A TYPE-THEORETICAL DEFINITION OF WEAK ω-CATEGORIES

Samuel Mimram

École Polytechnique

Logic In Computer Science

Higher categories

The definition of (strict) ω-category generalizes categories by taking higher cells into account.

Higher categories

The definition of (strict) ω-category generalizes categories by taking higher cells into account.

In such a category, you have

- 0-cells (objects): x
- 1-cells (morphisms): $x \xrightarrow{f} y$
- 2-cells:

- 3-cells:

Higher categories

The definition of (strict) ω-category generalizes categories by taking higher cells into account.

In such a category, you have compositions

More generally, n-cells ϕ and ψ can be composed in dimension i, with $0 \leq i<n$, when their type match.

Higher categories

The definition of (strict) ω-category generalizes categories by taking higher cells into account.

In such a category, you have axioms such as

- associativity of composition and neutrality of identities,
- exchange laws:

Higher categories

The definition of (strict) ω-category generalizes categories by taking higher cells into account.

In the case where the orientation of arrows is not really relevant, you can consider (strict) ω-groupoids which are ω-categories in which all n-cells are invertible.

Weak ω-groupoids

It turns out that this definition is too strict.

Given a topological space X, one expects to be able to build an ω-groupoid whose

- 0 -cells are the points of X,
- 1-cells are the paths in X,
(we do have concatenation, constant paths, and inverses)
- 2-cells are homotopies,
- 3-cells are homotopies between homotopies,
- etc.

However,

- concatenation is only associative up to homotopy
- exchange is not strict

Partial history of weak ω-categories

- 1983: a definition of weak ω-groupoids Grothendieck, Pursuing Stacks
- 2007: a definition weak ω-categories (after Grothendieck) Maltsiniotis, Infini catégories non strictes, une nouvelle définition
- 2009: homotopy types are weak ω-groupoids Lumsdaine, Weak ω-categories from intensional type theory van Den Berg, Garner, Types are weak ω-groupoids
- 2016: a type-theoretic definition of weak ω-groupoids Brunerie, On the homotopy groups of spheres in homotopy type theor,

Type-theoretic weak ω-categories

Here, we fill the following gap:

	groupoids	categories
category theory	Grothendieck	Maltsiniotis
type theory	Brunerie	Finster-Mimram

Why is this useful

- We have a simple definition (no advanced categorical concepts, a few inference rules)
- We have a syntax (we can reason by induction, etc.)
- We have tools
(we can have the machine check our terms)
- A step toward directed homotopy type theory? (we are still far from handling variance, univalence, etc.)

A
 TYPE-THEORETIC DEFINITION
 OF CATEGORIES

Judgments in type-theory

- Γ is a well-formed context:

$$
\Gamma \vdash
$$

- A is a well-formed type in context Γ :

$$
\Gamma \vdash A
$$

- t is a term of type A in context Γ :

$$
\Gamma \vdash t: A
$$

- t and u are equal terms of type A in context Γ :

$$
\Gamma \vdash t=u: A
$$

A type-theoretic definition of categories

Cartmell, 1984:

- type constructors:

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash x: \star \quad \Gamma \vdash y: \star}{\Gamma \vdash x \rightarrow y}
$$

A type-theoretic definition of categories

Cartmell, 1984:

- type constructors:

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash x: \star \quad \Gamma \vdash y: \star}{\Gamma \vdash x \rightarrow y}
$$

- term constructors:

$$
\overline{x: \star \vdash \operatorname{id}(x): x \rightarrow x}
$$

$$
\overline{x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z \vdash \operatorname{comp}(f, g): x \rightarrow z}
$$

A type-theoretic definition of categories

Cartmell, 1984:

- type constructors:

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash x: \star \quad \Gamma \vdash y: \star}{\Gamma \vdash x \rightarrow y}
$$

- term constructors:

$$
\frac{\overline{x: \star \vdash \mathrm{id}(x): x \rightarrow x}}{\overline{x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z \vdash \operatorname{comp}(f, g): x \rightarrow z}}
$$

- axioms:

$$
\frac{\Gamma \vdash f: x \rightarrow y}{\Gamma \vdash \operatorname{comp}(\operatorname{id}(x), f)=f} \quad \frac{\Gamma \vdash f: x \rightarrow y}{\Gamma \vdash \operatorname{comp}(f, \mathrm{id}(y))=f}
$$

