THE HIGHER-DIMENSIONAL ALGEBRAIC STRUCTURE OF PARTIAL ORDERS

SAMUEL MIMRAM

CHoCoLa MEETING
10 MAY 2012
Rewriting theory has proven to be very useful to study
▶ monoids (and groups)
▶ term algebras
Rewriting theory has proven to be very useful to study

- monoids (and groups)
- term algebras
- \textit{n-categories}

It can be generalized to higher dimensions!
I will be interested in what can be said about categories of

- relations
- partial orders
- increasing functions

The main result will be a “coherence theorem for commutative monads”.
Rewriting systems
A rewriting system consists of
 ▶ a set of terms generated by a free construction:
 ▶ free monoid: string rewriting systems
 ▶ free term algebra: term rewriting systems
 ▶ a set of rewriting rules: \(r : t \rightarrow u \)

Example
\[\Sigma = \{a, b\} \quad \text{terms} = \Sigma^* \quad \text{rules} = \{ba \rightarrow ab\} \]
A **rewriting system** consists of

- a set of *terms* generated by a free construction:
 - free monoid: *string rewriting systems*
 - free term algebra: *term rewriting systems*
- a set of *rewriting rules*: $r : t \rightarrow u$

A term t **rewrites** to a term t' when there exists

- a rule $r : u \rightarrow u'$
- a context C such that $t = C[u]$ and $t' = C[u']$

Example

$\Sigma = \{a, b\}$

- terms $= \Sigma^*$
- rules $= \{ba \rightarrow ab\}$

\[
aabaab \xrightarrow{aarrab} aaabab
\]
A rewriting system can be **terminating** when there is no infinite reduction path.

\[
\begin{align*}
t & \quad \downarrow \\
t_1 & \quad \downarrow \\
t_2 & \quad \downarrow \\
\vdots & \quad \quad \ddots
\end{align*}
\]
A rewriting system can be **terminating**

A rewriting can be **confluent** when

```
  t
   *   *
  /   \ /   \n u     v
```
A rewriting system can be **terminating**

A rewriting can be **confluent** when

\[\begin{array}{c}
 t \\
 \downarrow * \quad \downarrow * \\
 u \\
 \quad \Downarrow * \\
 w \\
 \quad \Uparrow * \\
 v
\end{array} \]

A rewriting system is **convergent** when both terminating and (locally) confluent.

In a convergent rewriting system, every term has a **normal form**:

- canonical representative of terms modulo rewriting.
A rewriting system can be **terminating**

A rewriting can be **confluent** when

![Diagram of confluent rewriting](image)

A rewriting system is **convergent**
when both terminating and (locally) confluent
A rewriting system can be **terminating**

A rewriting can be **confluent** when

\[
\begin{align*}
\ast & \downarrow & \ast \\
\ast & \downarrow & \ast \\
\ast & \downarrow & \ast
\end{align*}
\]

A rewriting system is **convergent** when both terminating and (locally) confluent

In a convergent rewriting system, every term has a **normal form**: canonical representative of terms modulo rewriting.
Why
are those properties interesting?
PRESENTATIONS OF MONOIDS

A presentation
\[\langle G \mid R \rangle \]
of a monoid \(M \) consists of

- a set \(G \) of generators
- a set \(R \subseteq G^* \times G^* \) of relations

such that
\[M \cong G^* / \equiv_R \]

Example

- \(\mathbb{N} \cong \langle a \mid \rangle \)
- \(\mathbb{N}/2\mathbb{N} \cong \langle a \mid aa = 1 \rangle \)
- \(\mathbb{N} \times \mathbb{N} \cong \langle a, b \mid ba = ab \rangle \)
- \(S_n \cong \langle \sigma_1, \ldots, \sigma_n \mid \sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}, \sigma_i^2 = 1, \sigma_i\sigma_j = \sigma_j\sigma_i \rangle \)
- \(\ldots \)
How do we show that $M \cong \langle G \mid R \rangle$ i.e. $M \cong G^*/\equiv_R$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example $N \times (N/2N) \cong \langle a, b \mid ba \rightarrow ab, bb \rightarrow 1 \rangle$.

Remark: we actually only need normal forms.
PRESENTATIONS OF MONOIDS

How do we show that $M \simeq \langle G \mid R \rangle$ i.e. $M \simeq G^* / \equiv_R$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.
PRESENTATIONS OF MONOIDS

How do we show that $M \cong \langle G \mid R \rangle$ i.e. $M \cong G^\ast / \equiv_R$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example $\mathbb{N} \times (\mathbb{N}/2\mathbb{N}) \cong \langle a, b \mid ba = ab, bb = 1 \rangle$
PRESENTATIONS OF MONOIDS

How do we show that $M \cong \langle G \mid R \rangle$ i.e. $M \cong G^* / \equiv_R$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example $\mathbb{N} \times (\mathbb{N}/2\mathbb{N}) \overset{?}{\cong} \langle a, b \mid ba \rightarrow ab, \ bb \rightarrow 1 \rangle$
PRESENTATIONS OF MONOIDS

How do we show that $M \cong \langle G \mid R \rangle$ i.e. $M \cong G^*/\equiv_R$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example: $\mathbb{N} \times (\mathbb{N}/2\mathbb{N}) \xrightarrow{R} \langle a, b \mid ba \rightarrow ab, \ bb \rightarrow 1 \rangle$

Critical pairs are:

\[
\begin{array}{c}
\text{bba} \\
\downarrow \quad \downarrow \\
a & bab
\end{array}
\quad \quad \quad
\begin{array}{c}
\text{bbb} \\
\downarrow \quad \downarrow \\
b & b
\end{array}
\]
PRESENTATIONS OF MONOIDS

How do we show that $M \cong \langle G \mid R \rangle$ i.e. $M \cong G^*/\equiv_R$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example $\mathbb{N} \times (\mathbb{N}/2\mathbb{N}) \overset{?}{\Rightarrow} \langle a, b \mid ba \rightarrow ab, \ bb \rightarrow 1 \rangle$

Critical pairs are joinable:
PRESENTATIONS OF MONOIDS

How do we show that $M \cong \langle G \mid R \rangle$ i.e. $M \cong G^*/\equiv_R$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example

$\mathbb{N} \times (\mathbb{N}/2\mathbb{N}) \overset{?}{\cong} \langle a, b \mid ba \rightarrow ab, \ bb \rightarrow 1 \rangle$

Normal forms are:

a^n and $a^n b$

They are in bijection with $\mathbb{N} \times (\mathbb{N}/2\mathbb{N})$!
How do we show that $M \cong \langle G \mid R \rangle$ i.e. $M \cong G^* / \equiv_R$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example $\mathbb{N} \times (\mathbb{N}/2\mathbb{N}) \triangleq \langle a, b \mid ba \rightarrow ab, bb \rightarrow 1 \rangle$

Normal forms are:

\[a^n \quad \text{and} \quad a^n b \]

They are in bijection with $\mathbb{N} \times (\mathbb{N}/2\mathbb{N})$!

