Rewriting in shuffle operads and resolutions of operads

Isaac Ren
joint work with Philippe Malbos

ENS de Lyon - Université de Lyon

February 5, 2021
Motivations from algebra

Shuffle operads and Gröbner bases

Polygraphic rewriting in shuffle operads

Higher dimensional rewriting in shuffle operads
Motivations from algebra
Why algebraic rewriting?

› Newman (1942) : rewriting is a **combinatorial** theory of equivalence

› Algebraic rewriting: a combinatorial theory of **congruence**

› In computer algebra: **ideal membership, resolutions, homological properties**

› In constructive mathematics: **cofibrant replacements**

Our algebraic structure of interest is the structure of **symmetric operads** (May 1972, Loday 1996), which are abstractions of multilinear maps.

Example: symmetric operad Lie

The symmetric operad Lie is generated by one antisymmetric operation μ of **arity 2**, satisfying the **Jacobi relation**

$$\mu_{123} + \mu_{231} + \mu_{312} = 0.$$

Compare with

$$[[x_1, x_2], x_3] + [[x_2, x_3], x_1] + [[x_3, x_1], x_2] = 0.$$
Our algebraic structure of interest is the structure of **symmetric operads** (May 1972, Loday 1996), which are abstractions of multilinear maps.

Example: symmetric operad Lie

The symmetric operad Lie is generated by one antisymmetric **operation** μ of **arity** 2, satisfying the **Jacobi relation**

$$
\mu^{1,2,3} + \mu^{2,3,1} + \mu^{3,1,2} = 0.
$$

Compare with

$$
[[x_1, x_2], x_3] + [[x_2, x_3], x_1] + [[x_3, x_1], x_2] = 0.
$$

Due to the symmetric actions, there is no known way to do algebraic rewriting in symmetric operads: this motivates the study of **shuffle operads** [Dotsenko-Khoroshkin 2010].
Two ways of doing rewriting:

\(\langle \) with a monomial order and an algebraic formulation of confluence: **Gröbner bases**

\(\rangle \) in a higher dimensional setting: **polygraphs**

Our goal is to mix the two approaches.
Shuffle operads and Gröbner bases
If associative algebras are a linear version of words, then shuffle operads are a linear version of planar trees.
Shuffle operads [Dotsenko-Khoroshkin 2010]

- The category Coll of collections is the presheaf category on Ord, the category of finite nonempty ordered sets with order-preserving bijections, with values in Vect, the category of vector spaces over k.

- A collection V is determined by $V(k) := V(\{1 < \cdots < k\})$ for $k \geq 1$. An element of $V(k)$ is of arity k.

- The shuffle composition of two collections V, W is

$$V \circ_\text{III} W(I) = \bigoplus_{k \geq 1} V(k) \otimes \left(\bigoplus_{f : I \rightarrow \{1, \ldots, k\}} W(f^{-1}\{1\}) \otimes \cdots \otimes W(f^{-1}\{k\}) \right)$$

where $I \in \text{Ord}$ and f is a shuffle surjection, that is, $\min f^{-1}\{1\} < \cdots < \min f^{-1}\{k\}$. The unit for this composition is $1 := (k, 0, \ldots)$.

- $(\text{Coll}, \circ_\text{III}, 1)$ is a monoidal category. The category of shuffle operads, denoted by IIIOp, is the category of internal monoids in $(\text{Coll}, \circ_\text{III}, 1)$.
Tree monomials

\[\langle \text{Tree monomials} \rangle \]

\[\text{Let } X = (X(k))_{k \geq 1} \text{ such that } X(k) \text{ is a basis of } V(k) \text{ for every } k \geq 1. \text{ In terms of planar trees, the collection } V \circ_{\text{III}} V \text{ has a basis of planar trees} \]

\[\begin{array}{c}
 i_1 \quad \cdots \quad i_{n_1} \quad i_{n_1+\cdots+n_{k-1}+1} \quad \cdots \quad i_{n_1+\cdots+n_k} \\
 x_1 \quad \cdots \quad x_k \\
 x_0
\end{array} \]

\[\text{For } j \in \{1, \ldots, k\}, \text{ the inputs of } x_j \text{ are } \{i_{n_1+\cdots+n_{j-1}+1}, \cdots < i_{n_1+\cdots+n_j}\}. \text{ The inputs of } x_0 \text{ are } \{i_1 < i_{n_1+1} < \cdots < i_{n_1+\cdots+n_{k-1}+1}\}. \text{ We always draw inputs in increasing order.} \]

\[\text{By iterating this tree construction, we get the free shuffle operad on } X, \text{ denoted by } X^{\text{III}}, \text{ spanned by tree monomials. We refer to elements of } X^{\text{III}}(k) \text{ as polynomials of arity } k. \]
Example: shuffle operad \(\text{Lie}^b \)

The shuffle operad \(\text{Lie}^b \) is generated by one operation \(\mu \) of arity 2, and satisfies the shuffle Jacobi relation

\[
\begin{array}{c}
\mu_1 2 3 - \mu_1 3 2 - \mu_2 1 3 = 0.
\end{array}
\]
With the planar tree interpretation, we can define contexts:

Contexts

A **context of inner arity** k is a tree monomial $C[_]$ of the form

```
\begin{array}{c}
v_1 \quad \cdots \quad \square_k \quad \cdots \quad v_n \\
\vdots \\
u
\end{array}
```

where \square_k is a symbol of arity k and u, \bar{v}, \bar{w} are tree monomials.

