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Introduction

As part of my graduation from the Institut Universitaire de Technologie (IUT) Blagnac, I had to
perform, along with my classmate Alexandre Bontems, a ten weeks internship in the Department
of Electronic engineering of the Institute of Technology Tallaght (ITT), located in the city of
Tallaght in the Dublin area. The goal of this internship was to apply the knowledge acquired
during our studies at the IUT to a real research project with concrete applications.

Since the internship took place in a university, discovery of the world of work as well as inte-
gration into a company were not part of our objectives, unlike most of our french schoolmates;
instead, the challenge was about work and integration inside an english-speaking, foreign aca-
demic environment. Another peculiarity is that both of us were assigned to the same project,
therefore we had to share out the tasks among ourselves.

The general purpose of the project was to design a system that would allow researchers of the
ITT to monitor remotely and simultaneously multiple inputs from various sensors placed in
a wind turbine, which is located in front of the ITT’s main building. Our work consisted in
choosing the hardware and technologies most suited to the task, as well as setting up the network
infrastructure and developing the software required to implement such a system.

In the first part of this report, I will present the context of the project, that is who it served,
what was needed and why. I will next make an inventory and comparison of the available
technologies, leading to the technological choices that were made and their justification. Third
part will be dedicated to the design of the different parts of the system, with a special emphasis
on the server side, which constituted most of my work. After comes the implementation part,
also on the server side, and a fifth part about the future work that still needs to be done. I
will finally talk about the results achieved in the whole project, on a professional, but also more
personal level.

Please note that chapters 1 to 3 were written collaboratively by me and Alexandre, and therefore
figure in both of our reports.
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1 Context

1.1 The Wind Energy Technology Centre

The Wind Energy Technology Centre, involves a focus by ITT Dublin’s School of Engineering,
towards research within the field of Wind Energy. As a vast area of research, the School
of Engineering current research has been attentive to Wind Energy at a Micro-generation level.

Continuing on from a Sustainable Energy Authority of Ireland (SEAI) initiative in 2011, sur-
rounding wind data collection, (as applicable to the on-campus 6kW Wind Turbine — see
figure 1.1a). The Wind Energy Technology Centre is dedicated to continued research in this field
while establishing links with industry and fellow institutes involved in this area. The aim is to
study the effects of an urban environment on the wind conditions (speed, direction,
etc) and consequently on the effectiveness of the turbine.

In conjunction with the 6kW Wind Turbine, a 15 meter Meteorological Mast — see figure
1.1b — resides in the vicinity of the Wind Turbine to allow comprehensive research to develop
in this area. Weather stations as located on site within the campus, allow comparative data
analysis. While two grid tied parallel inverters are in use to feed power back to the grid. The use
of industry standard power analysing equipment as available within the School of Engineering
gives the advantage of specific power analysis.

(a) 6kW wind turbine (b) Meteorological mast

Figure 1.1: Wind turbine and meteorological mast
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1.2. Problem definition Part 1. Context

1.2 Problem definition

In order to precisely mesure the wind conditions near the turbine, two anemometers have been
placed on the top of the meteorological mast: one is located at the height of the turbine’s hub
and one at the height of the bottom radius of the blades. The difference of speed between these
two points is a valuable source of information which is recorded with a high resolution frequency.

A battery (located in one of the boxes of the met-mast — see figure 1.1b) is also
hooked up on the met-mast and is charged by these two devices. For maintenance and trou-
bleshoot purposes, it is necessary to be able to monitor the battery level at its source
and be able to tell if the battery is charging. The only way for the researchers was to
climb up the met-mast which is time consuming and according to a direct testimony from one
of the researchers: ”It’s frankly a pain”.

There was therefore a need for a system capable of monitoring the battery and accessible from
the ground. Specific needs for the battery involved displaying real time data of the voltage
output and displaying an history of values over the last minutes. The system also had to be
transferable with other sensors in the future, like the two anemometers on the met-mast.

1.3 Solution

The solution devised was to build a node monitoring system to facilitate maintenance
and troubleshooting scenarios. An embedded system board would take the battery data
and store it locally. Then an application would display this data in real time (and over the last
few minutes) on a client device.

This monitoring system was to be point to point and enable quick observation of whether the
battery was being charged and at what level the battery was being charged at. It was to be
accessible via a secured wireless medium that could be viewed on a tablet or phone
device from ground level.

Hence, the following general layout:

Data Source Board Client Device

Figure 1.2: Global system layout

When the solution was implemented, the extensibility of the system was meant to be tested with
the addition of pressure sensors to the board.
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2 Background

One of the important goals of this project was the choice of technologies for the different
blocks of the system. Specifically it involved picking an embedded board capable of sampling
data from different sensors concurrently, choosing the most suited network topology and later
on choosing appropriate pressure sensors. This part will detail which technologies were available
and provide insight on the choices eventually made.

2.1 Embedded boards

In terms of embedded boards, two options were available: the Raspberry Pi B+ and the
Intel® Edison.

(a) Raspberry Pi model B+ (b) Intel® Edison Kit for Arduino

Figure 2.1: Embedded boards

It was decided to implement the system on the Raspberry Pi first and then test the imple-
mentation on the Intel® Edison to compare the results between the boards. A configuration
guide was written for each board in this regard, and also as documentation in case the setup
needed to be done again; those are available in the board git repository as config/rpi.md and
config/edison.md.

2.1.1 Intel® Edison

The Intel® Edison is an Internet of Things (IoT) board whose design is oriented towards low
power consumption. Out of the box, it contains an integrated Wi-Fi chipset and an Analog-to-
Digital Converter (ADC), both needed for the implementation of this project. Consequently,
the initial setup of these components is pretty easy as they are preconfigured in the Edison’s
operating system and libraries.

However the design of the board and the apparent inaccuracy of the ADC don’t play in favor
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2.1. Embedded boards Part 2. Background

of the Edison.

While experimenting with the board, the values collected from the integrated ADC were off by
several digits from what could be measured with a multimeter, despite the 12-bits resolution of
the ADC. It turned out that the library used to collect data from the ADC, mraa, was configured
on a 10-bits resolution by default. But even after changing this resolution in the program to
the maximum of 12 bits, the values were still off up to 0.2V, which was not an acceptable
error margin.

