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Two motivations
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Difficulty of DL on curves over Fpn

Frequently asked question:

Can I trust a cryptosystem based on an elliptic curve
defined over a small/medium extension field Fpn?

This is very important in practice:

Arithmetic in the finite field is fast (OEF, . . . )

Well suited to constrained environment.

(But not present in all the standards).
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Difficulty of DL on curves over Fpn

General Weil descent attack (Frey):

Consider the Weil restriction A of E on Fp;

Find a curve C on A of genus as low as possible;
(C is a cover of E, that can be defined over Fp)

Map the DLP on E to a DLP on Jac(C);

Use index-calculus to solve the DLP on Jac(C).

Problems:

Finding a low genus curve C is difficult.

The Jacobian group law for C is non trivial in general.
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Previous work in odd characteristic

The case p = 2 has been much studied, but results do not extend
easily.

Arita, Galbraith: Some cases in characteristic 3.

Diem: The GHS attack in odd characteristic

Give bounds for genus of GHS-like curves C.

Find families of elliptic curves for which there exists a C
with low genus.

Thériault: Weil descent attack for Kummer extensions

Find families of elliptic and hyperelliptic curves for which
there exists a C with low genus.

The curve C is explicitly constructed and is hyper- or
super- elliptic.
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Use Abelian varieties that are not Jacobians?

Main objection: the arithmetic is exponential in g, whereas it is
polynomial in g for Jacobians.

Abelian var. of dim g Jac. of curve of genus g

Key size g log q g log q

Rep of elts 2g log q 2g log q

Group law Ω(2g log q) poly(g log q)

Index Calc. O((2g)!q2− 2

2g ) O(g!q2− 2

g )

For g = 1, 2, 3, abelian varieties are more or less always
Jacobians of curves.

For g ≥ 4, this is no longer true.
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Abelian varieties of dimension 4

A possible design:

By CM theory, build the period matrix of a dimension 4
abelian variety A;

Find a suitable finite field, so that the group order is
appropriate and reduce the invariants (ratios of squares of
Theta constants);

Implement the group law using addition law of Theta
functions;

Hope (prove?) that there are no curve of low genus on A.
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Abelian varieties of dimension 4

It is possible to have an exponentiation algorithm that takes
(7 × 2g − 3) log n multiplications in Fq for an exponentiation by n.

For dimension 4, this gives: 109 log n multiplications. This is very
competitive with Jacobians of hyperelliptic curves (see talk of
R. Avanzi, tomorrow).

The security is better than with a genus 4 Jacobian, since the
index calculus does not work as well.

Question: is this latter statment true?
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Results and ingredients
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Main result

Let E be an elliptic curve over Fqn . There exists an algorithm that
computes a discrete logarithm in E in time

O
(

q2− 2

n

)

,

where the constant hidden in O() depends (exponentially) in n.

=⇒ Better than Pollard-Rho for n fixed ≥ 3.
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Interpretation

The very bad dependance in n forces us to keep n fixed (small).

Examples:

n = 3. If E is defined over Fq3 , then the discrete log problem
can be solved in time O(q4/3) ≈ O(q1.33).

n = 4. If E is defined over Fq4 , then the discrete log problem
can be solved in time O(q1.5).

Rem. These complexities were already obtained by Diem and
Thériault for special families of curves. What is new is that it is
true for all elliptic curves.
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By-product: 2nd result

Let A be an abelian variety of dimension n over Fq. There exists
an algorithm that computes a discrete logarithm in A in time

O
(

q2− 2

n

)

,

where the constant hidden in O() depends (exponentially) in n.

This result implies the previous one by considering the Weil
restriction of the elliptic curve.
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Ingredients

Index calculus: decomposition of elements of the group into

� small � elements, compatible with the group law.

Semaev’s � algorithm � : idea that there is no need for a
unique decomposition (before, decomposition relies on
factorization). Summations polynomials.

Weil Descent: E over Fqn is an abelian variety of dimension
n over Fq.

Thériault’s algorithm and its extensions by Nagao and
G.–Thomé: use of large primes in this very particular
context.
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Introductory example
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An ECDL problem over F10192

The polynomial f(t) = t2 + 1 is irreducible over Fp with p = 1019,
so we choose

Fp2 := Fp[t]/(t
2 + 1).

We consider E of equation y2 = x3 + ax + b with a = 214 + 364t
and b = 123 + 983t.

E is cyclic of order N = 1 039 037.

Let P and Q be two random points of E:

P = (401 + 517t, 885 + 15t) and Q = (935 + 210t, 740 + 617t).

We want to compute the logarithm of Q in base P in E.
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A factor basis

Rem. The word � factor � is not well suited: decomposition basis
would be better. (see the group law on E as a multiplication.)

