A TYPE-THEORETICAL
DEFINITION OF
WEAK w-CATEGORIES

Samuel Mimram

Logic In Computer Science
June 21, 2017

Higher categories
The definition of (strict) w-category generalizes categories by
taking higher cells into account.

Higher categories
The definition of (strict) w-category generalizes categories by
taking higher cells into account.

In such a category, you have

» 0-cells (objects): X
» 1-cells (morphisms): x —' >y
]
2-cel x o Ny
» 2-cells:
~_ 7
g
f
T F N
» 3-cells: X pi=4y y
~_ 7

Higher categories
The definition of (strict) w-category generalizes categories by
taking higher cells into account.

In such a category, you have compositions

f g f

T R N
X ¢l y v 4 ~ X pxopl Z
~_ T N~ T~ 7

f/ gl f/

f f
//dﬁi\\ //\\
X ——9——>y ~ X draglh y
W \/
h h

More generally, n-cells ¢ and ¢ can be composed in dimension /,
with 0 </ < n, when their type match.

Higher categories
The definition of (strict) w-category generalizes categories by
taking higher cells into account.

In such a category, you have axioms such as
» associativity of composition and neutrality of identities,
» exchange laws:

/'\/w\
_/W

Higher categories
The definition of (strict) w-category generalizes categories by
taking higher cells into account.

In the case where the orientation of arrows is not really relevant,
you can consider (strict) w-groupoids which are w-categories in
which all n-cells are invertible.

TN TN
X ¢l y ~ X ¢ 1 y
_/ _—/

Weak w-groupoids

[t turns out that this definition is too strict.

Given a topological space X, one expects to be able to build an
w-groupoid whose

» 0-cells are the points of X,

» 1-cells are the paths in X,

(we do have concatenation, constant paths, and inverses)

» 2-cells are homotopies,

» 3-cells are homotopies between homotopies,

» etc.
However,

» concatenation is only associative up to homotopy

» exchange is not strict

»

Partial history of weak w-categories

1983: a definition of weak w-groupoids
Grothendieck, Pursuing Stacks

2007: a definition weak w-categories (after Grothendieck)
Maltsiniotis, Infini catégories non strictes, une nouvelle définition

2009: homotopy types are weak w-groupoids
Lumsdaine, Weak w-categories from intensional type theory
van Den Berg, Garner, Types are weak w-groupoids

2016: a type-theoretic definition of weak w-groupoids
Brunerie, On the homotopy groups of spheres in homotopy type theor

Type-theoretic weak w-categories

Here, we fill the following gap:

| groupoids | categories
category theory || Grothendieck Maltsiniotis
type theory Brunerie Finster-Mimram

Why is this useful

» We have a simple definition
(no advanced categorical concepts, a few inference rules)

» We have a syntax
(we can reason by induction, etc.)

» We have tools
(we can have the machine check our terms)

» A step toward directed homotopy type theory”?
(we are still far from handling variance, univalence, etc.)

A
TYPE-THEORETIC
DEFINITION
OF
CATEGORIES

v

v

v

v

Judgments in type-theory

I" is a well-formed context:
'
A is a well-formed type in context I
F-A
tis a term of type A in context I
I'Ht:A
t and u are equal terms of type A in context T':

I'Ft=u:A

8/4

A type-theoretic definition of categories
Cartmell, 1984
» type constructors:

'+ I'Ex:x% I'ky: %
'k F'Ex—y

A type-theoretic definition of categories
Cartmell, 1984
» type constructors:

'+ I'Ex:x% I'ky: %
'k F'Ex—y

» term constructors:

X% Fid(X) 1 x — X

X:xy:xfix—=yz:%x9:y—zFcomp(f,g) : x>z

A type-theoretic definition of categories
Cartmell, 1984
» type constructors:

'+ I'Ex:x% I'ky: %
'k F'Ex—y

» term constructors:

X% Fid(X) 1 x — X

X:xy:xfix—=yz:%x9:y—zFcomp(f,g) : x>z
> axioms:
FEf:x—=y 'Ef:x—=y
I' - comp(id(x),f) =f I'Fcomp(f,id(y)) =f

A type-theoretic definition of categories
Cartmell, 1984
» type constructors:

'+ I'Ex:x% I'ky: %
'k F'Ex—y

» term constructors:

X% Fid(X) 1 x — X

X:xy:xfix—=yz:%x9:y—zFcomp(f,g) : x>z

> axioms:
FEf:x—=y 'Ef:x—=y
' F comp(id(x),f) = f I'-comp(f,id(y)) =f

» plus “standard rules” (contexts, weakening, substitutions, ...)

Models of the type theory

A model of the type theory consists in interpreting
» closed types as sets,
» closed terms as elements of their type,

in such a way that axioms are satisfied.

