
Intuitionistic Subformula Linking

Pablo Donato, under the supervision of
Benjamin Werner and Pierre-Yves Strub

Typical team – LIX

August 30, 2020

The general context

Proof assistants are software systems allowing for the precise synthesis and verification of
mathematical proofs. They are based on the idea that mathematical knowledge can be repre-
sented syntactically and unambiguously inside proof formalisms. These have been developed
since the beginning of the 20th century, in the well-established field of mathematical logic
known as proof theory.

State-of-the-art proof assistants such as Coq or Isabelle are usually based on very expres-
sive logics, so that virtually any mathematical development can be expressed in them. While
this generality hinders the potential for automated theorem-proving, formal proofs still tend
to be too detailed and verbose to be written by hand, much like assembly code. This demands
for a higher-level, more interactive approach to computer-assisted proof authoring.

The problem is usually tackled through tactic languages, which offer to users a set of
primitive text commands to manipulate the proof state, as well as basic combinators to build
more complex tactics. For example, given a proof H1 of A and a proof H2 of A ⇒ B as
hypotheses, one can type the command apply H2 in H1 to get a proof of B.

The research problem

While basic logical reasoning is considered universal, if not intuitive, each proof assistant
currently has its own syntax to perform it. This induces an unnecessary cognitive bur-
den for newcomers, especially those unfamiliar with textual interfaces, but also for seasoned
practicioners, who spend a non-negligible amount of time performing mundane tasks such
as naming, destructuring and application of hypotheses. This calls for friendlier and more
ergonomic interfaces, which fully exploit the capabilities of modern devices.

A first attempt in this direction was made in the 90’s by the team of G. Kahn at Inria,
where they coined the “proof by pointing” paradigm [1]. The idea was to synthesize complex
tactics from the simple act of pointing at parts of expressions, typically with a mouse cursor.
More recently [2], K. Chaudhuri proposed a variation on this idea termed “subformula link-
ing”, where instead of selecting expressions in isolation, one can link two of them together to
make them interact. In both cases, the expressions considered were logical formulas, and the
associated actions chains of inferences in first-order logic.

When I started my internship, the Typical team already had a prototype of graphical
interface implementing some of the ideas of proof by pointing, within a more modern and



flexible web-based environment. In particular, experiments were being carried to explore the
possible logical behaviors of drag-and-drop actions.

Your contribution

My first contribution was to design and implement a tactic link that would incorporate
all drag-and-drop behaviors on formulas in a unified way. What I found was basically an
extension of the intuitionistic system of proof by pointing, but taking two dual and unifiable
subformulas as input instead of a single formula.

Still, its behaviour did not correspond to the one we envisioned for some important use
cases. The deep inference methodology described in [2] came naturally as a solution, leading
to my second contribution: a deep inference system for subformula linking in intuitionistic
propositional logic, on top of which I built a variant dlink of the previous tactic.

Arguments supporting its validity

While I stated properties of correctness and sketched some proofs for both tactics, it is mainly
through experimentation with the prototype that I convinced myself of their correctness and
usefulness. Given the exploratory and applied nature of this work, it seemed more appropriate
to keep experimenting until a stable specification of the tactics was reached, and only then
make fully detailed proofs to detect and rectify bugs in the specification.

Another property of interest is how much can be proved with those tactics alone, that
is doing only drag-and-drops between formulas. While completeness is lost with link, I
conjecture based on the results in [2] that it holds for dlink.

In both cases, rules were carefully designed to minimize the loss of provability in generated
subgoals. That is, transforming the proof state with a drag-and-drop should not commit the
user to choices that can lead to a dead-end in the proof. This is the main advantage of linking
over pointing, which is technically justified by the focusing discipline. The deep inference
setting of dlink gives even more possibilities in that respect.

Summary and future work

My contribution is two-fold. I first designed and implemented a “drag-and-drop” tactic link
based on a new approach to subformula linking, which is closer to the proof by pointing
paradigm both in its logical basis and behavior. I then designed and implemented a variant
dlink of this tactic based on an adaptation of the deep inference system of [2] from linear
logic to intuitionistic logic, which is the core logic of many proof assistants.

It remains to prove formally the correctness of dlink, as well as that of link in the
first-order case. Extending dlink to first-order logic and proving it complete is another
challenging but rewarding goal, that would support it as a more powerful alternative to link.
As pointed out in both [1] and [2], it would also be interesting to consider generalisations
to more expressive logics (higher-order, inductive, with equality...), which might be easier to
carry in the more standard sequent calculus underlying link.

Last but not least, such novel methods of interaction should be confronted directly to users
of various proof assistants with various levels of expertise. This will give essential insights
into their usability and usefulness, as well as new directions to consider in their design.



Introduction
While the use of formal rules in logical inference can be given roots dating back to Aristotle,
the study of proofs as mathematical objects of their own really starts at the end of the 19th
century, most notably with Frege’s Begriffsschrift published in 1879 [3]. Then, by giving proof
theory a central role in his program for proving the consistency of mathematics by finite means,
Hilbert made it into a separate mathematical field, with its own goals and methodology.
Despite Gödel’s second incompleteness theorem putting an end to this program, logicians
kept investigating how mathematical reasoning could be captured and studied through proof
calculi. One of them, G. Gentzen, is now known as the father of modern (structural) proof
theory, thanks to the two revolutionary formalisms he invented for representing proofs: natural
deduction and sequent calculus.

Gentzen-style calculi

Natural deduction follows closely the way mathematicians reason in practice, by providing
for each logical connective introduction and elimination rules. For example, the rules in
figure 2 show how to give meaning to the connective ∨ of disjunction, not in terms of truth
tables, but rather by giving canonical means to prove (introduction) and use (elimination) a
disjunctive formula. More precisely, the rules ∨Ii say that given a proof of the disjunct Ai

(with i ∈ {1, 2}), one can build a proof of the disjunction A1∨A2; and the rule ∨E is simply a
formalization of the usual “reasoning by case”: given a proof of A1∨A2, and two hypothetical
proofs of C which respectively take A1 and A2 as assumptions, one gets a proof of C where
the assumptions Ai can be discharged.

In contrast, sequent calculus offers only one way to use a proof: the cut rule. It takes the
following form:

Γ ⊢ A ∆, A ⊢ C
cut

Γ,∆ ⊢ C

Intuitively, it reads as follows: given a proof of A under assumptions Γ, as well as a proof
of C under assumptions ∆ and A, one can substitute the assumption of A by its actual proof,
giving a proof of C under assumptions Γ and ∆. We see the emphasis here on hypothetical
proofs, which is embodied in the judgment form Γ ⊢ A, with Γ a multiset of formulas acting
as hypotheses, and A the conclusion. These judgment forms, the eponymous sequents, are
at the heart of most proof assistants, where they encode almost completely the state of an
ongoing proof.

Apart from the cut rule, all rules of the sequent calculus are dedicated to the construction
of complex proofs from smaller proofs. Indeed, each logical connective has so-called right and
left introduction rules. While the right introduction rules are morally exactly the introduction
rules of natural deduction, left introduction rules are a sort of reversal of elimination rules:
since we cannot use directly the formula from a premise (a behavior reserved to the cut rule),
we can only introduce it in the conclusion of the rule, but this time as an hypothesis of the
sequent (that might be used later in a cut). This is exemplified in the rules for disjunction
presented in figure 3. Thus the construction/usage duality of natural deduction is refined in
sequent calculus as the duality between introduction rules and the cut rule, which is made
distinct from the left/right, hypothesis/conclusion duality of sequents.