Also, despite the wireless setup being drastically simpler on the Edison (just a matter of pressing
a button for 4 seconds), the package manager, opkg, is very limited, and all the libraries
used had to be installed manually from source in order to dispose of the latest versions, while it
took only a few commands on the Raspberry Pi.

2.1.2 Raspberry Pi B+

The Raspberry Pi Model B+ is an embedded board designed as a low-cost computing terminal.
It features a relatively powerful processor and an interesting hardware hackability for this
project. Its price and the large community behind the hardware — providing a wide array of
resources and documentations — made the board a relevant choice for this project.

The model B+ does not, however, feature an integrated ADC nor an integrated Wi-Fi chipset.
That means the implementation of the system required a more complex setup than the Edison:
installation of a Wi-Fi dongle and installation of an ADC. The Wi-Fi dongle setup was
especially complex, notably because of drivers specific to the chip that were not installed on the
operating system, nor available in the package repositories.

Now both cards still need external storage space if values from the ADC are to be stored accross
several years. On the Raspberry Pi, it has to be USB storage as the micro-SD card is already used
by the system. Fortunately, this is very simple to achieve as the drive is instantly recognized,
and just need to be mounted in the right place. USB storage is not supported by default by the
Edison despite one port being available, so it would require a micro-SD card that may not have
as much storage available.

MCP3008 ADC

Figure 2.2: MCP3008

For this project, the MCP3008 ADC was provided as it was necessary to convert values from
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2.2. Network topologies Part 2. Background

analog sensors. It can take an analog input voltage and yield a digital value representative of
the input.

This ADC requires a voltage supply between 2.7V and 5.5V: perfect for the Raspberry Pi which
can provide either 3.3V or 5V.

Its 10-bits resolution means it will provide a value between 0 and 1023 which can then be
converted to a voltage value by comparing it to the reference voltage provided to the ADC.
With the Raspberry Pi, a reference voltage of 3.3V can be provided so there is a step of 3.22mV
between each value (3.3V/1023 = 3.22mV).

The MCP3008 communicates through a Serial Peripheral Interface (SPI) bus which is relatively
fast (compared to other bus types like I²C) but requires a lot of wiring to the embedded board.

2.2 Network topologies

Another important choice was the network topology: what kind of network is the most suited
to communicate with the client application?

Figure 2.3: Network topologies

2.2.1 Peer-to-peer (ad hoc network)

The basic requirement was to be able to communicate with at least one client, which could be
done with a basic ad hoc network. This is a decentralized network topology that would have
greatly facilitated the setup on the server side. Unfortunately, this kind of network is very poorly
supported by Android devices, so it could not be used for this project. Anyway, the client/server
architecture of the system tends more toward the use of a centralized topology, as clients don’t
need to communicate between them.

2.2.2 Client-server (Wi-Fi access point)

Using a Wi-Fi access point is the standard way to setup a centralized wireless network. The
access point acts as a router that will automatically assign Internet Protocol (IP) addresses to
its clients: this allows to easily manage multiple clients requesting data to the server, as any Wi-
Fi/Dynamic Host Configuration Protocol (DHCP) enabled device can easily join the network,
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2.3. Pressure sensors Part 2. Background

including Android ones. Hence this is the solution that was chosen to implement the network.

2.3 Pressure sensors

The choice of pressure sensors was greatly influenced by the design of the application as they
were chosen later during development. They needed to be easily connectable to the ADC and
board used and other specifications were not important: the goal was to test the addition of
sensors to the board. Therefore, the pressure sensor NXP MPXHZ6400AC6T1 was chosen mostly
for its appriopriate voltage supply requirements (between 4.64 and 5.36V which can be provided
by both the Raspberry Pi and the Intel® Edison).

Figure 2.4: Pressure sensor NXP MPXHZ6400AC6T1
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3 Design

3.1 Server side

3.1.1 Serving data on the network

The primary role of the board is to act as a server feeding realtime data from the battery
and sensors in the wind turbine to remote client applications, for monitoring and maintenance
purpose. Note the plural here for applications, implying that the server should be able to handle
multiple connections asynchronously. Also, it was requested that the application give the
current value of a given source, battery or sensor, but also an history of the latest minutes
samples. Eventually other kinds of data would be requested for future needs, so it has been
decided to establish a simple request protocol with predifined messages identifying each request.

The protocol is very simple: a request command is a two-characters string, where the first
character should identify the source from which we want the data, and the second character its
nature. The choice of character is only for semantic purpose, some special commands may not
request data from a sensor; the only absolute requirement is the length of the string, so that it
will simplify command parsing. Here are the requests defined and supported as of the date of
this report:

• `bl` : current battery output voltage

• `bh` : battery output voltage history

• `sf` : status of the storage space on the board

As you can see, the `sf` request doesn’t follow the semantic rule because of its special purpose
(”sf” is for ”Storage Full”), related to the collector discussed right below: at some point the
board’s storage space will be full, and the server must notify the monitor app to let the user
know he has to free up space, either by going directly to the wind turbine change the external
storage, or by downloading files remotely via Secure Shell (SSH) for example.

The way all those features should be implemented in their workflow is summarized in the work-
flow diagram shown in figure 3.1.
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3.1. Server side Part 3. Design

History CollectorHistory Collector

ServerServer Request HandlerRequest Handler

CollectingCollecting

WaitingWaiting ListeningListeningaccept disconnect

Figure 3.1: Server workflow diagram

We will have on one side processes updating independantly the history of the latest samples
for each source, called History Collectors. On the other side will be the network part of
the program, with the actual Server waiting for incoming connections, creating a Request
Handler for each connection in a separate process that can be closed at any moment without
affecting the rest of the program. There is no final state in the diagram, nor exit state for the
History Collector and the Server, because they should ideally run indefinitely, unless someone
wants explicitly to shutdown the server or the board, or if an unexpected error occurs.