Given a polynomial $f = \sum \lambda_i u_i$ of arity k, we define the polynomial $C[f] := \sum \lambda_i C[u_i]$.
Monomial orders

A monomial order is a total order on tree monomials that is compatible with contexts. For a polynomial f,

- its leading monomial $\text{lm}(f)$ is the greatest tree monomial that occurs,
- its leading coefficient $\text{lc}(f)$ is the coefficient in front of the leading monomial,
- For example, there exists a monomial order called path-lexicographic such that

$$\mu/3 > 1\mu > 1\mu/2 > 1\mu/3.$$
Gröbner bases for operads

Given two polynomials f and g, if there exists a context C such that $C[\text{lm}(g)] = \text{lm}(f)$, then we define the reduction of f by g as the polynomial $f - \frac{\text{lc}(f)}{\text{lc}(g)}C[g]$.

For example, the shuffle Jacobi relation induces the reductions

\[
\begin{align*}
1 & \mu 2 \mu 3 \mu 4 & \rightarrow & 1 & \mu 2 & \mu 3 & \mu 4 & + & 1 & \mu 2 \mu & \mu 3 & \mu 4 \\
1 & \mu 2 & \mu 3 & \mu 4 & \rightarrow & 1 & \mu 2 & \mu 4 & 3 & + & 1 & \mu 4 & \mu 3 & 1 & \mu 2 & \mu 4 & 3 \\
\end{align*}
\]

A Gröbner basis of an ideal I of a free shuffle operad X^{III} is a generating set G such that every nonzero polynomial in I can be reduced by an element of G.
This approach allows us to obtain a homological result on operads:

Koszulness

Koszulness is a property on operads that ensures the existence of a minimal model, given by: in particular, the Koszul dual cooperad of a Koszul operad is a minimal model of the operad.

Theorem [Dotsenko-Khoroshkin 2010]

A quadratic operad with a Gröbner basis is Koszul.
Polygraphic rewriting in shuffle operads
Shuffle 1-operads

A shuffle 1-operad is an internal category in the category \mathcal{O}_op of shuffle operads.

\[
P_0 \xleftarrow{s_0} i_1 \xrightarrow{t_0} P_1
\]

The elements of P_0 are called 0-cells, and those of P_1 are called 1-cells.
Shuffle 1-polygraphs

A shuffle 1-polygraph is a diagram

\[
\begin{array}{ccc}
X_0 & \xleftarrow{s_0} & X_1 \\
\uparrow & & \downarrow^{t_0} \\
X_0 & & X_1
\end{array}
\]

where

- \(X_0 = (X_0(k))_{k \geq 1}\) is the indexed set of generators
- \(X_1 = (X_1(k))_{k \geq 1}\) is the indexed set of rewriting rules
- the source and target maps \(s_0, t_0 : X_1 \to X_0^{\text{III}}\) are from rewriting rules to the free operad on the generators.
Shuffle 1-polygraphs

A shuffle 1-polygraph is a diagram

\[
\begin{array}{c}
X_0^{III} \\
\uparrow \\
X_0
\end{array}
\xleftarrow{s_0} \xrightarrow{i_1} \begin{array}{c}
X_1^{III} \\
\downarrow^{t_0} \\
X_1
\end{array}
\]

where

\[X_0 = (X_0(k))_{k \geq 1} \text{ is the indexed set of generators} \]
\[X_1 = (X_1(k))_{k \geq 1} \text{ is the indexed set of rewriting rules} \]
\[\text{the source and target maps } s_0, t_0 : X_1 \to X_0^{III} \text{ are from rewriting rules to the free operad on the generators.} \]
\[X^{III} = (X_0^{III}, X_1^{III}) \text{ is the free shuffle 1-operad where } X_0^{III} \text{ is the shuffle operad of 0-cells and } X_1^{III} \text{ is the shuffle operad of 1-cells.} \]
\[\text{The shuffle operad presented by } X \text{ is the coequalizer } \overline{X} \text{ of } s_0, t_0 : X_1^{III} \rightrightarrows X_0^{III}. \]
Example: polygraphic presentation of Lie^b

The shuffle operad Lie^b is presented by the shuffle 1-polygraph

$$X_{\text{Lie}^b} := \left\langle \mu \in X_0(2) \mid \alpha : \begin{array}{c}
\mu^3 \rightarrow \mu^2 + \mu^3
\end{array} \right\rangle.$$
Rewriting systems from 1-polygraphs

Let X be a **left-monomial** 1-polygraph, that is, every source is a tree monomial.

