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Simplicial sets

Recall the semi-simplicial sets semantics of epistemic logic:

φ ::= p | true | ¬φ | φ ∧ ψ | DUφ U ⊆ { , , }, p ∈ Ap

M,w |= DUφ iff for all U-adjacent simplices w ′, M,w ′ |= φ
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"Semi-simplicial Set Models for Distributed Knowledge"
Theorem
Epistemic coverings are isomorphic to epistemic Kripke frames

Epistemic Coverings

Simplicial Complex base

Pure

S5 Kripke models

Prop
er Pure simplicial

models [GLR’18]

MinimalMaximal



“Problems”:

▶ awkward model? topology almost lost
▶ dead agents know everything:

if ̸∈ w , then for all φ, M,w |= K φ

Here is an idea!
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Model: chromatic hypergraphs

Definition
A chromatic hypergraph H is a tuple (E , {Va, pa}a∈A), where:
▶ E is a set of hyperedges,
▶ Va is a set of views of agent a,
▶ pa : E → Va is a surjective partial function for each agent a.

Additionally, we require that for each e ∈ E , pa(e) is defined for at
least one a ∈ A.
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Logic: two-level syntax

What if we consider views seriously?

φa ::= pa | truea | ¬φ | φ ∧ ψ | K̂aΦ | KaΦ a ∈ A, pa ∈ Apa

Φ ::= pE | trueE | ¬Φ | Φ ∧Ψ |  aφ |  aφ a ∈ A, pE ∈ ApE



Logic: two-level syntax

What if we consider views seriously?

φa ::= pa | truea | ¬φ | φ ∧ ψ | K̂aΦ | KaΦ a ∈ A, pa ∈ Apa

Φ ::= pE | trueE | ¬Φ | Φ ∧Ψ |  aφ |  aφ a ∈ A, pE ∈ ApE



Logic: two-level syntax

φa ::= pa | truea | ¬φ | φ ∧ ψ | K̂aΦ | KaΦ a ∈ A, pa ∈ Apa
Φ ::= pE | trueE | ¬Φ | Φ ∧Ψ |  aφ |  aφ a ∈ A, pE ∈ ApE

Rules:

⊢ φ ⊢ φ→ ψ

⊢ ψ
MP

⊢E Φ

⊢a KaΦ
Nec-a

⊢a φ

⊢E  aφ
Nec-E

⊢ Φ → Ψ

⊢ ♡Φ → ♡Ψ
Mono

⊢ Φ →  aψ

⊢ K̂aΦ → ψ
========== Adj-1

⊢ φ→ KaΨ

⊢  aφ→ Ψ
========== Adj-2

Axioms:
▶ ⊢a φ→ K̂a aφ (surjectivity)
▶ ⊢a K̂a aφ→ φ (functionality)
▶ ⊢E Φ →

∨
a∈A  aK̂aΦ (joint totality)
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Semantics

M, va |= K̂aΦ ⇐⇒ ∃(e ∋ va).M, e |= Φ

M, e |=  aφ ⇐⇒ ∃(va ∈ e).M, va |= φ

¬Ka btrueb Ka¬( btrueb ∧  ctruec)



Some properties: derivable

▶ self-awareness: Ka( aφ→  aφ)

▶ “positive” introspection: KaΦ → Ka aKaΦ

▶ “negative” introspection: Φ →  aK̂aΦ

▶ locality by definition: Ka ap ∨ Ka a¬p

▶ “safe” knowledge:  aKaΦ – not normal
▶ “unsafe” knowledge:  aKaΦ – normal
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Dual hypergraphs

Chromatic hypergraphs Bipartite graph Frames

Theorem
Category of chromatic hypergraphs and category of partial
epistemic frames are isomorphic.
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Extensions and dualities

Neighborhood frames:
several points of view per world

Dynamics à la Panangaden-Taylor’92:
extension with temporality

Directed semantics:
concurrency as ignorance
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Conclusion

▶ Main takeaway:
structures for (epistemic) logic are geometric in nature

▶ Beyond standard epistemic logic: many-sorted logic for explicit
reasoning about worlds and points of view

▶ Beyond simplicial complexes: hypergraph semantics

Thank you!
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