3.1.2 Collecting data

The other role of the board is to log values from the battery and sensors on disk across several
years. This will enable researchers to establish statistics in order to optimize some parame-
ters, for example the placement of the wind turbine benefiting the best from the wind speed.
This feature is independant from the realtime monitoring handled by the server, and should
consequently be implemented as a separate program.

do/log on disk

Collecting

do/log on disk

Collecting
storage full

Figure 3.2: Collector workflow diagram

Such long periods of data collecting raise the problem of the storage space available, especially
with the requested plain-text Comma Separated Values (CSV) file format, far more voluminous
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3.1. Server side Part 3. Design

than an application-specific binary format. To overcome this problem, the solution chosen was
to run on a regular basis a program that would check the amount of free space available, and
stop the collector beyond a defined threshold, as shown in figure 3.2. The regularity at which
the check is executed depends on a number of variables:

• The initial storage space available

• The average size of one sample log, itself depending on the nature of the sample as well as
its formatting

• The number of sources collected

• The sampling rate for each source

The three latter variables determine the speed at which the amount of data will increase. The
sampling rate should be 6Hz as requested by researchers; we can consider 3 different sources:
battery output voltage, wind speed and wind direction, though only the battery is supported
as of the date of this report; and finally, every sample must be logged along with a timestamp
formatted on 19 characters (YYYY-MM-DD HH:MM:SS), plus at most 6 significant digits for the value
itself, which makes a total of 26 characters with the CSV comma. With these approximations,
this gives us a speed of 6×3×26 = 468B s−1. This amounts to 468×3600×24 = 40 435 200B ≈
40MB of data stored on a daily basis.

Considering a minimum of 4GB of initial storage, this represents 1% of it, giving enough
margin to perform a daily check for a threshold >1% of free space.

Finally, we should keep in mind that the server is also collecting data at a given sampling rate
to keep its history of the latest samples, hence a common Application Programming Interface
(API) should be implemented for both the server and the collector. This also implies that the
two programs may want to read the ADC at the same time, which may lead to conflicts in
transactions and therefore wrong values. Because all sources are read from the same ADC,
this problem affects as well all the independant ”sub-collectors” for each source. It is thereby
important to find a way to synchronize all the read procedures in the implementation.

3.1.3 Service scheduling

To collect and serve data on the network automatically just by booting the board, it is necessary
to define a scheduling of all the services required, in order to satisfy possible dependencies
between them. We must also consider possible events that may disrupt those services, and if
not prevent them from happening, at least restart automatically said services so that the system
keeps running without the need of manual intervention. This has been summarized in a workflow
diagram shown in figure 3.3.
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do/check

Storage checker

do/check

Storage checker
do/collect
Collector
do/collect
Collector

do/init
Network drivers

do/init
Network drivers

do/init
Wireless AP

do/init
Wireless AP

do/listen
Server

do/listen
Server

boot

storage not full

ready

ready

interruption interruption

Figure 3.3: Service scheduling workflow diagram

1. First, the board is booted by being powered.

2. The Collector service can be started only if there is enough free storage space.

3. The Wireless Access Point (AP) will be started as soon as the system has finished
preparing the Network drivers.

4. Finally, the Server can be started when the Wireless AP is ready.

The Collector and most of all the Server are the two services the most prone to unexpected
events leading to interruptions, and therefore must be restarted automatically.

3.2 Client side

The main purpose of the client application is to display real time data from the board’s
network. Thus, the general workflow of the network actions in figure 3.4 was planned early
on. The application will try to connect to the board on startup until a connection is established.
When connected, new data will be requested until the application loses focus or is closed, which
means network actions will be performed in a loop while the application is running.

The application will be able to request different kinds of information concurrently and will
support multiple sensors. Therefore, the application will feature different screens — one for
each sensor — and every screen will be able to request data from the board and display it. To
achieve this design, and because the future extensibility of the system is a requirement of this
project, the client application will be somewhat modular so that the addition of new screens
for additional sensors will be as easy as possible. This principle translates itself into the diagram
of the figure 3.5.

This diagram states that the client application is to be composed of different views (screens)
and one network manager shared accross all views. Each view will be able to access this network
manager to request and retrieve data from a distant server, and update its content. The network
manager will feature an API allowing the views to provide specific configurations like their
necessary server commands (bl, bh, ...) and the intervals according to which new data
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3.2. Client side Part 3. Design

ConnectingConnecting
do/update values

Connected
do/update values

Connected

DisconnectedDisconnected

fail

success

onPause/onStop

Figure 3.4: Android application general workflow

android-app

Views NetworkManager

Distant Server

Figure 3.5: Android application general architecture

should be requested. The network manager, with said configurations, will be able to manage
every network actions and thanks to the implementation of an Observer Pattern, provide the
views with new data when a request is resolved.
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4 Implementation

4.1 Board setup

The first step to implement the board monitoring system was to choose and setup all the software
needed for each service/feature. We will only discuss in this section the technological choices
that were done. Detailed installation instructions of the programs and libraries can be found in
the configuration guides mentioned in section 2.1.

4.1.1 Operating system

The Operating System (OS) is the base on which will run all other softwares, so this is naturally
the first piece of the system that was installed. Whatever board would be chosen for the final
implementation, the constant was that it would be a GNU/Linux distribution, to maximize soft-
ware compatibility between the boards (and because this is the industry standard on embedded
boards). The Raspberry Pi features a wide range of available OS, and the winning choice was
Arch Linux ARM; there are multiple reasons for this:

• It has a small size of 276MB, useful to save up space for the collector

• System configuration is simple and straight-forward

• It always features the latest software revisions thanks to its well-furnished package repos-
itories as well as its rolling-release mechanism

As for the Intel® Edison, there are only a few alternative distributions because of the i586
architecture of the System on Chip (SoC), and none with the advantages of Arch Linux, so it
was easier to keep the default Yocto Linux.

4.1.2 Programming language

It is next necessary to choose the programming language(s) used to implement the services
themselves. There are many technologies available thanks to the boards running Linux, including
C, Python and Javascript among the most popular.

As a low-level language with lots of libraries available, C would be a good choice if we needed
true realtime data. However, the Linux kernel installed is not realtime, and even if it’s possible
to install one on the Raspberry Pi or to use the one installed on the second SoC of the Intel®
Edison with the ViperOS GNU/Linux distribution, this would imply a lot of extra work for a
feature that is not a requirement of the system: it is indeed not a problem if the values monitored
are given with a few milliseconds, or even seconds delay. Moreover, the low-level nature of the C
language is also its weakness, as the development takes a lot more time when high-level features
like Object-Oriented Programming (OOP), multithreading and network communications are
needed.

