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Abstract
Polygraphs play a fundamental role in algebra, geometry, and computer science, by generalizing
group presentations to higher-dimensional structures and encoding coherence for those. They have
rencently been adapted by Kraus and von Raumer to the setting of homotopy type theory, where they
are useful to define and study higher inductive types. Here, we develop the theory of 1-dimensional
polygraphs, which correspond to presentations of sets in homotopy type theory. This requires us to
introduce a dedicated notion of Tietze transformation, generalizing their well-known counterpart in
group theory: the equivalence generated by those transformations characterizes situations where two
1-polygraphs present the same set. We also show a homotopy transfer theorem, which provides a way
to transport a coherence structure from one 1-polygraph to another. This work lays the foundations
for a general theory of polygraphs in arbitrary dimensions, which should be useful for instance to
define and study coherent group presentations, allowing for synthetic (co)homology computations.
Most of the results in the article have been formalized with the Agda proof assistant using the
cubical HoTT library.
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Introduction

The notion of polygraph is emerging as a central one in many areas of mathematics and
computer science [1]. From an algebraic point of view, it generalizes group presentations
by generators and relations. Namely, polygraphs have been used to present more complex
structures (such as higher categories or even weak ones [3]), but they also allows the encoding
of their coherence, by describing the higher relations between relations. From a geometric
point of view, polygraphs can be thought of as analogous to CW-complexes, since they
are constructed by progressively attaching cells (more formally, they can be shown to be
cofibrant objects in suitable model structures [12]). Finally, from a computer science point
of view, they generalize rewriting systems [2] (again, in higher-dimensions, and by taking
coherence in account): 1-polygraphs essentially correspond to abstract rewriting systems while
2-polygraphs generalizes string rewriting systems. Many of the traditional constructions and
tools of rewriting theory generalize to polygraphs, we refer the reader to the monography [1]
for a general overview. Let us first illustrate some of those on group presentations.

Tietze transformations. The symmetric group of order 3 (of bijections of a 3-elements set)
admits the presentation S3 = ⟨s, t | s2 = 1, t2 = 1, sts = tst⟩, meaning that it is generated by
two generators s and t, corresponding to two transpositions. Similarly, the dihedral group of
order 3 admits the presentation D3 = ⟨r, s | r3 = 1, s2 = 1, rsrs = 1⟩, where the generators r
and s respectively correspond to a rotation of 2π/3 and a symmetry. It can be observed
that the two resulting groups are isomorphic, and one can wonder whether this could be
shown directly at the level of presentations. The answer is positive: namely, Tietze has
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introduced two kinds of transformations on presentations, respectively consisting in adding a
definable generator and a derivable relation, which preserve the presented group, while being
complete in the sense that any two presentations of the same group can be transformed into
one another [18]. And indeed, using them we can transform the above presentation of S3
into the one of D3 [1, Example 5.1.4]. These transformations generalize to polygraphs [1,
Chapter 5] and can actually be taken as the basis for completion procedures such as the
Knuth-Bendix procedure [8].

Coherent presentations. By orienting the relations of a presentation (say, from left to
right), one obtains a string rewriting system. It has been observed by Newman [15] and
then Squier [17, 11], that, when the rewriting system is convergent, the 2-cells given by the
confluence of the critical pairs provide a homotopy basis in dimension 2, i.e. are sufficient to
fully describe the coherence datum, and thus make any diagram of rewriting paths commute:
this is sometimes called Squier’s theorem. For instance, a coherent presentation of S3 is
obtained by adjoining the 5 following 2-cells, corresponding to the 5 critical branchings:

sss s⇓

ttt t⇓

tsts stss

ttst st
⇓

tstt ts

stst ssts

⇓

stsst stt

tstst s

tssts tts

⇓

The above presentation of D3 is not convergent, and thus we cannot compute coherence
2-cells as above. We could complete it into a convergent one, but sometimes such a completion
is not available nor easily computable. Alternatively, from the fact that the presentations
of S3 and D3 are equivalent through Tietze transformation, one can directly compute a
homotopy basis of D3 form the one of S3: this is the coherence transfer theorem (sometimes
called homotopy transfer theorem) [4].

Polygraphs in homotopy type theory. Homotopy type theory (HoTT) is a logical setting
based on dependent types, in which types can be interpreted as spaces and be manipulated
in a synthetic and homotopy-invariant way [19]. A central feature of the theory is the notion
of higher inductive type (HIT) which generalizes inductive types by allowing constructors for
identities, and can be thought of as generating CW-complexes. It is thus natural to try to
relate those with polygraphs. In particular, one would like to use the above rewriting methods
in order to provide explicit constructors which ensure coherence instead of resorting to formal
truncations. Namely, given a formally n-truncated type, one can only easily eliminate to
n-types, whereas providing explicit coherence cells allow to eliminate toward higher types,
which is often required. This task has been achieved in dimension 2 by Kraus and von
Raumer [10] who formalized Squier’s theorem for 2-polygraphs in HoTT.

Coherent Tietze transformations for homotopy 1-polygraphs. While Squier’s theorem
allows one to find a homotopy basis for convergent 2-polygraphs, we still need the coherence
transfer theorem to transport it to non convergent ones. This key tool is however still missing
in HoTT. Since its formlization in that setting turns out to be quite involved to perform in full
details, we handle here the first relevant case of 1-polygraphs. Those correspond to coherent
presentations of propositions (as opposed to groups), and the setting of abstract rewriting
systems (as opposed to string rewriting systems). To do so, we introduce coherent Tietze
transformations on type theoretical 1-polygraphs, that is transformations on presentations
which preserve coherence, and show associated correction and completeness results. We claim
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that it should generalize to higher-dimensional polygraphs, but already this first step allowed
us to put to light interesting constructions and non-trivial proofs.