3



Of course a proof is a finite object, and thus there must be some kind of axiom to terminate
the trees of inferences built using the previous rules. In purely logical Gentzen-style calculi1,
there is only one such axiom, called alternatively the axiom or identity rule. It has the
following form in sequent calculus:

id
A ⊢ A

In fact, the id rule can be seen as the dual of the cut rule, where instead of using a proof of
A to eliminate an assumption of A, we construct a proof of A by introducing an assumption
of A. In a way, the two rules serve the same function: justifying an occurrence of A by
another, which is so trivial that it seems more computational than logical. The Haupstatz, or
fundamental theorem, is a result proved by Gentzen which asserts the redundancy of the cut

rule: all provable formulas can be proved without it. Furthermore, the proof of this result is
indeed computational: it is an algorithm that given a proof with cuts, rewrites it into a proof
without cuts.

Then arises a question: can the essence of a proof be reduced to its instances of the
identity rule? We will develop a little bit more on this in the conclusion, and see that the
answer depends on the logic under consideration. However, this idea is really the heart of
the subformula linking methodology studied in this report, thus outlining the potential for
a fruitful interplay between theoretical considerations on the nature of proofs, and practical
investigations on the ergonomics of computer-assisted proof authoring.

The Actema prototype

Developed by the Typical team since 2019, the Actema prototype (as in Active mathematics)
is a proof assistant whose originality lies in its user interface: proofs are entirely built through
graphical actions performed by the user. A tab of the system corresponds to a goal or subgoal
that remains to be proved, and under each tab are shown a variety of items (figure 1): 1. the
current goal, or conclusion to be proved, in red; 2. a number of known facts, or hypotheses,
in blue; 3. as well as various mathematical objects, or expressions, in green.

Then, an action from the user can imply one item, e.g. through a click or double-click, or
two items, typically by performing a drag-and-drop movement. Those actions correspond to
steps in the construction of a proof, that are usually performed by tactics in more traditional
systems. For example, a double-click on a conclusion of the form A ∧ B will generate two
subgoals, of respective conclusions A and B. This would be achieved by invoking the tactic
split in Coq, or CONJ_TAC in HOL.

Most tactics for performing basic logical tasks can be seen as the application of a rule
from Gentzen-style calculi. For example, split corresponds in sequent calculus to the right
introduction rule ∧R for conjunction (figure 3), where the goal is the conclusion of the rule,
and the simpler generated subgoals are the premises.

Given the variety of logical constructs, and the fact that each proof assistant has its own
logical framework, it can quickly become tricky to learn all rules, and then remember which
tactic to use for which rule in which assistant, along with its specific syntax. Often though, the
intuition is pretty clear: we want to prove or use a given formula, whatever rule is associated
with it.

1where by purely logical, we mean without any rules to reason within a particular mathematical theory such
as arithmetic.

4



Figure 1: Interface of the Actema prototype

This is where the pointing mechanism comes in: it allows directly selecting the formula
of interest in the current goal. And since a goal can be seen as a sequent, the system can
straightforwardly determine which rule to apply, based on the shape and position of the
formula. This is essentially what happens when performing a double-click on a formula A
in Actema: it applies either the left introduction or the elimination rule associated with the
main connective of A when A is an hypothesis, and the right introduction rule when A is the
conclusion.

Now what about more elaborate tactics, like the apply _ in _ tactic of Coq? This one
takes two hypotheses of the form A and A ⇒ B as inputs, and replaces A by B, which is
simply an application of modus ponens. This is in fact a perfect candidate for a drag-and-drop
action: just drag A and drop it on A ⇒ B, or the other way around! But as for double-click
actions, is there a way to generalize this behavior to formulas of any shape/position? And
can it have an elegant theoretical basis, like the rules of Gentzen-style calculi?

The answer to both questions is yes, and its content will be the main subject of the
remaining pages. The key ingredient is to not only look at the surface shape of formulas in
the form of their main connective, but to also introduce depth in the system, by allowing
to select arbitrary subformulas of the current goal. While this idea is already present in the
seminal proof by pointing paradigm of [1], it is taken to its fullest in the subformula linking
methodology advocated in [2], which basically describes a generic behavior for drag-and-drop
actions in first-order logic. Still, the setting in which it is presented, a deep inference system
for linear logic, is quite far from what is available in current proof assistants, and in particular
from the intuitionistic logic currently implemented in Actema. Our work can be seen as an
exploration in how to embody the principles of subformula linking in a more conventional
sequent-based, intuitionistic proof system.

5



Contributions

The paper is organized in two sections: in section 1, we recall the principles of the sequent
calculus-based proof by pointing paradigm, which we then extend to define a generic proof
procedure associated to drag-and-drop actions. We start by describing how to handle the
linking of two propositional formulas, one at the top-level of the current goal, the other a
subformula of arbitrary depth. We qualify this kind of linking of simply deep, since one of the
two formulas is still at the top-level. We next lift that restriction by adding a light focusing
discipline [4], giving rise to doubly deep linking. Finally, we extend the procedure to handle
quantifiers, and thus full first-order logic. This involves a preliminary phase of unification
and dependency-checking between the linked formulas and their quantified variables, much in
the spirit of expansion tree proofs [5].

In section 2, we recall the principles of the deep inference approach to proof theory,
which allows us to introduce an adaptation of the system for subformula linking of [2] to
the intuitionistic setting. We discuss the correctness and completeness of this system, and
use it to specify a procedure of deep linking that appears as a more ergonomic and versatile
alternative to the previous one.

We conclude with some remarks on the implementation of the two procedures in the
Actema prototype, as well as the variants and generalizations that could be explored as a
continuation of this work. We also discuss existing occurrences of the idea of subformula
linking in other proof-theoretical works, and how they relate to ours.

1 Subformula linking in sequent calculus

1.1 Proof by pointing

Proof by pointing (PbP hereafter) can be seen as an extension of the behavior of double-click
actions presented in the introduction, where the selection can be any subformula A of a top-
level formula A0 occurring in the goal. Then instead of applying one rule based on the main
connective of A0, a full sequence of rules is applied, based on the connectives encountered
along the path leading to A in the formula tree of A0. A key point is to only use rules from
sequent calculus: it allows to generate the sequence recursively, since all introduction rules
have the property that at least one direct subformula of the principal formula appears in one
of the premises. To illustrate, consider the tautological sequent A ∧ (B ∨ C) ⊢ (A ∧ B) ∨ C,
seen as the current goal. By selecting the occurrence of A in the conclusion, we instruct the
PbP algorithm to first apply the ∨R1 rule, since the selection occurs on the left of ∨, and then
apply the ∧R rule. This gives the following open derivation, where the selected occurrence of
A is underlined:

A ∧ (B ∨ C) ⊢ A A ∧ (B ∨ C) ⊢ B
∧R

A ∧ (B ∨ C) ⊢ A ∧B
∨R1

A ∧ (B ∨ C) ⊢ (A ∧B) ∨ C

Thus, the user is left with the two subgoals A ∧ (B ∨ C) ⊢ A and A ∧ (B ∨ C) ⊢ B, with
the focus on the first one since it contains the selected formula. Notice how the latter has been
brought to the top-level: this is really what proof by pointing does from a user perspective,
in addition to generating side goals.

6



Now, it would only be natural to select the other occurrence of A, so that we can close this
branch of the proof with an instance of the id rule. In fact, the algorithm will automatically
try to operate this closure, by matching the selection against the conclusion. Thus, a second
click would generate the following derivation:

id
A,B ∨ C ⊢ A

∧L
A ∧ (B ∨ C) ⊢ A

Remark that we already knew beforehand that we wanted to close the goal with this
occurrence of A, because of our implicit knowledge about the meaning of conjunction. The
main advantage of PbP is to leave that knowledge implicit by hiding the underlying derivation,
instead of having to explicitly call a tactic such as destruct in Coq. However, relying on the
algorithm for closing goals with the id rule introduces undesirable situations, where bringing
the selection to the top level induces wrong choices, even when the selected formula cannot
be used to close the goal. Since every formula of interest is bound to be used in an instance
of id, why not directly link the two occurrences?