Remark: we actually only need normal forms.
How do we generalize this to present categories?
PRESENTING CATEGORIES

Presentation of a monoid \(M \cong \langle G \mid R \rangle \):
PRESENTING CATEGORIES

Presentation of a monoid $M \cong \langle G \mid R \rangle$:

$$
\begin{array}{c}
G \\
i \\
i \\
G^*
\end{array}
$$
Presentation of a monoid $M \cong \langle G \mid R \rangle$:

![Diagram](attachment:image.png)
PRESENTING CATEGORIES

Presentation of a monoid $M \cong \langle G \mid R \rangle$:

\[
\begin{array}{c}
G \\
i \downarrow \\
G^* \\
\end{array}
\begin{array}{c}
R \\
\downarrow s_R \\
\downarrow t_R \\
\end{array}
\]

can be generalized to presentation of a category:

\[
\begin{array}{c}
E \\
\downarrow s \\
V \\
\end{array}
\begin{array}{c}
\downarrow t \\
\end{array}
\]

a graph
Presentation of a monoid $M \cong \langle G \mid R \rangle$:

\[
\begin{array}{ccc}
G & \xrightarrow{s_R} & R \\
\downarrow i & \downarrow s_R & \downarrow t_R \\
G^* & \xleftarrow{i} & \xleftarrow{t_R} \xrightarrow{t^*_R} R \\
\end{array}
\]

can be generalized to presentation of a category:

\[
\begin{array}{ccc}
E & \xrightarrow{s} & V \\
\downarrow i & \downarrow s^*t & \downarrow \xleftarrow{t^*} i \\
E^* & \xleftarrow{s^*t} & \xleftarrow{t^*_R} R \\
\end{array}
\]

a free graph
PRESENTING CATEGORIES

Presentation of a monoid $M \cong \langle G \mid R \rangle$:

$$
\begin{array}{ccc}
G & \xrightarrow{s_R} & R \\
\downarrow i & & \downarrow t_R \\
G^* & \xleftarrow{s_R} & \\
\end{array}
$$

can be generalized to presentation of a category:

$$
\begin{array}{ccc}
E & \xrightarrow{s} & R \\
\downarrow i & & \downarrow t_R \\
V & \xleftarrow{s^*t} & E^* \\
\end{array}
$$

such that $s^*s_R = s^*t_R$ and $t^*s_R = t^*t_R$

a presentation of a category

$$
C \cong G^*/\equiv_R
$$
We see a pattern emerge!

[Burroni93, Street76, Power90]
A 0-polygraph:

\[\Sigma^*_0 \]
A 1-polygraph:

\[\sum_0 \rightarrow t_0 \rightarrow \sum_1 \rightarrow s_0 \rightarrow \sum^* \]

The 3-polygraph \(\Sigma \) presents a 2-category \(C \) when \(C \simeq \tilde{\Sigma} \).
A 1-polygraph generates a category:

\[
\begin{array}{ccc}
\Sigma_0 & \xleftarrow{s_0} & \Sigma_1 \\
& s_1 & \\
\Sigma^* & \xleftarrow{s_0^* t_0} & \Sigma^*_1 \\
& i_1 & \\
\end{array}
\]
A 2-polygraph:

\[
\begin{array}{c}
\Sigma_0 \\
\Sigma^*_0 \\
\Sigma^*_1 \\
\Sigma_1 \\
\Sigma_2
\end{array}
\]

such that \(s_0^* s_1 = s_0^* t_1 \) and \(t_0^* s_1 = t_0^* t_1 \)
A 2-polygraph generates a 2-category:

\[\begin{align*}
\Sigma_0 & \xleftarrow{s_0^* \ t_0} \Sigma_1 & \xleftarrow{s_1^* \ t_0} \Sigma_2 \\
\Sigma_0^* & \xleftarrow{s_0^* \ t_1} \Sigma_1^* & \xleftarrow{s_1^* \ t_1} \Sigma_2^*
\end{align*}\]

such that \(s_0^* s_1 = s_0^* t_1\) and \(t_0^* s_1 = t_0^* t_1\).

The 3-polygraph \(\Sigma\) generates a 3-category \(\Sigma^*\).

We write \(\tilde{\Sigma}^*\) for the 2-category obtained from \(\Sigma^*\) by identifying two 2-cells \(f\) and \(g\) for which there exists a 3-cell \(\alpha: f \Rightarrow g\).

The 3-polygraph \(\Sigma\) presents a 2-category \(C\) when \(C \simeq \tilde{\Sigma}^*\).
A 3-polygraph:

\[\Sigma^* \xleftarrow{0} \Sigma \xrightarrow{1} \Sigma \xrightarrow{2} \Sigma \xrightarrow{3} \]

\[\Sigma^* \xleftarrow{0} \Sigma \xrightarrow{1} \Sigma \xrightarrow{2} \Sigma \xrightarrow{3} \]

such that \(s_1^* s_2 = s_1^* t_2 \) and \(t_1^* s_2 = t_1^* t_2 \)
A 3-polygraph . . .

such that $s_1^*s_2 = s_1^*t_2$ and $t_1^*s_2 = t_1^*t_2$
A 3-polygraph . . .

\[
\begin{array}{c}
\Sigma^* \\
\Sigma_0 \\
\Sigma_1 \\
\Sigma_2 \\
\Sigma_3
\end{array}
\]

such that \(s_1^*s_2 = s_1^*t_2 \) and \(t_1^*s_2 = t_1^*t_2 \)

▶ The 3-polygraph \(\Sigma \) generates a 3-category \(\Sigma^* \)
A 3-polygraph . . .

such that $s_1^*s_2 = s_1^*t_2$ and $t_1^*s_2 = t_1^*t_2$

- The 3-polygraph Σ generates a 3-category Σ^*
- We write $\tilde{\Sigma}^*$ for the 2-category obtained from Σ^* by identifying two 2-cells f and g for which there exists a 3-cell $\alpha : f \Rightarrow g$
A 3-polygraph . . .

such that $s_1^*s_2 = s_1^*t_2$ and $t_1^*s_2 = t_1^*t_2$

- The 3-polygraph Σ generates a 3-category Σ^*
- We write $\tilde{\Sigma}^*$ for the 2-category obtained from Σ^* by identifying two 2-cells f and g for which there exists a 3-cell $\alpha : f \Rightarrow g$
- The 3-polygraph Σ presents a 2-category C when $C \cong \tilde{\Sigma}^*$
Consider the simplicial category Δ whose

- objects are natural integers $[n] = \{0, 1, \ldots, n - 1\}$
- morphisms are increasing functions $f : [m] \to [n]$

For instance $f : 4 \to 3$

\[
\begin{array}{c}
[3] \\
\downarrow f \\
[4]
\end{array}
\quad
\begin{array}{cccc}
0 & 1 & 2 \\
\downarrow & \downarrow & \downarrow \\
0 & 1 & 2 & 3
\end{array}
\]
The category Δ is monoidal with $[0]$ as unit and \otimes defined

- on objects: $[m] \otimes [n] = [m + n]$
- on morphisms:

$$
\begin{pmatrix}
0 & 1 & 2 \\
0 & 1 & 2
\end{pmatrix} \otimes \begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3
\end{pmatrix}
$$
The category Δ is monoidal with $[0]$ as unit and \otimes defined