Most of the constructions presented here have been formalized in Adga using the cubical
HoTT library [20]. The formalization is freely available [13] and we indicate the corresponding
lemmas (in the file 1Polygraph.agda, unless mentioned otherwise).

Notations. We refer to [19] for an introduction to HoTT and only introduce here the notations
required to read the article. We denote by U the universe of all types, and ⊤ (resp. ⊥) for
the contractible (resp. empty) type. Given a type A, we write ∥A∥−1 (resp. ∥A∥0) for its
propositional (resp. set) truncation, and | − |−1 (resp. | − |0) for the associated universal
morphism. For a map f : A → B and b : B, we write hfibf (b) := Σ(a : A).(f(a) = b) for its
homotopy fiber at b. We also write apf (p) : f(x) = f(y) for the path induced by f on B by
functoriality from a path p : x = y in A. We write reflx : x = x for the trivial path on an
element x of an arbitrary type, p− for the inverse of a path p, and p · q for the concatenation
of two paths p and q.

Plan of the paper. After defining 1-polygraphs (Section 1), we define the associated Tietze
transformations (Section 2) and show correctness and completeness theorems for those
(Theorems 13 and 22). We then introduce a notion of morphism between 1-polygraphs
(Section 3), which then allows us (Section 4) to provide a construction to transfer coherence
from a 1-polygraph to a Tietze equivalent 0-polygraph (Theorem 28). We finally conclude
(Section 5).

1 1-polygraphs

Before introducing 1-polygraphs, we first need to present the (quite trivial) 0-dimensional
variant. A 0-polygraph P is simply a type whose elements are called 0-generators. A sphere
(x, y) in a 0-polygraph P is a pair of elements of P , and we write SP for the type of such
objects. If we write S0 = {0, 1} for the type with two elements, corresponding to the canonical
0-sphere, it can be noted that a sphere in a 0-polygraph P corresponds to an arrow S0 → P .
Given a 0-polygraph P , we call ∥P∥−1 the proposition presented by P .

1.1 Internal and External 1-polygraphs

1-polygraphs. A 1-polygraph P consists of a 0-polygraph UP (the underlying 0-polygraph
of P ) together with a function S UP → U , which to any sphere (x, y) in the underlying
0-polygraph associates a type P (x, y) whose elements are called the 1-generators of the
1-polygraph. In other words, 1-polygraphs correspond to type-theoretic directed graphs. A
1-polygraph is discrete when all the types UP and P (x, y) are sets. In the following, a sphere
in UP is called a 0-sphere of P .

1-generators. The elements of UP are called 0-generators or 0-cells of P . We sometimes
write S0 P := S UP for the 0-spheres, as well as P0 := UP and P1 := Σ((x, y) : S0 P ).P (x, y)
for the type of 0- and 1-generators of P . We also write ∂−, ∂+ : P1 → P0 for the source and
target functions (defined by ∂− := π ◦ π and ∂+ := π′ ◦ π).

1-cells. Given a 1-polygraph P and a 0-sphere (x, y), we write P ∗(x, y) for the type of 1-cells
in P from x to y. This family of types is defined inductively as the smallest one such that
– for every 0-cell x : UP , we have a 1-cell idx : P ∗(x, x),
– for every 0-cells x, y, z : UP , 1-generator a : P (x, y) and 1-cell u : P ∗(y, z), we have a

1-cell a :: u : P ∗(x, z),
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– for every 0-cells x, y, z : UP , 1-generator a : P (y, x) and 1-cell u : P ∗(y, z), we have a
1-cell a ::′ u : P ∗(x, z).

Informally, cells in P ∗(x, y) are undirected paths from x to y in the graph corresponding
to P (where the two last cases respectively correspond to taking an arrow a forward and
backward). In the following, we often write a : x → y for a 1-generator a : P (x, y) and
u : x ∗→ y for a 1-cell u : P ∗(x, y).

Composition. Given two 1-cells u : x ∗→ y and v : y ∗→ z, we define their composite
u · v : x ∗→ z by induction on u by

id ·v := v (a :: u) · v := a :: (u · v) (a ::′ u) · v := a ::′ (u · v)

▶ Lemma 1 ([13, comp0-assoc]). Composition is associative and unital.

Given a 1-cell u : x ∗→ y, we define its opposite uop : y ∗→ x by induction on u by

idop := id (a :: u)op := a ::′ uop (a ::′ u)op := a :: uop

where a :: u, which corresponds to appending a to u, is defined by

a :: id := a :: id a :: (b :: u) := b :: (a :: u) a :: (b ::′ u) := b ::′ (a :: u)

and a ::′ u, corresponding to appending a backward to u, is defined similarly.

Spheres. A sphere s in a 1-polygraph P consists of a 0-sphere (x, y) together with a pair of
1-cells f, g : x ∗→ y. The underlying 0-sphere (x, y) is noted U s. The cell f (resp. g) is called
the source (resp. target) of s and noted ∂−s (resp. ∂+s), so that the sphere s is the triple
(U s, ∂−s, ∂+s). We write SP for type of spheres in a 1-polygraph.

Coherent 1-cells. In the definition of 1-cell, we think of a :: − and a ::′ − as respectively
precomposing by the 1-cell a and its inverse. However, nothing enforces that they are actually
inverse operations, i.e. that we have

a ::′ a :: u = u a :: a ::′ u = u

for any 1-generator a and 1-cell u of suitable types. We define the types of coherent
1-cells P∼(x, y), indexed by 0-spheres (x, y), as the quotient of the types of 1-cells P ∗(x, y)
under the congruence generated by the above relations. This type is the “right” definition
for the 1-cells of P , in the sense that it gives a description of the free groupoid generated
by P [9]. However, non coherent 1-cells provides representatives for those which are often
simpler to work with. Namely, by definition of coherent 1-cells as a quotient of 1-cells, we
have

▶ Lemma 2. For x, y : UP , the canonical map f : P ∗(x, y) → P∼(x, y) is a surjection,
i.e. the type ∥ hfibf (u)∥−1 is inhabited for any u : P∼(x, y).