1.2 Propositional linking

1.2.1 Simply deep interaction

Following on the previous remark, we will define here a very simple variant of PbP, which
replaces the implicit, unguaranteed closure of goals by an explicit one. Thus it requires to
add as input to the algorithm another occurrence of the selected formula, which to keep the
“semantics” of PbP intact will be restricted to the top-level. Hence we call this variant simply
deep linking.

To formalize and manipulate the notions of selection and subformula, we introduce the
syntactic device of a formula context:

Definition 1 (Formula context). A formula context, or simply context when there is no
ambiguity, is a formula with a hole, denoted by □. Contexts are defined by the following
grammar:

χ, ξ, ζ ::= □ | χ ∧A | A ∧ χ

| χ ∨A | A ∨ χ

| χ ⇒ A | A ⇒ χ

Definition 2 (Context filling). For any context χ and formula A, the implicit filling of χ
with A, written χ {A}, is defined as the formula obtained by substituting A to □ in χ.

Dually, the grammar of formulas is extended with the explicit filling operator χ [A] :

A,B ::= . . . | χ [A]

This construction can be seen as an analogue to explicit substitution in λ-calculus, in that it
reifies the meta-operation of filling inside formulas.

Finally, the composition χ {ξ} of two contexts χ et ξ is the context obtained by substituting
ξ to □ in χ.

A subformula can now be seen as the pair of a formula A and its context χ, which can
be direcly manipulated as the explicit filling χ [A]. This will be used extensively to mark the
linked subformulas in inference rules.

7



Notation 1 (Sequent membership). Given a sequent S = Γ ⊢ C and a formula A, we write
A ∈ S as a shorthand for A ∈ Γ ∪ {C}.

Definition 3 (Goal). A goal S is a sequent where each hypothesis (resp. conclusion) has a
unique negative (resp. positive) identifier i ∈ Z \ {0}. Since intuitionistic sequents only have
one conclusion, we can systematically identify it with +1, and omit it in the notation. Thus
goals have the form:

S = i1 : A1, . . . , in : An ⊢ C

We note ⌊Γ⌋ the underlying multiset of formulas of Γ = i1 : A1, . . . , in : An, and ⌊S⌋ = ⌊Γ⌋ ⊢
C the underlying sequent of S.

Definition 4 (Occurrence). An occurrence oA of a formula A is the data of A together with
an identifier i and a context χ, written oA = i : χ /A. We say that this occurrence belongs to
a goal S, written oA ∈ S, if i : χ {A} ∈ S.

Definition 5 (Suboccurrence). oB = j : ξ / B is a suboccurrence of oA = i : χ / A, written
oA ≤ oB, if i = j and there exists some ζ such that ξ = χ {ζ} and A = ζ {B}. We say that
they are incomparable if neither oA ≤ oB nor oB ≤ oA.

Definition 6 (Linkage). A linkage L is the data of a goal S together with two linked subfor-
mula occurrences oA, oB ∈ S, written L = oA

S
=== oB.

Linkages describe the input data that is fed to the linking procedure. For now, we only
consider simply deep linkages, which correspond to the linking of a top-level formula with any
subformula:

Definition 7 (Simply deep linkage). A linkage i : ξ / A
S
=== j : χ / B is said to be simply

deep if either ξ = □ or χ = □.

Recall that the behavior we want to associate with a simply deep linkage i : □ / A
S
=== j :

χ/B is not only to bring B to the top-level of S, but also to apply an instance of the identity
rule between A and B. Thus, we need a mean to ensure beforehand that B will either be the
conclusion if A is an hypothesis, or an hypothesis if A is the conclusion. It turns out that
this information can be deduced from the shape of the context χ of B, thanks to the notion
of polarity:

Definition 8 (Polarized contexts). Positive contexts π and negative contexts η are defined
by the following grammar:

π ::= □ | π ∧A | A ∧ π | π ∨A | A ∨ π | η ⇒ A | A ⇒ π

η ::= π ⇒ A

That is, all connectives preserve polarity, except for implication ⇒ which inverts the polarity
of its antecedant.

Definition 9 (Occurrence polarity). An occurrence i : χ /A is said to be either positive (+)
or negative (−) according to the following table:

i > 0 i < 0

χ = π + −
χ = η − +

8



Then, we know that B will end up in hypothesis if its polarity is −, and in conclusion if it
is +. This is because polarized contexts mimick the exchange of side of formulas performed by
introduction rules, which accordingly only occurs for the antecedant of an implication (rules
⇒ L1 and ⇒ R1 of figure 4). Now we can completely characterize linkages that correspond to
a well-behaved linking:

Definition 10 (Well-formed linkage). A linkage i : ξ/A
S
=== j : χ/B is said to be well-formed

if i ̸= j, A and B have opposite polarities, and A = B.

The well-formedness condition was initially motivated by a feature of Actema’s interface,
where starting a drag-and-drop would search and highlight all subformulas of the goal that
lead to a correct linking. Typically, dragging the conclusion can help the user find hypotheses
that could be used to prove it, and dragging a hypothesis will indicate instantly all places
where it could be used.

In the rest of this section, we consider all linkages to be simply deep and well-formed.
It remains to specify a deterministic procedure that actually performs the linking. For this
purpose, we reuse exactly the rules with selection propagation of PbP (figure 2 in [1]), but
reformulated with our more precise (although heavier) syntax of formula contexts. This
gives the system ISL01 presented in figure 4, which stands for 0th order (i.e. propositional)
Intuitionistic Subformula Linking with 1 deep selection.

The procedure can then be seen as the bottom-up search for a proof of the current goal
in ISL01, with the subformula selection encoded as the explicit filling χ [B]. The search gets
stuck when an instance of the idL or idR rule is reached, resulting in an open derivation that
we call an interaction trace:

Definition 11 (Interaction trace). The interaction traces Tr(L) of a linkage L = i : □ /

A
Γ⊢C
==== j : χ / B are all the ISL01 derivations that can result from performing a bottom-up

proof-search on the sequent S, where

S =

{
⌊Γ⌋ ⊢ χ [B] if j > 0

⌊Γ \ j : χ {B}⌋ , χ [B] ⊢ C otherwise

Notice how the top-level formula A does not play any role in this definition. Indeed, in
the simply deep setting, it is only used to ensure that the linkage is well-formed.

Proposition 1 (Termination). Let L be a linkage. Then Tr(L) ̸= ∅.

Proof. It suffices to observe that each application of a rule in ISL01 decreases strictly the size
of the selected context, and no rule is applicable after discarding the empty context in an
instance of the identity rules.

Proposition 2 (Determinism). Let L be a linkage, and D,D′ ∈ Tr(L). Then D = D′.

Proof. This relies on the two following facts:

• There is exactly one left introduction rule and one right introduction rule associated
with each form of context, and ISL01 rules only deal with explicit fillings.

• Sequents in the derivation contain at most one selected subformula (one in the branch
of the derivation decomposing χ, zero in open premises).

9



Thanks to these properties, we can define simply deep linking as a total function:

Definition 12 (Simply deep linking). The linking of a simply deep linkage L is defined as
the list of open premises of Tr(L), ordered by decreasing height.

Example 1. Here is an example of linkage (on the left) and its associated interaction trace:

A ⊢ B ⇒ ( A ∧B)

idR
A,B ⊢ □ [A] A,B ⊢ B

∧R1
A,B ⊢ (□ ∧B) [A]

⇒ R1
A ⊢ (B ⇒ (□ ∧B)) [A]

Thus, its linking is the subgoal A,B ⊢ B.