A type-theoretic definition of categories

Cartmell, 1984:

- type constructors:

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash x: \star \quad \Gamma \vdash y: \star}{\Gamma \vdash x \rightarrow y}
$$

- term constructors:

$$
\overline{x: \star \vdash \operatorname{id}(x): x \rightarrow x}
$$

$$
\overline{x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z \vdash \operatorname{comp}(f, g): x \rightarrow z}
$$

- axioms:
$\Gamma \vdash f: x \rightarrow y$
$\overline{\Gamma \vdash \operatorname{comp}(i d(x), f)=f}$

$$
\Gamma \vdash f: x \rightarrow y
$$

$$
\overline{\Gamma \vdash \operatorname{comp}(f, \operatorname{id}(y))=f}
$$

- plus "standard rules" (contexts, weakening, substitutions, ...)

Models of the type theory

A model of the type theory consists in interpreting

- closed types as sets,
- closed terms as elements of their type,
in such a way that axioms are satisfied.

Models of the type theory

A model of the type theory consists in interpreting

- closed types as sets,
- closed terms as elements of their type,
in such a way that axioms are satisfied.

A model of the previous type theory consists of

- a set $\llbracket \star \rrbracket$
- for each $x, y \in \llbracket \star \rrbracket$, a set $\llbracket \rightarrow \rrbracket_{x, y}$
- for each $x \in \llbracket \star \rrbracket$, an element $\llbracket i d \rrbracket_{x} \in \llbracket \rightarrow \rrbracket_{x, x}$
- ...

Models of the type theory

A model of the type theory consists in interpreting

- closed types as sets,
- closed terms as elements of their type,
in such a way that axioms are satisfied.

A model of the previous type theory consists of

- a set $\llbracket \star \rrbracket$
- for each $x, y \in \llbracket \star \rrbracket$, a set $\llbracket \rightarrow \rrbracket_{x, y}$
- for each $x \in \llbracket \star \rrbracket$, an element $\llbracket i d \rrbracket_{x} \in \llbracket \rightarrow \rrbracket_{x, x}$
- ...

In other words, a model of the type theory is precisely a category (and a morphism is a functor).

Going higher

We could gradually implement weak n-categories:

- bicategories
- tricategories
- tetracategories
- pentacategories
- ...

The problem is that

- the number of axioms is exploding
- nobody knows the definition excepting in low dimensions
- we would like to have a "uniform" definition

Unbiased definition

Since the composition is associative for categories, the composite of any diagram like

$$
x_{0} \xrightarrow{f_{1}} x_{1} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{n}} x_{n}
$$

is uniquely defined.

So, instead of having a binary composition and identities, we could have a more general rule
$\overline{x_{0}}: \star, x_{1}: \star, f_{1}: x_{0} \rightarrow x_{1}, \ldots, x_{n}: \star, f_{n}: x_{n-1} \rightarrow x_{n} \vdash \operatorname{comp}\left(f_{1}, \ldots, f_{n}\right): x_{0} \rightarrow x_{n}$

Unbiased definition

We can axiomatize categories with n-ary composition.

- This is very redundant, for instance

$$
\operatorname{comp}(\operatorname{comp}(f, g), h)=\operatorname{comp}(f, g, h)=\operatorname{comp}(f, \operatorname{comp}(g, h))
$$

or even

$$
\operatorname{comp}(f)=f
$$

Unbiased definition

We can axiomatize categories with n-ary composition.

- This is very redundant, for instance

$$
\operatorname{comp}(\operatorname{comp}(f, g), h)=\operatorname{comp}(f, g, h)=\operatorname{comp}(f, \operatorname{comp}(g, h))
$$

or even

$$
\operatorname{comp}(f)=f
$$

- We have to characterize what we want to compose exactly. For instance, should be able to compose

$$
x_{0} \xrightarrow{f_{1}} x_{1} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{n}} x_{n}
$$

but not

z
or

Unbiased definition

We can axiomatize categories with n-ary composition.

- This is very redundant, for instance

$$
\operatorname{comp}(\operatorname{comp}(f, g), h)=\operatorname{comp}(f, g, h)=\operatorname{comp}(f, \operatorname{comp}(g, h))
$$

or even

$$
\operatorname{comp}(f)=f
$$

- We have to characterize what we want to compose exactly. For instance, should be able to compose

$$
x_{0} \xrightarrow{f_{1}} x_{1} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{n}} x_{n}
$$

but not

- However, this generalizes nicely in higher dimensions!