If responsiveness is not a problem, and high-level features are a requirement, then Python looks
like the perfect fit for the task. Its clear and concise syntax, powerful object oriented capabilities,
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4.2. Sensor reading Part 4. Implementation

and very complete standard library, as well as its Test-Driven Development (TDD) model, make
it suitable for the embedded system we want to implement. This is therefore the language that
was used to program the two main services of the board, the collector and the server. More
specifically, the latest version, Python 3.5, was to be used to benefit of the latest features of
the language available. However, this version is not installed by default on the Edison, and
consequently had to be compiled from source along with the corresponding versions of the
external libraries used.

4.1.3 Service manager

To implement the service scheduling discussed in subsection 3.1.3, there is two standard ways
on Linux:

• Using the legacy SysVInit to schedule programs at boot time, and cron to launch the
storage checker (subsection 3.1.2) on a daily basis

• Using the new systemd machinery to implement both features in a unified way

systemd is the one installed by default on Arch Linux and Yocto Linux, as it is becoming the new
standard in the Linux ecosystem. In addition, it allows a fine-grained management of service
dependencies and conflicts that goes beyond a simple ordering of program startup at boot time.
This is therefore the software chosen to implement service scheduling.

4.2 Sensor reading

One of the first work of the implementation process concerned the collection of data. The
goal was to read the output voltage from an electric generator (mimicking the output of the
met-mast’s battery) and store it on the board.

4.2.1 MCP3008 ADC

To collect data from the generator and sensors, the analog output from those devices needs
to be converted to digital values. Since the Raspberry Pi does not have an integrated ADC,
an external one is used: the MCP3008. For more information on the wiring and communication
protocol used with the MCP3008, please refer to Alexandre Bontems’s report.

4.2.2 Pressure sensors

Following the collection of battery data was the collection of pressure sensors data. However, be-
cause of a lack of time, the software for reading these sensors was not implemented. Informations
on the wiring setup can be found in Alexandre Bontems’s report.

4.3 Data collection

As discussed in the design in subsection 3.1.2, it is required to define a common data collection
API for both server and collector; once done, it is trivial to program the collector that uses this
API to log samples on disk.

19



4.3. Data collection Part 4. Implementation

4.3.1 adc module

The fundamental operation when collecting data is reading them from the ADC. We just men-
tioned how to do this concretely with the MCP3008, which was probably the most challenging
part, but what about the integrated ADC of the Edison? In order for the collector to support
any possible ADC, it is necessary to abstract it through an API. That is what the adc Python
module is for.

1 # Adapt to current platform
2 try:
3 import RPi.GPIO as GPIO
4 GPIO.setwarnings(False)
5 platform = "rpi"
6 except ImportError:
7 try:
8 import mraa
9 platform = "edison"

10 except ImportError:
11 print("Error: the server must run on a Raspberry Pi or Intel Edison board.")
12 sys.exit(2)

Figure 4.1: Code for adaptive ADC library import

First, we want our code to adapt to the current platform, Raspberry Pi or Intel® Edison, to avoid
having to manage two separate versions of the module. For this, we do a so-called ”adaptive
import”, as can be seen in Figure 4.1: we try to import each possibly needed library for each
platform in a try: block, so that if the library cannot be found, the program infers that he
is not running on the corresponding platform, and tries another in the except: block. The
program will immediately stop if it cannot find any platform.

We next define the interface containing all the attributes and methods an ADC should possess
with the abstract class ADC. As can be seen in the package adc of the class diagram in Figure 2,
we use it to derive the two concrete ADC classes that will be used, the MCP3008 and ADS7951
classes. Here is the interesting point: we take advantage of the dynamic execution of Python
code to define only the class that we will need by checking the current platform determined
during the adaptive import, and then assigning the class object to a global variable ADC_CLASS,
so that the collector will automatically read the ADC correctly by using this variable. The code
sample in Figure 4.2 illustrates this for the ADS7951 ADC of the Edison.

We also defined in the design part the necessity of synchronizing all the read calls from the ADC,
to avoid conflicted values. Since this is directly related to concurrency, and more precisely in
our implementation multithreading and multiprocessing as we will discuss later, we use the
locking mechanism already implemented in the standard library to that effect. We use more
specifically the Lock object of the multiprocessing Python module, as it allows synchronization
between threads and processes at the same time. The entire module disposes of a unique instance
of a Lock object named readlock to ensure that one read is made at a time from whichever
script imports the module; then each ADC subclass must wrap the whole body of its read
method in a with readlock: block as in Figure 4.2, taking advantage of the with statement
with context managers to greatly simplify the management of the Lock object.
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1 elif platform == "edison":
2 @ADC.init(10, 3.3, range(0, 5))
3 class ADS7951(ADC):
4 """
5 The ADS7951 ADC integrated in the Intel Edison Arduino breakout board.
6 """
7 @classmethod
8 def read(cls, channel):
9 with readlock:

10 cls.check_channel(channel)
11 aio = mraa.Aio(channel)
12 aio.setBit(cls.resolution)
13 return aio.read() + aio.readFloat()
14

15 ADC_CLASS = ADS7951

Figure 4.2: Code for dynamic definition of ADS7951 class

4.3.2 collector module

Now that the ADC can be read correctly on both the Raspberry Pi and the Intel® Edison, we
can implement all the features related to data collection inside the collector module.

We basically want to do one thing: collect samples from an ADC, from a certain channel, and
at a given sampling rate. And this is done for every input source we want to read, battery or
any sensor. So we wrap all this into an abstract class Collector that will define 3 attributes
and 2 methods as can be seen in Figure 2:

• adc, channel and sampling_rate, pretty self-explanatory. Note the adc attribute: we
assign a specific ADC class object to each instance of Collector, in case a lot of channels
are to be read in the future, and one ADC won’t suffice anymore.

• sample and collect: the first method will return a tuple containing a value read from
the collector’s ADC channel, along with its timestamp; it can be called outside the class
to manually read a value from the ADC, and is also called regularly inside the class at the
ADC’s sampling rate, with its return value passed to the collect method. The latter is
what makes the class abstract, as it is to be implemented in each subclass to define what
is done with the samples, i.e. how they are collected.