Proposition 3 (Correctness). Every ISL01 derivation D of S with open premises Si can be
mapped to a derivation JDK of JSK with open premises Si in the standard sequent calculus LJ
for intuitionistic logic.

Proof. We do not detail the translation J·K here, but since ISL01 can be seen as a restricted
variant of LJ, it suffices to:

• forget about explicit fillings by replacing them with implicit ones;

• add instances of weakening/contraction appropriately when switching between multi-
plicative and additive variants of rules.

1.2.2 Doubly deep interaction

We now consider the natural generalization of linking to arbitrary linkages i : ξ/A S
=== j : χ/B

where A can be any subformula of S.
At first, it seems like we could just keep using the rules of ISL01, the only change being in

the addition of the selection ξ [A] to the goal. The problem is that it would render the search
procedure non-deterministic, since at any step arises the choice of which of the two selected
contexts to decompose.

To recover determinism, we choose to impose a focusing discipline on the rules of ISL01.
First introduced by [4] in the context of linear logic programming, the concept of focused proof
precisely aims at eliminating all choices during proof-search, while preserving completeness of
the procedure. That is, every formula provable with a non-focused proof should be provable
with a focused one. Focused systems have since been devised for classical logic [6] and even
modal logics [7], but most importantly for us, intuitionistic logic [6].

The key idea of focusing is to delay as much as possible the application of rules that can
lead to dead-ends in the proof. To illustrate, if we take the following linkage:

A ∨B ⊢ A ∨B

we can choose to first deconstruct either the left disjunction (∨L1 rule), or the right one
(∨R1). However, whereas the first choice leads to the provable subgoal B ⊢ A∨B, the second

10



one leaves us with the unprovable subgoal B ⊢ A. It turns out that ∨L1 , as opposed to
∨R1 , is invertible, meaning that each premise of the rule can be deduced from its conclusion.
Thus, decomposing a formula with an invertible rule guarantees that subgoals are provable,
hence the interest in applying these rules as soon as possible. This can justify the common
practice of starting proofs in Coq with sequences of tactics like intros; split; intros :
this corresponds to the invertibility of the ∀R, ⇒ R and ∧R rules!

A finer analysis of the permutations of inferences in derivations allows to obtain the
following result, which is a generalization of the previous example:

Theorem 1 (Inference permutation). Every successive (bottom-up) applications of two in-
ference rules can be permuted systematically without loss of provability, except in the case of
an invertible rule followed by a non-invertible one.

The prioritizing of invertible rules is only one way to exploit this result: in its original
formulation [4], focusing goes even further by imposing that non-invertible formulas be recur-
sively decomposed until an invertible subformula is reached, which is possible thanks to the
permutability of non-invertible rules with themselves.

In our setting of doubly deep linking, focusing simply consists in decomposing the in-
vertible context when the other one is not invertible. If the two contexts have the same
invertibility, the choice can be made arbitrarily thanks to the previous result. Thus, our
focusing discipline is less constraining than the standard one. Still, in contrast to a full search
procedure, it completely eliminates don’t-know non-determinism, leaving only don’t-care non-
determinism. This is because linking is not concerned with providing a full proof of the goal,
but only an open derivation which turns it into weaker subgoals, where all choices are implicit
in the contexts of the selected subformulas. Furthermore, it does not prevent subgoals from
being each time the same or at least equivalent, and thus linking from being in some sense
deterministic.

We start by introducing two sub-categories of contexts, corresponding to those having
non-invertible right (resp. left) introduction rules:

Definition 13 (Non-invertible contexts). Right (resp. left) non-invertible contexts ρ (resp.
λ) are defined by the following grammar:

ρ ::= □ | χ ∨A | A ∨ χ

λ ::= □ | χ ⇒ A | A ⇒ χ

This simple addition is enough to define the rules for doubly deep linking, which are
gathered in the ISL02 system presented in figure 5. To make the presentation lighter, we
chose a linear version of the rules in the style of [1] (section 4.1). This means that selected
assumptions are consumed, instead of being duplicated in all premises (which is implemented
in ISL01 with implicit fillings). While the question of linearity is important from a usability
standpoint, it is orthogonal to focusing in the propositional case since it has no impact on
invertibility, and will be discussed more thoroughly in section 2.2.

Focused calculi usually involve specialized forms of sequents to encode the start and end
of a selection (e.g. with the decide and release rules of [4]), but we prefer here to rely on the
simpler device of explicit fillings. In addition to the fact that we will reuse them in the deep
inference formulation of linking to be presented in section 2, it also allows us to apply the id

rule as soon as both contexts have been decomposed, instead of performing full η-expansion
to reach atoms.

11



Invertible rules (colored blue in figure 5) stay unchanged from ISL01, modulo linearity.
Indeed, they can be applied on a selected context independently of the other, since we want
to apply them as soon as possible and in arbitrary order.

The real change happens for non-invertible rules (colored red in figure 5): we want to ap-
ply them iff no invertible rule is applicable, that is when the two contexts are non-invertible.
However for left rules, we need to distinguish between the “hypothesis vs hypothesis” or for-
ward case (rules whose name ends with a ‘,’), and the “hypothesis vs conclusion” or backward
case (rules whose name ends with a ‘⊢’). Then arises an interesting phenomenon, in that the
natural rule ⇒ L1 ⊢ for implication is incorrect for our purpose: indeed, the linked formulas
are split among the two premises, which necessarily prevents their final interaction in the id

rule. Thus, we colored this rule in gray to indicate that it must not be included in the system.
Even though ISL02 contains rules absent from ISL01, it is morally a subsystem of the latter

since we reduced the number of derivations with the focusing discipline. Therefore, aside from
the slight non-determinism discussed earlier, previously shown properties of termination and
correctness should still be true. We postpone to future work a formal proof of these, based
on a translation from ISL02 to ISL01.

Then we can adapt the definition of linking to the doubly deep setting:

Definition 14 (Doubly deep interaction trace). The interaction traces Tr(L) of a linkage
L = i : ξ / A

Γ⊢C
==== j : χ / B are all the ISL02 derivations that can result from performing a

bottom-up proof-search on the sequent S, where

S =


⌊Γ \ i : ξ {A}⌋ , ξ [A] ⊢ χ [B] if j > 0

⌊Γ \ j : χ {B}⌋ , χ [B] ⊢ ξ [A] if i > 0

⌊Γ \ i : ξ {A} , j : χ {B}⌋ , ξ [A] , χ [B] ⊢ C otherwise

Definition 15 (Doubly deep linking). The linking of a linkage L is defined as the list of open
premises of any derivation in Tr(L), ordered by decreasing height.

1.3 First-order linking

In this section, we are concerned with the extension of linking to first-order logic. To preserve
determinism and termination of the procedure, we add a preliminary phase of unification
between the linked subformulas, which generates a substitution used to instantiate some of
the quantifiers in their contexts.

To simplify the presentation, we treat formulas up to α-equivalence by following the
Barendregt’s convention, which states that: 1. No variable is both free and bound. 2. Bound
variables all have different names. In practice though, this convention is not respected when
working with proof assistants. We will discuss briefly in the conclusion how this has been
handled in the implementation of the link tactic of Actema.

1.3.1 Unification

In section 1.2.1, we introduced a well-formedness condition to ensure that any linking ter-
minates on an instance of the identity rule, which relied crucially on the equality of the
linked subformulas. When going first-order, propositional atoms X are extended to predi-
cates X(t1, . . . , tn): while we could content ourselves with basic syntactic equality, this ignores
many potential usecases of subformula linking. Indeed, consider the following linkage:

12



X(t) ⊢ ∃x. X(x)

Even if X(t) ̸= X(x), the intuitive meaning is very clear: we want to instantiate the
existentially quantified variable x with the term t. Dually, one often encounters in practice
goals where the following linkage would be useful:

X(t) , ∀x. X(x) ⇒ A ⊢ C

This would both instantiate x with t and apply the implication, generating the subgoal:

X(t),∀x.X(x) ⇒ A,A {x := t} ⊢ C

In both cases, the information on which witness to give to the quantifier was obtained by
a direct matching of the argument of the two occurrences of X. More generally, there will
be as many equations as the summed arities of all matching occurrences of predicates in the
linked formulas, which must all be solved with the same instantiations of quantified variables.
Thus it defines a first-order unification problem whose solution is the set of instantiations,
or equivalently a substitution σ. For more information on first-order unification, we refer the
reader to the standard algorithm of Martelli and Montanari [8], which is the one actually
used in our implementation.