Def. The factor basis is:

F = {P = (x, y) ∈ E; x ∈ Fp, y ∈ Fp2}.

For each x ∈ Fp, the element x3 + ax + b is � random � in Fp2 , and
therefore is a square with probability 1/2.

We have
#F = 1011 ≈ p.
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Index calculus algorithm

Form a linear combination of P and Q:

R = αP + βQ, where α, β ∈R [0, N − 1].

Look for P1 and P2 in F such that

R = P1 + P2.

If we find such a decomposition of R over F , we call it a
relation, that we store in the row of a matrix:

R = αP + βQ =
∑

Pi∈F

miPi.

After #F + 1 = 1012 relations have been found, use linear
algebra to build α and β such that

αP + βQ = 0.
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Decomposition of R over F – (1)

Let P1 = (x1, y1) and P2 = (x2, y2) be the points of F in the
decomposition that we look for.

Semaev gives a polynomial f3(x1, x2, x3) that vanishes if and only
if the xi are the abscissae of points Pi whose sum vanishes in E.

Then we have to solve f3(xR, x1, x2) = 0, where xR ∈ Fp2 is
known and x1 and x2 are unknowns in Fp.

After symmetrisation e1 = x1 + x2 and e2 = x1x2, we get:

(e2
1 − 4e2)x

2
R − 2(e1e2 + ae1 + 2b)xR + a2 + e2

2 − 2ae2 − 4be1 = 0.
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Decomposition of R over F – (2)

One equation, two unknowns.

But: the unknowns are in a subfield.

Prop. Using the explicit representation of the extension field, we
get two equations in two unknowns.

=⇒ Solvable using resultants or Gröbner basis, followed by
factorization in Fp[X].
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Decomposition of R over F – (3)

Ex. Let R be the following linear combination:

R = 459 328P + 313 814Q = (415 + 211t, 183 + 288t).

Then the equation

(e2
1 − 4e2)x

2
R − 2(e1e2 + ae1 + 2b)xR + a2 + e2

2 − 2ae2 − 4be1 = 0

can be rewritten (modulo f(t) = t2 + 1) in

(881e2
1 + 597e1e2 + 31e1 + 843e2 + 669) t +

(329e2
1 + 189e1e2 + 971e1 + e2

2 + 294e2 + 740) = 0.
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Decomposition of R over F – (4)

From that, we deduce

(e1, e2) = (845, 1003),

and then
x1 = 92 and x2 = 753.

Finally, we test the possible yi, and we get

R = 459328P + 313814Q = P1 + P2,

with
P1 = (92, 779 + 754t) and P2 = (753, 628 + 692t).
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Complexity

Forming a linear combination of P and Q and testing if it is
decomposable takes a time polynomial in log p.

The expected number of relations given by each random
linear combination is 1/2 (independant of p).

Forming the matrix of relations costs O(p) polynomial time
operations.

The linear algebra step costs O(p3) with Gauß, O(p2) with
Wiedemann, and O(p) using the fact that there are only two
non-zero entries per row.

Thm. There exists an index calculus algorithm that can solve an
ECDLP over Fp2 in time O(p) up to log factors.

Rem. Same complexity as Pollard Rho.
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General algorithm
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General algorithm – (1)

We consider now a degree n extension (n is small).

Fpn = Fp[t]/(f(t)),

with f(t) irreducible over Fp, of degree n.

Let E be an elliptic curve over Fpn , and P and Q two points on E.

If (x, y) ∈ E, we note x = x0 + x1t + · · · + xn−1t
n−1 and

y = y0 + y1t + · · · + yn−1t
n−1, with xi and yi in Fp.

Def. We define a factor base as follows:

F = {P = (x, y) ∈ E, x0 = x1 = · · · = xn−2 = 0}.

Rem. The choice of coordinates that we annihilate is arbitrary.
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General algorithm – (2)

Prop. Under a few genericity assumptions, F is an irreducible
variety of dimension 1 (we cut an irreducible variety of dimension
n by n − 1 � random � hyperplanes).

Cor. By Hasse-Weil theorem,

#F ≈ p.

We form random linear combinations R = αP + βQ, that we try to
decompose in the sum of n points of F .

Questions:

expected number of relations obtained for each linear
combination

time required for one decomposition over F .
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Decomposition

Like in the example, we reduce the problem to finding solutions of
a system of algebraic equations.

Resolution using a Gröbner basis computation over Fp, followed
by a factorization of a polynomial in Fp[X].

=⇒ Cost is polynomial in log p and exponential in n.

Rem. We’ll see later bounds on the degrees.
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Probability of finding a relation

We consider the function

f : Fn/Sn −→ E

(P1, . . . , Pn) 7→ P1 + · · · + Pn

The decomposition algorithm computes f−1(R) for a given R.