- on objects: $[m] \otimes [n] = [m + n]$
- on morphisms:

$$
\begin{pmatrix}
0 & 1 & 2 \\
0 & 1 & 2
\end{pmatrix}
\otimes
\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix}
= \begin{pmatrix}
0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3
\end{pmatrix}
$$

A monoidal category is the same as a 2-category with only one 0-cell so we can (hope to) present it with a 3-polygraph! [MacLane, Burroni, Lafont]
PRESENTING THE SIMPLICIAL CATEGORY

We will show that the 2-category Δ is presented by the polygraph

$$\Sigma^*$$

whose generators are

- $\Sigma_0 = \{\ast\}$
PRESENTING THE SIMPLIFICIAL CATEGORY

We will show that the 2-category Δ is presented by the polygraph

\[
\begin{array}{ccc}
\Sigma_0 & \xleftarrow{t_0} & \Sigma_1 \\
& {s_0} & \downarrow \\
\Sigma^* & & \\
\end{array}
\]

whose generators are

- $\Sigma_0 = \{\ast\}$
- $\Sigma_1 = \{\mathbf{1} : \ast \to \ast\}$
We will show that the 2-category Δ is presented by the polygraph

$$\begin{array}{c}
\Sigma_0 \\
\Sigma^*_0 & \leftrightarrow & \Sigma^*_1 \\
\Sigma_1 \\
\end{array}$$

whose generators are

- $\Sigma_0 = \{*\}$
- $\Sigma_1 = \{1 : * \rightarrow *\}$ (so $\Sigma^*_1 \cong \mathbb{N}$)
PRESENTING THE SIMPLIFICIAL CATEGORY

We will show that the 2-category Δ is presented by the polygraph

$$
\begin{align*}
\Sigma_0 & \leftarrow \Sigma^* \\
\Sigma^* & \leftarrow \Sigma_1 \\
\Sigma_1 & \leftarrow \Sigma^* \\
\Sigma^* & \leftarrow \Sigma_2
\end{align*}
$$

whose generators are

- $\Sigma_0 = \{\ast\}$
- $\Sigma_1 = \{1 : \ast \to \ast\}$ (so $\Sigma^*_1 \cong \mathbb{N}$)
- $\Sigma_2 = \{\mu : (1 \otimes 1) \Rightarrow 1, \eta : 0 \Rightarrow 1\}$
PRESENTING THE SIMPLIFICIAL CATEGORY

We will show that the 2-category Δ is presented by the polygraph

$$
\begin{align*}
\Sigma_0 & \xleftarrow{s_0^* \circ t_0^*} \Sigma_1 \\
\Sigma_1 & \xleftarrow{s_1^* \circ t_1^*} \Sigma_2 \\
\Sigma_0 & \xrightarrow{t_0^*} \Sigma_1 \\
\Sigma_1 & \xrightarrow{t_1^*} \Sigma_2
\end{align*}
$$

whose generators are

- $\Sigma_0 = \{\ast\}$
- $\Sigma_1 = \{1 : \ast \to \ast\}$ (so $\Sigma_1^* \simeq \mathbb{N}$)
- $\Sigma_2 = \{\mu : (1 \otimes 1) \Rightarrow 1, \eta : 0 \Rightarrow 1\}$
We will show that the 2-category Δ is presented by the polygraph

$$
\begin{array}{cccc}
\Sigma_0 & \Sigma_1 & \Sigma_2 & \Sigma_3 \\
\downarrow s_0 & \downarrow s_1 & \downarrow s_2 & \\
\Sigma^* & \Sigma^* & \Sigma^* & \\
\uparrow s^*_0 & \uparrow s^*_1 & \uparrow s^*_2 & \\
\Sigma^* & \Sigma^* & \Sigma^* & \\
\downarrow t_0 & \downarrow t_1 & \downarrow t_2 & \\
\Sigma^* & \Sigma^* & \Sigma^* & \\
\end{array}
$$

whose generators are

- $\Sigma_0 = \{\ast\}$
- $\Sigma_1 = \{1 : \ast \to \ast\}$ (so $\Sigma^*_1 \cong \mathbb{N}$)
- $\Sigma_2 = \{\mu : (1 \otimes 1) \Rightarrow 1, \eta : 0 \Rightarrow 1\}$
- $\Sigma_3 = \{\begin{array}{l}
\alpha : \mu \circ (\mu \otimes 1) \Rightarrow \mu \circ (1 \otimes \mu), \\
\lambda : \mu \circ (\eta \otimes 1) \Rightarrow 1, \rho : \mu \circ (1 \otimes \eta) \Rightarrow 1
\end{array}\}$
The 2-generators can be drawn as string diagrams:
STRING DIAGRAMS

The 2-generators can be drawn as string diagrams:

\[\Rightarrow \quad \Rightarrow\]

and the 3-generators become

\[\alpha \quad \Rightarrow \quad \Rightarrow \quad \Rightarrow \quad \Rightarrow \quad \Rightarrow\]

We recognize the laws for monoids!
PROVING THE PRESENTATION

We have to prove that we have a presentation

\[\Delta \cong \Sigma^* \]

which means that diagrams built from the 2-generators

\[\mu = \quad \text{and} \quad \eta = \]

by composition and tensoring, considered modulo the relations

are in bijection with increasing functions.
We have to prove that we have a presentation \(\Delta \cong \tilde{\Sigma}^* \).

- The generators can be interpreted as functions:

\[
\begin{array}{c}
\xrightarrow{0} \\
\xrightarrow{1}
\end{array}
\quad \xrightarrow{0} \\
\xrightarrow{1}
\]

Thus inducing a functor \([\cdot] : \partial \Sigma^* \to \Delta\).
We have to prove that we have a presentation $\Delta \cong \Sigma^*$.

- The generators can be interpreted as functions. Thus inducing a functor $[-] : \partial \Sigma^* \rightarrow \Delta$.

- The left and right members of the 3-generators get interpreted as the same function ($[-]$ is compatible with relations):

 $$
 \begin{bmatrix}
 \begin{array}{c}
 \text{Diagram 1}
 \\
 \end{array}
 \end{bmatrix}
 =
 \begin{bmatrix}
 \begin{array}{c}
 0
 \\
 0
 \\
 1
 \\
 2
 \\
 \end{array}
 \end{bmatrix}
 =
 \begin{bmatrix}
 \begin{array}{c}
 \text{Diagram 2}
 \\
 \end{array}
 \end{bmatrix}
 $$

 Thus inducing a 2-functor $[-] : \Sigma^* \rightarrow \Delta$.

PROVING THE PRESENTATION
We have to prove that we have a presentation $\Delta \cong \tilde{\Sigma}^*$.

- The generators can be interpreted as functions. Thus inducing a functor $[-] : \partial \Sigma^* \to \Delta$.

- The left and right members of the 3-generators get interpreted as the same function ($[-]$ is compatible with relations): Thus inducing a 2-functor $[-] : \tilde{\Sigma}^* \to \Delta$.

- The functor $[-]$ is full.
We have to prove that we have a presentation $\Delta \cong \tilde{\Sigma}^*$.

