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A program is a text in a programming language
which will evolve during time.

We have to give a meaning to this language!
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Denotational semantics

A model interprets
• a type A as a computation space JAK
• a program f : A⇒ B as a transformation Jf K : JAK→ JBK

• in a way such that the interpretation of programs is
invariant under reduction

denotational semantics = program invariants
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Interactive semantics

Here, a program will be modeled by its
interactive behavior

i.e. by the way it reacts to information provided by its
environment.

(fun x → not x)false  true
(fun x → not x)true  false

⇒ Game Semantics!
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How can we extend game semantics to
concurrent languages?
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Game semantics

An interactive trace semantics:
• types are interpreted by games

• a poset (M,≤) of moves
• a polarization function λ : M → {O,P}

• a play is a sequence m1 ·m2 · · ·mk of moves which is
• respecting order:

all the moves below a given move mi occur before mi
• alternating: m1 ·m2 ·m3 ·m4 · · ·

• programs are interpreted by strategies

strategy = set of plays closed under prefix
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Booleans

B ⇒

B

q

~~~~~~~

???????

T F

T F

7 / 45



Booleans

B ⇒ B

q

fffffffffffffffffffffffffffffff

~~~~~~~

???????

q

��������

??????? T F

T F

7 / 45



The negation
The strategy interpreting negation not : B⇒ B is

JnotK = { q · q · T · F , q · q · F · T , . . . }

B ⇒ B

q

q

T

F
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A category of games and strategies

We can thus build a category whose
• objects A are games
• morphisms σ : A→ B are strategies
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A category of games and strategies
For example, the composite JnotK ◦ JnotK : B→ B is

B
JnotK // B B

JnotK // B

q

q q

q

F

T T

F

JnotK ◦ JnotK = {q · q · T · T , q · q · F · F , · · · } = JidBK

10 / 45



A category of games and strategies
For example, the composite JnotK ◦ JnotK : B→ B is

B
JnotK◦JnotK //

B B

B

q

q q

q

F

T T

F

JnotK ◦ JnotK = {q · q · T · T , q · q · F · F , · · · } = JidBK

10 / 45



A category of games and strategies
For example, the composite JnotK ◦ JnotK : B→ B is

B
JnotK◦JnotK //

B B

B

q

q q

q

T

T T

T

JnotK ◦ JnotK = {q · q · T · T , q · q · F · F , · · · } = JidBK

10 / 45



A category of games and strategies
For example, the composite JnotK ◦ JnotK : B→ B is

B
JnotK◦JnotK //

B B

B

q

q q

q

T

T T

T

JnotK ◦ JnotK = {q · q · T · T , q · q · F · F , · · · } = JidBK

10 / 45



Definable strategies

We have to characterize definable strategies
(= strategies which are the interpretation of a program)

strategies

definable strategies

programs
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Definable strategies

We have to characterize definable strategies
(= strategies which are the interpretation of a program)

Two series of work laid the foundations of game semantics:

• fully abstract models of PCF [HON,AJM]
definable strategies: bracketing and innocence conditions
extended later on: references, control, non-determinism, . . .

• fully complete models of MLL [AJ,HO]
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Purposes of game semantics

• Better understanding the core features of
programming languages and logics

• Compositional model checking

• Synthesis of electronic circuits

q q

not

T T

F F
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How do we extend those results
to concurrent programming languages?
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Three flavors of conjunction

left conjunction

B × B ⇒ B

q

qL

TL

qR

FR

F
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Three flavors of conjunction

right conjunction

B × B ⇒ B

q

qR

FR

qL

TL

F
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Three flavors of conjunction

parallel conjunction
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Towards asynchronous game semantics

In order to represent such strategies we have to

• take in account non-alternating plays

• represent concurrency by interleavings modulo an equivalence
relation, in the spirit of Mazurkiewicz traces:

asynchronous game semantics

• more generally try to bring closer game semantics
and concurrency theory
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The multiplicative-additive linear logic

We consider here MALL formulas (without units):

` Γ,A,B
` Γ,A ` B

(`)
` Γ1,A ` Γ2,B
` Γ1, Γ2,A⊗ B

(⊗)