1.2 Geometric realization
We introduce the “geometric realization” of a 1-polygraph P , which can be though of as a
type-theoretical graph with P0 as vertices and P1 as edges. The set presented by P is then
defined as the type of connected components of this graph.

Geometric realization. Given a 1-polygraph P its geometric realization P is the higher
inductive type generated by the two constructors

ι : UP → P γ : ((x, y) : S0 P ) → P (x, y) → ιx = ιy
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More abstractly, it corresponds to the pushout on the left or to the coequalizer on the right

P1 × S0 P0

P1 P

π′

f

⌜
P1 P0 P

∂−

∂+

where the horizontal arrow f sends an edge a : x → y and 0 (resp. 1) to x (resp. y), which
corresponds to attaching 1-cells to a 0-dimensional cell complex. The associated induction
principle is the following.

▶ Proposition 3. Suppose given an arbitrary type A. Any two functions f0 : P0 → A and
f1 : (((x, y), a) : P1) → f0(x) = f0(y) induce a unique function f : P → A such that f ◦ ι = f0
and f ◦ γ = f1. We also have the expected dependent generalization.

By partial evaluation, the map γ induces, for (x, y) : S0 P , a map γx,y : P (x, y) → ιx = ιy,
which extends as a map on cells γ∗

x,y : P ∗(x, y) → ιx = ιy defined by induction by

γ∗
x,x(id) := refl γ∗

z,y(a :: u) := γa · γ∗
x,y(u) γ∗

z,y(a ::′ u) := γa− · γ∗
x,y(u)

Moreover, since this definition is compatible with the relations for coherent 1-cells, for every
sphere (x, y) : S0 P we have the following.

▶ Lemma 4. The map γ∗
x,y induces a map γ∼

x,y : P∼(x, y) → ιx = ιy.

This map is an equivalence, so it provides a characterization of the paths in geometric
realizations of graphs [13, KvR/1Polygraph/PathPresentation.agda]:

▶ Theorem 5. The map γ∼
x,y : P∼(x, y) → ιx = ιy is an equivalence.

Proof. A map ιx = ιy → P∼(x, y) can be defined using the elimination principle for paths
in P given in [9, Theorem 3], and both can be shown to be mutually inverse by induction. ◀

Presented set. The set presented by a 1-polygraph P is the set of connected components of
its geometric realization ∥P∥0. This notion is to be understood as an analogue of a group
presentation with generators and relations, but shifted down by one dimension: here, the
0-cells of P are the generators of the presented set, and the 1-cells are the relations.

▶ Example 6. Consider the polygraph P with UP = Z and one relation an : n → n + 2
for n ∈ Z. The presented set is Z2.

We now proove some technical lemmas that will be useful later on.

▶ Lemma 7. For x, y : UP and p : |ι(x)|0 = |ι(y)|0 in ∥P∥0, there merely exists a 1-cell x ∗→ y

in P .

Proof. By [19, Theorem 7.3.12], the type |ι(x)|0 = |ι(y)|0 coincides with ∥ι(x) = ι(y)∥−1.
Since we are eliminating to a proposition, we can suppose given a path p : ι(x) = ι(y) which
by Theorem 5 induces a coherent cell p̃ : P∼(x, y), and we conclude by Lemma 2. ◀

The following shows that we can pick a representative 0-cell in every connected component [13,
has-repr]:

▶ Proposition 8. The type Π(x : ∥P∥0).∥Σ(x̂ : UP ).|ι(x̂)|0 = x∥−1 is inhabited.

Proof. Any proposition being a set [19, Lemma 3.3.4], it is enough to construct a map
f : Π(x : P ).∥Σ(x̂ : UP ).ι(x̂) = x∥−1 which can be done by using the elimination principle
of P (Proposition 3). Namely, we define, for x : UP , f(ι(x)) := |(x, reflι(x))|−1 and, for
x, y : UP and a : P (x, y), the path associated to it by f is canonically defined by the fact
that we are eliminating to a proposition. ◀
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2 Tietze transformations

Tietze transformations originate from the work of Tietze [18] who defined two transformations
on group presentations:
(T0) adding a definable generator,
(T1) adding a derivable relation.
The equivalence relation they induce, the Tietze equivalence, characterizes when two present-
ations give rise to the same group, up to isomorphism. These transformations have then
been generalized to a variety of contexts, including the very general one of polygraphs [1, 5]
for presentations of (higher) categories, and have as well been shown to provide a interesting
notion of weak equivalence [7]. Their fundamental property can be decomposed in two parts:
– correctness: any two presentations which are Tietze equivalent present the same structure,
– completeness: any two presentations of the same structure are Tietze equivalent.
Here, we think of a 1-polygraph P as presenting the set ∥P∥0, and we define elementary
transformations as explained above. We then show that they are correct and complete with
respect to the presented set.