- The generators can be interpreted as functions. Thus inducing a functor $\llbracket - \rrbracket : \partial \Sigma^* \to \Delta$.
- The left and right members of the 3-generators get interpreted as the same function ($\llbracket - \rrbracket$ is compatible with relations): Thus inducing a 2-functor $\llbracket - \rrbracket : \tilde{\Sigma}^* \to \Delta$.
- The functor $\llbracket - \rrbracket$ is full.
- The 2-functor $\llbracket - \rrbracket$ is faithful (more difficult), i.e. $\tilde{\Sigma}^* \cong \Delta$.

PROVING THE PRESENTATION
To show that the 2-functor $[-] : \widetilde{\Sigma}^* \to \Delta$ is faithful, we have to show that if two diagrams get interpreted as the same function then they are equivalent modulo the 3-generators α, λ and ρ.

\[
\left[\begin{array}{c}
\vdots \\
\end{array} \right] = 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 = \left[\begin{array}{c}
\vdots \\
\end{array} \right]
\]
To show that the 2-functor $[\cdot] : \tilde{\Sigma}^* \rightarrow \Delta$ is faithful, we have to show that if two diagrams get interpreted as the same function then they are equivalent modulo the 3-generators α, λ and ρ.

\[
\begin{bmatrix}
\begin{bmatrix}
\begin{array}{c}
\end{array}
\end{bmatrix}
\end{bmatrix}
= \begin{bmatrix}
\begin{bmatrix}
\begin{array}{c}
\end{array}
\end{bmatrix}
\end{bmatrix}
= \begin{bmatrix}
\begin{bmatrix}
\begin{array}{c}
\end{array}
\end{bmatrix}
\end{bmatrix}
\]

We can use rewriting theory!
To show that the 2-functor \([−] : \tilde{Σ}^* \to Δ\) is faithful, we have to show that if two diagrams get interpreted as the same function then they are equivalent modulo the 3-generators \(α, λ\) and \(ρ\). We can use rewriting theory!

- The five critical pairs are joinable:
To show that the 2-functor $\widetilde{-} : \tilde{\Sigma}^* \to \Delta$ is faithful, we have to show that if two diagrams get interpreted as the same function then they are equivalent modulo the 3-generators α, λ and ρ. We can use rewriting theory!

- The five critical pairs are joinable:
To show that the 2-functor $[-] : \tilde{\Sigma}^* \to \Delta$ is faithful, we have to show that if two diagrams get interpreted as the same function then they are equivalent modulo the 3-generators α, λ and ρ. We can use rewriting theory!

- The five critical pairs are joinable:

- The rewriting system is terminating...
To show that the 2-functor $\widetilde{\Sigma}^* \to \Delta$ is faithful, we have to show that if two diagrams get interpreted as the same function then they are equivalent modulo the 3-generators α, λ and ρ. We can use rewriting theory!

- The five critical pairs are joinable:
- The rewriting system is terminating . . .
- The normal forms are tensor products of M_i with $i \in \mathbb{N}$:

\[
M_i = \quad M_1 = \quad M_0 =
\]
To show that the 2-functor $[-] : \widetilde{\Sigma}^* \to \Delta$ is faithful, we have to show that if two diagrams get interpreted as the same function then they are equivalent modulo the 3-generators α, λ and ρ. We can use rewriting theory!

- The five critical pairs are joinable:
- The rewriting system is terminating.
- The normal forms are tensor products of M_i with $i \in \mathbb{N}$:

$$M_i = \ldots$$

$$M_1 = \begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array} \quad M_0 =$$

- Normal forms are in bijection with functions $f : [m] \to [n]$

$$f = [M_{|f^{-1}(0)|} \otimes M_{|f^{-1}(1)|} \otimes \ldots \otimes M_{|f^{-1}(n-1)|}]$$
To show that the 2-functor $[-] : \widetilde{\Sigma}^* \rightarrow \Delta$ is faithful, we have to show that if two diagrams get interpreted as the same function then they are equivalent modulo the 3-generators α, λ and ρ. We can use rewriting theory!

- The five critical pairs are joinable:
- The rewriting system is terminating...
- The normal forms are tensor products of M_i with $i \in \mathbb{N}$:
- Normal forms are in bijection with functions $f : [m] \rightarrow [n]$

$$f = [M_{|f^{-1}(0)|} \otimes M_{|f^{-1}(1)|} \otimes \ldots \otimes M_{|f^{-1}(n-1)|}]$$
We have shown that

- we have a presentation \(\widetilde{\Sigma}^* \cong \Delta \)

CONSEQUENCES
We have shown that

- we have a presentation $\tilde{\Sigma}^* \cong \Delta$
- i.e. diagrams built from μ and η modulo the relation generated by α, λ and ρ are in bijection with functions
We have shown that

- we have a presentation \(\tilde{\Sigma}^* \cong \Delta \)
- i.e. diagrams built from \(\mu \) and \(\eta \) modulo the relation generated by \(\alpha \), \(\lambda \) and \(\rho \) are in bijection with functions
- the category \(\Sigma \) is the theory for monoids.
Since we have described Δ by generators and relations we know that a strict monoidal functor $M : \Delta \to C$ is uniquely determined by the images of the generators, which satisfy the relations:

- an object $M1 \in C$
Since we have described Δ by generators and relations we know that a strict monoidal functor $M : \Delta \to C$ is uniquely determined by the images of the generators, which satisfy the relations:

- an object $M1 \in C$
- two morphisms $M\mu : M1 \otimes M1 \to M1$ and $M\eta : I \to M1$
\[\Delta \text{ AS A THEORY FOR MONOIDS} \]

Since we have described \(\Delta \) by generators and relations we know that a strict monoidal functor \(M : \Delta \to C \) is uniquely determined by the images of the generators, which satisfy the relations:

- an object \(M1 \in C \)
- two morphisms \(M_\mu : M1 \otimes M1 \to M1 \) and \(M_\eta : I \to M1 \)
- such that

\[
\begin{array}{ccc}
M1 \otimes M1 \otimes M1 & \xrightarrow{M_\mu \otimes M1} & M1 \otimes M1 \\
M1 \otimes M1 & \xrightarrow{M_\mu} & M1 \\
M1 & \xrightarrow{M_\mu} & M1
\end{array}
\]

\[
\begin{array}{ccc}
M1 & \xrightarrow{M_\eta \otimes M1} & M1 \otimes M1 \\
M1 & \xrightarrow{M_\mu} & M1 \\
M1 & \xrightarrow{M_\mu} & M1
\end{array}
\]
\[\Delta \text{ AS A THEORY FOR MONOIDS} \]

Since we have described \(\Delta \) by generators and relations we know that a strict monoidal functor \(\mathcal{M} : \Delta \to \mathcal{C} \) is uniquely determined by the images of the generators, which satisfy the relations:

- an object \(M_1 \in \mathcal{C} \)
- two morphisms \(M_\mu : M_1 \otimes M_1 \to M_1 \) and \(M_\eta : I \to M_1 \)
- such that

\[
\begin{array}{ccc}
M_1 \otimes M_1 \otimes M_1 & \xrightarrow{M_\mu \otimes M_1} & M_1 \otimes M_1 \\
\downarrow M_\mu & & \downarrow M_\mu \\
M_1 \otimes M_1 & \xrightarrow{M_\mu} & M_1 \\
\end{array}
\]

In other words, a monoidal functor \(\mathcal{M} : \Delta \to \mathcal{C} \) is a monoid in \(\mathcal{C} \)!

\[\text{StrMonCat}(\Delta, \mathcal{C}) \cong \text{Mon}(\mathcal{C}) \]

\textbf{Ex:} in \textbf{Set}, \textbf{Cat}, \ldots
AN IMPORTANT EXAMPLE: MONADS

Given a category C, consider the 2-category with

- one 0-cell: C
- 1-cells: endofunctors $C \rightarrow C$
- 2-cells: natural transformations

It’s a 2-category with one 0-cell, i.e. a monoidal category.