We still need to determine which quantified variables should be regarded as unification
variables to be instantiated during unification, and which should not. It turns out that this
information can also be deduced from the shape of the contexts of selected formulas. But
first we need to extend context-based notions to support quantifiers:

Definition 16 (First-order formula contexts). The grammar of formula contexts is extended
in the following way:

χ, ξ, ζ ::= . . . | ∀x.χ | ∃x.χ

Definition 17 (First-order polarized contexts). The grammar of polarized contexts is ex-
tended in the following way:

π ::= . . . | ∀x.χ | ∃x.χ

Definition 18 (Quantifier occurrence). The quantifier occurrence of a variable x in an oc-
currence oA is defined by:

oAx =

{
oB if there exists oB ≤ oA s.t. either B = ∃x.C or B = ∀x.C
∅ otherwise

Definition 19 (Unification variables). The set of unification variables of an occurrence oA

is defined by:

V(oA) =

{
x

∣∣∣∣∣ oAx = oB and B =

{
∃x.C if oB is positive
∀x.C otherwise

}

In other words, it is the set of variables quantified by a positive (resp. negative) existential
(resp. universal) occurrence.

13



Definition 20 (Unification problem). Let A
.
= B be the set of equations between first-order

terms defined recursively by:

X(t1, . . . , tn)
.
=X(u1, . . . , un) =

n⋃
i=1

{ti
.
= ui}

⊤ .
=⊤ = ∅

⊥ .
=⊥ = ∅

A ∧B
.
= C ∧D = A

.
= C ∪ B

.
=D

A ∨B
.
= C ∨D = A

.
= C ∪ B

.
=D

A ⇒ B
.
= C ⇒ D = A

.
= C ∪ B

.
=D

∀x.A .
= ∀y.B = A

.
=B {y := x}

∃x.A .
= ∃y.B = A

.
=B {y := x}

and undefined otherwise. The unification problem P(L) of a linkage L = oA
S
=== oB is defined

as A
.
=B, where unification variables are restricted to V(oA) ∪ V(oB).

There is one last necessary ingredient to formulate our refined well-formedness condition
for first-order linkages. Consider the following linkage:

∀a.∃b. X(b, a) ⊢ ∃x.∀y. X(x, y)

Let us try to grasp its deductive meaning. The first step of reasoning would be to instan-
tiate either x with b or a with y, following the substitution given by unification: but neither
b nor y are available yet, since they can only be obtained as functions of the witnesses given
in place of a and x2! Thus we detect here a form of vicious circle, which indicates erroneous
reasoning. To forbid such linkages, we introduce a dependency relation on the quantified
variables of an occurrence, which is akin to the one of expansion-tree proofs [5]:

Definition 21 (Dependency relation). Let oA be an occurrence, and let <0
oA

be the relation
defined on the set of its quantified variables by x <0

oA
y if oAx < oAy with x ∈ V(oA) and

y ̸∈ V(oA). The dependency relation <oA of oA is defined as the transitive closure of <0
oA

.
The dependency relation <L of a linkage L = oA

S
=== oB is defined as <oA ∪ <oB .

The dependency relation of a linkage can be seen as the juxtaposition of two directed
graphs, corresponding to the dependency relations of the two linked occurrences. Then, if
unification succeeds with a substitution σ, the informal reasoning sketched above is captured
formally by applying σ to both graphs, which will often have the effect of connecting them
together, sometimes creating cycles.

Definition 22 (Dependency substitution). The application of a substitution σ to a depen-
dency relation <L is the relation <σ

L defined by x <σ
L y if either x <L y, or there exists z such

that z <L y and x occurs in σ(z).

Definition 23 (Well-formed first-order linkage). A linkage L = i : ξ / A
S
=== j : χ / B is said

to be well-formed if i ̸= j, A and B have opposite polarities, P(L) has a solution σ, and <σ
L

is acyclic.
2we rely here on a functional interpretation of hypotheses of the form ∀x.∃y.R(x, y), which can be found

at work in the procedure of Skolemization dating back to 1920, or even before in some axioms of first-order
theories like the Axiom of Choice in ZFC.

14



1.3.2 Interaction

When a linkage i : ξ / A
S
=== j : χ / B is well-formed, it will now produce a substitution σ

instantiating those quantifiers in ξ and χ which bind variables that have been unified in A and
B. It only remains to actually perform this instantiation during linking, as specified by the
∃R and ∀L rules of figure 6. These rules rely on sequents of the form Γ ⊢σ C, so that witnesses
can be fetched in the substitution σ. We call ISL12 the system containing the quantifier rules
of figure 6, as well as the rules of ISL02 upgraded with the new decorated sequents.

The only new non-invertible rule is ∃R, thus we extend the grammar of non-invertible
context as follows:

ρ ::= . . . | ∃x.χ

One might expect dually to have ∀L as non-invertible, but we explicitly chose the non-linear,
invertible variant of the rule to minimize the loss of provability in generated subgoals.

One important property of the rules ∃R and ∀L is that they are incomplete, in the sense
that they can only be applied if the quantified variable has been instantiated during unifi-
cation. Otherwise, the search procedure simply get stuck before reaching the identity rule,
and thus linking is undefined. We could either forbid the faulty linkages by strengthening
the well-formedness condition, or find a way to preserve uninstantiated quantifiers. Unfortu-
nately, the rules of sequent calculus can only deal with formulas at the top-level, making this
second alternative impossible. A third one would be to introduce a mechanism of existential
variables, as is done in some proof assistants like Coq. But they add a global flavor to the
system, by requiring that delayed instantiations be synchronized in all branches of a proof,
which also cannot be expressed straightforwardly in sequent calculus.

As for correctness of first-order linking, it is less obvious than in the propositional case
because of the intervention of unification and dependency-checking in the well-formedness
condition. In fact, this condition might be compared to the correctness criterions of com-
pact representations of proofs such as the already mentioned expansion-tree proofs, but also
Hughes’ combinatorial proofs or Girard’s proof-nets [9]. Then, the correctness theorem of
linking would be analoguous to the sequentialization theorem of proof-nets, where the possi-
ble sequentializations are the interaction traces.

2 Subformula linking in deep inference
The linking procedure described in section 1 already captures a lot of usecases for drag-and-
drop actions, and arguably improves over PbP in at least two respects: the well-formedness
condition and the focusing discipline protect the user from many wrong choices in the proof;
and unification provides a powerful mechanism to instantiate quantifiers, that often prevents
the user from having to “invent” witnesses. But this power comes at the price of completeness:
most goals become unprovable with linking alone, because the well-formedness condition
forbids the two linked formulas from occurring in the same top-level formula (i ̸= j). This is
especially problematic with goals of the form ⊢ C, where for example

⊢ A ⇒ A

is not well-formed. One approach, which is the one currently implemented in Actema, is
to let linking coexist with other complementary actions, e.g. ⊢ A ⇒ A can be turned into

15



A ⊢ A by double-clicking on A ⇒ A. But there are other issues beside completeness: linking
is intrinsically destructive, in the sense that in order to bring the two selected formulas to
the top-level for the id rule, both of their contexts need to be completely decomposed by
introduction rules. This was already a problem for uninstantiated quantifiers in section 1.3.2,
but also at the propositional level in the example illustrating PbP in section 1.1. Indeed, the
generated subgoal A∧(B∨C) ⊢ B was not provable, because the selection forced too soon the
choice of A∧B over C with the ∨R1 rule, when the intuitive result would rather be to obtain
the provable subgoal A∧ (B ∨C) ⊢ B ∨C. To preserve contexts, we need to avoid altogether
the process of bringing the selected formulas to the top-level, which requires the ability to
apply the id rule inside a context. Since this is against the principles of standard Gentzen
calculi, we turn to a less known framework for proof formalisms called deep inference.