2.1 Definition
We define the two following families of Tietze transformations, which transform a given
1-polygraph P into another 1-polygraph, by attaching cells to it:
(T0) Add a definable 0-generator : given a type X and a function ∂ : X → UP , we construct

the polygraph P↑0∂ defined, for (x, y) : S0 P , by

U(P↑0∂) := UP ⊔X (P↑0∂)(x, y) :=


P (x, y) if x : UP and y : UP

x = ∂(y) if x : UP and y : X
⊥ otherwise

(T1) Add a derivable relation: given a function ∂ : S0 P → U and a family of functions
∂x,y : ∂(x, y) → (x ∗→ y) indexed by 0-spheres (x, y) : S0 P , we construct the poly-
graph P↑1∂ defined, for (x, y) : S0 P , by

U(P↑1∂) := UP (P↑1∂)(x, y) := P (x, y) ⊔ ∂(x, y)

A transformation (T0) consists in adding, for every element x : X, a new 0-generator x to
the polygraph together with a 1-generator τx : ∂x → x:

y
(T0)
⇝ y x

τx

with y def= ∂x, and τx is a notation for the element reflx : (P↑0∂)(y, x). A transformation (T1)
consists in adding, for every x, y : X and a : ∂(x, y), a 1-generator a : x → y:

x1 x2 xn−1

x0 xn

(T1)
⇝

x1 x2 xn−1

x0 xn

It can be observed that we have a new hole after performing a transformation (T1), which
justifies the importance of the set-truncation in the definition of the presented set. Note that
the functions ∂x,y are not used in order to define Q in (T1), but they will be necessary to
show the correctness of the transformation below. For instance, if we did not require those,
we could make any polygraph coherent by taking ∂(x, y) = ⊤ for any (x, y) : S0 P .
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▶ Remark 9. We could also consider a weaker notion of transformation (T1) where we only
require the existence of the 1-cell associated to an added 1-generator, i.e. type the function
as ∂x,y : ∂(x, y) → ∥x ∗→ y∥−1. This variant would in fact be enough for the subsequent
developments here.

▶ Example 10. We have the following series of Tietze transformations:

y

x z

(T1)
⇝

y

x z

(T1)⇝ y

x z

(T0)⇝ y

x

(T0)⇝

x

Under the Grothendieck duality between type families and fibrations [19, Section 4.8], the
Tietze transformations (T1) can reformulated as follows (a similar reformulation for (T0)
could also be given):

▶ Proposition 11. Transformations (T1) are equivalent to the following:
(T1’) Given a type X : U and function ∂ : X → Σ((x, y) : S0 P ).P ∗(x, y), we construct the

polygraph P↑1∂ with U(P↑1∂) := UP and, for (x, y) : SP ,

(P↑1∂)(x, y) := P (x, y) ⊔ hfibπ◦∂(x, y)

We define the Tietze equivalence as the equivalence relation generated by (T0) and (T1).

Transformations for 0-polygraphs. The notion of Tietze transformation generalizes to
polygraphs in any dimension. In particular, for 0-polygraphs, it can be formulated as follows.
An elementary Tietze transformation of 0-polygraphs consists in
(T0) Given a 0-polygraph P , a type X and a function ∂ : X → P , we consider the

0-polygraph P↑0∂ := P ⊔X.
Two 0-polygraphs are Tietze equivalent when they are related by the smallest equivalence
relation identifying P with P↑0∂ for any P and ∂.

▶ Proposition 12. There exists a Tietze equivalence between two 0-polygraphs P and Q if
and only if they present the same proposition, i.e. ∥P∥−1 = ∥Q∥−1.

2.2 Correctness
Our aim is now to show the correctness property for Tietze transformations of 1-polygraphs:
equivalent 1-polygraphs present the same set.

▶ Theorem 13 (Correctness). Given two Tietze equivalent 1-polygraphs P and Q, we have
∥P∥0 = ∥Q∥0.

By induction on the equivalence, it is enough to show the result when Q is obtained form P

by a Tietze transformation (T0) or (T1), which we do below. Throughout the section, we
suppose fixed a 1-polygraph P . We first show that transformations (T0) are correct [13,
tietze0-correct]:

▶ Proposition 14. Given a type X and a function ∂ : X → UP , we have ∥P∥0 = ∥P↑0∂∥0.

Proof. By definition of P↑0∂ and its geometric realization, we have a coequalizer

P1 ⊔X P0 ⊔X P↑0∂
∂−⊔∂

∂+⊔idX

By computing the coequalizer partially on the left component of the coproduct, we find that
P↑0∂ is the coequalizer of X P ⊔X

ι◦∂

inr
. From which we easily deduce P↑0∂ = P . ◀
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Note that transformations (T0) actually preserve, not only the presented set, but also the geo-
metric realization. We now show that transformations (T1) are correct [13, tietze1-correct]:

▶ Proposition 15. Given a type X, a function ∂ : S0 P → U , and a family of functions
∂x,y : ∂(x, y) → (x ∗→ y) indexed by 0-spheres (x, y) : S0 P , we have ∥P∥0 = ∥P↑1∂∥0.

Proof. By using the induction principle of geometric realization (Proposition 3), we can
define a map s : P → P↑1∂ by

s(ι(x)) := ι(x) aps(γ(a)) := γ(inl(a))

for x : P0 and a : x → y in P1. Conversely, we define a map r : P↑1∂ → P by induction by

r(ι(x)) := ι(x) apr(γ(inl(a))) := γ(a) apr(γ(inr(b))) := γ∗
x,y(∂x,y(b))

for x : P0, a : x → y in P1, and b : ∂(x, y) for some (x, y) : S0 P . By induction, they can be
shown to form a section-retraction pair, which induces an equivalence on the 0-truncations. ◀

Sequential colimits. Finally, we show that taking sequential colimits of Tietze transformations
preserves correctness. We will see in Theorem 22 that this is not needed (in the sense that
the colimiting map can always be constructed without a colimit), but it is often convenient
in proofs.

▶ Proposition 16. Given a diagram P 0 P 1 P 2 · · · where all the maps are element-
ary Tietze transformations, the canonical map P 0 → colimi P

i induces an equivalence on
geometric realizations.