1 def loop(self):
2 self.collect(self.sample())
3 sleep(1 / self.sampling_rate)

Figure 4.3: Code for Collector.loop(self) method

The Collector class extends the StoppableThread class of the stoppable module, in order to
have each collector run independantly from the other, and be stoppable at any time. We only
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need to implement the loop method of the Stoppable interface (Figure 4.3), and the code will
be repeated automatically, which corresponds to the behavior we want to collect data regularly.
Then to handle the sampling rate, we just do a blocking wait of 1/sampling_rate seconds at
each loop, which also allows us to save a lot of Central Processing Unit (CPU) load. In fact, a
first implementation with a non-blocking wait was first done in order to have multiple channels
read in the same collector, but in addition to preventing the possibility of different sampling
rates, the program was consuming almost 100% of the CPU load, while it takes less than 1%
with a simple sleep.

1 class HistoryCollector(Collector):
2 """
3 Collector handling a limited size history of the latest samples.
4 """
5 def __init__(self, adc, channel, sampling_rate=1/6, histsize=100):
6 super().__init__(adc, channel, sampling_rate)
7 self.history = deque(maxlen=histsize)
8 self.lock = Lock() # Only one thread can use the history at a time
9

10 def collect(self, sample):
11 with self.lock:
12 self.history.append(sample)

Figure 4.4: Code for HistoryCollector class

It is now easy to create any kind of collector with its own attributes, and a specific collect
method, by deriving the Collector class. The HistoryCollector is used by the server to
maintain its history of the latest minutes samples. It just adds a deque to its attributes with
a given maximum size (defaults to 100). The principle of this data structure provided in the
collections Python standard module is that when it reaches its maximum size, it will override
the values first added in a First In First Out (FIFO) fashion, which corresponds exactly to
the way a history works. We therefore just have to add the samples to the deque inside the
collect method, and everything will be handled by the deque itself. Still, despite the deque data
structure being well optimized for modification with atomic operations like the append method,
it cannot be modified when accessed concurrently through an iterator, which is typically done
when a remote client requests the history. This is why each instance of HistoryCollector
manages a threading.Lock object to synchronize history access from different threads.
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1 class CSVCollector(Collector):
2 """
3 Collector logging samples on disk using the CSVDateLogger class.
4 """
5 def __init__(self, adc, channel, sampling_rate=6):
6 super().__init__(adc, channel, sampling_rate)
7 self.csv = CSVDateLogger(LOGS_DIR)
8

9 def collect(self, sample):
10 self.csv.log(sample)

Figure 4.5: Code for CSVCollector class

The other type of collector needed is the CSVCollector, that logs its samples in CSV files.
It does so by using the CSVDateLogger class, that handles a file hierarchy with one directory
per year, one directory per month, and one CSV file per day. In its collect method, the
CSVCollector passes its samples to the log method of the CSVDateLogger that checks the
current system date to determine the path of the file to write to.

Finally, to ease the management of a set of collectors sharing the same class and ADC, a
CollectorManager class extending the built-in dictionary type was created. Each collector is
identified by a string, generally of one character (e.g. ’b’ for the battery), and can therefore be
accessed with the syntax collector_manager[<string_ID>]. Actually, the constructor takes a
dictionary associating each ADC channel number to its ID to generate all the collector instances:
the main reason behind this is to allow the declaration of the collectors to be done once — which
essentially comes down to defining which channel corresponds to which source — so that the
server and collector programs share the same set of sources. Collectors can still be added with
the add method, and removed via the standard Python deletion operator del. The start and
stop methods are useful to manage the lifecycle of all the collectors in a unified way. Note that
the stop method will wait for all the collectors to stop by calling join() on all of them.

4.3.3 storage-full script

To implement the storage checker discussed in subsection 3.1.2, the solution chosen was to
create a small shell script (Figure 4.6).

1 #!/bin/bash
2

3 used_percentage=$(df / | tail -1 | tr -s " " | cut -d " " -f 5 | tr -d "%")
4 if [ $used_percentage -ge 95 ]; then
5 systemctl stop collector &
6 exit 1
7 fi
8 exit 0

Figure 4.6: Code for storage-full.sh
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We first get the percentage of total storage space used by parsing the output of the df command.
Then we compare this with the predefined threshold of 95%, and stop the collector program
through systemd if storage is almost full; the script exits with 1 in this case, 0 otherwise. The
exit code will be used by the server to inform the Android app of the current status of the storage.
This is why the command stopping the collector on line 5 is launched in the background with a
’&’ at the end of the line, so that the script returns immediately and the server doesn’t have to
wait for the collector to stop to send its response to the client request.

4.4 Network and server

The main purpose of the embedded board is still to serve monitoring data on a dedicated
network. It is therefore necessary to first setup the said network, as a wireless access point as
discussed in section 2.2, and then implement the actual server program.

4.4.1 Software access point

Usually, a wireless access point is setup using a dedicated hardware of the same name. However,
this is possible to implement all the features of a wireless AP using software. All the programs
needed are available on Linux, and this is why the first approach was to configure each of
those programs invidually, and then put them all together through scheduling and dependency
management with systemd. For example, the automatic assignment of IP addresses to the
clients would be handled with the standard DHCP server dhcpd, that needs to be run before
the hostapd program that creates the Wi-Fi network and therefore needs the IP address of the
board itself to be set. However, the overall setup was getting more and more complex and quite
unstable, with the AP not always starting correctly at boot.