2.1 Deep inference

The ability to apply rules deep inside a context is precisely the common feature of all for-
malisms following the deep inference methodology. The first of these formalisms, the calculus
of structures (CoS hereafter), was introduced in 1999 by Alessio Guglielmi [10], and is still the
most used and studied. The original technique of subformula linking devised by Chaudhuri
[2] was defined in the CoS, and so is our adaptation of his work to intuitionistic logic.

In the CoS, there is no distinction between formulas and sequents, meaning that the
judgments manipulated by inference rules are plain formulas. Also, the tree-shaped derivations
of Gentzen calculi are collapsed into plain lists of inferences. Add to this the contextual closure
of rules, and you get something closer to a rewrite system, where all rules have the form:

χ {A}
χ {B}

We will most of the time omit the context χ when defining rules, except when we require
that it has a particular shape. In the context of intuitionistic logic, a proof is then a derivation
starting from the truth constant ⊤, which stands for the absence of prior knowledge, or
equivalently the empty set of premises of an axiom:

Definition 24 (CoS proof). A derivation ϕ of B from A in a CoS system S, written ϕ : A
S−−→

B, is a sequence of rules with the bottom-most rule having conclusion B and the top-most rule
having premise A. We write A

S−−→ B to assert that there exists a ϕ such that ϕ : A
S−−→ B.

A proof of A in S is a derivation ϕ : ⊤ S−−→ A.

With these ingredients, it is easy to encode rules from sequent calculus. For example, the
∨L rule of figure 3 can be encoded as:

π {(A1 ⇒ C) ∧ (A2 ⇒ C)}
π {(A1 ∨A2) ⇒ C}

There are three things to notice in this encoding: 1. the ‘⊢’ of sequents is replaced by
the implication ⇒; 2. the set of premisses is explictly written as a conjunction; and 3. the
context of hypotheses Γ is generalized into the positive context π. Indeed, if Γ = A1, . . . , An,
it can be seen as the special case π = (

∧
iAi) ⇒ □. Many rules to be introduced are better

understood as deep variants of sequent calculus rules encoded this way.

16



2.2 Propositional linking

As in section 1.2.2, we will define linking as the result of pseudo-deterministic proof-search in a
specially tailored calculus. However, we consider a larger set of rules that is able to represent
not only partial derivations performing one linking (the so-called interaction traces), but
complete proofs based on a sequence of linkings. This requires crucially the ability to create
a linkage by looking deep inside formulas, which was not possible in the shallow setting of
sequent calculus.

The complete system for intuitionistic propositional logic is shown in figure 7. We call it
DISL0, the additional D standing for Deep. It is comprised of 4 parts, and each contiguous,
maximally long sequence of rules that belong to the same part in a derivation is called a
phase.

Backward A backward phase is generally initiated with the lnp rule, which creates a link-
age between two incomparable occurrences (definition 5) ancestrally connected by a positive
occurrence of implication. This is a generalization of linkages between an hypothesis and
conclusion, where instead of turning the linkage

Γ, χ
{
A

}
⊢ ξ

{
B

}
into the sequent Γ, χ [A] ⊢ ξ [B] by relying on the meta-level definition of interaction traces,
we turn the formula reading of the sequent

∧
Γ ⇒ (χ {A} ⇒ ξ {B}) into the formula

∧
Γ ⇒

(χ [A] ⊢ ξ [B]) by instantiating the object-level rule lnp with π =
∧
Γ ⇒ □. Thus in this

setting, the symbol ‘⊢’ plays the role of what we call an interaction connective, following
the terminology of Chaudhuri [2]. It has the same semantic reading as implication, and its
sole purpose is to guide proof-search by making all other backward rules act as “introduction
rules” for this connective.

The most straightforward way for a backward phase to end is when the two linked formulas
are brought together on each side of the ⊢ connective. If they are equal, the lnpid rule, which
plays the role of the id rule of sequent calculus, is applied. If not, the unlnp rule releases the
linkage by turning ⊢ back into ⇒. In a way, this rule makes linking closer to the original
semantics of PbP, since it leaves room for linkings that do not end on the identity rule.

The remaining backward rules serve as a mean to bring the linked formulas closer, not by
bubbling them to the top-level, but by instead descending the interaction connective ⊢ into
their contexts, much like the commutative cases of substitution or cut-elimination. Rules
whose naming pattern is lnpr∗ (resp. lnpl∗) are deep variants of the left (resp. right) focused
rules of ISL02 shown in the 2nd (resp. 3rd) column of figure 5. In particular, the right rules
lnprdi for disjunction preserve the context C, thus solving the problem of loss of provability
of the ∨Ri rules mentioned earlier. More importantly, the lnpri1 rule switches ⊢ for a new
interaction connective ‘∗’, ending the backward phase and starting a forward phase. This is
because it inverts the polarity of the linked antecedant χ, exactly like the ⇒ R1 rule.

Remark 1. In our presentation of these “commutation” rules (also called switch rules in
standard CoS systems), we omit writing the linked subformulas since they only need to be
inspected in the lnpid and unlnp rules. For example, the rigorous formulation of lnplc1 is:

C ⇒ (χ [A] ⊢ ξ [B])
lnplc1

(χ ∧ C) [A] ⊢ ξ [B]

17



Forward The forward phase can in some sense be understood as a left adjoint to the
backward phase, following the standard adjunction − ∧ A ⊣ A ⇒ − of cartesian closed cat-
egories. The lnn rule creates a linkage between two incomparable occurrences ancestrally
connected by a negative occurrence of conjunction. This is a generalization of linkages
between two hypotheses, where the sequent Γ, χ [A] , ξ [B] ⊢ C is replaced by the formula
(
∧
Γ ∧ (χ [A] ∗ ξ [B])) ⇒ C obtained by applying lnn with η = (

∧
Γ ∧□) ⇒ C, ‘∗’ having the

same semantic reading as conjunction.
Contrarily to lnpid, the lnnid rule is quite accessory, and intuitively reads as “linking two

occurrences of the hypothesis A merges them together”. We also need the lnncomm rule to
express the commutativity of ∗. Finally, the lnni1 rule is like the inverse of lnpri1, as it ends
the forward phase and initiates a backward phase.

Definition 25 (Interaction phase). We call interaction phase the alternation of backward
and forward phases produced by one linkage in a derivation, where the phase switch occurs
each time a polarity is inverted.

Invertibility While commutation rules for the backward phase share similarities with the
introduction rules of sequent calculus, their emphasis on context preservation changes their
invertibility. Furthermore, there is no sequent calculus equivalent of forward commutation
rules. Thus we need to refine the notion of invertible context:

Definition 26 (Deeply non-invertible context). Right (ρ), left (λ) and forward (ϕ) deeply
non-invertible contexts are defined by the following grammar:

ρ ::= □ | χ ∧A | A ∧ χ | χ ∨A | A ∨ χ

λ ::= □ | χ ⇒ A | A ⇒ χ

ϕ ::= □ | χ ∨A | A ∨ χ | χ ⇒ A | A ⇒ χ

Units When a backward phase ends successfully on lnpid, the linked occurrences are rewrit-
ten into ⊤. Thus after many linkings, the goal will contain a lot of occurrences of ⊤ that
obscure what really remains to be proved, especially since the contexts of linked formulas have
been preserved. Fortunately, these contexts can be simplified using algebraic unit laws, which
for intuitionistic logic correspond to provable identities in Heyting algebras. The neul and neur

(resp. absl and absr) rules describe neutral (resp. absorbing) elements with respect to each
connective. This includes falsity ⊥, which is essential to define negation as ¬A ≜ A ⇒ ⊥.
Last but not least, the efq rule implements the familiar ex falso quodlibet principle, without
which we would only be in minimal logic.