Models of the type theory

A model of the type theory consists in interpreting
» closed types as sets,
» closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of
» aset [«]

v

for each x,y € [«], a set [-],,
for each x € [x], an element [id], € [—],

v

Models of the type theory

A model of the type theory consists in interpreting
» closed types as sets,
» closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of
» aset [«]
» foreach x,y € [«], a set [],,
» for each x € [«], an element [id], € [—],

> ...

In other words, a model of the type theory is precisely a category
(and a morphism is a functor).

Going higher

We could gradually implement weak n-categories:
» bicategories
» tricategories
» tetracategories
> pentacategories

> ...

The problem is that
» the number of axioms is exploding
» nobody knows the definition excepting in low dimensions
» we would like to have a “uniform” definition

Unbiased definition
Since the composition is associative for categories, the
composite of any diagram like

f f f
Xg ——>X] —> ... — Xy,

is uniquely defined.

So, instead of having a binary composition and identities, we
could have a more general rule

Xo

DH, XD k1 X0 = X1y ey Xn R Tt Xnm1 — X E comp(fy, .. 1)

:XO —>Xn

Unbiased definition
We can axiomatize categories with n-ary composition.
» This is very redundant, for instance
comp(comp(f,g),h) = comp(f,g,h) = comp(f, comp(g, h))

or even
comp(f)y = f

Unbiased definition
We can axiomatize categories with n-ary composition.
» This is very redundant, for instance
comp(comp(f,g),h) = comp(f,g,h) = comp(f,comp(g, h))
or even
comp(f)y = f

» We have to characterize what we want to compose exactly.
For instance, should be able to compose

fi fa fn

X0 X1 Xn
but not
! f g
Xy z or X——>y<—"7

Unbiased definition
We can axiomatize categories with n-ary composition.
» This is very redundant, for instance
comp(comp(f,g),h) = comp(f,g,h) = comp(f,comp(g, h))
or even
comp(f)y = f

» We have to characterize what we want to compose exactly.
For instance, should be able to compose

fi fa fn

X0 X1 Xn
but not
! f g
Xy z or X——>y<—"7
g

» However, this generalizes nicely in higher dimensions!

A
TYPE-THEORETIC
DEFINITION
OF
GLOBULAR SETS

Globular sets

Definition
A globular set consists of
» aset G, and

» forevery x,y € G, a globular set GJ.

Example

corresponds to

G={xy.z} Gi={fg} (G),={¢}

15/41

Globular sets

Definition
A globular set consists of
» aset G, and

» forevery x,y € G, a globular set GJ.

Alternatively, this can be defined as
» a sequence of sets G, of n-cells forn € N,
» with source and target maps

Sn,tn : Gn+1 — Gn

satisfying suitable axioms.

Globular sets
Proposition
Globular sets are precisely the models of the type theory

'k I'Ft:A T'Fu:A
'k % Fktju

Globular sets
Proposition
Globular sets are precisely the models of the type theory

'k I'Ft:A T'Fu:A
'k % Fktju

Remark

A finite globular set
f

TN h
X lda y<=—=7Z7
ST
g

can be encoded as a context

X:xy:ixZ:xf:X=>yg:Xx—=>yh:z—=ya:f > g
* * * X—y

16/41

Globular sets

Proposition
Globular sets are precisely the models of the type theory

'k 't:A 'u:A
'k x Fktju
Proposition

The syntactic category (of contexts and substitutions) of this type
theory is the opposite of the category of finite globular sets.

PASTING
SCHEMES

Pasting schemes

We now want to define pasting schemes which are diagrams for
which we expect to have a composition. For instance,

f

-

h
X—f—>y—>Z—>W
b
f//

is a pasting scheme, but not

18

41

Disks

Given n € N, the n-disk D, is the globular set corresponding to a
general n-cell:

R T ==
Do Dy Dy Ds

(these are the representable globular sets)

Pasting schemes
A pasting scheme is a globular set

f

=

h
X—f>Yy——Z——W

b

f//

» Grothendieck: which can be obtained as a particular colimit
of disks

f

/JaN h
X —f>y X —f—>y y——>7z z—sw
N¥Br 4 oA

) f// .
X —f>y y z

20/4

Pasting schemes
A pasting scheme is a globular set

f

/" Jax)
X—f=>Y—>Z—>W
\Jer
f//
» Batanin: which is described by a particular tree
a B
X6 xXi

N e

foxgomoxX

\\/

20/41

Pasting schemes
A pasting scheme is a globular set

f

=

h
X—f>Yy——Z——W

b

f//

» Finster-Mimram: which is “totally ordered”

Order relation
We can define a preorder < on the cells of a globular set by

source(x) <x and X < target(x)

For the globular set

f
SN g ,
X—f—>y —>7—>W

N
f//

we have

x «af < aaf a«p < f a«y agaz ah aw

Characterization of pasting schemes

Theorem
A globular set is a pasting scheme if and only if it is

> non-empty,
» finite, and
» the relation < is a total order.