1 option domain-name-servers 8.8.8.8, 8.8.4.4;
2 option subnet-mask 255.255.255.0;
3 option routers 192.168.42.1;
4 subnet 192.168.42.0 netmask 255.255.255.0 {
5 range 192.168.42.1 192.168.42.255;
6

7 host WindTurbine {
8 hardware ethernet b8:27:eb:28:c0:7e;
9 fixed-address 192.168.42.1;

10 }
11 }

Figure 4.7: Configuration file for dhcpd

Hopefully, a Bash script named create_ap had already been implemented by the community
to ease the setup of a software AP on Linux. We therefore used this script, simplifying greatly
the configuration process with a single systemd service file as can be seen in Figure 4.8.
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1 [Unit]
2 Description=Wi-Fi software access point
3 After=network.target
4 Conflicts=netctl@eduroam.service
5 Before=netctl@eduroam.service
6

7 [Service]
8 Type=simple
9 ExecStart=/usr/bin/create_ap -n -g 192.168.42.1 wlan0 WindTurbine monitoring

10

11 [Install]
12 WantedBy=multi-user.target

Figure 4.8: create_ap service file

To start the access point, we just launch the create_ap command with a few options to configure
the network parameters (line 9 in Figure 4.8). A short list explaining the role of each argument:

• -n: indicates that we don’t share internet connection

• -g 192.168.42.1: IP address of the board on the network

• WindTurbine: SSID of the network

• monitoring: password used to secure the network

Note the dependency and conflict management done in the [Unit] section of the file: the
After=network.target line allows us to wait for the network facilities of the system to be
ready before starting the AP. As for the next two lines, they indicate that the AP cannot run
concurrently with the connection to the eduroam network of the ITT providing internet access,
because the Wi-Fi dongle supports only one mode at a time, monitoring (connection to another
network) or AP; consequently, systemd will take care of automatically stopping the conflicting
service when the other is started, would it be automatically at boot or with the systemctl
command.

4.4.2 TCP server

The server program is scattered in two Python modules: the Transmission Control Protocol
(TCP) request handler class, soberly named TCPHandler, located in the server module, and the
server program strictly speaking implemented as a StoppableProcess in the monitor module
discussed in subsection 4.5.1.
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1 def handle(self):
2 print("[" + self.client_address[0] + "]", "Connected")
3 while True:
4 try:
5 cmd = self.request.recv(2).decode("utf8")
6 # Empty byte means the client closed its socket
7 if len(cmd) == 0:
8 print("[" + self.client_address[0] + "]", "Disconnected")
9 break

10 # Log command
11 print("[" + self.client_address[0] + "]", "Received:", cmd)
12 # Build response
13 data = getattr(self, cmd)()
14 # Send data
15 self.request.sendall(data + b"\0\n")
16 except:
17 print(traceback.format_exc())
18 break

Figure 4.9: Code for TCPHandler.handle(self) method

The TCPHandler consists of two parts: the handle method that is called once each time a
new client connection is made, and a set of methods to handle each client request. The handle
method is detailed in Figure 4.9, and is basically an infinite loop that will wait for requests from
the client associated with the TCPHandler instance, execute the corresponding method, and send
back the response. To find which method to execute from the command name sent by the client,
we simply lookup in the namespace of the class with the standard getattr method (line 13).
Therefore, methods names must be exactly the request commands defined in subsection 3.1.1,
and must share the same signature, that is no parameters and the bytes to be sent in the response
for the return value, as described in Figure 2.

The server is really launched in the Server process defined inside the monitor module (Fig-
ure 4). More precisely, this is done in a separate thread executing the start_server method,
using the socketserver.ThreadingTCPServer class to handle each client connection in a sep-
arate thread, instanciating a TCPHandler for each. We also start (and eventually stop) all the
history collectors declared in the server module using the CollectorManager class (cf end of
subsection 4.3.2).

4.5 Monitor multiprocessing model

Now that we have all the features we need for the collector and server implemented into multiple
modules and classes, we need a main program to be launched by systemd. The first approach
was to have a script for the collector and another for the server; however this would have implied
that they run in two independant processes, cancelling the read synchronization implemented
in the adc module.
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4.6. Android application Part 4. Implementation

4.5.1 Monitor program

The solution chosen was to create a monitor module/program that would be the main process
managed directly by the operating system; the monitor manages each program accessing the
ADC as a child process, spawned using the multiprocessing Python library, the same library
used to lock read calls in the adc module. We can see in the class diagram in Figure 2 that
each child process — namely the Server and Collector classes — extends the StoppableProcess
class implementing the Stoppable interface, in order to be started and stopped on-demand, and
properly thanks to the respective setup and finish methods.

We next define a Monitor class (Figure 3) that will manage a dictionary of all the child
processes, and defines start and stop methods to respectively spawn a new child process only
if it is not already running, and stop it then wait for its termination. This class also handles a
dictionary of ProcessRestarter objects for each process.

The ProcessRestarter class is used to emulate the Restart=on-failure mechanism of systemd.
Because we cannot manage directly the child processes via systemd, and we still want to im-
plement the auto-restart feature described at the end of subsection 3.1.3, we have to create
another child process for each child process of the monitor, watching it and restarting it whenever
it exits with a failure status code.

4.5.2 systemd services

There is a total of 3 systemd services with this monitor architecture:

• The monitor program itself with no dependency; should obviously be the first one to be
started

• The collector program, that requires only the monitor to be already running

• The server program, that requires the wireless AP to be active in addition to the monitor

The child processes of the monitor, that is the collector and server, are started and stopped
through realtime signals sent by systemd with the pkill command, and handled in the monitor
program with the signal Python module.

4.6 Android application

More information can be found in the report of Alexandre Bontems who was in charge of
this part of the implementation.
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5 Future Work

5.1 Embedded board

5.1.1 Accurate timestamps

One big problem with the current implementation is that the operating system time of the board
is completely off, because it doesn’t have an integrated hardware clock to keep track of the time
when the system is down.

One solution is to synchronize with online servers using the Network Time Protocol (NTP).
This is automatically done on the Raspberry Pi when connecting to the internet through the
eduroam network. However, the board may not be able to connect to eduroam from the wind
turbine, and this could hardly be done automatically at boot time anyway. This can be a last
resort solution if eduroam is accessible from the wind turbine, and with the assumption that the
system should never shutdown — in this case the board can’t be rebooted to restart the collector
after changing the external storage, this must be done manually through an SSH connection by
executing the command systemctl restart collector.

A more viable and durable solution is to install an external hardware clock to have the correct
time without the need for an internet connection. There is a very good tutorial available on
the Adafruit website [6] covering the hardware and software parts of the setup, with notably
a section about systemd (designed for Raspbian, but easily applicable to Arch Linux). The
hardware used is the DS1307 Real Time Clock breakout board kit.

5.1.2 Supporting new sensors

Adding a new sensor to the monitoring system can be done in three steps.