Resources A remarkable property of the DISL0 rules considered up until now is that they
are linear, like the rules of ISL02. A nice consequence of linearity is that linkings do not
complexify arbitrarily the goal by introducing or duplicating formulas, which is essential from
a usability standpoint to keep track of what is happening. However in terms of provability, it
makes many formulas unprovable, the canonical example being the diagonal map A ⇒ (A∧A).
Instead of systematically duplicating each part of the selected contexts as in ISL01, we add
here a contraction rule conn, which corresponds to the usual left contraction rule of sequent
calculus. This means that (negative occurrences of) formulas can be manually duplicated
in the goal whenever needed, which can easily be associated to some input mechanism in an

18



interface. Another alternative discussed in [2] is to systematically duplicate the whole selected
contexts once when creating a linkage, with the following variants of lnp and lnn:

π {(χ {A} ∧ ξ {B}) ⇒ (χ [A] ⊢ ξ [B])}
lnp

π {χ {A} ⇒ ξ {B}}
η {(χ {A} ∧ ξ {B}) ∧ (χ [A] ∗ ξ [B])}

lnn
η {χ {A} ∧ ξ {B}}

While it prevents the user from worrying about duplication issues, it has the dual overhead
of possibly surcharging the goal with useless hypotheses. This is linked to the old question
of relevance in logic, and there does not seem to be any generic way to determine in advance
which hypotheses will need duplication. Thus we also add the left weakening rule wkn to
manually discard useless hypotheses.

Correctness/Completeness Relying only on the intuitionistic reading of ∧, ∨ and ⇒, it
is quite easy to convince oneself that in all rules of DISL0, the premiss entails the conclusion.
A more formal proof of correctness would translate each rule as a derivation in a standard
calculus, e.g. lnpli2 would be translated in the natural deduction system NJ as:

C ∧ (χ ⇒ ξ)
∧E1

C [C ⇒ χ]1

⇒ E
χ

C ∧ (χ ⇒ ξ)
∧E2

χ ⇒ ξ
⇒ E

ξ
⇒ I1

(C ⇒ χ) ⇒ ξ

Conversely, completeness could be obtained by simulating rules of a standard system with
DISL0 derivations. However, the linking and focusing disciplines make the proof much harder
to obtain as a direct translation from a Gentzen calculus. We still conjecture that complete-
ness holds, and the proof will probably rely on a sequence of intermediate calculi as is done
in [2].

Deep linking in sequents We can now leverage the rules of DISL0 to specify an alternative
behavior of linkages on sequents, that we call deep linking:
Definition 27 (Occurrence intersection). The intersection oA ⊓ oB of two occurrences oA

and oB is their greatest lower bound in the suboccurrence ordering if they have one, and is
undefined otherwise.

Definition 28 (Deep well-formedness). A linkage oA
S
=== oB is said to be deeply well-formed

if oA = i : χ /A and oB = j : ξ /B are incomparable, and if i = j then oA ⊓ oB = i : ζ /D ◦E
with ⟨ζ, ◦⟩ ∈ {⟨π,⇒⟩ , ⟨η,∧⟩}, D,E ∈ {χ {A} , ξ {B}} and D ̸= E.

Definition 29 (Deep linking). Let L = oA
Γ⊢C
==== oB be a deeply well-formed linkage with

oA = i : χ / A and oB = j : ξ / B. The deep linking of L is given by the following table:

i < 0 i > 0

i ̸= j < 0 Γ,Tχ [A] ∗ ξ [B]U ⊢ C Γ ⊢ Tξ [B] ⊢ χ [A]U
i ̸= j > 0 Γ ⊢ Tχ [A] ⊢ ξ [B]U —

i = j
Γ, ζ {TD • EU} ⊢ C Γ ⊢ ζ {TD • EU}
with oA ⊓ oB = i : ζ / D ◦ E and ⟨◦, •⟩ ∈ {⟨⇒,⊢⟩ , ⟨∧, ∗⟩}

19



where for any A, TAU denotes the formula obtained by proof-search on A in the system
DISL0 \ {lnp, lnn, conn,wkn}.

In other words, deep linking performs an interaction phase followed by a unit elimination
phase. Indeed, proof-search will stop when no more unit rule is applicable since we removed
the lnp and lnn rules that could create other linkages, as well as the conn and wkn rules. The
definition ensures that selected hypotheses are implicitly duplicated.

Conclusion
Implementation The backend of the Actema prototype is written in the functional pro-
gramming language OCaml, which is a standard choice in the area of proof assistants3. PbP-
based first-order linking and deep propositional linking are implemented as pure recursive
functions named link and dlink respectively, that both take a linkage and return the list
of generated subgoals (which is always a singleton in the case of dlink). Therefore they
can be seen as instances of tactics in more traditional proof systems, even though they are
never invoked textually. The don’t-care non-determinism of proof-search is resolved arbi-
trarily through the semantics of pattern matching, which will apply the inference rule that
corresponds to the first declared clause.

In the first-order case, a lot of effort has been put in handling naming conflicts. In particu-
lar, while we use generic unification and dependency-checking algorithms that work on a single
substitution, the interaction phase works with one substitution for each selected context, in
order to preserve as much as possible user-defined names. Deep linking is naturally expressed
as mutually recursive functions backward and forward, composed with a unit elimination
function elim_units that applies simplification rules recursively until a fixpoint is reached.
We also implemented a function search_match that builds a list of all well-formed linkages
that can be performed in the current goal. Hence it is in charge of performing unification and
dependency-checking, and is also used to provide information to the highlighting mechanism
discussed in section 1.2.1.

Overall, we tried to keep the implementation simple, and thus ignored issues of algorithmic
efficiency. Two web demos are available at [12] and [13], that associate respectively the link
and dlink tactics to drag-and-drop actions. In the case of dlink, the interface does not
support yet the selection of arbitrary subformulas, and is thus restricted to the well-formed
linkages of definition 10.

Generalizations As pointed out in both [1] and [2], there are a number of ways to extend
the notion of subformula linking. The most obvious one is to consider different logics, such
as classical logic and modal logics. For classical logic, it can be done within the PbP-based
approach by just allowing multiple conclusions on the right of sequents and by using rules of
the LK system, an idea which is surprisingly not mentioned in [1]. More interesting would
be extensions to expressive logics that support higher-order and inductive features such as
HOL or the Calculus of Constructions. While there are some experimental sequent systems
in the litterature for such logics [14], there are none in the setting of deep inference. It is also
known that unification becomes undecidable starting from third-order logic [15]. An easier

3Indeed, OCaml is a descendent of the ML language, whose design was motivated by the need of a proof
language for one of the very first interactive theorem provers, LCF [11].

20



extension would be to support theories with equality, for example by rewriting equalities
through drag-and-drop actions.

Related works The idea of reducing a proof to a collection of links between its dual
occurrences of formulas is not new, and can be traced back to the matings of Andrews [16] in
the context of automated deduction. Matings are sets of links covering all atomic occurrences,
and proofs are matings satisfying certain conditions. Our work differs in that we are interested
in interactive deduction, and thus consider links as a mechanism of inference rather than a
syntactic criterion to discriminate proofs. Then a proof is better understood as a list of
links, and the atomicity constraint is relaxed to gain expressivity, since the creation of links
is offloaded to the user instead of the search procedure.

