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Higher categories
The definition of (strict) ω-category generalizes categories by
taking higher cells into account.
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The definition of (strict) ω-category generalizes categories by
taking higher cells into account.

In such a category, you have
▶ 0-cells (objects): x

▶ 1-cells (morphisms): x f // y

▶ 2-cells: x

f
##

ϕ⇓

g

;; y

▶ 3-cells: x

f
##

ϕ⇓
F
⇛⇓ψ

g

;; y

▶ …
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Higher categories
The definition of (strict) ω-category generalizes categories by
taking higher cells into account.

In such a category, you have compositions

x

f
##

ϕ⇓

f′

;; y

g
##

g′

;;ψ⇓ z ⇝ x

f
''

f′

77ϕ∗0ψ⇓ z

x

f

��
g //

h

AA

ϕ⇓

ψ⇓
y ⇝ x

f

��

h

AAϕ∗1ψ⇓ y

More generally, n-cells ϕ and ψ can be composed in dimension i,
with 0 ≤ i < n, when their type match.
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Higher categories
The definition of (strict) ω-category generalizes categories by
taking higher cells into account.

In such a category, you have axioms such as
▶ associativity of composition and neutrality of identities,
▶ exchange laws:

x

f

��
g //

h

AA

ϕ⇓

ψ⇓
y

f′

��
g′ //

h′

AA

ϕ′⇓

ψ′⇓
z
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Higher categories
The definition of (strict) ω-category generalizes categories by
taking higher cells into account.

In the case where the orientation of arrows is not really relevant,
you can consider (strict) ω-groupoids which are ω-categories in
which all n-cells are invertible.

x

f
%%

ϕ⇓

g

99 y ⇝ x

f
%%

ϕ−1⇑

g

99 y
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Weak ω-groupoids
It turns out that this definition is too strict.

Given a topological space X, one expects to be able to build an
ω-groupoid whose
▶ 0-cells are the points of X,
▶ 1-cells are the paths in X,
(we do have concatenation, constant paths, and inverses)

▶ 2-cells are homotopies,
▶ 3-cells are homotopies between homotopies,
▶ etc.

However,
▶ concatenation is only associative up to homotopy
▶ exchange is not strict

̸=
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Partial history of weak ω-categories

▶ 1983: a definition of weak ω-groupoids
Grothendieck, Pursuing Stacks

▶ 2007: a definition weak ω-categories (after Grothendieck)
Maltsiniotis, Infini catégories non strictes, une nouvelle définition

▶ 2009: homotopy types are weak ω-groupoids
Lumsdaine, Weak ω-categories from intensional type theory
van Den Berg, Garner, Types are weak ω-groupoids

▶ 2016: a type-theoretic definition of weak ω-groupoids
Brunerie, On the homotopy groups of spheres in homotopy type theory
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Type-theoretic weak ω-categories

Here, we fill the following gap:

groupoids categories

category theory Grothendieck Maltsiniotis
type theory Brunerie Finster-Mimram
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Why is this useful

▶ We have a simple definition
(no advanced categorical concepts, a few inference rules)

▶ We have a syntax
(we can reason by induction, etc.)

▶ We have tools
(we can have the machine check our terms)

▶ A step toward directed homotopy type theory?
(we are still far from handling variance, univalence, etc.)
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A
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Judgments in type-theory

▶ Γ is a well-formed context:

Γ ⊢

▶ A is a well-formed type in context Γ:

Γ ⊢ A

▶ t is a term of type A in context Γ:

Γ ⊢ t : A

▶ t and u are equal terms of type A in context Γ:

Γ ⊢ t = u : A

8 / 41



A type-theoretic definition of categories
Cartmell, 1984:
▶ type constructors:

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆
Γ ⊢ x→ y

▶ term constructors:

x : ⋆ ⊢ id(x) : x→ x

x : ⋆, y : ⋆, f : x→ y, z : ⋆,g : y→ z ⊢ comp(f,g) : x→ z

▶ axioms:

Γ ⊢ f : x→ y

Γ ⊢ comp(id(x), f) = f

Γ ⊢ f : x→ y

Γ ⊢ comp(f, id(y)) = f
. . .

