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A program is a text in a programming language
which will evolve during time.

We have to give a meaning to this language!
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Denotational semantics

A model interprets
e atype A as a computation space [A]
e a program f : A= B as a transformation [[f] : [A] — [B]
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Denotational semantics

A denotational model interprets
e atype A as a computation space [A]
e a program f : A= B as a transformation [[f] : [A] — [B]

e in a way such that the interpretation of programs is
invariant under reduction

denotational semantics = program invariants

45



Interactive semantics

Here, a program will be modeled by its
interactive behavior
i.e. by the way it reacts to information provided by its
environment.

(fun x — not x)false ~» true
(fun x — not x)true ~» false

= Game Semantics!
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How can we extend game semantics to
concurrent languages?
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Game semantics

An interactive trace semantics:
e types are interpreted by games

e programs are interpreted by strategies
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Game semantics

An interactive trace semantics:
e types are interpreted by games

e a poset (M, <) of moves
e a polarization function A : M — {O, P}

e a play is a sequence my - my - - - my of moves which is

e respecting order:
all the moves below a given move m; occur before m;
e alternating: my-my-mz-mg---

e programs are interpreted by strategies

strategy = set of plays closed under prefix
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Booleans
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Booleans
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The negation
The strategy interpreting negation not : B = B is

[not] = {qg-q-T-F,q-q-F-T, ...}
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The negation
The strategy interpreting negation not : B = B is

[not] = {qg-q-T-F,q-q-F-T, ...}
B = B
q
q
F
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A category of games and strategies

We can thus build a category whose
e objects A are games

e morphisms ¢ : A — B are strategies
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A category of games and strategies
For example, the composite [not] o [not] : B — B is

B [not] B B [not] B
q
q q
q
F
T T
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A category of games and strategies
For example, the composite [not] o [not] : B — B is

[not]o[not]

B B
q
q
T+
T

[not]o[not] = {gq-q-T-T,q-q-F-F, ---} = [idg]
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Definable strategies

We have to characterize definable strategies
(= strategies which are the interpretation of a program)

strategies
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Definable strategies

We have to characterize definable strategies
(= strategies which are the interpretation of a program)

Two series of work laid the foundations of game semantics:

e fully abstract models of PCF [HON,AJM]
definable strategies: bracketing and innocence conditions

extended later on: references, control, non-determinism, ...

e fully complete models of MLL [AJ,HO]

11/45



Purposes of game semantics

e Better understanding the core features of
programming languages and logics
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Purposes of game semantics

e Better understanding the core features of
programming languages and logics
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Purposes of game semantics

e Better understanding the core features of
programming languages and logics

e Compositional model checking

e Synthesis of electronic circuits

~
\'
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How do we extend those results
to concurrent programming languages?
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Three flavors of conjunction

left conjunction Ty
qr

Fr
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Three flavors of conjunction

right conjunction Fr
qL

T
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Three flavors of conjunction

ar

parallel conjunction ac

Fr

TL
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Three flavors of conjunction

parallel conjunction

aL

N

B = B
q

ar

Fr
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Towards asynchronous game semantics

In order to represent such strategies we have to

e take in account non-alternating plays
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Towards asynchronous game semantics

In order to represent such strategies we have to

take in account non-alternating plays

represent concurrency by interleavings modulo an equivalence
relation, in the spirit of Mazurkiewicz traces:

asynchronous game semantics

more generally try to bring closer game semantics
and concurrency theory

15 /45



The multiplicative-additive linear logic

We consider here MALL formulas (without units):

-T,AB FTL, A FTo,B
e ) (®)
-FTA%B FM,2,A®B
FT,A  FT,B FT,A -T,B
&) (@) e (®R)

FT,A& B FT,A® B FT,A® B
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The multiplicative-additive linear logic

We consider here MALL formulas (without units):

FT,A,B FTL, A KT, B
———(%) (®)
FT,A%B FT1,T2,A® B

FTLA B FT,A -1, B
bl ) & ) )

FT,A& B (&) I—F,A@B(@L) I—F,A@B(@R)

e multiplicatives : concurrency / additives : non-determinism

e negative : Opponent / positive : Player

16
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Unifying semantics of linear logic

Sequential games
Hyland,Ong 1994
Abramsky,Jagadeesan,
Malacaria 1994

|

Asynchronous games
Mellies 2004

e

Coherence spaces

. Concurrent games
Relational model &

Abramsky,Mellies 1999

Event structures
Curien,Faggian 2005

Girard 1987 Varraca, Yoshida 2006
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Proofs explore formulas

(A% B) 73 (C73D)
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A B C D
N\ |/
: ) 3
FAB.C.D N_/
B D 7
A B,CRD -
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Proofs explore formulas

A B C D
N |/
: 3 3
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Proofs explore formulas