Construction of pasting schemes
A pointed globular set is a globular set with a distinguished cell.

Construction of pasting schemes
A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be
constructed as follows:

Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be
constructed as follows:

» we start from a 0-cell X

Construction of pasting schemes
A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be
constructed as follows:

» we start from a 0-cell X

» we can add a new (n+1)-cell and its new target,
its source being the distinguished n-cell

f f
N TN
X)% ~ X ol Yy
A 4
9

Construction of pasting schemes
A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be
constructed as follows:

» we start from a 0-cell X

» we can add a new (n+1)-cell and its new target,
its source being the distinguished n-cell
f f

TN TN
X)% ~ X ol Yy
4
9
» or the distinguished cell becomes the target of the previous
one f f
RN TN
X ol Yy ~ X ol Yy
N 4 4

g g

Construction of pasting schemes

The construction of the pasting scheme

X

corresponds to its order

Construction of pasting schemes

The construction of the pasting scheme

f

7N
X y

corresponds to its order

a f

Construction of pasting schemes

The construction of the pasting scheme

f

/a0

X—f—=Yy

corresponds to its order

X a4 f 4 «

Construction of pasting schemes

The construction of the pasting scheme

f

/i

X —f—>y

corresponds to its order

X a f a« a «a f

Construction of pasting schemes

The construction of the pasting scheme

f

/i

f >

f//

X

corresponds to its order

X <« f 1< a <« f < B

Construction of pasting schemes

The construction of the pasting scheme

f

/i

r—>y

N

f//

X

corresponds to its order

Xx <« f aa <« f ap af

Construction of pasting schemes

The construction of the pasting scheme

f

/i

f—=Y

N

f//

X

corresponds to its order

x 4« faa < f ap af avy

Construction of pasting schemes

The construction of the pasting scheme

f

/i

f/%yLZ

N

f//

X

corresponds to its order

Xx <« f <1< aaf a«pB < f <y ag

Construction of pasting schemes

The construction of the pasting scheme

f

/i

f’%yLZ

N

f//

X

corresponds to its order

X <« f 1< aaf a«ap <« f a«ay ag <z

Xx <« f aa <« f ap af

Construction of pasting schemes

The construction of the pasting scheme

f

SN g .,

f—>y z w

N

f//

X

corresponds to its order

4y 4 g <9 z <4 h

Construction of pasting schemes

The construction of the pasting scheme

f

SN g

X

r—>y

N

f//

corresponds to its order

Xx <« f aa <« f ap af

4y 4 g <9z 4 h 9w

Type-theoretic pasting schemes

Now, recall that a pasting scheme

f

_

h
X—f—>y—>=7Z—>W

NI

f//
can be seen as a context

X:xy:ixf:x—=y,fix—y,
a:f=f. " x—=ypB:f =1,
Z:xg:y—zZwW:xh:z—>w

Type-theoretic pasting schemes

A context T" (seen as a globular set) is a pasting scheme iff

F '_ps
is derivable with the rules
[ps X %
X ik Fps X ik I Fps

F,y:A,f:x?yl—pSf:XYy Mhpsy A

Type-theoretic pasting schemes

Note that with those rules
» the order of cells matters:

f
P 9
X la YV ——>Z
S~ T
f/

» because of this we can check

Source and targets
A pasting scheme I has

f

7 yaN "
X —f—>y —>Z——>W
\Jer
f//
» asource 0~ (I'):
;
X y—=zZ——w
» atarget 07 (T):
X y—szlw
\\/4

fll

both of which can be defined by induction on contexts.

28/ 4

A
TYPE-THEORETIC
DEFINITION
OF
w-CATEGORIES

Type-theoretic w-groupoids

We expect that in an w-category every pasting scheme has a
composite:
I' Fps I'EA

I'Fcohry:A

Type-theoretic w-groupoids

We expect that in an w-category every pasting scheme has a
composite:
I' Fps I'EA

I'Fcohry:A

You can derive expected operations, such as composition:

X:ky:xf:X—=Vy,Z:x,g:y—>zZFcoh:x—z
* * *

Type-theoretic w-groupoids

We expect that in an w-category every pasting scheme has a
composite:
I' Fps I'EA

I'Fcohry:A

You can derive expected operations, such as composition:

X:ky:xf:X—=Vy,Z:x,g:y—>zZFcoh:x—z
* * *

However, you can derive too much:

X:ky:xf:x—ykFcoh:y—x

We have in fact a definition of w-groupoids (close to Brunerie’s).