` Γ,A ` Γ,B
` Γ,A & B

(&)
` Γ,A
` Γ,A⊕ B

(⊕L)
` Γ,B
` Γ,A⊕ B

(⊕R)

• multiplicatives : concurrency / additives : non-determinism
• negative : Opponent / positive : Player
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Unifying semantics of linear logic

Sequential games
Hyland,Ong 1994

Abramsky,Jagadeesan,
Malacaria 1994

Asynchronous games
Melliès 200477

wwnnnnnnnnnnnn

��

OO

OO

��

gg

''PPPPPPPPPPPP

Coherence spaces
Relational model

Girard 1987

Concurrent games
Abramsky,Melliès 1999

Event structures
Curien,Faggian 2005
Varraca,Yoshida 2006
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Proofs explore formulas

...
` A,B,C ,D
` A,B,C ` D

(`)

` A ` B,C ` D
(`)

`

(A ` B) ` (C ` D)

(`)

A B C D

`

999

`
���

`

999 ���

(∗ ` ∗) ` (∗ ` ∗)

∗ ` (∗ ` ∗)

55

∼ (∗ ` ∗) ` ∗

ii

∗ ` ∗

jj 44

∗
OO

18 / 45



Proofs explore formulas

...
` A,B,C ,D
` A,B,C ` D

(`)

` A ` B,C ` D
(`)

`

(A ` B) ` (C ` D)

(`)

A B C D

`

999

`
���

`

999 ���

(∗ ` ∗) ` (∗ ` ∗)

∗ ` (∗ ` ∗)

55

∼ (∗ ` ∗) ` ∗

ii

∗ ` ∗

jj 44

∗
OO

18 / 45



Proofs explore formulas

...
` A,B,C ,D
` A,B,C ` D

(`)

` A ` B,C ` D
(`)

`

(A ` B) ` (C ` D)

(`)

A B C D

`

999

`
���

`

999 ���

(∗ ` ∗) ` (∗ ` ∗)

∗ ` (∗ ` ∗)

55

∼ (∗ ` ∗) ` ∗

ii

∗ ` ∗

jj 44

∗
OO

18 / 45



Proofs explore formulas

...
` A,B,C ,D
` A,B,C ` D

(`)

` A ` B,C ` D
(`)

` (A ` B) ` (C ` D)
(`)

A B C D

`

999

`
���

`

999 ���

(∗ ` ∗) ` (∗ ` ∗)

∗ ` (∗ ` ∗)

55

∼ (∗ ` ∗) ` ∗

ii

∗ ` ∗

jj 44

∗
OO

18 / 45



Proofs explore formulas

...
` A,B,C ,D
` A,B,C ` D

(`)

` A ` B,C ` D
(`)

` (A ` B) ` (C ` D)
(`)

A B C D

`

999

`
���

`

999 ���

(∗ ` ∗) ` (∗ ` ∗)

∗ ` (∗ ` ∗)

55

∼ (∗ ` ∗) ` ∗

ii

∗ ` ∗

jj 44

∗
OO

18 / 45



Proofs explore formulas

...
` A,B,C ,D
` A,B,C ` D

(`)

` A ` B,C ` D
(`)

` (A ` B) ` (C ` D)
(`)

A B C D

`

999

`
���

`

999 ���

(∗ ` ∗) ` (∗ ` ∗)

∗ ` (∗ ` ∗)

55

∼ (∗ ` ∗) ` ∗

ii

∗ ` ∗

jjTTTTTTTT
44

∗
OO

18 / 45



Proofs explore formulas

...
` A,B,C ,D
` A,B,C ` D

(`)

` A ` B,C ` D
(`)

` (A ` B) ` (C ` D)
(`)

A B C D

`

999

`
���

`

999 ���

(∗ ` ∗) ` (∗ ` ∗)

∗ ` (∗ ` ∗)

55kkkkkk
∼ (∗ ` ∗) ` ∗

ii

∗ ` ∗

jjTTTTTTTT
44

∗
OO

18 / 45



Proofs explore formulas

play = exploration of the formula
proof = exploration strategy

19 / 45



1 Associating an asynchronous game semantics to linear logic
2 Characterizing definable strategies in this semantics
3 Recovering preexisting models
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From plays to Mazurkiewicz traces

partial order vs transition graph
(event structure)