▶ plus “standard rules” (contexts, weakening, substitutions, …)
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Models of the type theory

A model of the type theory consists in interpreting
▶ closed types as sets,
▶ closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of
▶ a set J⋆K
▶ for each x, y ∈ J⋆K, a set J→Kx,y
▶ for each x ∈ J⋆K, an element JidKx ∈ J→Kx,x
▶ …

In other words, a model of the type theory is precisely a category
(and a morphism is a functor).
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Going higher

We could gradually implement weak n-categories:
▶ bicategories
▶ tricategories
▶ tetracategories
▶ pentacategories
▶ ...

The problem is that
▶ the number of axioms is exploding
▶ nobody knows the definition excepting in low dimensions
▶ we would like to have a “uniform” definition
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Unbiased definition

Since the composition is associative for categories, the
composite of any diagram like

x0
f1 // x1

f2 // . . .
fn // xn

is uniquely defined.

So, instead of having a binary composition and identities, we
could have a more general rule

x0 : ⋆, x1 : ⋆, f1 : x0 → x1, . . . , xn : ⋆, fn : xn−1 → xn ⊢ comp(f1, . . . , fn) : x0 → xn
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Unbiased definition
We can axiomatize categories with n-ary composition.
▶ This is very redundant, for instance

comp(comp(f,g), h) = comp(f,g, h) = comp(f, comp(g, h))

or even
comp(f) = f

▶ We have to characterize what we want to compose exactly.
For instance, should be able to compose

x0
f1 // x1

f2 // . . .
fn // xn

but not

x
f

(( y
g

hh z or x f // y z
goo

▶ However, this generalizes nicely in higher dimensions!
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A
TYPE-THEORETIC

DEFINITION
OF

GLOBULAR SETS
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Globular sets
Definition
A globular set consists of
▶ a set G, and
▶ for every x, y ∈ G, a globular set Gx

y.

Example

x
f

((

g
77ϕ⇓ y h // z

corresponds to

G = {x, y, z} Gx
y = {f,g} (Gx

y)
f
g = {ϕ} ((Gx

y)
f
g)
ϕ
ϕ = ∅ . . .
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Globular sets
Definition
A globular set consists of
▶ a set G, and
▶ for every x, y ∈ G, a globular set Gx

y.

Alternatively, this can be defined as
▶ a sequence of sets Gn of n-cells for n ∈ N,
▶ with source and target maps

sn, tn : Gn+1 → Gn

satisfying suitable axioms.
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Globular sets
Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ t→
A
u

. . .
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Globular sets
Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ t→
A
u

. . .

Remark
A finite globular set

x
f

$$

g
::⇓α y zhoo

can be encoded as a context

x : ⋆, y : ⋆, z : ⋆, f : x→
⋆
y,g : x→

⋆
y, h : z→

⋆
y, α : f →

x→
⋆
y
g

16 / 41



Globular sets
Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ t→
A
u

. . .

Proposition
The syntactic category (of contexts and substitutions) of this type
theory is the opposite of the category of finite globular sets.
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PASTING
SCHEMES
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Pasting schemes

We now want to define pasting schemes which are diagrams for
which we expect to have a composition. For instance,

x

f

��⇓α
f′ //
⇓β

f′′

CC y
g // z h // w

is a pasting scheme, but not

x
f

(( y
g

hh z or x f // y z
goo
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Disks

Given n ∈ N, the n-disk Dn is the globular set corresponding to a
general n-cell:

x x // y x ((
77⇓ y x ((

77⇓⇛⇓ y

D0 D1 D2 D3

(these are the representable globular sets)
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Pasting schemes
A pasting scheme is a globular set

x

f

��⇓α
f′ //
⇓β

f′′

CC y
g // z h // w

▶ Grothendieck: which can be obtained as a particular colimit
of disks

x

f

��⇓α
f′ // y x f′ //

⇓β

f′′

CC y y
g // z z h // w

x f′ // y y z

^^ @@ VV HH VV HH
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Pasting schemes
A pasting scheme is a globular set

x

f

��⇓α
f′ //
⇓β

f′′

CC y
g // z h // w

▶ Batanin: which is described by a particular tree

x20
α

x21
β

x10f

f′

f′′

CCCCCCC

{{{{{{{
x11

g

x12

h

x00x

y z

w

CCCCCCC

{{{{{{{
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Pasting schemes
A pasting scheme is a globular set

x

f

��⇓α
f′ //
⇓β

f′′

CC y
g // z h // w

▶ Finster-Mimram: which is “totally ordered”
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Order relation