Monoids in this category are precisely the monads on C.
It is important to remark that we don’t really need to have a convergent rewriting system, we only need to provide a notion of canonical form.
It is important to remark that we don’t really need to have a convergent rewriting system, we only need to provide a notion of canonical form.

Actually, those higher-dimensional rewriting systems are much more complicated than usual (string/term) rewriting systems: a convergent rewriting system can have an infinite number of critical pairs!
Let’s see some more examples.
MORE EXAMPLES OF PROS

Definition

A **PRO** is a monoidal category whose objects are integers and tensor product is given on objects by addition (e.g. Δ).
Definition

A **PRO** is a monoidal category whose objects are integers and tensor product is given on objects by addition (e.g. Δ).

As for Δ, a presentation of a PRO necessarily have

- $\Sigma_0 = \{\ast\}$: it is a 2-category with one 0-cell
- $\Sigma_1 = \{1\}$: the objects are $\Sigma_1^* \cong \mathbb{N}$
- it is thus enough to specify the 2-generators and the 3-generators (the relations)
A PRESENTATION OF Δ

The simplicial category Δ admits a presentation with

- two 2-generators

\[\mu : 2 \to 1 \quad \eta : 0 \to 1 \]

- three relations (3-generators)

\[\alpha \text{ (associativity)} \quad \text{and} \quad \text{unitality} \]

- Δ: theory of monoids
Dually, the category Δ^{op} admits a presentation with

- two 2-generators

$$\delta : 1 \to 2 \quad \varepsilon : 1 \to 0$$

- three relations (3-generators)

- Δ^{op}: theory of comonoids
A PRESENTATION OF Bij

The PRO bij with \(\mathbb{N} \) as objects and bijections \(f : [n] \to [n] \) as morphisms admits a presentation with

- one 2-generator \(\gamma : 2 \to 2 \)

- two relations

\[
\begin{align*}
\xymatrix@C=2pc{ & \ast & } & \xymatrix{ & \ast & } & \xymar
A PRESENTATION OF FinOrd

The PRO FinOrd with \(\mathbb{N} \) as objects and functions \(f : [m] \to [n] \) as morphisms admits a presentation with

- three 2-generators

\[
\begin{align*}
\mu : 2 & \to 1 \\
\eta : 0 & \to 1 \\
\gamma : 2 & \to 2
\end{align*}
\]
A PRESENTATION OF FinOrd

The PRO \textbf{FinOrd} with \(\mathbb{N} \) as objects and functions \(f : [m] \to [n] \) as morphisms admits a presentation with

- three 2-generators \(\mu : 2 \to 1, \eta : 0 \to 1, \gamma : 2 \to 2 \)
- relations expressing that
 - \((\mu, \eta)\) is a monoid + \(\gamma \) is a symmetry
 - compatibility between monoid and symmetry

\[\begin{align*}
\mu & \equiv \eta \\
\gamma & \equiv \text{compatibility}
\end{align*} \]

- commutativity of \(\mu \)

\[\begin{align*}
\text{commutativity of } \mu & \\
\text{compatibility} & \\
\end{align*} \]
A PRESENTATION OF FinOrd

The PRO FinOrd with \mathbb{N} as objects and functions $f : [m] \to [n]$ as morphisms admits a presentation with

- three 2-generators $\mu : 2 \to 1$, $\eta : 0 \to 1$, $\gamma : 2 \to 2$
- relations expressing that
 - (μ, η) is a monoid + γ is a symmetry
 - compatibility between monoid and symmetry

- commutativity of μ

- FinOrd is thus the theory for commutative monoids
A PRESENTATION OF MRel

The PRO \textbf{MRel} with \mathbb{N} as objects and $m \times n$ matrices with coefficients in \mathbb{N} as morphisms $[m] \to [n]$.

For instance, a morphism $[3] \to [2]$: $$\begin{pmatrix} 2 & 1 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$$
A PRESENTATION OF MRel

The PRO MRel with \(\mathbb{N} \) as objects and \(m \times n \) matrices with coefficients in \(\mathbb{N} \) as morphisms \([m] \rightarrow [n]\).

For instance, a morphism \([3] \rightarrow [2] \):

\[
\begin{pmatrix}
2 & 1 \\
0 & 0 \\
1 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
0 \\
0
\end{pmatrix}
\begin{pmatrix}
1 \\
2
\end{pmatrix}
\]
A PRESENTATION OF MRel

The PRO MRel with \(\mathbb{N} \) as objects and \(m \times n \) matrices with coefficients in \(\mathbb{N} \) as morphisms \([m] \to [n]\).

For instance, a morphism \([3] \to [2]\):

\[
\begin{pmatrix}
2 & 1 \\
0 & 0 \\
1 & 0
\end{pmatrix}
\sim\Rightarrow
\begin{pmatrix}
0 \\
0
\end{pmatrix}
\sim\Rightarrow
\begin{pmatrix}
0 & 1 \\
1 & 2
\end{pmatrix}
\]
A PRESENTATION OF MRel

The PRO MRel with \(\mathbb{N} \) as objects and \(m \times n \) matrices with coefficients in \(\mathbb{N} \) as morphisms \([m] \to [n]\).

For instance, a morphism \([3] \to [2]\):

\[
\begin{pmatrix}
2 & 1 \\
0 & 0 \\
1 & 0
\end{pmatrix} \sim \begin{pmatrix}
0 & 1 \\
0 & 1 \\
0 & 2
\end{pmatrix} \sim \begin{array}{c}
\rotatebox{90}{\Rightarrow}
\end{array}
\]

It admits a presentation with

- five 2-generators

\[
\mu : 2 \to 1 \quad \eta : 0 \to 1 \quad \delta : 1 \to 2 \quad \varepsilon : 1 \to 0 \quad \gamma : 2 \to 2
\]
A PRESENTATION OF MRel

The PRO MRel with \mathbb{N} as objects and $m \times n$ matrices with coefficients in \mathbb{N} as morphisms $[m] \rightarrow [n]$.

It admits a presentation with

- five 2-generators

$$
\begin{align*}
\mu &: 2 \rightarrow 1 & \eta &: 0 \rightarrow 1 & \delta &: 1 \rightarrow 2 & \varepsilon &: 1 \rightarrow 0 & \gamma &: 2 \rightarrow 2
\end{align*}
$$

- relations

 - (μ, η, γ) is a commutative monoid
 - $(\delta, \varepsilon, \gamma)$ is cocommutative comonoid
 - bialgebra laws
A PRESENTATION OF Rel

The PRO Rel with \mathbb{N} as objects and relations $R \subseteq [m] \times [n]$ as morphisms $m \rightarrow n$.
A PRESENTATION OF Rel

The PRO \(\text{Rel} \) with \(\mathbb{N} \) as objects and relations \(R \subseteq [m] \times [n] \) as morphisms \(m \to n \).