Type-theoretic w-groupoids
We need to take care of side-conditions and in fact split the rule
in two:

» operations:

Phps Thtou o (MFt:A 9" IT)Fu:A

I'Fcohrpyy it —u
A A

whenever

» coherences:
Thps THA

I'Fcohry: A

whenever

Type-theoretic w-groupoids

Definition
An w-category is a model of this type theory.

Type-theoretic w-groupoids

Definition
An w-category is a model of this type theory.

Conjecture
This definition coincides with Grothendieck-Maltsiniotis’.

Type-theoretic w-groupoids

A typical example of operation is composition

f f

= /7N

X—=¢—>y k coh : Xx y = X
Qﬁ/ \h/

(this coherence is noted “comp” in the following).

Type-theoretic w-groupoids

A typical example of coherence is associativity

X y z w

comp(comp(f,g),h comp(f,comp(g,h))
coh)W - X (

Coherences are reversible
Note that if we derive a coherence

I' Fps A ,
with FV(A) = FV/(T)
'+ COhnA CA
where
A = t—u,

there is also one with

Coherences are reversible
Note that if we derive a coherence

I+ I'HA
Pe with FV(A) = FV(I)
'+ COhnA CA
where
A = t—=u,

there is also one with

Definition
An n-cell f : x — y is reversible when there exists
» ann-cellg:y — xand

» reversible (n+1)-cells

a:f*nflg%idx /Bg*nflf%|dy

Implementation(s)
There are currently two implementations:
> https://github.com/ericfinster/catt
» follows closely the rules of the article
» https://github.com/smimram/catt
» has support for implicit arguments
» has support for (some) II-types
» has support for “Hom” type variables:
let comp (X : Hom) =
coh (x : X)) (y : X) (f : x>y) (z:X) (g:y—>z)
: (x> 2)
» has a web interface

In practice,
» you simply enter a list of coherences
(there is no reduction, etc.),
» if the program does not complain then they are valid
operations in weak w-categories.

https://github.com/ericfinster/catt
https://github.com/smimram/catt

» identity 1-cells
coh id (x :

*)

[

| x

> x ;

“Demo”

> identity 1-cells

coh id (x :

*) ok | x > x

» composition of 1-cells:

coh comp (x :

(z :

*) (y @ *) (f :

t x| x>z ;

“Demo”

* | x =>y)

*x) (g : x| y—->2)

“Demo”

» identity 1-cells
coh id (x : *) : * | x > x ;
» composition of 1-cells:
coh comp (x : *) (y : %) (£ : x| x -> y)
(z %) (g:*x|y—>2)
t x| x>z ;
» associativity of composition of 1-cells:
coh assoc
(x:%x) (y:x) (f:*x | x->y) (z: %)
g:*ly-=>2) (w:x*)(Q:*x]|z->w
sk | x> w
| comp x z (comp x y f zg) wh —>
comp x y f w (compyzgwh) ;

“Demo”

identity 1-cells

coh id (x : *) : * | x > x ;

composition of 1-cells:

coh comp (x : *) (y : %) (£ : x| x -> y)
(z %) (g:*x|y—>2)
t x| x>z ;

associativity of composition of 1-cells:

coh assoc
(x %) (y o x) (£ : x| x->y) (z: %)
g:*ly-=>2) (w:x*)(Q:*x]|z->w
sk | x> w
| comp x z (comp x y f zg) wh —>
comp x y f w (compyzgwh) ;

“Demo”
Only defining the Eckmann-Hilton morphism takes 300 lines

id id
/m N m N
X id—> X = X id—> X

id id
because you have to

» define usual operations and coherences,

» explicitly insert and remove identities,

» take care of bracketing of composites

let eh (X : Hom) (x : X) (a : id x -> id x) (b : id x -> id x)
: (comp' a b -> comp' b a) =

compll (comp' (unitl'- a) (unitr'- b)) (assoc3 _ _ _)
(compl2r' _ _ (unitlr x) _) (compl2' _ _ (comp3 (assoc- _ _
(compl' _ (assoc- _ _ _)) (complr' _ (ich b a) _)

(complr' _ (compr' (comp (unitr- _) (compl' _ (unitr+-- _

(comp (complr' _ (assoc3 _ _ _ _) _) (compl' _ (assocd _

H

“Demo’

> No inverses:
coh inv (x : *) (y : *) (f : x | x -> y)
*x |y > x;
produces

Checking coherence: inv

Valid tree context

Src/Tgt check forced

Source context: (x : *)

Target context: (y : *)

Failure: Source is not algebraic for y : *

CONCLUSION

Current work

Many things remain to be done:

» understand more exotic features
(implicit arguments, reduction, etc.)

» links with Globular
» add functors and higher morphisms (Thibaut Benjamin)

» variant to define opetopic categories