We can define a preorder ◁ on the cells of a globular set by

source(x) ◁ x and x ◁ target(x)

For the globular set

x

f

��⇓α
f′ //
⇓β

f′′

CC y
g // z h // w

we have

x ◁ f ◁ α ◁ f′ ◁ β ◁ f′′ ◁ y ◁ g ◁ z ◁ h ◁ w
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Characterization of pasting schemes

Theorem
A globular set is a pasting scheme if and only if it is
▶ non-empty,
▶ finite, and
▶ the relation ◁ is a total order.
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Construction of pasting schemes
A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be
constructed as follows:

▶ we start from a 0-cell x

▶ we can add a new (n+1)-cell and its new target,
its source being the distinguished n-cell

x

f
!!
y ⇝ x

f
!!

g

==α⇓ y

▶ or the distinguished cell becomes the target of the previous
one

x

f
!!

g

==α⇓ y ⇝ x

f
!!

g

==α⇓ y
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Construction of pasting schemes

The construction of the pasting scheme

x

⇓α

⇓β
y z w

corresponds to its order

x

◁ f ◁ α ◁ f′ ◁ β ◁ f′′ ◁ y ◁ g ◁ z ◁ h ◁ w
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Type-theoretic pasting schemes

Now, recall that a pasting scheme

x

f

��⇓α
f′ //
⇓β

f′′

CC y
g // z h // w

can be seen as a context

x : ⋆, y : ⋆, f : x→ y, f′ : x→ y,

α : f→ f′, f′′ : x→ y, β : f′ → f′′,

z : ⋆,g : y→ z,w : ⋆, h : z→ w
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Type-theoretic pasting schemes

A context Γ (seen as a globular set) is a pasting scheme iff

Γ ⊢ps

is derivable with the rules

x : ⋆ ⊢ps x : ⋆
Γ ⊢ps x : ⋆

Γ ⊢ps

Γ ⊢ps x : A
Γ, y : A, f : x→

A
y ⊢ps f : x→

A
y

Γ ⊢ps f : x→
A
y

Γ ⊢ps y : A
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Type-theoretic pasting schemes

Note that with those rules
▶ the order of cells matters:

x
f

&&
⇓α

f′
88 y

g // z

▶ because of this we can check
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Source and targets
A pasting scheme Γ has

x

f

��⇓α
f′ //
⇓β

f′′

CC y
g // z h // w

▶ a source ∂−(Γ):

x

f

��
y

g // z h // w

▶ a target ∂+(Γ):

x

f′′

CC y
g // z h // w

both of which can be defined by induction on contexts.
28 / 41
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Type-theoretic ω-groupoids
We expect that in an ω-category every pasting scheme has a
composite:

Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

You can derive expected operations, such as composition:

x : ⋆, y : ⋆, f : x→
⋆
y, z : ⋆,g : y→

⋆
z ⊢ coh : x→

⋆
z

However, you can derive too much:

x : ⋆, y : ⋆, f : x→
⋆
y ⊢ coh : y→

⋆
x

We have in fact a definition of ω-groupoids (close to Brunerie’s).
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Type-theoretic ω-groupoids
We need to take care of side-conditions and in fact split the rule
in two:
▶ operations:

Γ ⊢ps Γ ⊢ t→
A
u ∂−(Γ) ⊢ t : A ∂+(Γ) ⊢ u : A

Γ ⊢ cohΓ,t→
A
u : t→

A
u

whenever

FV(t) = FV(∂−(Γ)) and FV(u) = FV(∂+(Γ))

▶ coherences:
Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

whenever
FV(A) = FV(Γ)
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Type-theoretic ω-groupoids

Definition
An ω-category is a model of this type theory.