First, it is necessary to correctly wire the sensor to the ADC, using the sensor documentation
as well as the explanation of the ADC wiring provided in section 4.2.

Then, a collector can be added on the ADC channel used for the sensor by editing the CHANNEL_IDS
dictionary variable of the collector module. This variable is the default one used by the
CollectorManager class, documented in subsection 4.3.2.

Finally any required client request command concerning the data fed from this sensor can be
added as a method of the TCPHandler class of the server module, as described in subsec-
tion 4.4.2.

5.2 Android application

Future work concerning the client application mostly involves adding new screens for new sensors.
Specifically the screen for the pressure sensors was not implemented due to a lack of time and
so a new fragment along with optional preferences must be implemented. For more information
about how to do this, please refer to Alexandre Bontems’s report.

28

https://www.adafruit.com/products/264


6 Results

6.1 Professional results

Given that not all objectives were defined from the beginning of the project, but were rather
added gradually by our supervisors depending on our progress with Alexandre, we could not
really plan in advance all the tasks we needed to achieve, with GANTT diagrams for instance.
We therefore had to adopt an Agile development process, and our project was quite a success
in that aspect, even if we did not formalize it through written practices like backlogs. Even
so, we did share tasks among ourselves with Alexandre and communicated regularly, especially
in the beginning during the research and design phases when we had to establish a working
communication between the Android application and the server on the board.

In summary, we succeeded in implementing all the features that were asked with reasonable time
available. The ones that still need to be done are all described in chapter 5 and were asked at
a very late stage of the project. Here is a short list of the main features with their estimated
degree of completion:

Feature Degree of completion

Current battery voltage monitoring 100%

Latest minutes battery voltage monitoring 100%

Concurrent data collection from multiple sources in CSV files 100%

Notification when board storage is full 100%

Accurate timestamps 40%

Support for pressure sensors 50%

Figure 6.1: Table of main features and their final degree of completion

Accurate timestamps are not yet implemented, but the solution has already been designed,
which was accounted for an arbitrary 40% of the work. As for the support for pressure sensors,
all the effort put into the advanced extensibity of the system should remove another arbitrary
50% of the workload.

In terms of lines of code produced, it would be unwise to judge on quantity, or rather the fewer
the lines, the greater the quality of the code. The main focus was indeed to produce a base
system architecture with a maximum of extensibility to implement quickly and easily support
for new sources of analog data. In this regard, the project was a success: focusing on my part of
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the work specifically, the board monitoring system, there is only 536 lines of well documented
Python code, and adding a new source to the collector can be done in as few as 6 characters;
as for handling a new client request, it is just a matter of adding one method returning the
required data.

The work accomplished so far, in addition to being usable by researchers to monitor the battery
voltage directly from their smartphone, will greatly simplify future work concerning the addition
of new sensors to the system. Therefore, this will save a lot of time to both researchers and
future trainees, giving them the ability to focus on their core activities.

6.2 Personal results

On the technical level, this project has greatly improved my skills in embedded development,
notably when it comes to choosing the technology that suits the best your needs. I was able
to use a lot of advanced idioms of the Python language studied this year to optimize my code,
combined with OOP concepts that I had to translate from Java to Python. Also, having a
personal strong interest in Linux technologies, I was able to learn a new one that is prominent
in system administration nowadays: systemd. I found somewhat innovative the connection
of all those technologies together, communicating with the Android application developed by
Alexandre. This brings me to collaborative development in a team, and even though we were
only two on this project, this allowed me to better master the Git version control system.

On the contrary, the internship wasn’t as fulfilling as I expected in terms of soft skills. Of
course, as stated in the introduction, the fact that it happened within a university suppressed
the challenges related to integration into a company. I expected however that I would be able
to work with other exchange students and improve my communicational and linguistic skills
in that aspect; but because we were only french trainees from the IUT in our office, the only
opportunities I had to speak in English were the intermediate reviews and presentations with
our supervisors, who were of course very educative, but too rare to really immerse myself in the
language and significantly improve my level.

In the end, this project has confirmed my taste for embedded computing and all the possibilities
it opens in many fields of the IoT, ranging from sustainable energies in this project to live arts,
the latter being one of my main interests for my future career. It also raised in me a certain
interest in Unix system administration, although I may not turn it into my very specialty.
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Conclusion

In the end, this ten weeks internship was a very fulfilling experience on a technical, and to a
lesser extent human level.

We succeeded in implementing almost all the features requested, with a solid code base that
should be easily extensible for future developments: these include installing a hardware clock
on the board to have accurate timestamps for proper monitoring, as well as support for new
sensors on the server and client side, notably pressure sensors. Researchers can already use our
system to monitor the battery output voltage of the wind turbine in a very practical way from
their Android smartphone or tablet, but also establish statistics across several years on the data
collected to improve the efficiency of the wind turbine.

This is quite rewarding to be able to participate in a research project on such a promising field
as sustainable energies. And even if the linguistic immersion could have been better, I was still
able to greatly improve my english in a way that would not have been possible if I had completed
my internship in France.

Concerning my career plan, it has just confirmed some of the technologies I like and want to
work with in the future, especially with the innovative possibilities of embedded computing.
Still, my fields of interest stay unchanged: I strive to work in applied research at the crossroad
of computer science, live arts, and cognitive science.
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Glossary

Analog-to-Digital Converter Device that converts a continuous physical quantity (usually
voltage) to a digital number that represents the quantity’s amplitude. 9, 33

Application Programming Interface Set of routine definitions, protocols, and tools for
building software and applications. 15, 33

Central Processing Unit Electronic circuitry within a computer that carries out the instruc-
tions of a computer program by performing the basic arithmetic, logical, control and
input/output operations specified by the instructions. 22, 33

Comma Separated Values File format for storing tabular data (numbers and text) in plain
text. 14, 33

Dynamic Host Configuration Protocol Standardized network protocol used on IP networks
for dynamically distributing network configuration parameters, such as IP addresses. 11,
33

First In First Out Method for organizing and manipulating a data buffer, where the oldest
entry is processed first. 22, 33

Internet of Things Network of embedded devices with electronics, software, sensors, and net-
work connectivity that enables these objects to collect and exchange data. 9, 33

Network Time Protocol Networking protocol for clock synchronization between computer
systems. 28, 33