`

~~~~~~~

@@@@@@@

` `

vs

∗
��

∗ ` ∗
tt **

∗ ` (∗ ` ∗)
))

∼ (∗ ` ∗) ` ∗
uu

(∗ ` ∗) ` (∗ ` ∗)

position = downward-closed set of moves
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From plays to Mazurkiewicz traces

partial order vs transition graph

a

======== b

��������

>>>>>>>

c d

vs

∅
a

xxppppppppppppp
b

%%KKKKKKKKKKK

{a}

b &&MMMMMMMMMMM ∼ {b}

a
yytttttttttt

d
��

{a, b}
c

xxqqqqqqqqqq
d
��

∼ {b, d}

a
yyttttttttt

{a, b, c}

d
��

∼ {a, b, d}
c

xxqqqqqqqqqq

{a, b, c, d}

position = downward-closed set of moves 21 / 45



Asynchronous graphs: homotopy

plays

m

��������� n

��???????

n
��??????? ∼

m
��������� vs

m

��������� n

��???????

n
��???????

m
���������

processes m‖n m · n + n ·m

linear logic multiplicatives additives

geometry possible deformation hole
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Asynchronous games

Definition
An asynchronous game is an asynchronous graph together with
an initial position.

Definition
A play is a path in a game starting from the initial position.

Definition
A strategy σ : A is a prefix closed set of plays on the
asynchronous graph A.
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Asynchronous game semantics:
conjunction

The game B× B⇒ B contains eight subgraphs:
∗ × ∗ ⇒ ∗

q
��

∗ × ∗ ⇒ q
qL

ww

qR

''
q × ∗ ⇒ q

TL

ww
qR

''

∼ ∗ × q ⇒ q
qL

ww

FR

''
T × ∗ ⇒ q

qR ''

∼ q × q ⇒ q
TL

ww
FR

''

∼ ∗ × F ⇒ q

qLxx
T × q ⇒ q

FR ''

∼ q × F ⇒ q

TLww
T × F ⇒ q

F
��

T × F ⇒ F
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Asynchronous game semantics:
conjunction

Left implementation of conjunction:
∗ × ∗ ⇒ ∗

q
��
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qL

wwooooooooo qR

''
q × ∗ ⇒ q

TL

wwppppppppp
qR

''

∼ ∗ × q ⇒ q
qL

ww

FR

''
T × ∗ ⇒ q

qR ''NNNNNNNNN
∼ q × q ⇒ q

TL
ww

FR
''

∼ ∗ × F ⇒ q

qLxx
T × q ⇒ q

FR ''OOOOOOOOO
∼ q × F ⇒ q

TLww
T × F ⇒ q

F
��

T × F ⇒ F
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Asynchronous game semantics:
conjunction

Right implementation of conjunction:
∗ × ∗ ⇒ ∗

q
��

∗ × ∗ ⇒ q
qL

ww

qR

''OOOOOOOOO

q × ∗ ⇒ q
TL

ww
qR

''
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qL

ww

FR

''NNNNNNNNN

T × ∗ ⇒ q

qR ''

∼ q × q ⇒ q
TL

ww
FR

''

∼ ∗ × F ⇒ q

qLxxppppppppp

T × q ⇒ q

FR ''

∼ q × F ⇒ q

TLwwppppppppp

T × F ⇒ q
F
��

T × F ⇒ F
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Asynchronous game semantics:
conjunction

Parallel implementation of conjunction:
∗ × ∗ ⇒ ∗

q
��

∗ × ∗ ⇒ q
qL

wwooooooooo qR

''OOOOOOOOO

q × ∗ ⇒ q
TL

wwppppppppp
qR

OOOO

''OOOO

∼ ∗ × q ⇒ q
qL

oooo

wwoooo
FR

''NNNNNNNNN

T × ∗ ⇒ q

qR ''NNNNNNNNN
∼ q × q ⇒ q

TL
oooo

wwoooo FR
OOOO

''OOOO

∼ ∗ × F ⇒ q

qLxxppppppppp

T × q ⇒ q

FR ''OOOOOOOOO
∼ q × F ⇒ q

TLwwppppppppp

T × F ⇒ q
F
��

T × F ⇒ F
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Interpreting formulas and proofs
By an easy inductive definition we associate

• an asynchronous game to every formula

• a strategy to every proof

...
` A,B,C ,D
` A,B,C ` D

(`)

` A ` B,C ` D
(`)

`

(A ` B) ` (C ` D)

(`)

(∗ ` ∗) ` (∗ ` ∗)

∗ ` (∗ ` ∗)

` 66

∼ (∗ ` ∗) ` ∗

`hh

∗ ` ∗
`
ii

`
55

∗
`
OO
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In order to characterize definable strategies,
we will impose conditions on our strategies.

We will begin by some technical conditions which are necessary
to regulate the strategies...
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From sequentiality to causality
A game induces an asynchronous graph:

a

'''''''''''''''' b

����������������

''''''''''''''''

c d

=⇒

∅
a

xxppppppppppppp
b

%%KKKKKKKKKKK

{a}

b &&MMMMMMMMMMM ∼ {b}

a
yytttttttttt

d
��

{a, b}
c

xxqqqqqqqqqq
d
��

∼ {b, d}

a
yyttttttttt

{a, b, c}

d
��

∼ {a, b, d}
c

xxqqqqqqqqqq

{a, b, c, d}

27 / 45



From sequentiality to causality

Conversely, one needs the Cube Property
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The Cube Property

x
m

~~||||||||

��

o //

∼

x2

n

��

x1

n

��

∼

x3

~~}}}}}}}}
//

∼

y1

m
��~~~~~~~~

y2 o
// y

⇐⇒

x
m