It can be seen as a quotient of \(\text{MRel} \):

\[
\begin{pmatrix}
2 & 1 \\
0 & 0 \\
1 & 0
\end{pmatrix}
\approx
\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix}
\approx
\begin{pmatrix}
1 & 1 \\
0 & 0 \\
1 & 0
\end{pmatrix}
\]
A PRESENTATION OF Rel

The PRO Rel with \mathbb{N} as objects and relations $R \subseteq [m] \times [n]$ as morphisms $m \to n$.

It can be seen as a quotient of MRel:

$\begin{pmatrix} 2 & 1 \\ 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ \approx \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$

It admits the same presentation as MRel with the following extra relation:

Rel: theory for qualitative bialgebras
Given a morphism \(\phi = \cdots \phi \) : \(m \to n \) we define

\[
E\phi = \begin{array}{c}
\end{array} : m + 1 \to n
\]

\[
H\phi = \begin{array}{c}
\end{array} : m \to n + 1
\]

\[
W_i\phi = \begin{array}{c}
\end{array} : m \to n
\]

\[
Z = \begin{array}{c}
\end{array} 0 \to 0
\]
Given a morphism $\phi : m \to n$ we define

$$E\phi = \begin{array}{c} \vdots \\ \phi \\ \vdots \end{array} : m + 1 \to n$$

(add a line)

$$H\phi = \begin{array}{c} \vdots \\ \phi \\ \vdots \end{array} : m \to n + 1$$

(add a column)

$$W_i\phi = \begin{array}{c} \vdots \\ \phi \\ \vdots \end{array} : m \to n$$

(add a link)

$$Z = \begin{array}{c} \vdots \\ \phi \\ \vdots \end{array} : 0 \to 0$$

()
The Proof

Given a morphism $\phi : m \to n$ we define

<table>
<thead>
<tr>
<th>$E\phi$</th>
<th>$H\phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m + 1 \to n$</td>
<td>$m \to n + 1$</td>
</tr>
</tbody>
</table>

$W_i\phi : m \to n$

Lemma

Every diagram is equivalent (modulo the relations) to a composite of those morphisms (called pre-canonical forms).
Given a morphism $\phi = \begin{array}{c}
\vdots
\phi
\vdots
\end{array} : m \to n$ we define

$E\phi = \begin{array}{c}
\vdots
\phi
\vdots
\end{array} : m + 1 \to n$

(add a line)

$W_i\phi = \begin{array}{c}
\vdots
\phi
\vdots
\end{array} : m \to n$

(add a link)

$H\phi = \begin{array}{c}
\vdots
\phi
\vdots
\end{array} : m \to n + 1$

(add a column)

$Z = \begin{array}{c}
\vdots
\phi
\vdots
\end{array} : 0 \to 0$

Lemma

$W_iW_j\phi = W_jW_i\phi \quad EH\phi = HE\phi \quad EW_i\phi = W_{i+1}E\phi$
THE PROOF

Given a morphism \(\phi = \cdots \) : \(m \to n \) we define

\[
E \phi = \begin{array}{c}
\vdots \\
\phi \\
\vdots
\end{array} : m + 1 \to n
\]

(\text{add a line})

\[
H \phi = \begin{array}{c}
\phi \cdots \\
\phi \cdots
\end{array} : m \to n + 1
\]

(\text{add a column})

\[
W_i \phi = \begin{array}{c}
\phi \\
\phi \\
\phi
\end{array} : m \to n
\]

(\text{add a link})

\[
Z = \begin{array}{c}
\phi \\
\phi
\end{array} 0 \to 0
\]

Lemma

\[
W_i W_j \Rightarrow W_j W_i \quad (i < j) \quad EH \Rightarrow HE \quad EW_i \Rightarrow W_{i+1}E
\]

normal forms are in bijection with multirelations.
Now begins the novel part: partial orders
THE CATEGORY OF FINITE POSETS

We write \textbf{FinPOSet} for the PRO whose

- objects are integers
- a morphism $f : [m] \to [n]$ is a finite poset (f, \leq_f) with m chosen minimal elements and n chosen maximal elements (both sets being distinct)
THE CATEGORY OF FINITE POSETS

We write FinPOSet for the PRO whose

- objects are integers
- a morphism $f : [m] \to [n]$ is a finite poset (f, \leq_f) with m chosen minimal elements and n chosen maximal elements (both sets being distinct)

For instance:

```
[2]       0  1
|         |
|         |
f        |
|         | 0
[1]       0
```
\[(1) \xrightarrow{g} (2) \xrightarrow{f} (1)\]

\[g \quad \bullet \quad 0 \quad 1 \]

\[f \quad \bullet \quad 0 \quad 1\]

\[\text{and tensor product is juxtaposition as usual}\]
\[\begin{array}{ccc}
[1] & 0 & 0 \\
g & \bullet & \bullet \\
[2] & 0 & 1 \\
\end{array}\] =
\[\begin{array}{ccc}
[1] & 0 & 0 \\
f & \bullet & \bullet \\
[2] & 0 & 1 \\
\end{array}\]
COMPOSITION

\[
\begin{array}{c}
\{1\} \\
g \\
\{2\}
\end{array}
\quad
\begin{array}{ccc}
0 & 0 & 0 \\
\bullet & 1 & \bullet \\
0 & 0 & 0
\end{array}
= \\
\begin{array}{ccc}
0 & 0 & 0 \\
\bullet & 1 & \bullet \\
0 & 0 & 0
\end{array}
\quad
\begin{array}{c}
\{1\} \\
f \\
\{2\}
\end{array}
\]

(and tensor product is juxtaposition as usual)
RELATIONS IN \textit{FinPOSet}

An element of a poset is \textit{internal} when it is not in the source or the target.
RELATIONS IN FinPOSet

An element of a poset is *internal* when it is not in the source or the target.

A relation can be seen as a poset with no internal elements: we have a faithful embedding \(\text{Rel} \hookrightarrow \text{FinPOSet} \).

\[
\begin{array}{ccc}
0 & \rightarrow & 1 \\
| & \downarrow & \\
0 & \rightarrow & 1 \\
& & \rightarrow & 2
\end{array}
\]
RELATIONS IN \text{FinPOSet}

An element of a poset is \textit{internal} when it is not in the source or the target.

A relation can be seen as a poset with no internal elements: we have a faithful embedding \(\text{Rel} \hookrightarrow \text{FinPOSet} \).

So, it makes sense to build a presentation extending the presentation for \(\text{Rel} \).
A PRESENTATION FOR FinPOSet

Theorem
The category FinPOSet is presented by the 3-polygraph with
- six 2-generators

\[
\begin{align*}
\mu &: 2 \to 1 & \eta &: 0 \to 1 & \delta &: 1 \to 2 & \varepsilon &: 1 \to 0 & \gamma &: 2 \to 2 & \sigma &: 1 \to 1
\end{align*}
\]

- relations
 - \((\mu, \eta, \delta, \varepsilon, \gamma)\) is a qualitative bialgebra (as for Rel)
 - dependencies are transitive
ABOUT THE PROOF

Notice that it cannot be done using a canonical rewriting system:

\[\text{does not terminate} \]
ABOUT THE PROOF

Notice that it cannot be done using a canonical rewriting system:

- does not terminate

- does not allow to derive
What about presenting increasing functions between posets?
What about presenting increasing functions between posets?

