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The goal of this presentation will be to give detailed examples of “co-categorical models of linear logic” as defined
in our FSCD paper [HM25], motivating them through analogies with more well-known 1- and 2-categorical models.
These models can be seen as a generalization of Girard’s original model of normal functors [Gir88] and more recent
models of species [Fio+08; FGH24] and polynomials [ GK13; HM24].

Categorical semantics of linear logic. There are multiple ways to axiomatize what it means for a category to be a
model of linear logic. As far as Intuitionistic Linear Logic is concerned, the notion of linear non-linear adjunction
encompasses all others, as advocated in [Mel09]. A linear non-linear adjunction is an adjunction

(M, ) $ (%)

between a category with finite products (M, x ) and a symmetric monoidal closed category (£, ®) such that the left
adjoint L : M — L is strongly symmetric monoidal from the cartesian structure on M to the monoidal structure on
L.

Any such adjunction induces a lax-monoidal comonad LM : £ — £ which models the exponential modality
of (intuitionistic) linear logic. The tensor product and monoidal closure on £ give interpretations to the tensor
and linear implication connectives of linear logic, and it can be shown that the structure of the linear non-linear
adjunction is enough for this to constitute a denotational model of ILL.

Relational models. The simplest and most well-known categorical model of linear logic is the relational model.
In the relational model, the formulae of linear logic are interpreted as sets, the proofs of A - B are interpreted as
relations R C [A] x [B], and the exponential !A is interpreted as the set Mul([A]) of (finite) multisets on [A]. In
this case, the corresponding linear non-linear adjunction is between the monoidal category £ := Rel (with tensor
product given by the cartesian product of underlying sets), and M := Relyy, the coKleisli category for the comonad
Mul on Rel.

An even simpler linear non-linear adjunction involving the category Rel is given by

Set L " Rel
P

i.e. the adjunction induced by identifying Rel as the Kleisli category for the powerset monad on Set The left adjoint
is strongly monoidal because the monoidal structure on Rel is given by the cartesian product of underlying sets.



This LNL adjunction gives a way to interpret the powerset comonad P on Rel as an exponential modality of linear
logic.

Extensional point of view on relations. Every relation R C X x Y induces a union-preserving map between their
powersets

P(X) — P(Y)
UCX—{yeY|3IxelU xRy}

and every union-preserving map between these powersets is uniquely determined by a relation R C X X Y in that
way. A poset with arbitrary joins is called a suplattice, and a join-preserving map is called a suplattice morphism or
linear map. In the same way a matrix represents a linear map between vector spaces, a relation represents a linear
map betwen suplattices.

From the previous discussion, we see that the fullsubcategory of SupLat on the suplattices of the form (P(X), Q)
is equivalent to the category Rel. The tensor product on Rel extends to a tensor product on SupLat where E @ F has
the universal property that linear maps E ® F — G correspond to maps E x F — G that preserve joins independently
in both variables.

The multiset comonad on Rel extends to the cofree commutative comonoid comonad on SupLat, and the powerset
comonad extends to the powerset comonad on SupLat, induced by

F
Set _ . " SupLat
forget

But there are other interesting exponential comonads on SupLat.

From sets to posets. Let IP be a class of posets. The category Posetp of posets E that admit join of families indexed
by posets in IP admits a symmetric monoidal structure where the tensor product E ® F classifies maps that are
“IP-linear” independently in both variables. In particular, Poset,;; = SupLat. Moreover, when IP C [P/, the forgetful
functor Posetp, — Posetp admits a strongly monoidal left adjoint, a kind of “relative cocompletion”.

Writing dir for the class of directed posets, given IP C dir, it turns out the monoidal structure on Posetp is
cartesian. Summing everything up, we have the following chain of strongly monoidal left adjoints.

(Set, x) _ 1 " (Poset, x) ,_ + " (Posetgy, x) , L (SupLat,®)

In particular, this gives three exponential comonads on SupLat. The adjunction with Set induces the powerset
comonad P as before, and it restricts to Rel. The adjunction with Poset gives a variant of the powerset comonad that
retains more information about the ordering. The adjunction with Posetg;; gives the domain-theoretic exponential
on Rel.

From sets to posets. Write Porel for the category whose objects are posets and morphisms are ordered relations
E x F°P — Bool. The functors

Set — SupLat
X — P(X) := Homg (X, Bool)



whose essential image is equivalent to Rel extends to a functor

Poset — SupLat
E — P(E) := Hompge (E°F, Bool)

whose essential image is equivalent to Porel.
Theorem 1. Under this equivalence, the three previous comonad act on the underlying posets respectively as

e E — P(E) the free cocompletion of the underlying set of E,

e E — P(E) the free cocompletion of E,

e E — F(E) the free cocompletion of E under finite joins.
While the Mul comonad acted as the free commutative monoid on underlying sets.

The relationship between F and Mul has already been studied for instance in [Ehr12].
From posets to categories. This whole story generalizes to a categorical setting: sets are replaced by (oo-) groupoids,
posets by (co-) categories, Bool by the category Set of sets (or S of co-groupoids). With an additional subtlety: how
to generalize the notion of directed poset.

Given a class of (co—) categories C, write Catc for the (co—) category of (co—) categories with C-indexed colimits
and functors that preserve such colimits. Then we have a symmetric monoidal structure on Catc as before, and
symmetric monoidal left adjoints to the forgetful functors Cater — Cate [Lurl?7].

In particular, writing sift for the class of sifted (co-) categories and filtr for the class of filtered (co—) categories,
we have the following chain of symmetric monoidal left adjoints.

(Grpd, x) _ * (Cat, x) L " (Catgy, x) L ° (Catgp, x) £ (Catyy, ®)

Theorem 2. The full subcategory of Cat,y on presheaf categories is equivalent to the category of categories and profunctors,
and from this point of view the induced comonads on Prof correspond to

o the free cocompletion of the underlying groupoid
e the free cocompletion

o the free cocompletion under finite colimits

e the free cocompletion under finite coproducts

And as before, we can also construct the free exponential by taking cofree commutative comonoids in Cat,yj, and
the action on the underlying category in Prof will be to take the free symmetric monoidal category, yielding back
the exponential from the theory of generalized species of structures [Fio+08; FGH24], a generalization of Girard’s
original model of normal functors [Gir88].

The general analogy is summed up in table 1.



0-categories (posets) 1-categories oo-categories

set X € Set groupoid X € Grpd co-groupoid X € S
poset P € Poset category C € Cat co-category C € Cateo
relation 7 : X X Y — Bool functor F: X X Y — Set oco-functor F: X xY — §
(r;r")(x,2) =V, r(x,y) A1 (y,2) (F; F')(x,z) = colimy, F(x,y) x F'(y,z)
relationR C X x Y discrete fibration Z —+ X X Y fibration Z —+ X x Y

ordered relation r : P x Q° — Bool | profunctor F : C x D°? — Set | oo-profunctor F:C x DP — S

(r;r")(x,2) =V, r(x,y) AT (y,2) (F;F')(x,z) = [Y F(x,y) x F'(y,z) (coend formula)
suplattice cocomplete category cocomplete co-category
P(P) = Bool”™” P(C) = Set®™ P(C) = S¢*
domain category with filtered colimits | co-category with filtered colimits

Table 1: Analogies between 0-, 1- and co-categories
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