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Abstract
We introduce CCCaTT1, a new type-theoretical definition of the simply-typed λ-calculus which
is unbiased: it has a uniform family of generators and relations. As such, it unifies previously
known formalisms such as combinatory logic or categorical combinators, and paves the way for
higher-dimensional generalizations. The definition is based on a characterization of a class of simple
types which are contractible in λ-calculus, in the sense that they contain a unique inhabitant modulo
extensional equality. Our definition then consists in a dependent type theory which formally makes
such types contractible, and we then observe that this is enough to derive the whole equational
theory of simply typed λ-calculus. This approach is close to recently introduced type theoretical
definitions of weak ω-categories. A proof assistant based on this work was implemented in order to
prove some of the propositions developed here.
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1 Introduction

The goal of this paper is to introduce CCCaTT1, a new type-theoretic definition for simply-
typed λ-calculus (stl) equipped with the extensional equality, where terms are identified up
to βη-equivalence. It has this strange aspect that, contrarily to all the equivalent definitions
we are aware of, it does not contain anything which vaguely resembles to a β-reduction or an
η-expansion. This particularity should be sufficient to arouse your curiosity, but let us still
provide some more motivations for this work.

Komori’s conjecture. It can be observed that “most” λ-terms are the only ones in their
most general type, up to extensional equality: in such a situation, we say that their most
general type is contractible. For instance, the identity I and the first projection K are the
only λ-terms of respective types X → X and X → Y → X. We could thus wonder whether
all λ-terms could be obtained in this way. Of course, there are easy counter-examples to
this: for instance, the Church numerals 2 ≡ λfx.f(f(x)) and 3 ≡ λfx.f(f(f(x))) both
have (X → X) → X → X as most general type. Observing that the previous type is not
minimal (in the sense that it can be obtained from Y → Y by the substitution Y := X → X),
we can be lead to conjecture, as did Komori long before us [27, Problem 1.5], that minimally
inhabited types are contractible: this would mean that minimal types generate, under type
substitution, all inhabited types. This conjecture was shown not to hold [39, 48], but was
quite influential because it was the motivation for a series of work providing necessary
conditions to show that a type has at most one inhabitant [2, 3, 4, 11, 21, 28, 39, 41, 48].
We explain here that the conjecture can be fixed by also considering term substitutions: the
inhabitants of contractible types generate, under both type and term substitution, all simply
typed λ-terms. Note that our conjecture is more “constructive” than the one of Komori, since
we shift from inhabitability to inhabitation proofs, i.e. λ-terms.

An unbiased λ-calculus. We provide here a definition of stl which is unbiased, in the
sense that it does not a priori make the choice of a particular set of generators. This point
of view is common in category theory where, for instance, one defines unbaised monoidal
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categories by taking n-ary tensors as generating operations, instead of only nullary and
binary ones [32]. First, remark that the usual definitions of stl axiomatize it from a small
number of operations: abstraction and application for λ-calculus [6], S, K (and sometimes I)
and application for combinatory logic [20], a few generic morphisms, composition and pairing
for categorical combinatory logic [13], and so on. Here, we provide a platform in which all of
them can be recovered as subsystems, but which is still equivalent to stl. This is done by
adopting a maximalist approach, and taking all the previous generators at once, and many
more. The way we proceed is by providing one type theoretic rule which generates all those
generators in a uniform way, as well as one other rule for generating the associated axioms.
More precisely, those two rules respectively introduce an inhabitant for any contractible
type and identify any two inhabitants of a contractible type: in other words, we simply
formally make contractible types contractible. To be even more precise, we do not currently
have a nice characterization of contractible types. Instead, we introduce a subclass of the
contractible types, that we call pasting types, for which there is a simple definition which
can efficiently be checked. Our definition actually formally make those contractible, which is
enough for our purposes.

Weak higher cartesian closed categories. Another motivation comes from earlier work of
ours, where we introduced CaTT [9, 17], a type-theoretic definition of weak ω-categories
in the Grothendieck-Maltsiniotis variant [34], based on the idea that some collections of
morphisms (the pasting schemes) should have a well-defined composition. We are looking
for extensions of this to characterize categories with structure, such as (locally) cartesian
closed categories: currently, the only known extension is the one of monoidal categories [8].
In order to start somewhere, we can take CaTT and “truncate” it to 1-categories: if we do so,
we obtain an unbiased definition of 1-categories, which we can try to extend to a definition
of cartesian closed 1-categories. This is precisely what the present paper does, and the style
of type theoretic definition of stl we provide here draws strong inspiration from this point
of view, although we cannot detail this here. Because our definition of stl is very generic,
we have hope to extend it to higher dimensions and define weak cartesian closed categories.

Homotopy type theory. Another strong source of inspiration is homotopy type theory [49]
(hott), from where originate the central properties for a type of being a proposition and
contractible. Also, a motivation comes from one of the most important difficulties when
providing semantics of hott in (∞, 1)-toposes, the coherence problem, is due to the fact
that many equalities (such as β-reduction) hold definitionally, whereas they only hold weakly
in the semantics. This has been overcome by Shulman in [42] by showing that any topos
can be suitably strictified, see also [14, 33]. Another approach could be to consider that
definitional equality should be banned, and consider a type theory corresponding to locally
cartesian closed categories with only propositional equality (it would have very nice theoretical
properties, although it would be hell to use in practice). The present work is a first step in
this direction.

Implementation. The type theory CCCaTT1 is implemented in the form of an online proof
assistant [35] whose source code is freely available [36]. All the derivations mentioned in the
article have been mechanically checked with this tool.

Acknowledgment. We would like to warmly thank Thibaut Benjamin and Noam Zeilberger
for the numerous discussions about the topics of this paper.
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2 Contractible types in the simply typed λ-calculus

2.1 The simply-typed λ-calculus
We briefly recall here basic notations and properties for the λ-calculus. We refer to standard
textbooks for details [18, 37, 45].