Hence, the expected number of relations that we find for one R is

∑

R∈E

#f−1(R)

#E
=

1

#E
#(Fn/Sn) ≈

1

pn

pn

n!
≈

1

n!
.

Rem. We have neglected the terms with smaller order of
magnitude (corresponding for instance to P1 = P2).
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Complexity for fixed n

Forming a linear combination of P and Q and testing if it is
decomposable over F takes a time polynomial in log p.

The expected number of relations found for each linear
combination is 1/n! (independant of p).

Forming the matrix of relations costs O(p) operations that
are polynomial-time in log p.

The (sparse) linear algebra costs O(p2) with Wiedemann.

=⇒ The total cost of the algorithm for fixed n is in O(p2).
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Use of Thériault’s algorithm – (1)

Let 0 < r < 1 be a parameter. We choose a subset F ′ of F of
cardinality pr:

F ′ ⊂ F and #F ′ ≈ pr.

For the construction of the matrix, we keep only the relations that
involve n − 1 points of F ′ and 1 point of F \ F ′ (large prime).

Birthday paradox: If we have k such relations, we can deduce (on
average) k2

p relations involving only elements of F ′.

We want to have #F ′ = pr relations, we need then

k = p
1+r

2

relations with a large prime.
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Use of Thériault’s algorithm – (2)

Cost for finding a relation with large prime (n fixed):
(

p

pr

)n−1

= p(1−r)(n−1).

Cost for the construction of the matrix of relations over F ′:

kp(1−r)(n−1) = p(1−r)(n−1)+ 1+r

2 .

Cost of the linear algebra:

(pr)2 = p2r.

Balancing the costs, we find r = 2n−1
2n+1 , and an overall cost of

O(p2− 4

2n+1 ).
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Improvement to Thériault’s algorithm

Idea: Taking two large primes instead of one can only help!

The tricky part is to analyze this double-large-prime variant in a
rigourous way.

Done independently, and in different ways by Nagao and
G.–Thomé.

Result: The complexity drops to O(p2− 2

n ).
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Back to the decomposition – (1)

Def. Semaev’s summation polynomials: for a given elliptic curve
E, there exist polynomials fn that are symmetric in n variables
and that vanish exactly when evaluated at abscissae of points
whose sum is 0 in E.

P1 + P2 + · · · + Pn = 0 ⇐⇒ fn(xP1
, xP2

, . . . , xPn
) = 0.

Thm. (Semaev) For n ≥ 3, fn is of degree 2n−2 in each variable.

Cor. If we write fn in terms of the elementary symmetric
polynomials, fn is of total degree 2n−2.
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Back to the decomposition – (2)

Hence the system we have to consider in order to solve the
decomposition problem has n equations in n unknowns. Each
equation has degree 2n−1.

=⇒ we expect a degree O(2n(n−1)) for the univariate polynomial
in a Lex Gröbner basis.

Rem. If n = 5, we have an ideal whose degree is about 1 million.

Rem. For n = 3, Magma makes a decomposition in 0.1 second.
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Comparison with classical Weil Descent – (1)

A

Cn/Sn C Cg/Sg Jac(C)

(∗)

(∗)

Map DL

The arrows marked by (∗) are those where the index calculus
takes place.
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Comparison with classical Weil Descent – (2)

Advantages of our method:

Does not require any knowledge of the geometry of C. No
arithmetic in its Jacobian needed.

The factorial component in the complexity is always n!, as
compared to g!, where g ≥ n can be exponential in n.

Drawbacks of our method:

Gröbner basis are not easy to deal with.

Dependance in n is too bad.
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Conclusion

Algorithm in O(p2−2/n) for ECDL over Fpn , with a constant
that depends exponentially in n.

For n = 3, we get an O(p1.33) algorithm with a reasonnable
constant.

For n = 4, we get an O(p1.5) algorithm with a bad constant.

For larger n, just a theoretical result. . . But see Diem’s
variant!

=⇒ The elliptic curves defined over extension of small degree
≥ 3 are asymptotically less secure than was what previously
admitted.
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Generalisations

This algorithm extends easily to DLP in Jacobians of
hyperelliptic curves of genus g over Fpn . The complexity is

O(p2− 2

ng ).

More generally, we can give a general discrete log algorithm
for abelian varieties of dimension n over Fp in time O(p2−4/n).

For instance, in the Jacobian of a genus 2 curve over Fp2 we
have a discrete log algorithm in O(p1.5).
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Other recent works

Recent preprint by Arita–Matsuo–Nagao–Shimura.
They propose an attack against a very large class of elliptic
curves over Fq4 .

Use Scholten’s form to find a curve of genus 9 in the Weil
restriction.

Diem’s subexponential algorithm.
Use a variant of our algorithm to obtain a L3/4(n log q)

algorithm for ECDL in Fqn , with n ∼ log q.
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