A B cC D
\ | |/
: s s
A B.C.D N/
— 5 (?) K
~ABCRD
—AwB.CnD ) .
I—(A7?B)75’(C7?D)() (% 78 %) 78 (% 78 %)
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Proofs explore formulas

A B C D

N |/
TABCD N4
I—A,B,C,D(Q) -
FA B, CRD 3)
I—A?B,C’S’D( -
I—(A7?B)75’(C7?D)() (78 %) 78 (% 78 %)

* 78 (% 78 %) ~ (78 %) 78 *
\*78’* i
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Proofs explore formulas

play
proof

exploration of the formula
exploration strategy
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@ Associating an asynchronous game semantics to linear logic
® Characterizing definable strategies in this semantics

© Recovering preexisting models
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From plays to Mazurkiewicz traces

partial order Vs transition graph
(event structure)
*
v
it Uk 7 x
VS PRt T
/ \ * 78 (% 78 x) ~ (78 %) 78 *
BN L
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From plays to Mazurkiewicz traces

partial order Vs transition graph

: ; \/i

\C / \d vs /{jib}/{b,d}

{a,b,c} ~ {a,b,d}

| T

{a,b,c,d}

position = downward-closed set of moves 21 /45



Asynchronous graphs: homotopy

N VN
N N

plays
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Asynchronous graphs: homotopy

N VN
N N

processes m||n m-n+n-m

plays
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Asynchronous graphs: homotopy

N VN
N N

processes m||n m-n+n-m

plays

linear logic multiplicatives additives
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plays

processes
linear logic

geometry

Asynchronous graphs: homotopy

N
N

multiplicatives

possible deformation

N
N

additives

hole
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Asynchronous games

Definition
An asynchronous game is an asynchronous graph together with
an initial position.

Definition
A play is a path in a game starting from the initial position.

Definition
A strategy o : A is a prefix closed set of plays on the
asynchronous graph A.
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Asynchronous game semantics:

conjunction
The game B x B = B contains eight subgraphs:

* X ok = ¥k
q:
Y
x X % = @
qr . T 9R
2 RN
gXx*=q ~ *X q=q
- qRr.. ac
£ N £ SN
T x*x=q ~ gxq=4g ~ *xx F=gq
RLEREN P Froa 2 AL
Txqg=gq ~ gx F=g
FRVV N 2z VTL
TxF=gq

F: 24/45



Asynchronous game semantics:

conjunction
Left implementation of conjunction:

* X ok = ¥k
|
* X k=
N
gXxX*=q ~ *X q=¢q
qar.. ac e
T x*x=q ~ gxq=4g ~ *xx F=gq
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Asynchronous game semantics:

conjunction
Right implementation of conjunction:

* X ok = %
|
* X k= (g
qr . &\
e
gXxX*x=gq ~ *X q=q
. 9dR... ac
£ BEN £
T x*x=q ~ gxq=4g ~ *xx F=gq
qrR A Tt Fr N %
Txg=gq ~ gx F=gq
s o
TxF=gq
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Asynchronous game semantics:

conjunction
Parallel implementation of conjunction:

* X ok = %
|
* X * = ¢
% qr
gXx*=q ~ * X = ¢
T o NI
\ /

T x*x=q ~ gxq=4g ~ *xx F=gq
\ T/ \,_. /
L R.
qr / \ qL
Txg=gq ~ gx F=gq
Fr N

F‘ 24 /45



Interpreting formulas and proofs
By an easy inductive definition we associate

e an asynchronous game to every formula

(*78*)7?(*75’*)

78_7 V78
79 (% 78 %) ~ (%78 %) 78 %
(A% B) 7% (C % D) e
* 78k
%
&
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Interpreting formulas and proofs
By an easy inductive definition we associate
e an asynchronous game to every formula

e a strategy to every proof

A B,C,D ) 73(*78*)78(* 75*)78
A B,CRD =
FA®B,C%®D (78)(73) % 78 (% 78 %) ~ 77(*75’*)75’*
- (A% B) 7% (C73D) T o

* 79 %
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In order to characterize definable strategies,
we will impose conditions on our strategies.
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In order to characterize definable strategies,
we will impose conditions on our strategies.

We will begin by some technical conditions which are necessary
to regulate the strategies...
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From sequentiality to causality
A game induces an asynchronous graph:

/ .
S A

— {a b} ~ {b7 d}

e A

c d {a,b,c} ~ {a,b,d}

T

{a,b,c,d}
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From sequentiality to causality

Conversely, one needs the Cube Property
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The Cube Property

X ——— 0 X—2 > x
> v /
X1 ~ n Xl —m—mmMmMMM=Y n
~ = ~
n B—>N n ~ n

Yo —————Y Y2 —————>y

Theorem
Homotopy classes of paths are generated by a partial order on
moves.