Intuitionistic logic. We suppose fixed a countable supply of type variables, which we denote
as X, Y, . . . The types, or formulas, are generated by the grammar

A, B ::= X | A → B

where X is an arbitrary type variable. A context Γ is a list of formulas; we sometimes write ∅
for the empty context. A judgment is a pair Γ ⊢ A consisting of a context Γ and a formula A.
It is provable when it is derivable using the rules

Γ, A, ∆ ⊢ A
(ax)

Γ, A ⊢ B

Γ ⊢ A → B
(→I)

Γ ⊢ A → B Γ ⊢ A

Γ ⊢ B
(→E) (1)

Terms. The λ-terms are generated by the grammar

t, u ::= x | λxA.t | t u

where x is a variable belonging to a fixed countable set. In a term of the form λxA.t, the
variable x is bound in t. In the following, we consider terms up to α-conversion, i.e. renaming
of bound variables. Given terms t and u and a variable x, we write t[u/x] for the term
obtained from t by substituting every occurrence of x by u, in a capture-avoiding way.

Typing. A context Γ is a list x1 : A1, . . . , xn : An of pairs consisting of a variable xi and a
type Ai. The domain of such a context is the set of variables dom(Γ) ≡ {x1, . . . , xn}. A
typing judgment Γ ⊢ t : A is a triple consisting of a context Γ, a term t and a type A. It is
valid when it is derivable using the rules:

Γ, x : A, ∆ ⊢ x : A
(ax)

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A→B
(→I)

Γ ⊢ t : A→B Γ ⊢ u : A

Γ ⊢ t u : B
(→E) (2)

The principal premise is the leftmost one. We say that t has type A in a context Γ, or that t

has type Γ ⊢ A, when Γ ⊢ t : A is derivable.

Curry-Howard correspondence. The Curry-Howard correspondence [23, 37, 45] is the
observation that λ-terms encode proofs in the sense that

▶ Proposition 1. Given a context Γ, there is a bijective correspondence between
proofs of Γ ⊢ A according to (1),
typing derivations of Γ ⊢ t : A for some λ-term t according to (2).

The correspondence also extends to dynamics of proofs, based on the following results, which
are implicitly used below:

▶ Lemma 2. The following rules are admissible, where we suppose x ̸∈ dom(Γ) for the
second rule:

Γ, x : A, ∆ ⊢ t : B Γ, ∆ ⊢ u : B

Γ, ∆ ⊢ t[u/x] : B

Γ ⊢ t : A → B

Γ ⊢ λxA.t x : B
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2.2 Extensional equivalence
In the following, we define various typed relations ∼ between λ-terms (β-reduction, η-
expansion, etc.): such a relation is subset of 4-uples Γ ⊢ t ∼ u : A consisting of a context Γ,
two terms t and u, and a type A, and is defined inductively by inference rules. For every
such a relation, the fact that Γ ⊢ t ∼ u : A is derivable can be checked to imply that both
Γ ⊢ t : A and Γ ⊢ u : A are derivable.

Reduction. The β-reduction is the typed relation ⇝β satisfying the rule on the left below

Γ, x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ (λxA.t)u⇝β t[u/x] : B
(β)

Γ ⊢ t : A → B

Γ ⊢ t⇝η λxA.t x : A → B
(η) (3)

which is moreover compatible with context extension, i.e. satisfies

Γ, x : A ⊢ t⇝β t′ : B

Γ ⊢ λxA.t⇝β λxA.t′ : A → B

Γ ⊢ t⇝β t′ : A → B Γ ⊢ u : A

Γ ⊢ t u⇝β t′u : B

Γ ⊢ t : A → B Γ ⊢ u⇝β u′ : A

Γ ⊢ t u⇝β tu′ : B

The η-expansion is the typed relation ⇝η satisfying the rule on the right of (3), and which is
moreover compatible with context extension. The βη-relation ⇝βη is the union of the two
above relations. The extensional equivalence ext= is the smallest typed equivalence relation
containing both β-reduction and η-expansion. This relation is a congruence.

Long normal forms. A term is a β-normal form when it is not the source of any β-reduction.
It is a long β-normal form when it is β-normal and any η-expansion gives rise to a non-β-
normal term, i.e. each variable is applied to as many arguments as its type allows. In the
following, since we are mostly interested in λ-terms up to extensional equivalence, we can
restrict to terms in long β-normal form:

▶ Proposition 3. Any term is extensionally equivalent to a long β-normal form.

Proof. It is well-known that β-reduction is weakly normalizing for simply-typed λ-terms [18,
Chapter 4]. The number of η-expansions one can perform while remaining in β-normal
form is bounded by the number of arrows of types of subterms which are not application
position. ◀

▶ Remark 4. The proposition shows that every extensional equivalence class of λ-terms
contains at least one long β-normal form. With some more work, it can furthermore be
shown that it contains exactly one long β-normal form, but this will not be needed here.
The terms in long β-normal form can be characterized explicitly.

▶ Proposition 5. The λ-terms in long β-normal form are those generated by the two rules

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A → B
(→nl

I )

and
x : A1 → · · · → An → X ∈ Γ Γ ⊢ t1 : A1 . . . Γ ⊢ tn : An

Γ ⊢ x t1 . . . tn : X
(→nl

E )

where X denotes a type variable.
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Through the Curry-Howard correspondence (Proposition 1), the terms in long β-normal form
correspond to proofs in the following logical system with two rules:

Γ, A ⊢ B

Γ ⊢ A → B
(→nl

I )
A1 → · · · → An → X ∈ Γ Γ ⊢ A1 . . . Γ ⊢ An

Γ ⊢ X
(→nl

E ) (4)

which we call here normal logic (because it is the logic of normal forms).
Based on the above observations, various algorithms have been proposed in order to

describe all the λ-terms of a given type in (long) β-normal form [7, 47, 50], see [19, Chapter 8]
for a general overview. Our result below can be thought of as a variant of those, specialized
to recognize contractible types.