A
 TYPE-THEORETIC DEFINITION
 OF
 GLOBULAR SETS

Globular sets

Definition

A globular set consists of

- a set G, and
- for every $x, y \in G$, a globular set G_{y}^{x}.

Example

$$
x \underset{g}{\stackrel{\Phi}{g}} \underset{\longrightarrow}{\longrightarrow} z
$$

corresponds to
$G=\{x, y, z\}$
$G_{y}^{X}=\{f, g\}$
$\left(G_{y}^{X}\right)_{g}^{f}=\{\phi\}$
$\left(\left(G_{y}^{X}\right)_{g}^{f}\right)_{\phi}^{\phi}=\emptyset$

Globular sets

Definition

A globular set consists of

- a set G, and
- for every $x, y \in G$, a globular set G_{y}^{x}.

Alternatively, this can be defined as

- a sequence of sets G_{n} of n-cells for $n \in \mathbb{N}$,
- with source and target maps

$$
s_{n}, t_{n}: G_{n+1} \rightarrow G_{n}
$$

satisfying suitable axioms.

Globular sets

Proposition

Globular sets are precisely the models of the type theory

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash t: A \quad \Gamma \vdash u: A}{\Gamma \vdash t \rightarrow}
$$

Globular sets

Proposition

Globular sets are precisely the models of the type theory

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash t: A \quad \Gamma \vdash u: A}{\Gamma \vdash t \vec{A} u}
$$

Remark
A finite globular set

can be encoded as a context

$$
x: \star, y: \star, z: \star, f: x \underset{\star}{\rightarrow} y, g: x \underset{\star}{\rightarrow} y, h: z \underset{\star}{\rightarrow} y, \alpha: f \underset{x \rightarrow y}{\rightarrow} g
$$

Globular sets

Proposition

Globular sets are precisely the models of the type theory

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash t: A \quad \Gamma \vdash u: A}{\Gamma \vdash t \vec{A} u}
$$

Proposition

The syntactic category (of contexts and substitutions) of this type theory is the opposite of the category of finite globular sets.

PASTING
 SCHEMES

Pasting schemes

We now want to define pasting schemes which are diagrams for which we expect to have a composition. For instance,

is a pasting scheme, but not

Disks

Given $n \in \mathbb{N}$, the n-disk D_{n} is the globular set corresponding to a general n-cell:
x

D_{0}
D_{1}

x 步丰 y
D_{2}
D_{3}
(these are the representable globular sets)

Pasting schemes

A pasting scheme is a globular set

- Grothendieck: which can be obtained as a particular colimit of disks

Pasting schemes

A pasting scheme is a globular set

- Batanin: which is described by a particular tree

Pasting schemes

A pasting scheme is a globular set

- Finster-Mimram: which is "totally ordered"

Order relation

We can define a preorder \triangleleft on the cells of a globular set by

$$
\operatorname{source}(x) \triangleleft x \quad \text { and } \quad x \triangleleft \operatorname{target}(x)
$$

For the globular set

we have
$x \triangleleft f \triangleleft \alpha \triangleleft f^{\prime} \triangleleft \beta \triangleleft f^{\prime \prime} \triangleleft y \triangleleft g \triangleleft z \triangleleft h \triangleleft W$

Characterization of pasting schemes

Theorem
A globular set is a pasting scheme if and only if it is

- non-empty,
- finite, and
- the relation \triangleleft is a total order.

Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be constructed as follows:

Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be constructed as follows:

- we start from a 0-cell x

Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be constructed as follows:

- we start from a 0-cell x
- we can add a new (n+1)-cell and its new target, its source being the distinguished n-cell

Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be constructed as follows:

- we start from a 0-cell X
- we can add a new ($n+1$)-cell and its new target, its source being the distinguished n-cell

- or the distinguished cell becomes the target of the previous one

Construction of pasting schemes

The construction of the pasting scheme

corresponds to its order x

Construction of pasting schemes

The construction of the pasting scheme

corresponds to its order
$x \triangleleft f$

Construction of pasting schemes

The construction of the pasting scheme

corresponds to its order

```
x \triangleleft f \triangleleft \alpha
```


Construction of pasting schemes

The construction of the pasting scheme

corresponds to its order

```
x\triangleleftf\triangleleft\alpha
```


Construction of pasting schemes

The construction of the pasting scheme

corresponds to its order

$$
x \triangleleft f \triangleleft \alpha \triangleleft f^{\prime} \triangleleft \beta
$$