~~~~~~~~~~
∼

o // x2

~~}}}}}}}}

n

��

x1

n

��

∼

// y3

∼

��

y1

m
~~}}}}}}}}

y2 o
// y

Theorem
Homotopy classes of paths are generated by a partial order on
moves.
Proof: essentially Birkhoff duality theorem for finite posets.
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Asynchronous games

Definition
An asynchronous game is a pointed asynchronous graph
satisfying the Cube Property.

Definition
A strategy σ : A is a prefix closed set of plays on the
asynchronous graph A.
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Positional strategies

Definition
A strategy σ is positional when its plays form
a subgraph of the game:

σ 3

∗
s
��
x

u
��

y

and

∗
s
��
∼ t
��

x and

∗
t
��

x ∈ σ implies

∗
t
��

x
u
��

y

∈ σ
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Ingenuous strategies

We consider strategies which
1 are positional,

2 satisfy the Cube Property,
3 satisfy
4 are deterministic:

x
σ3m

~~}}}}}}}
n∈σ

  AAAAAAA

y1 y2 implies

x
σ3m

~~||||||||
n∈σ

  BBBBBBBB

y1

σ3n   BBBBBBBB ∼ y2

m∈σ~~||||||||

z

where m is a Proponent move.
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Ingenuous strategies

We consider strategies which
1 are positional,
2 satisfy the Cube Property,
3 satisfy . . .
4 are deterministic:
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A model of MLL

Property
Asynchronous games and strategies form a ∗-autonomous category
(which is compact closed).
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This category still has “too many” strategies!

A⊗ B = A ` B
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Halting positions

In the spirit of the relational model, a strategy σ should be
characterized by its set σ◦ of halting positions.