2.3 Contractible types
The following definitions are inspired from homotopy type theory [49, Chapter 3], by taking
the point of view that any type A can conceptually be thought of as a space with the λ-terms
of type A as points, in such a way that any two extensionally equivalent λ-terms are related
by a path. To complete this picture, one should also specify what the are higher-dimensional
paths, but this is left for future work (and the present paper can be considered as a first step
in this direction).

Contractible types. A sequent Γ ⊢ A is a proposition if any two terms of this type are
extensionally equivalent, i.e. the rule

Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ t
ext= u : A

is admissible. It is contractible if it is a proposition which is inhabited, i.e. there is a
term of type A in the context Γ. By extension, we say that a type A is a proposition
(resp. contractible) when ⊢ A is a proposition (resp. contractible).

▶ Example 6. Consider the context X : ⋆, Y : ⋆. The types X → X and X → Y → X are
contractible (its only inhabitants are respectively the identity and the first projection). The
type X → Y is a non-contractible proposition (there is no term of this type). The types
X → X → X and (X → X) → X → X are not propositions (they are respectively inhabited
by the two projections and the Church numerals).

Deterministic types. We now present a condition on types which implies contractibility. By
Proposition 3, in order to ensure that a type A is contractible, it is enough to ensure that
it is the type of at most one long β-normal term, i.e. that it admits at most one proof in
normal logic. This motivates considering the following definition of determinism, introduced
in [11, Definition 5.4], although in the formalism of proof trees. A partial proof is one where
some branches have not been completed, i.e., more formally, a proof using the additional
derivation rule

Γ ⊢ A
(✠)

A partial proof π is a prefix of another proof π′ when π′ can be obtained from π by replacing
rules (✠) by partial proofs, what we write π ⊑ π′. This equips partial proofs of Γ ⊢ A with
a partial order, where (non-partial) proofs are maximal elements. A type A in a context Γ
is deterministic when the set of partial proofs of Γ ⊢ A (wrt the rules of Proposition 5) is
directed wrt ⊑, by which we mean that for every partial proofs π1 and π2 of Γ ⊢ A there
is a partial proof π such that π1 ⊑ π and π2 ⊑ π. The following is immediate from the
definition [11, Corollary 5.6]:
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▶ Proposition 7. Any deterministic type is a proposition. Thus, any inhabited deterministic
type is contractible.

When looking for a proof of an arbitrary sequent Γ ⊢ A in normal logic, there are two
possibilities:
1. either A is an arrow type A ≡ A1 → A2 and the rule (→nl

I ) is the only one to apply, in
one possible way,

2. otherwise A is a variable A ≡ X and the rule (→nl
E ) is the only one that can apply,

possibly in multiple ways.
In the second case, there are as many ways to apply the rule (→nl

E ) as there are formulas
with target X in the context. Here, given a formula A, its target tgt(A) is the rightmost type
variable, which can be computed inductively by tgt(X) ≡ X and tgt(A → B) ≡ tgt(B). A
type is thus deterministic precisely when, whenever looking for a proof of it in normal logic,
whenever we are trying to prove a variable X, there is exactly one formula in the context
with X as target. Informally, each “consumer” (a positive instance of a variable X that we
are trying to prove) should have at most one “producer” (a negative instance of the same
variable, which is available in the context).

▶ Example 8. The formula X → X → X is provable but not deterministic; in fact, we have
seen that it is not contractible since there are two proofs, which correspond to the following
typing derivations:

x : X, y : X ⊢ x : X
(→nl

E )

⊢ λxXyX .x : X → X → X
(→nl

I )
x : X, y : X ⊢ y : X

(→nl
E )

⊢ λxXyX .y : X → X → X
(→nl

I )

(note that when applying (→nl
E ) there are two formulas with target X in the context).

The formula X → X is deterministic and provable, and thus contractible. The formula
(X → Y ) → Y → Y is not deterministic but contractible (and thus a proposition). The
formula Y → X is deterministic but not provable. The formula (X → Y ) → (X → Y ) → Y

is not deterministic and not provable (and thus a proposition).

Other sufficient coherence conditions. For the sake of completeness let us recall other
conditions which have been introduced in literature, which imply that a type is a proposition.
A formula is balanced when no variable occurs more than once (there are variations where
we suppose that, when a variable occurs twice, the two instances have different polarity),
and negatively non-duplicated if every variable has at most one negative occurrence in it.
It has been shown that every balanced formula is a proposition [5, 38, 39, 48], as well
as every negatively non-duplicated formula [4, 10]. Another closely related condition is
provability with non-prime contraction [2]. In fact, all those classes are included in the
class of deterministic formulas, and the inclusion is strict [11, Section 5.1]. Finally, we note
that, by Example 8, the class of deterministic formulas is strictly included in the class of
propositions for which, to the best of our knowledge, there is no known characterization.

▶ Open question 9. Provide a characterization of types which are propositions, as wells as
those which are contractible.

3 An unbiased type theory for simply-typed λ-calculus

3.1 Pasting types

Toward contractible types. Our aim is to identify a reasonably large subset of contractible
types, which admits a nice and simple formalization. A natural candidate for this is to
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start from the notion of deterministic type, and restrict it so that we ensure provability.
The discussion after Proposition 7 suggests that, in order to make sure that a formula
is deterministic and inhabited, one can look for a normal proof of it, making sure that
when we apply a rule (→nl

E ) it was the only possible way of applying it, i.e. the goal
variable X is the target of exactly one formula in the context (we fail if this is not the case).