Proof. Since geometric realization is a colimit, by commutation of colimits, we have
colimi P i = colimi P i, and thus colimi ∥P i∥0 = ∥colimi P i∥0 because colimits commute
to truncation [16, Corollary 7.7]. Finally, we conclude using the fact that the canonical
map ∥P 0∥0 → ∥colimi P i∥0 is an equivalence, because a colimit of equivalences is an equival-
ence. ◀
▶ Example 17 (Fractal snowflakes). Consider the space X := S1 ∨ S1, generated by a point ⋆
and two loops ℓa, ℓb : ⋆ = ⋆. As an application of the correctness theorem, we show that
the loop space ΩX of X (i.e. the type ⋆ = ⋆) is equivalent to F2, the free

1 aa

b

b

group on two elements a and b. This is done by generalizing the famous
proof that Ω S1 = Z [19, Section 8.1]. We consider the fibration ψ : X → U
defined by induction on X by ψ(⋆) := F2 and apψ(ℓa), apψ(ℓb) respectively
corresponding to right multiplication by a and b. Its total space ΣX.ψ can be
computed by using the flattening lemma [19, Section 6.12], and shown to be
P where P is the 1-polygraph such that UP := F2, P (x, y) := ⊤ when y = xa or y = xb, and
P (x, y) := ⊥ otherwise. This can be pictured as shown on the right, see also [6, Section 1.3].

Any element x of F2 can be written as a product of generators a, b and their inverses.
Among the expressions of x in terms of such products, there is a unique one minimizing the
numbers of letters, the minimal expression for x. Its length is called the length of x. We write
Pn for the sub-1-polygraph of P whose 0-cells are the elements of F2 of length at most n.
It is not difficult to show that Pn+1 is obtained from Pn by a Tietze transformation (T0)
adding the elements of length n+ 1 as 0-cells, attached to the elements of length n obtained
by dropping the last generator in the minimal expression. The colimit of the P i is P and, by
Proposition 14 and the fact that geometric realizations commute with colimits, we deduce
that P equivalent to P 0, which is a point, and thus P is contractible. We now consider
the universal fibration ϕ : X → U defined by ϕ(x) := (⋆ = x). It is well-known that ΣX.ϕ
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is also contractible [19, Lemma 3.11.8], so we have ΣX.ϕ = ΣX.ψ. Furthermore, we can
define a fiberwise map ϕ(x) → ψ(x) by transport, hence, by [19, Theorem 4.7.7], we have an
equivalence ΩX = ϕ(⋆) ≃ ψ(⋆) = F2.

2.3 Completeness
We now show a converse completeness result: any two 1-polygraphs presenting the same set
are Tietze equivalent. Throughout the section, we thus suppose fixed two 1-polygraphs P
and Q such that we have an equality ∥P∥0 = ∥Q∥0. We write f : ∥P∥0 → ∥Q∥0 and
g : ∥Q∥0 → ∥P∥0 for the components of the induced equivalence between the two types. Our
goal is to show that the 1-polygraphs P and Q are equivalent. We should point out that this
part has not (yet) been fully formalized in Agda.

In this section, we also need to suppose that the axiom of choice is satisfied. It is known
to be consistent with homotopy type theory [19, Lemma 3.8.2], and can be formulated as
follows:

▶ Axiom 18. The axiom of choice assumes an inhabitant of the type

Π(x : A).∥B(x)∥−1 → ∥Π(x : A).B(x)∥−1

for every A : U and B : A → U .

Informally, this axiom states that any family of merely inhabited types is itself merely
inhabited.

Proving the completeness result in Theorem 22 below requires us to first show some
technical lemmas. We begin by observing that the maps f and g can be lifted to maps
between the underlying types of 0-generators.

▶ Proposition 19. There merely exist maps f̂ : UP → UQ and ĝ : UQ → UP such that

|ι(f̂(x))|0 = f(|ι(x)|0) |ι(ĝ(y))|0 = g(|ι(y)|0)

for x : UP and y : UQ.

Proof. We define a map f ′ by

f ′ := UP P ∥P∥0 ∥Q∥0 ∥ UQ∥−1
ι |−|0 f

where the rightmost map is the one defined in Proposition 8. By the axiom of choice, we
deduce the existence of a map

f̂ : ∥ UP → UQ∥−1

satisfying the required identity. The map ĝ is constructed similarly. ◀

We then show that any 1-generator in P induces a 1-cell in Q between the image of its
endpoints.

▶ Lemma 20. Given a 1-generator a : x → y in P , there merely exists a 1-cell f̂(x) ∗→ f̂(y)
in Q, that we call f̂(a) in the following.

Proof. By definition of the geometric realization, the 1-generator a induces an equality
γ(a) : ι(x) = ι(y) in P , and thus, by functoriality of f and | · |0, an equality

apf (|γ(a)|0) : f(|ι(x)|0) = f(|ι(y)|0)
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Since, by Proposition 19, we have |ι(f̂(x))|0 = f(|ι(x)|0) (and similarly for y), there is an
equality

|ι(f̂(x))|0 = |ι(f̂(y))|0
and we deduce, by Lemma 7, the existence of a 1-cell f̂(x) ∗→ f̂(y) as desired. ◀

Furthermore, the maps f̂ and ĝ are mutually inverse modulo post-composition by |ι(·)|0.

▶ Lemma 21. For every x : UP , we have |ι(ĝ(f̂(x)))|0 = |ι(x)|0 in ∥P∥0 (and similarly, we
have |ι(f̂(ĝ(x)))|0 = |ι(y)|0 for y : UQ).

Proof. Given x : UP , by Proposition 19 and the fact that f and g are mutually inverse
maps, we have |ι(ĝ(f̂(x)))|0 = g(|ι(f̂(x))|0) = g(f(|ι(x)|0)) = |ι(x)|0. ◀

Finally, we can show the completeness theorem.