Proof: essentially Birkhoff duality theorem for finite posets.
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Asynchronous games

Definition
An asynchronous game is a pointed asynchronous graph
satisfying the Cube Property.

Definition
A strategy o : A is a prefix closed set of plays on the
asynchronous graph A.
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Positional strategies

Definition
A strategy o is positional when its plays form
a subgraph of the game:

* % % *
Sg s(w)t )t }\Zt
= I and &X and x €0 implies I €o
y y
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Ingenuous strategies

We consider strategies which

@ are positional,
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We consider strategies which
@ are positional,
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Ingenuous strategies
We consider strategies which
@ are positional,
® satisfy the Cube Property,

© satisfy
X X
09% %U Uay %@
Y1 ~ y2 implies Y1 ~ y2
z z
X X
m n aay &0’
P * - -
Y1 ~ 2 implies Y1 ~ y2
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Ingenuous strategies

We consider strategies which
@ are positional,
@ satisfy the Cube Property,
© satisfy ...
O are deterministic:

X X
0.37 \XEU agy %0‘
% V2 implies 1 ~ Y2
a%{ /mea
z

where m is a Proponent move.
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A model of MLL

Property

Asynchronous games and strategies form a x-autonomous category
(which is compact closed).
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This category still has “too many” strategies!

AB = A%®B

34 /45



Halting positions

In the spirit of the relational model, a strategy o should be
characterized by its set ¢° of halting positions.

Definition
A halting position of a strategy o is a position x such that there
is no Player move m : x — y that ¢ can play.
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The game B ® B contains the subgraph:

* Q@ %
qr " T 4R
~z 77 RN
q® * ~ x®q

T ar. n .
% EN £
Tex ~ 9949

~ *® F

qr . .. a
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The pair true ® false:

45
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The left biased pair true © false:

* @ *
/j// T 4R
N
q ~ 8
ar _,CIL
N e
T® % ~ Q®q ~
N N Fr
A EN A
T®q ~ q® F
X £ T
T®F

Fr

* @ F

“q

36
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Courteous strategies

Definition
An ingenuous strategy o is courteous when it satisfies

X
(ray n / \
"y
Y1 ~ 2 implies
"% o \ /
V4

where m is a Player move.

Theorem

A courteous ingenuous strategy o is characterized by its set o° of
halting positions.
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Concurrent strategies

The halting positions of such a strategy o : A are precisely the
fixpoints of a closure operator on the positions of A.

e We thus recover the model of concurrent strategies.

e A semantical counterpart of the focusing property: strategies
can play all their Player moves in one “cluster” of moves.

2N
*®q
\

}/ " /q/ NG
T®x 99q ~ [+® F|
PN
R ek s A

T®q ~ q® F

Fr

y

T®F
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Focusing
Some introduction rules can be permuted:

: -B,C,D
SR )
A  FB,C®D

FA®B,CBD ()

- (A® B) 7% (C% D) (%)
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Focusing
Some introduction rules can be permuted:

-B,C.D FA FB,C,D

- A I—B,C7?D( ) FA®B,C,D () .
FA®B,.CBD (®)?5> FA®B,C,D ()73
-(A@ B) 3 (C 3 D) @ - - (A® B) % (C 3 D) (3)

Every proof can be reorganized into a focusing proof:
e negative phase: if the sequent contains a negative formula
then a negative formula should be decomposed,

e positive phase: otherwise a positive formula should be chosen
and decomposed repeatedly until a (necessarily unique)
formula is produced
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Towards a functorial correspondence

The operation (—)° from the category of games
and courteous ingenuous strategies
to the category of relations is not functorial!
Games

Proofs

Rel
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This mismatch is essentially due to deadlock situations
occurring during the interaction.
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The scheduling criterion

the left conjunction:
B ® B——B

q
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The scheduling criterion

The right boolean composed with the left conjunction:

B © B B © B—>B
q
q q
F T
q q
T F
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The scheduling criterion

Two kinds of tensors: ® and 7.
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The scheduling criterion

Two kinds of tensors: ® and 7.

B © B

q

The role of the correctness criterion is to avoid deadlocks! |
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Functoriality

Theorem
Strategies which are

e ingenuous
e courteous
e and satisfy the scheduling criterion

compose and satisfy

(o:7)° = o%7
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Functoriality

Theorem
Strategies which are

e ingenuous
e courteous
e and satisfy the scheduling criterion

compose and satisfy

(o;7)° = 0o%7°

Theorem
The model we thus get is fully complete for MLL+MIX.
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Conclusion

We have:

e a game semantics adapted to concurrency
e an unifying framework in which we recover

innocent strategies

game semantics
concurrent games

the relational model
event structure semantics

In the future:
e extend this model (exponentials in particular)
e typing of concurrent processes (CCS without deadlocks)

e links with geometrical models for concurrency
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