...
X → X ⊢ X

(→nl
E )

X → X ⊢ X
(→nl

E )

⊢ (X → X) → X
(→nl

I )

This method is not satisfactory yet because the proof search might
not terminate. For instance, on the formula (X → X) → X,
we will try to construct the “infinite” proof tree shown on
the right, which informally corresponds the “infinite” λ-term
λfX→X .f(f(f . . .)). In order to avoid such situations, it can
be noted that, because we are looking for deterministic formulas,
the proof search will loop if and only if we are trying to prove the same type variable twice
in a branch of the proof tree (as in the above example). This suggests introducing a new
variant of the proof system that we now describe.

Pasting types. We consider sequents of the form Θ; Γ ⊢ A where Θ is a list of type variables,
Γ is a context (a list of formulas) and A is a formula. Here, Θ maintains the list of targets of
formulas in the context Γ, and will be used in order to make sure that no two such formulas
have the same target variable. Moreover, in order to avoid the “infinite” proof trees described
above, when we use a formula from the context Γ as principal premise of a rule (→nl

E ), we
remove it from the context (but we do not remove its target variable from Θ): namely, if
we have to use it twice in a branch, this means that we are trying to prove the same type
variable twice and thus that the proof search will never end, as explained above. We thus
propose a system with the following two rules:

Θ, tgt(A); Γ, A ⊢ B

Θ; Γ ⊢ A → B
(→ps

I )
Θ; Γ, ∆ ⊢ A1 . . . Θ; Γ, ∆ ⊢ An

Θ; Γ, A1 → · · · → An → X, ∆ ⊢ X
(→ps

E ) (5)

In the rule (→ps
I ), we have the following important side condition: we always suppose that

the variable tgt(A) is not already present in Θ. A type A is a pasting type, what we write
⊢ps A, when the sequent ; ⊢ A (with both Θ and Γ empty) is derivable with (5).

▶ Example 10. The types X → X, (X → Y ) → X → Y and X → Y → X are pasting:

X; X ⊢ X
(→ps

E )

; ⊢ X → X
(→ps

I )

Y, X; X ⊢ X
(→ps

E )

Y, X; X → Y, X ⊢ Y
(→ps

E )

Y ; X → Y ⊢ X → Y
(→ps

I )

; ⊢ (X → Y ) → X → Y
(→ps

I )

X, Y ; X, Y ⊢ X
(→ps

E )

X; X ⊢ Y → X
(→ps

I )

; ⊢ X → Y → X
(→ps

I )

The type (X → X) → X → X is not pasting.

Our system has been designed so that proof search is extremely easy: at most one rule
applies, and moreover no infinite proof tree can be constructed (the depth is bounded by the
number of subformulas of the original sequent).

▶ Proposition 11. Proof search in the system (5) is deterministic (when starting from an
empty context) and terminating.

By erasing the context Θ from a derivation using the rules (5) one obtains a normal proof,
which is moreover pasting by construction and thus a proposition.

▶ Proposition 12. Any pasting type is contractible.
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▶ Remark 13. The rules of pasting types ensure that no two formulas have the same target
variable in a context, whereas the condition for deterministic formulas only requires this for
variables which are actually being proved. We thus note that being pasting is thus slightly
more restrictive than being deterministic (and slightly more general than being negatively
non-duplicating), although this will not play a significant role in the following. For instance,
the formula X → X → Y → Y is not pasting but is deterministic (because X is provided
twice but never used), and the formula ((X → X → Y ) → Z) → W → W is pasting but not
non-negatively duplicating.
Given a context Γ ≡ A1, . . . , An and a type A, we write Γ → A as a shorthand for
A1 → · · · → An → A. The notion of pasting type can be generalized to take contexts in
account by stating that A is a pasting type in context Γ, what we write Γ ⊢ps A when we have
⊢ps Γ → A (according to the above definition). It is easily shown that terms of type Γ ⊢ A

are in bijection with terms of type ⊢ Γ → A, up to extensional equivalence, and thus:

▶ Proposition 14. Any pasting type in arbitrary context Γ is contractible.

▶ Example 15. We have X → Y, X ⊢ps Y . Namely, checking this amounts, by definition, to
check that (X → Y ) → X → Y is contractible, which is indeed the case by Example 10.

3.2 CCaTT1

We now introduce the main type theory of this paper, that we call CCaTT1 because, as we
will see, it is the type theory for closed categories (the index 1 is here to indicate that we
plan to generalize it from 1-categories to higher categories). It involves dependent types and
is strongly inspired of the type theory CaTT for weak higher categories [17].

The type theory. We suppose fixed an infinite supply of variables x, y, . . . The terms are
defined by the grammar

t, u ::= x | t → u | cohΓ⊢A[σ]

where Γ is a context, A is a type and σ is a substitution. We write FV(t) for the set of free
variables of a term t:

FV(x) ≡ {x} FV(t → u) ≡ FV(t) ∪ FV(u) FV(cohΓ⊢A[σ]) ≡ FV(σ)

The substitutions are defined by the grammar

σ ::= ⟨⟩ | ⟨σ, t⟩

where t is a term. A substitution σ is thus a list of terms ⟨t1, . . . , tn⟩, and its free variables
are FV(σ) ≡

⋃
i FV(ti). The types are defined by the grammar

A ::= ⋆ | El(t)

A context Γ is a list x1 : A1, . . . , xn : An of pairs consisting of a variable xi and type Ai. We
write dom(Γ) ≡ {x1, . . . , xn} for its domain and |Γ| ≡ n for its size.