Object-Oriented Programming Programming paradigm based on the concept of ”objects”,
which may contain data, in the form of fields, often known as attributes; and code, in the
form of procedures, often known as methods. 18, 33

Secure Shell Cryptographic network protocol for operating network services securely over an
unsecured network; the best known example application is for remote login to computer
systems by users. 13, 33

Serial Peripheral Interface Synchronous serial communication interface specification used
for short distance communication, primarily in embedded systems. 11, 33

System on Chip Integrated circuit that integrates all components of a computer or other
electronic system into a single chip. 18, 33

Test-Driven Development Software development process that relies on the repetition of a
very short development cycle. 19, 33

Transmission Control Protocol Core protocol of the IP suite providing reliable, ordered,
and error-checked delivery of a stream of octets between applications running on hosts
communicating over an IP network. 25, 33
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Acronyms

ADC Analog-to-Digital Converter. 1, 9–12, 15, 19–21, 23, 27, 28, 33, 39, Glossary: Analog-to-
Digital Converter

AP Access Point. 1, 16, 24, 25, 27

API Application Programming Interface. 15, 16, 19, 20, 33, Glossary: Application Program-
ming Interface

CPU Central Processing Unit. 22, 33, Glossary: Central Processing Unit

CSV Comma Separated Values. 14, 15, 23, 29, 33, Glossary: Comma Separated Values

DHCP Dynamic Host Configuration Protocol. 11, 24, 33, Glossary: Dynamic Host Configura-
tion Protocol

FIFO First In First Out. 22, 33, Glossary: First In First Out

IoT Internet of Things. 9, 30, 33, Glossary: Internet of Things

IP Internet Protocol. 11, 24, 25, 32

ITT Institute of Technology Tallaght. 6, 7, 25, 34

IUT Institut Universitaire de Technologie. 1, 6, 30

I²C Inter-Integrated Circuit. 11

NTP Network Time Protocol. 28, 33, Glossary: Network Time Protocol

OOP Object-Oriented Programming. 18, 30, 33, Glossary: Object-Oriented Programming

OS Operating System. 18

SEAI Sustainable Energy Authority of Ireland. 7

SoC System on Chip. 18, 33, Glossary: System on Chip

SPI Serial Peripheral Interface. 11, 33, Glossary: Serial Peripheral Interface

SSH Secure Shell. 13, 28, 33, Glossary: Secure Shell

TCP Transmission Control Protocol. 1, 25, 33, Glossary: Transmission Control Protocol

TDD Test-Driven Development. 19, 33, Glossary: Test-Driven Development
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Figure 2: Board monitoring system class diagram
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1 class Monitor:
2 """
3 Class managing the collector and server processes.
4

5 It emulates systemd Restart=on-failure mechanism
6 with the ProcessRestarter class.
7 """
8 # Processes
9 __p = {}

10 __p["collector"] = Collector()
11 __p["server"] = Server()
12

13 # Process restarters
14 __r = {name: ProcessRestarter(name) for name in __p.keys()}
15

16 @classmethod
17 def start(cls, name):
18 """
19 Starts a new instance of the process with
20 the given name if it is not already started,
21 as well as its corresponding ProcessRestarter.
22 """
23 if not cls.__p[name].is_alive():
24 cls.__p[name] = cls.__p[name].__class__()
25 cls.__r[name] = ProcessRestarter(name)
26 cls.__p[name].start()
27 cls.__r[name].start()
28

29 @classmethod
30 def stop(cls, name):
31 """
32 Stops the process with the given name if it is already started,
33 as well as its corresponding ProcessRestarter.
34 """
35 if cls.__p[name].is_alive():
36 cls.__p[name].stop()
37 cls.__p[name].join()
38 cls.__r[name].stop()
39 cls.__r[name].join()
40

41 @classmethod
42 def exitcode(cls, name):
43 """
44 Returns the exitcode of the process with the given name.
45 """
46 return cls.__p[name].exitcode

Figure 3: Code for Monitor class
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1 class Server(StoppableProcess):
2 """
3 Server feeding various ADC inputs to remote clients.
4 """
5 def start_server(self):
6 """
7 Thread target to launch the server without being
8 blocked by the serve_forever() call.
9 """

10 addr = ("192.168.42.1", 8888)
11 try:
12 self.__server = ThreadingTCPServer(addr, srv.TCPHandler)
13 self.__server.daemon_threads = True
14 self.__server.serve_forever()
15 except OSError:
16 srv.collectors.stop()
17 print(traceback.format_exc())
18 sys.exit(1)
19

20 def setup(self):
21 srv.collectors.start()
22 Thread(target=self.start_server).start()
23

24 def finish(self):
25 srv.collectors.stop()
26 self.__server.shutdown()

Figure 4: Code for monitor.Server class
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Abstract

The aim of this project was to provide an easy way to monitor remotely different sensor values
coming from a wind turbine located in the Institute of Technology Tallaght. The request was
made by the university to two french students from the IUT Blagnac, as a research project for
their internship. Still, there was a real need behind the project, as the resulting application was
to be used internally by a group of researchers on a regular basis for their work. Thereafter are
presented the tasks performed by the author of this document.

The first step consisted in researching the most suited embedded development board between
the Intel® Edison and the Raspberry Pi Model B+, which would be used to gather data from the
sensors and provide them to the clients. It came out that both had their load of pros and cons,
and it was decided to start with the Raspberry Pi, then try out the Edison, and finally compare
the implementation process of the two boards to assess the best choice in the final setup.

Next was the design phase of the server side, which consisted mainly in system-wide and
application-focused workflow conception. This basically amounts to specify the future imple-
mentation of the server to be completely autonomous and exception-safe to minimize manual
maintenance, especially thanks to a self-restart mechanism handling unexpected, fatal excep-
tions.

Last but not least was the server implementation. The first step was to install the lightweight
operating system Arch Linux on the Raspberry Pi, in order to use the external Wi-Fi dongle
and run other programs in a scheduled way, while minimizing power consumption. A wire-
less, software AP was then set up to establish a network with the client devices. The actual
server program was implemented in Python, collecting data from the sensors through an ADC
connected to the board, and feeding them to the clients through a TCP connection. Finally,
scheduling was done with the service manager systemd.
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