A **rewriting step** is a 1-cell

$$\lambda C[\alpha] + i_1(b) : \lambda C[u] + b \rightarrow \lambda C[a] + b$$

of X_{III}^1, where $\alpha : u \rightarrow a$ is a rewriting rule, C is a context, λ is a nonzero scalar, and b is a polynomial of X_{III}^0 such that $C[u] \notin \text{supp}(b)$.

X is **terminating** if there are no infinite rewriting paths.
Branchings

- A **branching** is a pair of rewriting paths \((f, g)\) with the same source.
- A **local branching** is a branching \((f, g)\) where \(f\) and \(g\) are rewriting steps. We classify local branchings as:
 - **additive**
 - **multiplicative**
 - **intersecting**
 - **critical**
The 1-polygraph X is (locally) confluent if, for every (local) branching (f, g), there exist rewriting paths h and k and the confluent diagram

The 1-polygraph X is convergent if it is confluent and terminating.

A Gröbner basis is equivalent to a convergent 1-polygraph whose rewriting rules reduce the leading term to the rest.
Cellular extension

Let X be a 1-polygraph.

A cellular extension is an indexed set of generating 2-cells

where $s_0(A), t_0(A)$ are 0-cells and $s_1(A), t_1(A) : a \rightarrow b$ are 1-cells of X^{III}.

Let \sim be the equivalence relation generated by $s_1(A) \sim t_1(A)$ for every element A of the cellular extension. The cellular extension is acyclic if the equivalence relation \sim has one equivalence class.

Theorem (coherent critical branchings)

Let \(X \) be a terminating 1-polygraph with a generating 2-cell for each critical branching \((f, g)\):

\[
\begin{aligned}
 a &\rightarrow f & b &\rightarrow h \\
 g &\rightarrow c & k &\rightarrow d \\
 A &\rightarrow & A
\end{aligned}
\]

Then the cellular extension is acyclic.

We can then consider compositions of generating 2-cells by gluing confluent diagrams: this leads to the notion of higher dimensional rewriting.
Example: coherent convergence of X_{Lie}b

The 1-polygraph X_{Lie}b only has one critical pair and is convergent. The cellular extension will have only one generating 2-cell:
Higher dimensional rewriting in shuffle operads
A **shuffle ω-operad** is an internal (strict) ω-category in IIIOp, that is, an object

\[
\begin{align*}
P_0 & \xleftarrow{s_0} i_1 \xrightarrow{t_0} P_1 \\
& \xleftarrow{s_1} i_2 \xrightarrow{t_1} P_2 \\
& \quad \cdots \\
& \xleftarrow{s_{n-1}} i_n \xrightarrow{t_{n-1}} P_n \\
& \xleftarrow{s_n} i_{n+1} \xrightarrow{t_n} \cdots
\end{align*}
\]

satisfying globularity, associativity, and identity axioms.

The interaction between the ω-category structure and the operad structure gives the **linear exchange relation**: for any n-cells a and b, the two paths below are equal:

\[
\begin{align*}
s_0(a) & \xrightarrow{b} s_0(b) \\
& \xrightarrow{t_0(a)} t_0(a) \\
& \xrightarrow{t_0(a')} t_0(a')
\end{align*}
\]

\[
\begin{align*}
s_0(a) & \xrightarrow{a} s_0(a) \\
& \xrightarrow{t_0(b)} t_0(b) \\
& \xrightarrow{t_0(a')} t_0(a')
\end{align*}
\]
Shuffle ω-polygraphs

The definition of 1-polygraphs extends to that of shuffle ω-polygraphs:

\[
\begin{array}{c}
X_0^\mathcal{I} \\
\downarrow t_0 \\
X_0 \\

X_1^\mathcal{I} \\
\downarrow t_1 \\
X_1 \\

X_2^\mathcal{I} \\
\downarrow t_1 \\
X_2 \\

\vdots

X_n^\mathcal{I} \\
\downarrow t_n \\
X_n \\
\end{array}
\]

An ω-polygraph is a polygraphic resolution if each cellular extension X_{n+1} is acyclic.
Overlapping polygraphic resolution

Let X be a convergent 1-polygraph. We can construct the **overlapping polygraphic resolution** $\text{Ov}(X)$ on X, where the elements of $\text{Ov}(X)_n$ correspond to certain overlappings of n rewriting rules:

1-overlapping \hspace{1cm} 2-overlapping \hspace{1cm} 3-overlapping \hspace{1cm} 4-overlapping

and so on...
Theorem [Malbos-R. 2020]

A operad P with a convergent quadratic polygraphic presentation X is Koszul.

Idea of proof.

- Extend the 1-polygraph X to the overlapping polygraphic resolution $Ov(X)$.
- Study the induced P-bimodule resolution $(P\langle Ov(X)_n \rangle)_n$, whose generators are concentrated on the superdiagonal.
- Calculate the **Quillen homology** of the operad P, which is concentrated on the diagonal, which gives a sufficient condition for Koszulness.
And now...

We have defined the notion of **polygraphic resolution** of an operad.

- How to construct a resolution/cofibrant replacement in the category of **differential graded operads**?
- Does the overlapping resolution give a **minimal** cofibrant replacement?
- Can shuffle operadic rewriting be generalized to **shuffle properads**?