The rules of our type theory are presented in Figure 1, and we now explain their meaning.
As traditional in dependent type theory, it involves five kinds of judgments:

Γ ⊢ means that the context Γ is well-formed,
Γ ⊢ A means that the type A is well-formed in the context Γ,
Γ ⊢ t : A means that t is a term of type A in the context Γ,
Γ ⊢ σ : ∆ means that σ is a substitution from Γ to ∆,
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∅ ⊢
Γ ⊢ A

Γ, x : A ⊢
x : A ∈ Γ
Γ ⊢ x : A Γ ⊢ ⋆

Γ ⊢ A : ⋆

Γ ⊢ El(A)
Γ ⊢ A : ⋆ Γ ⊢ B : ⋆

Γ ⊢ A → B : ⋆

Rules for contexts Axiom rule Rules for types Rules for ⋆

∆ ⊢
∆ ⊢ ⟨⟩ : ∅

∆ ⊢ σ : Γ Γ ⊢ A ∆ ⊢ t : A[σ]
∆ ⊢ ⟨σ, t⟩ : (Γ, x : A)

∆ ⊢ σ : Γ Γ ⊢ t : A

∆ ⊢ t[σ] : A[σ]
(sub)

Rules for substitution

Γ ⊢ t : A

Γ ⊢ t = t : A

Γ ⊢ t = u : A

Γ ⊢ u = t : A

Γ ⊢ t = u : A Γ ⊢ u = v : A

Γ ⊢ t = v : A

Rules for equality

∆ ⊢ σ : Γ Γ ⊢ t = u : A

∆ ⊢ t[σ] = u[σ] : A[σ]
∆ ⊢ σ : Γ Γ ⊢ A ∆ ⊢ u = u′ : A[σ] Γ, x : A ⊢ t : B

∆ ⊢ t[⟨σ, u⟩] = t[⟨σ, u′⟩] : B[⟨σ, u⟩]
Rules for congurence

Γ ⊢ps A

Γ ⊢ cohΓ⊢A[idΓ] : A
(ps)

Γ ⊢ps A Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ t = u : A
(ps=)

Rules for pasting types

Figure 1 Rules of the type theory CCaTT1.

Γ ⊢ t = u : A means that t and u are two equal terms of type A in the context Γ.
We did not include judgments of equality on types or on substitutions because those are not
useful at this stage.

A term of type ⋆ corresponds to a type in λ-calculus, which we call a simple type in
the following (in order to avoid confusion with types in our theory). For this reason, we
usually write X, Y, . . . (resp. A, B, . . .) for variables (resp. terms) of type ⋆. For instance, the
sequent X : ⋆, Y : ⋆ ⊢ X → Y → X : ⋆ is easily checked to be derivable, which means that
X → Y → X is a valid simple type provided that X and Y are type variables. Here, the
type ⋆ plays the role of a universe (which is closed under taking arrows) and, given a simple
type A, we have a type El(A): the terms of this type can be thought of as λ-terms of simple
type A. For instance, we will see that we will be able to derive a term f · x of type

X : ⋆, Y : ⋆, f : El(X → Y ), x : El(X) ⊢ f · x : El(Y )

which given a function f and an element x associates the result of applying f to x. In the
following, we usually simply write A instead of El(A), as traditional in type theory, thus
implicitly allowing the cast of a simple type as a type.

A substitution σ with ∆ ⊢ σ : Γ is a list of terms ⟨t1, . . . , t|Γ|⟩ with ti being of type Ai,
up to substituting previous variables by their value. Given a term t in the context Γ, we
write t[σ] for the term obtained from t by replacing every variable xi ∈ dom(Γ) by ti (and
we define a similar operation A[σ] for types A in the context Γ). Formally, we have

xi[σ] ≡ ti (t → u)[σ] ≡ t[σ] → u[σ] cohΓ⊢A[τ ][σ] ≡ cohΓ⊢A[σ ◦ τ ]
⋆[σ] ≡ ⋆ El(t)[σ] ≡ El(t[σ])

Given substitutions ∆ ⊢ τ : Γ and Υ ⊢ σ : ∆ with τ = t1, . . . , tn[], we respectively write

τ ◦ σ ≡ ⟨t1[σ], . . . , tn[σ]⟩ idΓ ≡ ⟨x1, . . . , x|Γ|⟩

for composite and identity substitutions.



S. Mimram 10

▶ Lemma 16. The following rules are admissible:

Γ ⊢
Γ ⊢ idΓ : Γ

Υ ⊢ σ : ∆ ∆ ⊢ τ : Γ
Υ ⊢ τ ◦ σ : ∆

Γ ⊢ t : A

Γ ⊢ t[idΓ] = t : A

∆ ⊢ σ : Γ Γ ⊢ t : A

∆ ⊢ t[τ ◦ σ] = t[σ][τ ] : A

A context consists of m declarations of type variables Xi followed by n declarations of
variables with simple type Ai:

▶ Lemma 17. The well-formed contexts are, up to permutation, of the form

X1 : ⋆, . . . , Xm : ⋆, x1 : A1, . . . , xn : An (6)

where the Ai are simple types with FV(Ai) ⊆ {X1, . . . , Xm}.

Similarly, a substitution Γ ⊢ σ : ∆ can be decomposed as a pair of substitutions ⟨σ0, σ1⟩
consisting of a substitution σ0 assigning a simple type to the type variables Xi, and a
substitution σ1 assigning a term to the term variables xi: it can thus be thought of as
consisting both of a type refinement and a substitution of λ-terms. The rules for equality
ensure that equality is a congruence: this is an equivalence relation, substituting equal terms
give rise to equal terms, and applying substitutions consisting of equal terms give rise to
equal terms.