Construction of pasting schemes

The construction of the pasting scheme

corresponds to its order
$x \triangleleft f \triangleleft \alpha \triangleleft f^{\prime} \triangleleft \beta \triangleleft f^{\prime}$

Construction of pasting schemes

The construction of the pasting scheme

corresponds to its order

$$
x \triangleleft f \triangleleft \alpha \triangleleft f^{\prime} \triangleleft \beta \quad \triangleleft f^{\prime} \triangleleft y
$$

Construction of pasting schemes

The construction of the pasting scheme

corresponds to its order

$$
x \triangleleft f \triangleleft \alpha \triangleleft f^{\prime} \triangleleft \beta \quad \triangleleft f^{\prime \prime} \triangleleft y \triangleleft g
$$

Construction of pasting schemes

The construction of the pasting scheme

corresponds to its order

$$
x \triangleleft f \triangleleft \alpha \triangleleft f^{\prime} \triangleleft \beta \triangleleft f^{\prime \prime} \triangleleft y \triangleleft g \triangleleft z
$$

Construction of pasting schemes

The construction of the pasting scheme

corresponds to its order

$$
x \triangleleft f \triangleleft \alpha \triangleleft f^{\prime} \triangleleft \beta \triangleleft f^{\prime \prime} \triangleleft y \triangleleft g \triangleleft z \triangleleft h
$$

Construction of pasting schemes

The construction of the pasting scheme

corresponds to its order

$$
x \triangleleft f \triangleleft \alpha \triangleleft f^{\prime} \triangleleft \beta \triangleleft f^{\prime \prime} \triangleleft y \triangleleft g \triangleleft z \triangleleft h \triangleleft w
$$

Type-theoretic pasting schemes

Now, recall that a pasting scheme

can be seen as a context

$$
\begin{aligned}
& x: \star, y: \star, f: x \rightarrow y, f^{\prime}: x \rightarrow y, \\
& \alpha: f \rightarrow f^{\prime}, f^{\prime \prime}: x \rightarrow y, \beta: f^{\prime} \rightarrow f^{\prime \prime}, \\
& z: \star, g: y \rightarrow z, w: \star, h: z \rightarrow w
\end{aligned}
$$

Type-theoretic pasting schemes

A context Γ (seen as a globular set) is a pasting scheme iff

$$
\Gamma \vdash_{\mathrm{ps}}
$$

is derivable with the rules

$$
\begin{array}{cc}
\frac{\Gamma: \star \vdash_{\mathrm{ps}} x: \star}{} & \frac{\Gamma \vdash_{\mathrm{ps}} x: \star}{\Gamma \vdash_{\mathrm{ps}}} \\
\frac{\Gamma \vdash_{\mathrm{ps}} x: A}{\Gamma, y: A, f: x{\underset{A}{\rightarrow}}^{y} \vdash_{\mathrm{ps}} f: x \rightarrow \underset{A}{y}} & \frac{\Gamma \vdash_{\mathrm{ps}} f: x \vec{A} y}{\Gamma \vdash_{\mathrm{ps}} y: A}
\end{array}
$$

Type-theoretic pasting schemes

Note that with those rules

- the order of cells matters:

- because of this we can check

Source and targets

A pasting scheme Γ has

- a source $\partial^{-}(\Gamma)$:

- a target $\partial^{+}(\Gamma)$:

both of which can be defined by induction on contexts.

A
 TYPE-THEORETIC DEFINITION
 OF ω-CATEGORIES

Type-theoretic ω-groupoids

We expect that in an ω-category every pasting scheme has a composite:

$$
\frac{\Gamma \vdash \vdash_{\mathrm{ps}} \quad \Gamma \vdash A}{\Gamma \vdash \operatorname{coh}_{\Gamma, A}: A}
$$

Type-theoretic ω-groupoids

We expect that in an ω-category every pasting scheme has a composite:

$$
\frac{\Gamma \vdash_{\mathrm{ps}} \quad \Gamma \vdash A}{\Gamma \vdash \operatorname{coh}_{\Gamma, A}: A}
$$