Definition
A halting position of a strategy σ is a position x such that there
is no Player move m : x −→ y that σ can play.
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The game B⊗ B contains the subgraph:

∗ ⊗ ∗
qL

yy

qR

%%
q ⊗ ∗

TL

zz
qR

%%

∼ ∗ ⊗ q
qL

zz

FR

$$
T ⊗ ∗

qR $$

∼ q ⊗ q

TL
zz

FR
$$

∼ ∗ ⊗ F

qLzz
T ⊗ q

FR $$

∼ q ⊗ F

TLzz
T ⊗ F
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The pair true⊗ false:

∗ ⊗ ∗
qL

zzttttttttt qR

$$JJJJJJJJJ

q ⊗ ∗
TL

zzuuuuuuuuu
qR

JJJJ

$$JJJJ

∼ ∗ ⊗ q

qL
uuuuu

zzuuuuu
FR

$$IIIIIIIII

T ⊗ ∗

qR
$$IIIIIIIII
∼ q ⊗ q

TL
uuuu

zzuuuu FR
IIII

$$IIII

∼ ∗ ⊗ F

qL
zzvvvvvvvvv

T ⊗ q

FR $$IIIIIIIII
∼ q ⊗ F

TLzzuuuuuuuuu

T ⊗ F
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The left biased pair true 4 false:
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zzuuuuuuuuu
qR

$$
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qL

zz

FR

##
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qR
$$IIIIIIIII
∼ q ⊗ q

TL
zz

FR
$$
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qL
{{
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TLzz
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Courteous strategies
Definition
An ingenuous strategy σ is courteous when it satisfies

x
σ3m

~~||||||||
n

  
y1

σ3n   BBBBBBBB ∼ y2

m
~~

z

implies

x
σ3m

~~||||||||
n∈σ

  BBBBBBBB

y1

σ3n   BBBBBBBB ∼ y2

m∈σ~~||||||||

z

where m is a Player move.

Theorem
A courteous ingenuous strategy σ is characterized by its set σ◦ of
halting positions.
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Concurrent strategies
The halting positions of such a strategy σ : A are precisely the
fixpoints of a closure operator on the positions of A.

• We thus recover the model of concurrent strategies.
• A semantical counterpart of the focusing property: strategies
can play all their Player moves in one “cluster” of moves.

∗ ⊗ ∗
qL

yyssssss qR

%%KKKKKK

q ⊗ ∗
TL
yyssssss

qR
KKK

%%KKK

∼ ∗ ⊗ q
qL

sss

yysss
FR
%%JJJJJJ

T ⊗ ∗

qR %%JJJJJJ
∼ q ⊗ q

TL
sss

yysss FR
JJJ

%%JJJ

∼ ∗ ⊗ F

qLzztttttt

T ⊗ q

FR %%KKKKKK
∼ q ⊗ F

TLyytttttt

T ⊗ F
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Focusing
Some introduction rules can be permuted:

...
` A

...
` B,C ,D
` B,C ` D

(`)

` A⊗ B,C ` D
(⊗)

` (A⊗ B) ` (C ` D)
(`)

 

...
` A

...
` B,C ,D

` A⊗ B,C ,D
(⊗)

` A⊗ B,C ,D
(`)

` (A⊗ B) ` (C ` D)
(`)

Every proof can be reorganized into a focusing proof:
• negative phase: if the sequent contains a negative formula
then a negative formula should be decomposed,

• positive phase: otherwise a positive formula should be chosen
and decomposed repeatedly until a (necessarily unique)
formula is produced
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Towards a functorial correspondence

The operation (−)◦ from the category of games
and courteous ingenuous strategies

to the category of relations is not functorial!

Games

��

Proofs

99rrrrrrrrrr

%%LLLLLLLLLL

Rel

40 / 45



This mismatch is essentially due to deadlock situations
occurring during the interaction.
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The scheduling criterion

The right boolean composed with

the left conjunction:

B ⊗ B

q

q

F

q

T

F

B ⊗ B // B

q

q

T

q

F

F
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The scheduling criterion

Two kinds of tensors: ⊗ and `.

The role of the correctness criterion is to avoid deadlocks!
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Functoriality

Theorem
Strategies which are

• ingenuous
• courteous
• and satisfy the scheduling criterion

compose and satisfy

(σ; τ)◦ = σ◦; τ◦

Theorem
The model we thus get is fully complete for MLL+MIX.
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Conclusion

We have:
• a game semantics adapted to concurrency
• an unifying framework in which we recover

• innocent strategies
• game semantics
• concurrent games
• the relational model
• event structure semantics

In the future:
• extend this model (exponentials in particular)
• typing of concurrent processes (CCS without deadlocks)
• links with geometrical models for concurrency
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