We extend this to better understand commutative monads.
Definition
A **monad** T on a category C is an endofunctor $T : C \to C$ together with two natural transformations

$$\mu : TT \Rightarrow T \quad \quad \eta : \text{Id} \Rightarrow T$$

such that

$$
\begin{align*}
TTT & \xrightarrow{\mu_T} TT \\
TT & \xrightarrow{T\mu} T \\
T & \xrightarrow{T\eta} T
\end{align*}
$$
Definition
A **monad** \(T \) on a category \(C \) is an endofunctor \(T : C \to C \) together with two natural transformations

\[
\mu : TT \Rightarrow T \\
\eta : \text{Id} \Rightarrow T
\]

such that

\[
\begin{align*}
TTT & \xrightarrow{\mu_T} TT \\
T & \xrightarrow{\eta_T} TT & TT & \xleftarrow{T\eta} T
\end{align*}
\]

Example
The **stream monad** \(TA = A^R \) with

\[
\begin{align*}
\eta_A &: A \to TA \\
a &\mapsto \lambda t.a \\
\mu_A &: TTA \to TA \\
s &\mapsto \lambda t.s\text{tt}
\end{align*}
\]
Definition

A **strength** for a monad T on a monoidal category C is a natural transformation

$$\tau_{A,B} : A \otimes TB \to T(A \otimes B)$$

such that

\[
\begin{align*}
(A \otimes B) \otimes TC & \xrightarrow{T_{A\otimes B,C}} T((A \otimes B) \otimes C) \\
\alpha_{A,B,TC} & \downarrow \\
A \otimes (B \otimes TC) & \xrightarrow{A \otimes T_{B,C}} A \otimes T(B \otimes C) \xrightarrow{T \alpha_{A,B,C}} T((A \otimes (B \otimes C)))
\end{align*}
\]
Definition

A **strength** for a monad T on a monoidal category \mathcal{C} is a natural transformation

$$\tau_{A,B} : A \otimes TB \to T(A \otimes B)$$

such that

$$A \otimes TTB \xrightarrow{\tau_{A,TB}} T(A \otimes TB) \xrightarrow{T\tau_{A,B}} TT(A \otimes B)$$

$$A \otimes TB \xrightarrow{\mu_{A\otimes B}} T(A \otimes B)$$
Definition
A **strength** for a monad T on a monoidal category C is a natural transformation

$$\tau_{A,B} : A \otimes TB \to T(A \otimes B)$$

such that

$$I \otimes TA \xrightarrow{\tau_{I,A}} T(I \otimes A)$$

$$A \otimes B \xrightarrow{A \otimes \eta_B} A \otimes TB$$

$$\lambda_{TA} \downarrow \quad T \lambda_A \quad \eta_{A \otimes B} \downarrow \quad \tau_{A,B}$$

$$TA \quad T(A \otimes B)$$
Definition

A **strength** for a monad \(T \) on a monoidal category \(\mathcal{C} \) is a natural transformation

\[
\tau_{A,B} : A \otimes TB \to T(A \otimes B)
\]

such that

\[
\begin{align*}
I \otimes TA & \xrightarrow{\tau_{I,A}} T(I \otimes A) \\
\lambda_TA & \xrightarrow{T \lambda_A} TA
\end{align*}
\]

and

\[
\begin{align*}
A \otimes B & \xrightarrow{A \otimes \eta_B} A \otimes TB \\
\eta_A \otimes B & \xrightarrow{T \eta_{A \otimes B}} T(A \otimes B)
\end{align*}
\]

Definition

A **costrength** \(\tau_{A,B} : TA \otimes B \to T(A \otimes B) \) is defined dually.
Example
The stream monad is strong with

\[\tau_{A,B} : A \times TB \rightarrow T(A \times B) \]

\[(a, s) \mapsto \lambda t.(a, st) \]
Example

The stream monad is strong with

$$
\tau_{A,B} : A \times TB \rightarrow T(A \times B) \\
(a, s) \mapsto \lambda t.(a, st)
$$

where

$$
\begin{array}{ccc}
A \otimes TTB \xrightarrow{\tau_{A,TB}} T(A \otimes TB) \xrightarrow{T\tau_{A,B}} TT(A \otimes B) \\
A \otimes \mu_B \downarrow \quad \mu_A \otimes B \downarrow

A \otimes TB \xrightarrow{\tau_{A,B}} T(A \otimes B)
\end{array}
$$

means

$$
\lambda t.(\lambda t_1 t_2.(a, st_1 t_2))tt = \lambda t.(a, (\lambda t'.st't')t)
$$
Definition

A **commutative** monad \(T : C \to C \) is a monad together with a strength and a costrength

\[
\tau_{A,B} : A \otimes T B \to T (A \otimes B) \quad \nu_{A,B} : T A \otimes B \to T (A \otimes B)
\]

such that

\[
T (A \otimes TB) \xrightarrow{T \tau_{A,B}} TT (A \otimes B) \quad \nu_{A,TB} \quad \mu_{A \otimes B}
\]

\[
TA \otimes TB \quad \tau_{TA,B} \quad T (TA \otimes B) \xrightarrow{T \nu_{A,B}} TT (A \otimes B) \quad \mu_{A \otimes B}
\]
Example

The stream monad:

\[
\begin{align*}
T(A \otimes TB) & \xrightarrow{T \tau_{A,B}} TT(A \otimes B) \\
TA \otimes TB & \xrightarrow{\nu_{A, TB}} T(TA \otimes B) \\
& \xrightarrow{T \nu_{A, B}} TT(A \otimes B) \\
& \xrightarrow{\mu_{A \otimes B}} T(A \otimes B)
\end{align*}
\]

means

\[
\lambda t. (\lambda t_1 t_2. (s_1 t_1, s_2 t_2)) tt = \lambda t. (\lambda t_2 t_1. (s_1 t_1, s_2 t_2)) tt
\]
We can try to draw these laws using string diagrams:

- a monoidal category is a (pseudo-)monoid in \textbf{Cat}:

\[\boxtimes : C \times C \to C \quad I : 1 \to C \]

satisfying associativity and unitality

\[\begin{array}{ccc}
\text{\rotatebox{90}{\boxtimes}} & = & \begin{array}{c}
\text{\rotatebox{-270}{\boxtimes}}
\end{array} \\
\begin{array}{c}
\text{\rotatebox{-270}{\boxtimes}}
\end{array} & = & \text{\rotatebox{90}{I}} = \text{\rotatebox{90}{\boxtimes}} \\
\end{array} \]

(actually up to iso)
We can try to draw these laws using string diagrams:

- a monoidal category is a (pseudo-)monoid in Cat:

- a monad $T : C \rightarrow C$:

 together with
We can try to draw these laws using string diagrams:

- a monoidal category is a (pseudo-)monoid in \textbf{Cat}:

- a monad $T : C \to C$:

 together with

\[\eta : \]
We can try to draw these laws using string diagrams:

- a monoidal category is a (pseudo-)monoid in \(\mathbf{Cat}\):

- a monad \(\mathcal{T} : \mathcal{C} \to \mathcal{C}\): together with

satisfying

(these define exactly functions between totally ordered sets)
the strength $\tau_{A,B} : A \otimes TB \to T(A \otimes B)$
the strength $\tau_{A,B} : A \otimes TB \to T(A \otimes B)$

looks like an increasing function between posets:
IN STRING DIAGRAMS

and actually all the laws of commutative monads are compatible with this interpretation:

\[
A \otimes TTB \xrightarrow{\tau_{A,TB}} T(A \otimes TB) \xrightarrow{T\tau_{A,B}} TT(A \otimes B)
\]

\[
A \otimes \mu_B \downarrow \quad \quad \quad \quad T(A \otimes TB) \xrightarrow{\mu_{A \otimes B}} TT(A \otimes B)
\]

becomes

\[
A \otimes TB \xrightarrow{\tau_{A,B}} T(A \otimes B)
\]
and actually all the laws of commutative monads are compatible with this interpretation:

\[
T(A \otimes TB) \xrightarrow{T_{TA,B}} TT(A \otimes B)
\]

\[
TA \otimes TB \xrightarrow{\tau_{TA,B}} T(TA \otimes B) \xrightarrow{T\nu_{A,B}} TT(A \otimes B)
\]

becomes
We define the PRO PTrees as the monoidal subcategory of FinPOSet whose morphisms $m \rightarrow n$ are posets with m minimal and n maximal chosen elements which are planar forests:
We define the PRO PTrees as the monoidal subcategory of $\text{FinPOS} \text{Set}$ whose morphisms $m \to n$ are posets with m minimal and n maximal chosen elements which are planar forests:

- a poset is a forest when
 \[a \leq c \land b \leq c \implies a \leq b \lor b \leq a \]

i.e.

\[
\begin{array}{c}
\text{c} \\
\downarrow \\
\text{a} & \text{b}
\end{array}
\quad \Rightarrow \quad
\begin{array}{c}
\text{c} \\
\downarrow \\
\text{a} & \text{b} & \text{c}
\end{array}
\quad \lor \quad
\begin{array}{c}
\text{c} \\
\downarrow \\
\text{a} & \text{b}
\end{array}
\]

\[
\begin{array}{c}
\text{c} \\
\downarrow \\
\text{a} & \text{b}
\end{array}
\quad \lor \quad
\begin{array}{c}
\text{c} \\
\downarrow \\
\text{a} & \text{b}
\end{array}
\]
We define the PRO **PTrees** as the monoidal subcategory of **FinPOSet** whose morphisms \(m \to n \) are posets with \(m \) minimal and \(n \) maximal chosen elements which are *planar forests*:

- a poset is a *forest* when

\[
a \leq c \land b \leq c \implies a \leq b \lor b \leq a
\]

- *planar* means that it can be drawn without crossings:

```
0 1
\[ \bullet \leftrightarrow \bullet \]
```

is forbidden
A PRESENTATION OF PTrees

Proposition

The PRO PTrees is presented by the 3-polygraph with

- three 2-generators

\[\begin{align*}
\text{\Upsilon} &= \text{\Upsilon} \\
\text{\Upsilon} &= \text{\Upsilon} \\
\text{\Upsilon} &= \text{\Upsilon}
\end{align*} \]

- three relations
We define the monoidal 2-category **IncPTrees** by considering **PTrees** (planar forests) together with increasing functions between them, which preserve the number of trees.

Theorem

*The category **IncPTrees** is presented by the 3-polygraph with three 2-generators:*
We define the monoidal 2-category \textbf{IncP\textsc{Trees}} by considering \textbf{P\textsc{Trees}} (planar forests) together with increasing functions between them, which preserve the number of trees.

Theorem

The category \textbf{IncP\textsc{Trees}} is presented by the 3-polygraph with

- three 2-generators:

- 3-generators:
MAKING THIS PRECISE

We define the monoidal 2-category **IncPTrees** by considering **PTrees** (planar forests) together with increasing functions between them, which preserve the number of trees.

Theorem

*The category **IncPTrees** is presented by the 3-polygraph with*

- **three 2-generators:**

- **3-generators:**

\[
\begin{align*}
\Rightarrow & \Rightarrow \\
\Rightarrow & \Rightarrow \\
\Rightarrow & \Rightarrow \\
\end{align*}
\]
We define the monoidal 2-category IncPTrees by considering PTrees (planar forests) together with increasing functions between them, which preserve the number of trees.

Theorem

The category IncPTrees is presented by the 3-polygraph with

- three 2-generators:
- 3-generators
- relations: the axioms of commutative monads
MAKING THIS PRECISE

Theorem

A strong monoidal functor $\text{IncPTrees} \rightarrow \text{Cat}$

is the same as

a category together with a commutative monad
Theorem (MacLane)

In a monoidal category, “all diagrams” commute.

\[((A \otimes I) \otimes B) \otimes C \rightarrow (A \otimes B) \otimes C \]

\[(A \otimes (I \otimes B)) \otimes C \rightarrow A \otimes (B \otimes C) \]

\[A \otimes ((I \otimes B) \otimes C) \rightarrow A \otimes (I \otimes (B \otimes C)) \]
Theorem

Given a monoidal category \mathcal{C} with a strong monad there are as many canonical morphisms in $\mathcal{C}(A, B)$ as there are functions from A to B seen as posets:

$$T(TTA \otimes (TI \otimes B)) \rightarrow T(A \otimes TB)$$
Theorem

Given a monoidal category \mathcal{C} with a strong monad there are as many canonical morphisms in $\mathcal{C}(A, B)$ as there are functions from A to B seen as posets:

$$T(TTA \otimes (TI \otimes B)) \rightarrow T(A \otimes TB)$$
Theorem

Given a monoidal category \mathcal{C} with a strong monad there are as many canonical morphisms in $\mathcal{C}(A, B)$ as there are functions from A to B seen as posets:

$$T\left(TTA \otimes (TI \otimes B) \right) \rightarrow T(\mathcal{A} \otimes TB)$$
In a programming language, if \(s : T\mathbb{N} \) is a stream of integers, one would like to automatically make sense of programs such as

\[
s : T\mathbb{N} \vdash 3 + s : T\mathbb{N}
\]
TOWARDS MONADIC COERCIONS?

In a programming language, if \(s : T\mathbb{N} \) is a stream of integers, one would like to automatically make sense of programs such as

\[
s : T\mathbb{N} \vdash 3 + s : T\mathbb{N}
\]

A monad is characterized by:

- its return (or unit): \(\rho_A : A \rightarrow TA \)
- its bind: \(\beta_A : (A \rightarrow TB) \rightarrow (TA \rightarrow TB) \)

We would like to implicitly use those as coercions, but it would have to be done in a coherent way!
We have shown that higher-dimensional rewriting methods can be helpful to better understand algebraic structures.

But lots remains to be done...