You can derive expected operations, such as composition:

$$
x: \star, y: \star, f: x \underset{\star}{\rightarrow} y, z: \star, g: y \underset{\star}{\rightarrow} z \vdash \operatorname{coh}: x \underset{\star}{\rightarrow} z
$$

Type-theoretic ω-groupoids

We expect that in an ω-category every pasting scheme has a composite:

$$
\frac{\Gamma \vdash_{\mathrm{ps}} \quad \Gamma \vdash A}{\Gamma \vdash \operatorname{coh}_{\Gamma, A}: A}
$$

You can derive expected operations, such as composition:

$$
x: \star, y: \star, f: x \underset{\star}{\rightarrow} y, z: \star, g: y \underset{\star}{\rightarrow} z \vdash \operatorname{coh}: x \underset{\star}{\rightarrow} z
$$

However, you can derive too much:

$$
x: \star, y: \star, f: x \underset{\star}{\rightarrow} y \vdash \operatorname{coh}: y \underset{\star}{\rightarrow} x
$$

We have in fact a definition of ω-groupoids (close to Brunerie's).

Type-theoretic ω-groupoids

We need to take care of side-conditions and in fact split the rule in two:

- operations:

$$
\frac{\Gamma \vdash_{\mathrm{ps}} \quad \Gamma \vdash t \underset{A}{\rightarrow} u \quad \partial^{-}(\Gamma) \vdash t: A \quad \partial^{+}(\Gamma) \vdash u: A}{\Gamma \vdash \operatorname{coh}_{\Gamma, t \rightarrow \underset{A}{ } u}: t \underset{A}{\rightarrow} u}
$$

whenever

$$
\digamma V(t)=\digamma V\left(\partial^{-}(\Gamma)\right) \quad \text { and } \quad \digamma V(u)=\digamma V\left(\partial^{+}(\Gamma)\right)
$$

- coherences:

$$
\frac{\Gamma \vdash_{\mathrm{ps}} \quad \Gamma \vdash A}{\Gamma \vdash \operatorname{coh}_{\Gamma, A}: A}
$$

whenever

$$
\digamma V(A)=\digamma V(\Gamma)
$$

Type-theoretic ω-groupoids

Definition
An ω-category is a model of this type theory.

Type-theoretic ω-groupoids

Definition

An ω-category is a model of this type theory.

Conjecture

This definition coincides with Grothendieck-Maltsiniotis'.

Type-theoretic ω-groupoids

A typical example of operation is composition

(this coherence is noted "comp" in the following).

Type-theoretic ω-groupoids

A typical example of coherence is associativity

Coherences are reversible

Note that if we derive a coherence

$$
\frac{\Gamma \vdash_{\mathrm{ps}} \quad \Gamma \vdash A}{\Gamma \vdash \operatorname{coh}_{\Gamma, A}: A} \quad \text { with } \quad F V(A)=F V(\Gamma)
$$

where

$$
A=t \rightarrow u,
$$

there is also one with

$$
A=u \rightarrow t .
$$

Coherences are reversible

Note that if we derive a coherence

$$
\frac{\Gamma \vdash_{\mathrm{ps}} \quad \Gamma \vdash A}{\Gamma \vdash \operatorname{coh}_{\Gamma, A}: A} \quad \text { with } \quad \digamma V(A)=\digamma V(\Gamma)
$$

where

$$
A=t \rightarrow u,
$$

there is also one with

$$
A=u \rightarrow t .
$$

Definition

An n-cell $f: x \rightarrow y$ is reversible when there exists

- an n-cell $g: y \rightarrow x$ and
- reversible $(n+1)$-cells

$$
\alpha: f *_{n-1} g \rightarrow \mathrm{id}_{x} \quad \beta: g *_{n-1} f \rightarrow \mathrm{id}_{y}
$$

Implementation(s)

There are currently two implementations:

- https://github.com/ericfinster/catt
- follows closely the rules of the article
- https://github.com/smimram/catt
- has support for implicit arguments
- has support for (some) П-types
- has support for "Hom" type variables:
let comp ($\mathrm{X}: \mathrm{Hom}$) = coh (x : X) (y : X) (f : x \rightarrow y) (z : X) (g : y \rightarrow z)

$$
\text { : (} \mathrm{x}->\mathrm{z})
$$

- has a web interface

In practice,

- you simply enter a list of coherences (there is no reduction, etc.),
- if the program does not complain then they are valid operations in weak ω-categories.
- identity 1-cells

$$
\text { coh id }(\mathrm{x}: *): * \mid x->\mathrm{x}
$$

- identity 1-cells
coh id (x : *) : * | x -> x ;
- composition of 1-cells:

$$
\begin{gathered}
\text { coh comp }(\mathrm{x}: *)(\mathrm{y}: *)(\mathrm{f}: * \mid \mathrm{x}-\mathrm{y}) \\
(\mathrm{z}: *)(\mathrm{g}: * \mid \mathrm{y} \rightarrow \mathrm{z}) \\
\\
: * \mid \mathrm{x} \rightarrow \mathrm{z} ;
\end{gathered}
$$

"Demo"

- identity 1-cells

$$
\operatorname{coh} i d(\mathrm{x}: *): * \mid \mathrm{x} \rightarrow \mathrm{x} ;
$$

- composition of 1-cells:

$$
\begin{aligned}
\operatorname{coh} \operatorname{comp} & (\mathrm{x}: *)(\mathrm{y}: *)(\mathrm{f}: * \mid \mathrm{x} \rightarrow \mathrm{y}) \\
& (\mathrm{z}: *)(\mathrm{g}: * \mid \mathrm{y} \rightarrow \mathrm{z}) \\
& : * \mid \mathrm{x} \rightarrow \mathrm{z} ;
\end{aligned}
$$

- associativity of composition of 1-cells:

$$
\begin{aligned}
& \text { coh assoc } \\
& \text { (x : *) (y : *) (f : * | x -> y) (z : *) } \\
& \text { (g : * | y -> z) (w : *) (h : * | z -> w) } \\
& \text { : * | x -> w } \\
& \text { | comp x z (comp x y f z g) wh -> } \\
& \text { comp x y f w (comp y z g wh) ; }
\end{aligned}
$$

"Demo"

- identity 1-cells
coh id (x : *) : * | x \rightarrow x ;
- composition of 1-cells:

$$
\begin{aligned}
\operatorname{coh} \operatorname{comp} & (\mathrm{x}: *)(\mathrm{y}: *)(\mathrm{f}: * \mid \mathrm{x} \rightarrow \mathrm{y}) \\
& (\mathrm{z}: *)(\mathrm{g}: * \mid \mathrm{y} \rightarrow \mathrm{z}) \\
& : * \mid \mathrm{x} \rightarrow \mathrm{z} ;
\end{aligned}
$$

- associativity of composition of 1-cells:

$$
\begin{aligned}
& \text { coh assoc } \\
& \text { (x : *) (y : *) (f : * | x -> y) (z : *) } \\
& \text { (g : * | y -> z) (w : *) (h : * | z -> w) } \\
& \text { : * | x -> w } \\
& \text { | comp x z (comp x y f z g) wh -> } \\
& \text { comp x y f w (comp y z g wh) ; }
\end{aligned}
$$

"Demo"

Only defining the Eckmann-Hilton morphism takes 300 lines

because you have to

- define usual operations and coherences,
- explicitly insert and remove identities,
- take care of bracketing of composites

```
let eh (X : Hom) (x : X) (a : id x -> id x) (b : id x -> id x)
    : (comp' a b -> comp' b a) =
    comp11 (comp' (unitl'- a) (unitr'- b)) (assoc3 _ _ _ _)
    (compl2r' _ _ (unitlr x) _) (compl2' _ _ (comp3 (assoc- _ _
    (compl' _ (assoc- _ _ _)) (complr' _ (ich b a) _)
    (complr' _ (compr' (comp (unitr- _) (compl' _ (unitr+-- _)))
    (comp (complr' _ (assoc3 _ _ _ _) _) (compl' _ (assoc4 _f8,41-
```


"Demo"

- no inverses:

```
coh inv (x : *) (y : *) (f : * | x -> y)
    : * | y \(\rightarrow\) x ;
```

produces
Checking coherence: inv
Valid tree context
Src/Tgt check forced
Source context: (x : *)
Target context: (y : *)
Failure: Source is not algebraic for y : *

CONCLUSION

Current work

Many things remain to be done:

- understand more exotic features (implicit arguments, reduction, etc.)
- links with Globular
- add functors and higher morphisms (Thibaut Benjamin)
- variant to define opetopic categories