Conjecture
This definition coincides with Grothendieck-Maltsiniotis’.

32 / 41



Type-theoretic ω-groupoids

Definition
An ω-category is a model of this type theory.

Conjecture
This definition coincides with Grothendieck-Maltsiniotis’.

32 / 41



Type-theoretic ω-groupoids

A typical example of operation is composition

x

f

��
g //

h

CC

α⇓

β⇓
y ⊢ coh : x

f

��
y → x

h

CC y

(this coherence is noted “comp” in the following).
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Type-theoretic ω-groupoids

A typical example of coherence is associativity

x f // y
g // z h // w
⊢

coh : x
comp(comp(f,g),h) // w → x

comp(f,comp(g,h)) // w
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Coherences are reversible
Note that if we derive a coherence

Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

with FV(A) = FV(Γ)

where
A = t→ u ,

there is also one with

A = u→ t .

Definition
An n-cell f : x→ y is reversible when there exists
▶ an n-cell g : y→ x and
▶ reversible (n+1)-cells

α : f ∗n−1 g→ idx β : g ∗n−1 f→ idy
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Implementation(s)
There are currently two implementations:
▶ https://github.com/ericfinster/catt

▶ follows closely the rules of the article
▶ https://github.com/smimram/catt

▶ has support for implicit arguments
▶ has support for (some) Π-types
▶ has support for “Hom” type variables:

let comp (X : Hom) =
coh (x : X) (y : X) (f : x -> y) (z : X) (g : y -> z)

: (x -> z)
▶ has a web interface

In practice,
▶ you simply enter a list of coherences
(there is no reduction, etc.),

▶ if the program does not complain then they are valid
operations in weak ω-categories.
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“Demo”

▶ identity 1-cells

coh id (x : *) : * | x -> x ;

▶ composition of 1-cells:

coh comp (x : *) (y : *) (f : * | x -> y)
(z : *) (g : * | y -> z)
: * | x -> z ;

▶ associativity of composition of 1-cells:

coh assoc
(x : *) (y : *) (f : * | x -> y) (z : *)
(g : * | y -> z) (w : *) (h : * | z -> w)
: * | x -> w

| comp x z (comp x y f z g) w h ->
comp x y f w (comp y z g w h) ;

▶ …
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“Demo”
Only defining the Eckmann-Hilton morphism takes 300 lines

x

id

��
id //

id

AA

α⇓

β⇓
x ⇛ x

id

��
id //

id

AA

β⇓

α⇓
x

because you have to
▶ define usual operations and coherences,
▶ explicitly insert and remove identities,
▶ take care of bracketing of composites

let eh (X : Hom) (x : X) (a : id x -> id x) (b : id x -> id x)
: (comp' a b -> comp' b a) =
comp11 (comp' (unitl'- a) (unitr'- b)) (assoc3 _ _ _ _)
(compl2r' _ _ (unitlr x) _) (compl2' _ _ (comp3 (assoc- _ _ _) (comp' (unitr+- (id x)) (id _)) (unitl _)))
(compl' _ (assoc- _ _ _)) (complr' _ (ich b a) _)
(complr' _ (compr' (comp (unitr- _) (compl' _ (unitr+-- _))) _) _)
(comp (complr' _ (assoc3 _ _ _ _) _) (compl' _ (assoc4 _ _ _ _ _)))
(comp' (unitlr- x) (compl' _ (compl' _ (comp' (unitrl- x) (compl' _ (unitrl x))))))
(assoc3- _ _ _ _)
(comp' (unitr' b) (unitl' a))
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“Demo”

▶ no inverses:

coh inv (x : *) (y : *) (f : * | x -> y)
: * | y -> x ;

produces

Checking coherence: inv
Valid tree context
Src/Tgt check forced
Source context: (x : *)
Target context: (y : *)
Failure: Source is not algebraic for y : *
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CONCLUSION
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Current work

Many things remain to be done:
▶ understand more exotic features
(implicit arguments, reduction, etc.)

▶ links with Globular
▶ add functors and higher morphisms (Thibaut Benjamin)
▶ variant to define opetopic categories
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