▶ Theorem 22 (Completeness). Suppose given two 1-polygraphs P and Q such that ∥P∥0 = ∥Q∥0.
Then, assuming the axiom of choice, P and Q are merely Tietze-equivalent.

Proof. Starting from the polygraph P , we are going to construct step-by-step a polygraph P 3

that contains both P and Q and is Tietze-equivalent to P (and thus to Q by symmetry).
1. We add the 0-generators of Q. We write P 1 := P↑0ĝ for the polygraph obtained from P

by performing a transformation (T0) with ĝ : UQ → UP . Its type of 0-generators is
UP ⊔ UQ and the 1-generators are those of P together with one 1-generator ĝ(x) → x

for every x : UQ.
2. We add the relations from P to Q. Given a 0-generator x : UP , we claim that there exists

a 1-cell f̂(x) ∗→ x in P 1. By previous step, we have a cell

a : ĝ(f̂(x)) → f̂(x)

Moreover, by Lemma 21, we have |ι(ĝ(f̂(x)))|0 = |ι(x)|0, so the type ∥ĝ(f̂(x)) ∗→ x∥−1 is
inhabited by Lemma 7, and we can suppose that we actually have a 1-cell

u : ĝ(f̂(x)) ∗→ x

because we are eliminating to a proposition. Hence we can define a 1-cell wx := a ::′ u : f̂(x) ∗→ x

for every x : UP . Finally, we consider the function

∂ : UP 1 → Σ((x, y) : S0 P
1).(x ∗→ y)

x 7→ ((f̂(x), x), wx)

and define P 2 := P 1↑1∂ by a transformation (T1’), see Proposition 11.
3. We add the 1-generators of Q. Given a 1-generator b : x → y in Q, we have 1-gene-

rators a : g(x) → x and c : g(y) → y in P 2 (by the first step), and we have the 1-cell
g(a) : g(x) ∗→ g(y) by Lemma 20. We therefore have a 1-cell

a · g(b) · c : x ∗→ y

in Q. This induces a function

∂ : Σ((x, y) : S0 Q).Q(x, y) → Σ((x, y) : S0 P
2).(x ∗→ y)

which, to (x, y) : S0 Q and a : Q(x, y) associates the pair consisting of (x, y) (or rather its
image under the canonical inclusion) and the 1-cell constructed above. Finally, we define
P 3 := P 2↑1∂ by a transformation (T1’).



S. Mimram and É. Oleon 11

In the 1-polygraph P 3 constructed above, the 0-generators are UP 3 = UP ⊔ UQ and the
1-generators are (up to canonical inclusion): those of P , those of Q (by the third step),
ĝ(x) → x for x : UQ (by the first step), f̂(x) → x for x : UP (by the second step). By
exchanging the roles of P and Q, we see that Q is also Tietze-equivalent to the above 1-poly-
graph (up to standard isomorphisms such as commutation of coproducts). By transitivity,
we conclude that P and Q are Tietze-equivalent. ◀

3 Functors between 1-polygraphs

There is a natural notion of morphism between 1-polygraphs. In practice, it is however too
restrictive because it requires sending 1-generators to 1-generators, whereas we often need
to send 1-generators to 1-cells. In order to allow for this, we then introduce the notion of
functor between 1-polygraphs.

3.1 Morphisms
A morphism F : P → Q between two 1-polygraphs P and Q consists of a function
UF : UP → UQ between 0-generators together with a function

F : Π((x, y) : S0 P ).P (x, y) → Q(UFx,UFy)

sending 1-generators to 1-generators. In other words, this corresponds to a morphism of
graphs. Those can be composed in the expected way, and the resulting operation is associative
and unital.

We write P ≃ Q for the type of isomorphisms between 1-polygraphs. The structure
identity principle [19, Section 9.8] ensures that identities correspond to those in the sense that
the canonical map (P = Q) → (P ≃ Q) from identities to isomorphisms is an equivalence.

3.2 Functors
A functor F : P → Q between two 1-polygraphs P andQ consists of a function UF : UP → UQ

together with a function

F : Π((x, y) : S0 P ).P (x, y) → Q∗(UFx,UFy)

In the following, for simplicity, we often simply write F instead of UF , and leave implicit
the first argument of the above function F . Note that any morphism can canonically be seen
as functor.

Given a functor F : P → Q, we write

F ∗ : Π((x, y) : S0 P ).P ∗(x, y) → Q∗(UFx,UFy)

for the canonical extension of F to 1-cells (as opposed to 1-generators), defined by

F ∗(id) := id F ∗(a :: u) := Fa :: F ∗u F ∗(a ::′ u) := (Fa)op :: F ∗u

Given two functors F : P → Q and G : Q → R, their composite is the functor F ·G : P → Q

defined by U(F ·G) := UG ◦ UF and (F ·G)(a) := G∗(Fa). The composition thus defined
is associative and unital. It could alternatively be defined as a Kleisli construction based on
the free category monad on 1-polygraphs (details left to the reader).
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A functorial equivalence between two 1-polygraphs P and Q consists of two functors
F : P → Q and G : Q → P together with a family of cells

ηx : x ∗→ G(Fx) εy : F (Gy) ∗→ y

for every 0-generators x : UP and y : UQ.
Given a polygraph P , the identity functorial equivalence between P and itself is defined

by F = G = IdP and ηx = εx = idx. Given two equivalences (F,G, η, ε) : P → Q and
(F ′, G′, η′, ε′) : Q → R, we define their composite as the functorial equivalence between P

and R consisting of the functors F · F ′ and G′ ·G together with the families of morphisms

x G′F ′x G′GFF ′x
ηx G′∗ηF ′x FF ′G′Gy FGy y

F∗εGy εy

This composition can be shown to be associative and unital. Moreover, any equivalence
(F,G, η, ε) : P → Q admits the equivalence (G,F, εop, ηop) : Q → P as inverse (the opposite
is taken pointwise).