All the rules described above are pretty standard for a dependent type theory. The main
novelty of our type theory comes from the two rules for pasting types. Given a context Γ
of the form (6) and a type A, we write Γ ⊢ps A when the sequent Γ ⊢ A is derivable,
{X1, . . . , Xn} = FV(A1) ∪ . . . ∪ FV(An) (i.e. the set of declared variables is minimal), the
type A is a simple type (i.e. not ⋆), and we have A1, . . . , An ⊢ps A in the sense of Section 3.1.
The rules for pasting types impose that such types are contractible, i.e. they are inhabited
and any two inhabitants are equal. A term of the form cohΓ⊢A[σ], which can be constructed
using the rule (ps), denotes the unique inhabitant of Γ ⊢ps A under a substitution σ, i.e. the
following rules are derivable:

∆ ⊢ σ : Γ Γ ⊢ps A

∆ ⊢ cohΓ⊢A[σ] : A[σ]
∆ ⊢ σ : Γ Γ ⊢ps A Γ ⊢ t : A

∆ ⊢ t[σ] = cohΓ⊢A[σ] : A[σ]

Note that, in the notation cohΓ⊢A[σ], both Γ and A are left invariant under substitution
(they are only here to keep track of the pasting type which was contracted), and that the
substitution σ is a “formal” one, i.e. it is part of the term and does not reduce.

3.3 Some derivations
Let us provide some first examples of derivations in our type theory. The type X → X is
pasting by Example 10 and we thus have that X : ⋆ ⊢ps X → X is derivable. By the rule (ps),
we thus have a term cohX:⋆⊢X→X [⟨X⟩] of type X → X (in context X : ⋆):

X : ⋆ ⊢ps X → X

X : ⋆ ⊢ cohX:⋆⊢X→X [⟨X⟩] : X → X
(ps)

This term should be thought of as the identity λ-term, and we will adopt the more traditional
notation IX for it. Similarly, we can define terms

X : ⋆ ⊢ IX : X → X

X : ⋆, Y : ⋆ ⊢ KX,Y : X → Y → X

X : ⋆, Y : ⋆, Z : ⋆ ⊢ SX,Y,Z : (X → Y → Z) → (X → Y ) → X → Z

(7)
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(and we sometimes omit the indices when they can be inferred from the context). It can be
observed that many of the “standard” λ-terms can be defined in this way, as the inhabitant of
their most general type which is contractible, with the notable exception of ω ≡ λx.xx (which
is not typable) and Church natural numbers (whose type is not contractible). In particular,
almost all Smullyan’s 28 birds [43, p. 244] can also be defined like this1, excepting the Jay
(λfxyz.fx(fzy)), the Mocking bird (ω), the Owl (λxy.y(xy)), the Turing (λxy.y(xxy), not
typable).

Those would be pretty useless if they could not interact, but fortunately we can also
define application as the inhabitant of its type which is contractible, see Example 15:

X : ⋆, Y : ⋆, f : X → Y, x : X ⊢ f · x : Y (8)

Again, f · x is an informal but readable notation for cohX:⋆,Y :⋆,f :X→Y,x:X⊢Y [⟨X, Y, f, x⟩],
where we leave X and Y implicit. As usual, this operation is implicitly bracketed on the left.

Finally, we can derive the expected relations by using the rule (ps=). For instance, we
have X : ⋆, x : X ⊢ps X which implies, by Proposition 14, that any two λ-terms in this
context are equal. For instance, x and IX ·x are both terms of this type, and are thus equal:
IX ·x = x. Formally, we can derive

X : ⋆, x : X ⊢ps X

X : ⋆, x : X ⊢ IX ·x = x : X
(ps=)

Similarly, one can derive the following equalities:

X : ⋆, x : X ⊢ IX ·x = x : X

X : ⋆, Y : ⋆, x : X, y : Y ⊢ KX,Y ·x · y = x : X

X : ⋆, Y : ⋆, Z : ⋆, x : X→Y →Z, y : X→Y, z : X ⊢ SX,Y,Z ·x · y · z = (x·y)·(x·z) : Z

(9)

3.4 Recovering simply typed λ-calculus
As shown above we can derive terms which look like λ-terms, as well as some expected
equations. Our aim is now to show that we have exactly simply-typed λ-calculus:

▶ Theorem 18. Given type variables X1, . . . , Xm and simple types A1, . . . An, A using the
previous variables, there is a bijection between
1. terms t such that X1 : ⋆, . . . , Xm : ⋆, x1 : A1, . . . , xn : An ⊢ t : A is derivable in CCaTT1,

up to derivable equalities,
2. λ-terms t such that x1 : A1, . . . , xn : An ⊢ t : A is derivable in implicational simply-typed

λ-calculus, up to extensional equality.

We respectively write Cm
Γ⊢A and Λm

Γ⊢A for the set of CCaTT1 terms and λ-terms of type A in
context Γ ≡ x1 : A1, . . . , xn : An as above, and our aim is to construct a family of bijections

F : Cm
Γ⊢A ⇄ Λm

Γ⊢A : G

Given CCaTT1 term t, we define its image under F by induction on t as follows.
If t is obtained by the rule (ps), we have Γ ⊢ps A and the type Γ ⊢ A is contractible by
Proposition 14. We take the only element of Λm

Γ⊢A as its image under F .
If t is obtained by the rule (sub), it is of the form u[σ] and we define its image as (Fu)[Fσ]
where Fσ is the substitution obtained by applying F to every term of σ (which is defined
by induction).

