a coherent action of G on a type A, which is not supposed to be truncated (in particular, it
might not be a set). This amounts to define a map ψ : BG → U such that ψ ⋆ = A, which
requires eliminating to a type which is not a groupoid, and thus difficult to perform directly.
But we can use the action-fibration duality, which brings a fresh point of view on the problem.
By the Grothendieck duality, provided we can construct the homotopy quotient A of A under
the action of G, constructing the action amounts to defining a map ϕ : A → BG. However, it
is not clear which map this should be. When the type A is simply connected, we know that ϕ
has to be the Galois fibration by Proposition 34.

a b

b a

b a

a b

w
x

y

z

w

x

w

y

z

y
z

x

The hypercubical manifold. We have defined and studied in [10] a
type corresponding to the hypercubical manifold. Topologically, this
manifold K was defined by Poincaré as a space obtained by identifying
the opposite faces of a cube after a quarter-turn rotation, and can be



S. Mimram and É. Oleon 15

pictured as on the right. The fundamental group of this space is the
quaternion group Q and its universal covering is the 3-sphere S3. Thus,
K can also be obtained as a quotient of S3 under Q.

In homotopy type theory, a type corresponding to K is easily defined as a higher inductive
type. However, in order to work with it and validate its construction, we need to show that
it can be obtained as a quotient of S3 under the action of Q, i.e. from a map BQ → U such
that the image of ⋆ is S3. However, such a map is difficult to construct directly using the
elimination principle of BQ because S3 is not n-truncated for any n. As explained above, we
can instead adopt a fibrational point of view and construct a map ϕ : K → BQ whose fiber
is S3, i.e. a fiber sequence

S3 K BQϕ

thus showing that K is a quotient of S3 under an action of Q. Details can be found in [10].

The homology sphere. When investigating the notion of homology, it was not clear at first
whether homology would be fine enough in order to characterize homotopy types. It turns
out that this is not the case, which was first shown by Poincaré by introducing a space, the
homology sphere (also known as the Poincaré dodecahedral space), which has the same homology
type as the sphere S3, but not the same homotopy type [11].

Following [5], we define the homology sphere D as a higher inductive
type corresponding to a dodecaedron where each face is identified with the
opposite one after a rotation of a fifth-turn. The classes of 0-, 1- and 2-cells
respectively have 4, 3 and 2 elements, and edges are identified as indicated
by the colors on the right. The resulting space has one 3-cell, 6 2-cells, 10
1-cells and 5 0-cells. We have a fibration

S3 D Bπ1(D)ϕ

The fundamental group π1(D) is the group of order 120, known as the binary icosahedral group,
which can be presented as

〈
r, s, t

∣∣ r2 = s3 = t5 = rst
〉
. As for the hypercubical manifold, we

can compute the fundamental group of D in two steps: we first construct the fundamental
groupoid (whose 0-, 1- and 2-cells are generated by the 0-, 1- and 2-cells involved in the
description of D as a cellular complex), and then we contract 1-cells in order to obtain a
model with only one 0-cell, which is thus a delooping of a group, i.e. Bπ1(D). The map ϕ is
then the canonical one induced by this process. Finally, since D is constructed by attaching
cells, i.e. has a canonical description as a colimit, we can use the flattening lemma in order to
compute its fiber, which we claim to be S3. This will be detailed in subsequent works.

6 Future works

We have defined and studied n-covering types, and formalized their classification for n = 0.
In the future, we would like to provide an explicit construction of covering types of many
interesting and natural types (such as the hypercubical manifold and the homology sphere
presented above). In passing, we would like to mention here that we show in [3, 4] that Cayley
complexes are universal coverings (and Cayley graphs are universal (−1)-coverings). A natural
question is also whether the Galois correspondence can be extended to higher coverings. Its
exploration is left for future works.
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A Additional proofs

Proof of Lemma 21. First, consider a property P : (x, y : A) → (p : x = y) → U such that
P x y p is a proposition for any x, y : A and p : x = y. Since A is pointed connected, the
following are equivalent

(i) P x y p for any x, y and p,
(ii) P ⋆ ⋆ p holds for any p : ⋆ = ⋆.

Namely, the second is a particular case of the first. Conversely, suppose (ii) holds, and that we
are given x, y, and p. Since we want to show P x y p which is a proposition, we can suppose
given paths px : ⋆ = x and py : ⋆ = y because A is connected, we then deduce that P x y p
holds from (ii) by transport.

Now, we have that A is (n+1)-connected if and only if x = y is n-connected for any x, y : A
(see Section 2) if and only if ΩA is n-connected (by the preceding observation, based on the
fact that being n-connected is a proposition [13, Theorem 7.1.10]) if and only if the pointing
map a = 1 → A is n-connected (because we have ΩA = fiba ⋆). The reasoning is similar for
the truncated version. ◀

Proof of Proposition 25. Since Ã is (n+1)-connected by Theorem 22, we have πi(Ã) = 1 for
i ≤ n+ 1 [13, Lemma 8.3.2]. For i > n+ 1, this is a consequence of the long exact sequence
induced by the fiber sequence of Theorem 24, see [13, Theorem 8.4.6]:

· · · πi+1∥A∥n+1 πiÃ πiA πi∥A∥n+1 πi+1Ã · · ·

We namely have πi∥A∥n+1 = 1 and the short exact sequence

1 πiÃ πiA 1

shows that πiÃ = πiA. ◀

The following lemma is used in the subsequent proof of Lemma 35:

▶ Lemma 42. Suppose given a group morphism i : H → G and a function f : G → X, where X
is a set, which is invariant under the action of H, and such that fibf x is the group H equipped
with its canonical action on itself for every x : X. Then X = G/H.

Proof. Recall that the quotient is the set truncation of the homotopy coequalizer

G×H G G//H
π

α

with π the first projection and α the right action of H on G (we have α(a, b) ≡ a × i(b)),
i.e. G/H = ∥G//H∥0. Otherwise said, G/H satisfies the same universal property as the above
equalizer but restricted to sets. Our aim is now to show that f : G → X satisfies this universal
property. The hypothesis that f is invariant under the action of H precisely means that it
coequalizes the two maps. Suppose given another coequalizing map g : G → Y with Y a set.
We need to show that there exists a unique map h : X → Y such that h ◦ f = g:

G×H G X

Y

π

α

f

g
h

The existence of such an h is implied by the fact that we have, for every x : X, an element
a : fibf x such that for every element b : fibf x, we have g a = g b. In turn, under the
identification of fibf x with H, we can take A to be the neutral element of H and the facts
that the action of H on itself is transitive and that g preserves this action ensures that any
other image will be equal to this one. ◀
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Proof of Lemma 35. Recall that we have

ker B i ≡ Σ(x : BH).(⋆ = B i x)

We define a map
f : G → ker B i

by f(a) ≡ (⋆, pa) for a : G corresponding to a path pa : ⋆ = ⋆ in BG. The fibers of this map
are

fibf (x, p) ≡ Σ(a : G).((x, p) = (⋆, pa))
= Σ(a : G).Σ(q : x = ⋆).(p · (B i)=(q) = pa)

In particular, for x ≡ ⋆, we have p ≡ pb for some b : G and the fiber is

fibf (⋆, pb) = Σ(a : G).Σ(c : H).(b× i(c) = a)
= Σ(c : H).Σ(a : G).(b× i(c) = a)
= H

Since BH is connected, we can deduce that fibf (x, p) merely is H for any (x, p) : ker B i. By
Lemma 42, we deduce that ker B i merely is H. ◀
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