3.3 Functions induced by functors
Any functor F : P → Q induces a function F : P → Q between the corresponding geometric
realizations defined, using the elimination principle of Proposition 3, by

Fx := ι(Fx) Fa := γ∼(Fa)

for x : UP and a : x → y a 1-generator in P , where the map γ∼ is defined in Lemma 4. The
following is shown in [13, equivalence-pres].

▶ Proposition 23. By the above construction, any functorial equivalence (F,G, η, ε) : P → Q

induces an equivalence ∥P∥0 ≃ ∥Q∥0.

Proof. Consider the functions ∥F∥0 : ∥P∥0 → ∥Q∥0 and ∥G∥0 : ∥Q∥0 → ∥P∥0. Given
x : ∥P∥0, our aim is to show that ∥G∥0 ◦ ∥F∥0(x) = x. Since this type is a proposition,
and thus a set, it is enough to construct a function ϕ : Π(x : P ).(∥G∥0(|F (x)|0) = x) which
can be done by induction on x. Namely, for x : UP , we have ϕ(ιx) := |γ(ηop

x )|0 and, for
a : P (x, y), ϕ(ιa) is canonically given by the fact that ∥P∥0 is a set. We can similarly show
that ∥F∥0 ◦ ∥G∥0(y) = y for y : ∥Q∥0, thus allowing us to conclude. ◀

▶ Remark 24. It is not true that a functorial equivalence between P and Q induces an
equivalence P ≃ Q between the corresponding geometric realizations (as opposed to presented
sets). For instance, consider the polygraph P with only one 0-cell and the polygraph Q with
one 0-cell and one 1-cell, whose geometric realizations are respectively the point and the
circle: they are functorially equivalent, but their realizations are not.

The above proposition allows us to recover in a “constructive” way the correctness
property of Tietze transformations (Theorem 13). Namely, one can show [13, preservation]:

▶ Proposition 25. Any Tietze equivalence between two 1-polygraphs P and Q induces a
functorial equivalence between them.

Proof. Since functorial equivalences are closed under identities, composition and inverses, it
is enough to show that any elementary Tietze transformation induces a functorial equivalence
between the corresponding polygraphs.
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(T0) Given a type X and a function ∂ : X → UP , we consider the functor F : P → P↑0∂

which is the canonical inclusion and the functor G : P↑0∂ → P defined by

G(x) :=
{
x if x : UP ,
∂(x) if x : X,

G(a : x → y) :=
{
a :: id if x, y : UP ,
idx if x : UP and y : X.

We take ηx := idx for x : UP , and εy : F (Gy) ∗→ y is defined as idy for y : UP and as
the 1-cell corresponding to the canonical 1-generator ∂y → y given by definition of (T0)
for y : X.

(T1) Given a function ∂ : S0 P → U and functions ∂x,y : ∂(x, y) → (x ∗→ y), we consider the
functor F : P → P↑1∂ which is the canonical inclusion and the functor G, which is the
identity on 0-cells and

G(a : x → y) :=
{
a if a : P (x, y)
∂x,y(a) if a : ∂(x, y)

together with ηx and εy being both identities for x : UP and y : U(P↑1∂). ◀

To sum up, we have introduced three notions of equivalence for 1-polygraphs: Tietze
equivalence, functorial equivalence, and equivalence of presented set. The above theorems
show that these three notions coincide (Theorems 13 and 22 and Propositions 23 and 25).

4 Transfer of coherence

In a polygraph, cells can be understood as describing the “coherence” of the data, i.e. all the
relations it should satisfy. In particular, if we see a 1-polygraph as presenting a proposition
(the proposition presented by the underlying 0-polygraph, in the sense of Section 1), the
1-generators should inform us that we can identify any two 0-generators, since the only
relevant data is the presence of such a 0-generator. More formally, the presented set should
coincide with the presented proposition: ∥P∥0 = ∥UP∥−1. We formalize this here and
provide conditions for ensuring that we are in such a coherent situation, as well as tools to
transfer coherence from a 1-polygraph to another.

4.1 Coherent presentations
A coherence structure on a 1-polygraph is the data of a 1-cell x ∗→ y for every 0-sphere
x, y : S0 P . We say that a 1-polygraph is coherent when it admits a coherence structure. Note
that any 0-polygraph P can be extend into a coherent 1-polygraph by adding one 1-generator
between every two 0-generators. We are however interested here in constructing coherent
extensions of P which are “small” (or, at least, combinatorially manageable). The techniques
developed here should moreover extend to the case of higher-dimensional polygraphs, where
the situation is much more involved [1].

4.2 The transfer theorem
Suppose given a 1-polygraph P , a 0-polygraph Q′ and a Tietze equivalence of 0-polygraphs
between UP and Q′ (see Proposition 12). We show that when P is coherent, we can transfer
its coherence structure to an extension of Q′, which is moreover finite when the one of P is.
Namely, we can construct a transferred 1-polygraph Q with UQ

def= Q′ by induction on the
Tietze equivalence as follows [13, extension]:
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(E+) if Q′ was obtained from UP by an elementary Tietze transformation, i.e. there is a
type X and a function ∂ : X → UP such that Q′ = UP ⊔X, we define

Q(x, y) :=


P (x, y) if x, y : UP

x = ∂(y) if x : UP and y : X
⊥ otherwise

so that there is a Tietze transformation of 1-polygraphs (T0) between P andQ, i.e.Q := P↑0∂,
(E−) if UP was obtained from Q′ by an elementary Tietze transformation, i.e. there is a

type X and a function ∂ : X → Q′ such that UP = Q′ ⊔X, we define

Q(x, y) := Σ(x′, y′ : UP ⊔X).P (x′, y′) × (x = ∂′(x′)) × (y = ∂′(y′))

where ∂′ : Q′ ⊔X → Q′ is defined by

∂′(x) :=
{
x if x : Q′,
∂(x) if x : X,

(E∗) the cases of reflexivity and transitivity are handled by identity and composition.