1 See https://cccatt.mimram.fr/#birds.

https://cccatt.mimram.fr/#birds
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This is well-defined on equivalence classes of terms because pasting types are contractible
and extensional equality is a congruence on λ-terms. Conversely, we want to construct a map
G from λ-terms. It is well-known that λ-terms can be generated by the combinators I, K
and S and that extensional equality on λ-terms corresponds to the congruence generated by
the weak equality, which is generated by axioms (9), as well as the following five “mysterious
axioms”

(eqη) S(S(K S) K)(K I) = I : (X → Y ) → X → Y

(eqw) S(S(K S)(S(K K)(S(K S) K)))(K K) = S(K K) : (X → Z) → X → Y → Z

(eqI) S(K I) = I : (X → Y ) → X → Y

(eqK) S(K S)(S(K K)) = K : (X → Z) → (X → Y ) → X → Z

(eqS) S(K(S(K S)))(S(K S)(S(K S))) =
S(S(K S)(S(K K)(S(K S)(S(K(S(K S))) S))))(K S)

: (X → Y → Z → W ) → (X → Y → Z) → (X → X) → X → Z

which respectively ensure that η-expansion is satisfied, extensional equality is compatible
with weakening, and that weak equivalence is preserved under abstraction, see [20, Chapter 8]
for details. Moreover, this correspondence between pure λ-calculus and combinatory logic
extends to the simply typed setting, see for instance [1]. We can therefore define G as map
from simply typed combinatory terms to CCaTT1 terms. We have seen in (7) how to define
the combinators I, K and S, and application in (8), with the rule (ps). Moreover, all the
equations can be derived with the rule (ps=), by checking that their most general type is
pasting (and thus contractible): we have seen this in (9) for weak equality, and we have
indicated above the types of the mysterious axioms, which are easily checked to be pasting2.
Finally, we should check that the functions F and G thus defined are mutually inverse. This
follows from the following two observations: firstly, given a term t of a contractible type,
we have G ◦ F (t) = t (resp. F ◦ G(t) = t) because types are preserved by both F and G,
and, secondly, both derivable equalities and extensional equality are congruences (and thus
compatible with substitution).

3.5 Arrows vs substitution
It can be wondered how our arrow types interact with respect to substitution, i.e. whether a
term of type A → B can be thought of as a function substituting its argument in a term.
The situation is pretty much similar to combinatory logic: the abstraction is an admissible
operation, but not a primitive one.

▶ Proposition 19. The following rules are respectively derivable (for application) and
admissible (for the three other rules):

Γ ⊢ t : A → B

Γ, x : A ⊢ t · x : B
(→E)

Γ, x : A ⊢ t : B

Γ ⊢ λx(t) : A → B
(→I)

Γ ⊢ t : A → B

Γ ⊢ t = λx(t · x) : A → B
(→η)

Γ, x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ λx(t) · u = t[⟨idΓ, u⟩] : B
(→β)

The proposition of course follows from Theorem 18, but a direct proof can also be given.
The rule (→E) is easily derived from application. For the rule (→I), what we mean here is
that given a term t of type A, we can define a term λx(t) of type A → B by induction on t:
the base case being immediate since we defined Γ ⊢ps A to be ⊢ps Γ → A in Section 3.1. The
two other rules are shown by induction on t.

2 See https://cccatt.mimram.fr/#curry.

https://cccatt.mimram.fr/#curry
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3.6 Adding products
Previous type theory is limited to the implicational fragment, but finite products can be
added. In order to do so, one extends the syntax of types with a terminal type 1, as well as
the product A × B of two types A and B. We then need to extend the definition of pasting
types of Section 3.1. In fact, the following observations show that we can almost directly reuse
the previous definition. Recall from [12] that type isomorphisms in simply-typed λ-calculus
are generated by the equations

(A×B)×C = A×(B×C) 1×A = A A→(B×C) = (A→B)×(A→C) A→1 = 1
A×B = B×A A×1 = A (A×B)→C = A→B→C 1→A = A

Moreover, by orienting the above equations from left to right, one obtains a convergent
rewriting system whose normal forms are of the form A1 × . . .×An where the Ai are formulas
in the implicational fragment [12, Proposition 2.8]. We define a type A (with products) to
be a pasting whenever all the components Ai of its normal form are pasting in the sense of
Section 3.1, what we write ⊢ps A. As before, this extends to types in context by defining
Γ ⊢ps A as ⊢ps Γ → A.

▶ Proposition 20. Any pasting type is contractible.

Proof. This follows from Proposition 12, the fact that being contractible is invariant under
type isomorphism, and that a product of types is contractible if and only if its components
are contractible. The case of types in context is handled as in Proposition 14. ◀

▶ Open question 21. Provide a direct definition of pasting types with finite products (without
normalizing types first).

We write CCCaTT1 (the type theory for cartesian closed 1-categories) for the type theory
obtained from Figure 1 by adding the two rules

Γ ⊢ A : ⋆ Γ ⊢ B : ⋆

Γ ⊢ A × B : ⋆ Γ ⊢ 1 : ⋆

which allow forming product and terminal types, and understanding the judgments Γ ⊢ps A

in the above sense. The expected generalization of Theorem 18 holds:

▶ Theorem 22. There is a type-preserving bijection between terms derivable in CCCaTT1 (up
to derivable equality) and terms in the simply typed λ-calculus (up to extensional equality).

The interpretation of CCCaTT1 into λ-calculus can be performed as for Theorem 18 (we are
contracting contractible types). In the other direction, we need to explain how to extend
simply typed combinatory logic to products, which can be done as follows.

▶ Proposition 23. Simply typed combinatory logic with finite products can be obtained from
traditional combinatory logic (as described in Section 3.4) by adding four new combinators

P : X → Y → X × Y P1 : X × Y → X P2 : X × Y → Y T : 1

as well as the weak equality axioms

P1 ·(P ·x · y) = x P2 ·(P ·x · y) = x P ·(P1 ·x) · (P2 ·x) = x x = 1
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(those are implicitly typed by the most general type of both members, in particular, we suppose
x : T in the last equation) and the mysterious axioms

S(K(S(K(S(K P1)))))(S(K S)(S(K P))) = K : (X → Y ) → (X → Z) → X → Y

S(K(S(K(S(K P2)))))(S(K S)(S(K P))) = K I : (X → Y ) → (X → Z) → X → Z

S(S(K S)(S(K(S(K P)))(S(K P1))))(S(K P2)) = I : (X → Y × Z) → X → Y × Z

K T = I : 1 → 1

The proof of the proposition can be performed by extending the traditional one [1, 20, 37].
Alternatively, one can show that the generators and relations for the formal theory of
cartesian closed categories34 [30, Section I.3], which is known to be equivalent to simply
typed λ-calculus, can be derived. Another option consists in deriving5 Curien’s categorical
combinators [13].