▶ Example 26. Consider the following discrete polygraphs P and Q′:

P =
y′

x y

Q′ =
x y

We have that UP is obtained from Q′ by an elementary Tietze transformation of 0-polygraphs
with X = 1 and ∂ : 1 → Q′ defined by ∂y′ = y, where we write y′ for the canonical element
of 1. The resulting 1-polygraph Q (obtained by transfer) is thus Q = x y . The
polygraphs P and Q are Tietze equivalent: we have the Tietze transformations

P =
y′

x y

(T1)
⇝

y′

x y

(T1)⇝ y′

x y

(T0)⇝

x y

(T1)
⇝

x y

= Q

We will show in Theorem 28 that there is always a Tietze equivalence when P is coherent,
but the equivalence produced by the proof of the theorem will rather be the following one:

P =
y′

x y

(T1)
⇝

y′

x y

(T1)⇝ y′

x y

(T0)⇝

x y

= Q

▶ Remark 27. Consider the variant of the previous example where P is the same 1-polygraph
with the 1-generator y → y′ removed and Q′ is left unchanged. In this case, the resulting
polygraph Q is the same as in previous example. However, the two polygraphs are not Tietze
equivalent. Namely, we have ∥P∥0 = 2 and ∥Q∥0 = 1, and a Tietze equivalence would thus
be in contradiction with Theorem 13. Note that the polygraph P is not coherent.

We now show the following transfer theorem which states that a Tietze equivalence
between 0-polygraphs can be extended as a Tietze equivalence between 1-polygraphs when
one of them is coherent [13, transfer]. Remark 27 illustrates why the coherence hypothesis
is required.
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▶ Theorem 28 (Transfer theorem). When P is coherent, the above polygraphs P and Q are
Tietze equivalent.

Proof. As above for the construction of Q, we reason by induction on the Tietze equivalence
between UP and Q′. In the case (E+), Q is obtained from P by a Tietze transformation (T0)
and we conclude immediately.

The interesting case to handle is (E−), where UP = Q′ ⊔ X for some type X and
∂ : X → Q′. In this case, we are going to construct a series of 1-polygraphs, which are
elementarily Tietze equivalent, thus exhibiting a Tietze equivalence between P and Q, as
illustrated in Example 26. It is natural to consider the 1-polygraph R obtained from Q by
performing the “same Tietze transformation”, but with 1-polygraphs instead of 0-polygraphs,
i.e. to consider R := Q↑0∂. Clearly, P and R have the same 0-generators, but not the same
1-generators, and we are going to show that they are both equivalent to a third 1-polygraph S,
still with the same 0-cells, and with the union of the 1-generators of P and those of Q as
1-cells. Formally, we thus define the polygraph S, as well as a variant S̃, by

US = U S̃ = UP S(x, y) = P (x, y) ⊔Q(x, y) S̃(x, y) = Q(x, y) ⊔ P (x, y)

We claim that we have a series of Tietze transformations

P
(T1)
⇝ S ≃ S̃

(T1)⇝ R
(T0)⇝ Q

as illustrated in Example 26. Those can be constructed as follows.
– P

(T1)
⇝ S. The coherence of P provides us, for every 0-sphere (x, y), with a cell x ∗→ y.

This allows us to define a family of functions, indexed by 0-spheres (x, y) : S0 P ,
∂x,y : S(x, y) → (x ∗→ y), so that we have S def= P↑1∂.

– S ≃ S̃. The polygraphs S and S̃ are clearly isomorphic, in the sense of Section 3.1.
– R

(T1)
⇝ S̃. We define a family of functions indexed by 0-spheres (x, y) : S0 R, and

∂̃x,y : P (x, y) → (x ∗→ y) by

∂̃x,y(a) :=
®
a :: id if x : Q′ and y : Q′ τx ::′ a :: id if x : X and y : Q′

a :: τy :: id if x : Q′ and y : X τx ::′ a :: τy :: id if x : X and y : X

where, for x : X, the 1-generator τx : ∂x → x is canonically given by the definition of R
from Q by a Tietze transformation (T0). We then have S̃ def= R↑1∂̃.

– R
(T0)
⇝ Q. The transformation (T0) from Q to R is given by the very definition of R. ◀

5 Conclusion and future work

We have introduced the notion of 1-polygraph in homotopy type theory, as well as the
associated Tietze transformations, for which we have shown correctness, completeness and
coherence transfer properties. We believe that this work can be generalized in higher
dimensions. Although the situation is more involved, for every (n−1)-sphere in an (n+1)-
polygraph, there is an induced 1-polygraph with the n-cells in the sphere as 0-generators and
(n+1)-cells (or, rather, the “(n+1)-atoms”) as 1-generators, which should allow us reusing
the properties shown above (this approach is for instance used in [14], to study coherent
cartesian polygraphs). In particular, the case of 2-polygraphs would allow us to expand on
the setting developed by Kraus an von Raumer in [10] (by defining Tietze transformations,
etc.) and the case of 3-polygraphs would be particularly interesting since it would allow us
studying coherent presentations of groups, and thus provide us with new tools to perform
computations on those (their low-dimensional cohomology for instance). Some work in this
direction is already present in our formal developments [13].
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