As mentioned above, we have an axiomatization for simply typed λ-calculus with finite
products, and thus of cartesian closed categories, which are the corresponding categorical
structure [30]. Adopting this point of view, the problem of characterizing contractible types
amounts to proving a coherence theorem for cartesian closed categories, a well-studied
problem [5, 24, 39, 40, 46]. In our context, this can be expressed as follows:

▶ Theorem 24. Consider the free cartesian closed category X ∗ on a set X of variables: an
object corresponds to a simple type on the variables. For any two objects A and B such that
the type A → B is contractible (in particular, when it is inhabited and balanced, pasting, or
deterministic) there is exactly one morphism in X ∗(A, B).

3.7 Models
Let us briefly present the semantics of our type theory, which is based on the traditional
approach to dependent type theories [15, 22]. The syntactic category S has contexts as
objects and substitutions as morphisms (with the identities and compositions described in
Section 3.2 and Lemma 16). This category has a structure of category with family (cwf): to a
context Γ we can associate the set TyΓ of well-formed types in this context, and to A ∈ TyΓ
we can associate a set TmΓ⊢A of terms of type A in the context Γ, and substitutions act
in the expected way on those. The category Set has a canonical structure of a (large) cwf
where, for any set X, TyX is the set of families (Yx)x∈X of sets indexed by X and TmX⊢Y

is the set
∏

x∈X Yx. A model of our type theory is a morphism of cwf S → Set.
Any small cartesian closed category C induces a model of our type theory as follows.

Given a morphism f : A → B, we write ⌜f⌝ : 1 → (A → B) for the canonically associated
morphism, sometimes called the name of f . The type ⋆ is interpreted as the set Ob(C) of
objects of C, a simple type El(A) (corresponding to an object A of C) as the set of elements
of A (i.e. the hom-set C(1, A)), a term t : A as an element of the interpretation of A, an
equality t = u : A as the fact that the interpretations of t and u are equal, the type A → B

as the elements of the internal arrow type of the interpretations of A and B (and similarly
for the product A × B), a term cohΓ⊢A[idΓ] : A as the only element of C(1, A) given by
Theorem 24, and so on. Above, when working in a context Γ, all the constructions are
implicitly to be read as “families indexed over the interpretation of the context Γ”. For
instance,

3 See https://cccatt.mimram.fr/#ccc.
4 See https://cccatt.mimram.fr/#ccc2.
5 See https://cccatt.mimram.fr/#curien.

https://cccatt.mimram.fr/#ccc
https://cccatt.mimram.fr/#ccc2
https://cccatt.mimram.fr/#curien
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X : ⋆ ⊢ (X → X) is interpreted as the family (C(1, X → X))X∈Ob(C),
X : ⋆ ⊢ coh : X → X is interpreted as the family (⌜idX⌝)X∈Ob(C),
X : ⋆, x : X ⊢ coh : X is interpreted as the family (x)X∈Ob(C),x∈C(1,X).

The converse can be shown, using same tools detailed in [9] for the case of CaTT:

▶ Theorem 25. The models of the type theory CCCaTT1 are precisely the small cartesian
closed categories.

This result also follows indirectly from the fact that our type theory corresponds to simply
typed λ-calculus (Theorem 22), which in turn corresponds to cartesian closed categories [30].
We should detail elsewhere the fact that the models of the type theory for the implicational
fragment (Section 3.2) correspond to closed clones [29].

3.8 Implementation

Our type theory is implemented in a small proof assistant which is available online [35],
with freely available source code [36]. It actually implements small extensions of the type
theory described above in order to be more convenient. The most useful feature is the
presence of implicit arguments: most often, the type variable arguments can be inferred,
which makes proofs much shorter by leaving uninteresting parts to a unification algorithm.
We also implement some variants described in the next section: equality is unbiased, and we
can optionally switch to subsystems of the theory such as a categories, monoidal categories
or symmetric monoidal categories.

4 Extensions and future work

We have presented an unbiased type-theoretical definition of simply typed λ-calculus. There
are many possible extensions of this work that we plan to investigate in a near future.

There are many interesting subsystems or variants of our type theory. We already have
type theories for unbiased categories, monoidal categories, symmetric monoidal categories
and cartesian categories, which should be detailed elsewhere: those are essentially obtained
by keeping the same rules as those of Figure 1, but adapting the notion of Γ ⊢ps A for
deriving pasting types. We are still investigating the case of symmetric monoidal closed
categories (which correspond to linear simply typed λ-calculus) for which we have a coherence
theorem [26] and characterization of type isomorphisms [44], and we can also think of closed
categories [16, 31], linear λ-calculus [38, 51], planar λ-calculus [52], or compact closed
categories [25]. A fundamental extension of our work would consist in defining unbiased
locally cartesian closed categories: this currently seems harder as no coherence theorem (in
the sense of Theorem 24) seems to be known for those.

As indicated in the introduction, we would also like to generalize this work to weak higher
categories, based on CaTT [9, 17]. A first step in this direction, consists in observing that
equality is biased in our type theory (in the sense that we explicitly put rules for equivalence
relations). We have already defined (and implemented) a variant where this is not so, by
modifying the type theory so that there are explicit terms for proofs of identities. The first
variant that seems within reach is the one of weak cartesian higher categories, and is currently
being investigated together with Thibaut Benjamin.

Finally, it would be interesting to formalize the results of this paper, possibly based on
the Agda developments [1].
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