Another line of work, starting with the proof-nets of Girard [17], is concerned with the
more fundamental problem of proof identity, which requires a canonical notion of proof object
[9]. In the case of unit-free multiplicative linear logic, the absence of any form of duplica-
tion/sharing/removal mechanism allows to completely characterize a proof-net by the set of
its axiom links, the difference with matings being that correctness of a proof structure can
be checked in polynomial instead of exponential time. This is because adding additives or
exponentials, which can encode intuitionistic and classical logic, requires additional structure
to represent uses of weakening and contraction. The combinatorial proofs of Hughes [18] [19]
are examples of polynomially-checkable proof objects exhibiting such structure, and have re-
cently been extended to handle first-order classical quantifiers [20] (intuitionistic quantifiers
are still an open problem). This compartmentalization of axiom links and structural rules
resembles the distinction between interaction phases and manual applications of conn and wkn

in DISL0, which is itself inspired by the decomposition theorem of deep inference formalisms.
Another approach to canonicity is to consider a generalization of focused proofs called

maximally multi-focused proofs, which have been proven isomorphic to compact representa-
tions of proofs such as proof-nets [21] and expansion tree proofs [22]. We conjecture that our
system ISL12 could be reformulated as a multi-focused proof system, where foci correspond to
the linked formulas, and thus their number is restricted to exactly 2.

Hence, it appears that subformula linking exhibits properties of both approaches to canon-
icity, but at the level of partial proofs: well-formed linkages make for compact-parallel-spatial
representations of inferences, whose operational meaning is given by their detailed-sequential-
temporal interaction traces.

References
[1] Yves Bertot, Gilles Kahn, and Laurent Théry. Proof by pointing. In Masami Hagiya and

John C. Mitchell, editors, Theoretical Aspects of Computer Software, volume 789, pages
141–160. Springer Berlin Heidelberg. Series Title: Lecture Notes in Computer Science.

[2] Kaustuv Chaudhuri. Subformula linking as an interaction method. In Sandrine Blazy,
Christine Paulin-Mohring, and David Pichardie, editors, Interactive Theorem Proving,
volume 7998, pages 386–401. Springer Berlin Heidelberg. Series Title: Lecture Notes in
Computer Science.

21



[3] Jan von Plato. The development of proof theory. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
winter 2018 edition, 2018.

[4] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. 2(3):297–
347.

[5] Dale A. Miller. A compact representation of proofs. Studia Logica, 46:347–370, 1987.

[6] Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and
classical logics. 410(46):4747–4768.

[7] Dale Miller and Marco Volpe. Focused labeled proof systems for modal logic. In Martin
Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, volume 9450, pages 266–280. Springer
Berlin Heidelberg. Series Title: Lecture Notes in Computer Science.

[8] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans.
Program. Lang. Syst., 4(2):258282, April 1982.

[9] Lutz StraSSburger. The problem of proof identity, and why computer scientists should
care about hilbert’s 24th problem. 377(2140):20180038.

[10] Alessio Guglielmi. A calculus of order and interaction. 1999.

[11] Tobias Nipkow. Logic and computationinteractive proof with cambridge lcf: By l.c.
paulson. cambridge university press, cambridge, 1987, price č27.50, isbn 0 521 34632 0.
Science of Computer Programming, 11:178–180, 1988.

[12] Typical team. Actema prototype with PbP-based first-order linking, 2020. https://
prover-interface-icjs29hlj.vercel.app.

[13] Typical team. Actema prototype with deep propositional linking, 2020. https://
prover-interface-2iow9pf77.vercel.app.

[14] Étienne Miquey, Xavier Montillet, and Guillaume Munch-Maccagnoni. Dependent type
theory in polarised sequent calculus (abstract). page 4.

[15] Gerard P. Huet. The undecidability of unification in third order logic. 22(3):257 – 267.

[16] Andrews. Refutations by matings. IEEE Transactions on Computers, C-25(8):801–807,
1976.

[17] Jean-Yves Girard. Linear logic. 50(1):1 – 101.

[18] Dominic Hughes. Proofs without syntax. Annals of Mathematics, 164(3):10651076, Nov
2006.

[19] Willem B. Heijltjes, Dominic J. D. Hughes, and Lutz StraBburger. Intuitionistic proofs
without syntax. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1–13. IEEE.

[20] Dominic J. D. Hughes. First-order proofs without syntax, 2019.

22

https://prover-interface-icjs29hlj.vercel.app
https://prover-interface-icjs29hlj.vercel.app
https://prover-interface-2iow9pf77.vercel.app
https://prover-interface-2iow9pf77.vercel.app


[21] Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-
focusing. In Giorgio Ausiello, Juhani Karhumäki, Giancarlo Mauri, and Luke Ong,
editors, Fifth Ifip International Conference On Theoretical Computer Science Tcs 2008,
volume 273, pages 383–396. Springer US. ISSN: 1571-5736 Series Title: IFIP Interna-
tional Federation for Information Processing.

[22] Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A multi-focused proof system iso-
morphic to expansion proofs. 26(2):577–603.

A Proof calculi

A1
∨I1

A1 ∨A2

A2
∨I2

A1 ∨A2

A1 ∨A2

[A1]
····
C

[A2]
····
C

∨E
C

Figure 2: Natural deduction rules for disjunction ∨

Γ, A1 ⊢ C
∧L1

Γ, A1 ∧A2 ⊢ C

Γ, A2 ⊢ C
∧L2

Γ, A1 ∧A2 ⊢ C

Γ ⊢ A Γ ⊢ B
∧R

Γ ⊢ A ∧B

Γ, A1 ⊢ C Γ, A2 ⊢ C
∨L

Γ, A1 ∨A2 ⊢ C

Γ ⊢ A1
∨R1

Γ ⊢ A1 ∨A2

Γ ⊢ A2
∨R2

Γ ⊢ A1 ∨A2

Figure 3: Sequent calculus rules for disjunction ∨ and conjunction ∧

23



idL
Γ,□ [A] ⊢ A

idR
Γ, A ⊢ □ [A]

Γ, (χ ∧B) {A} , χ [A] , B ⊢ C
∧L1

Γ, (χ ∧B) [A] ⊢ C

Γ ⊢ χ [A] Γ ⊢ B
∧R1

Γ ⊢ (χ ∧B) [A]

Γ, (B ∧ χ) {A} , B, χ [A] ⊢ C
∧L2

Γ, (B ∧ χ) [A] ⊢ C

Γ ⊢ B Γ ⊢ χ [A]
∧R2

Γ ⊢ (B ∧ χ) [A]

Γ, (χ ∨B) {A} , χ [A] ⊢ C Γ, (χ ∨B) {A} , B ⊢ C
∨L1

Γ, (χ ∨B) [A] ⊢ C

Γ ⊢ χ [A]
∨R1

Γ ⊢ (χ ∨B) [A]

Γ, (B ∨ χ) {A} , B ⊢ C Γ, (B ∨ χ) {A} , χ [A] ⊢ C
∨L2

Γ, (B ∨ χ) [A] ⊢ C

Γ ⊢ χ [A]
∨R2

Γ ⊢ (B ∨ χ) [A]

Γ, (χ ⇒ B) {A} ⊢ χ [A] Γ, (χ ⇒ B) {A} , B ⊢ C
⇒ L1

Γ, (χ ⇒ B) [A] ⊢ C

Γ, χ [A] ⊢ B
⇒ R1

Γ ⊢ (χ ⇒ B) [A]

Γ, (B ⇒ χ) {A} ⊢ B Γ, (B ⇒ χ) {A} , χ [A] ⊢ C
⇒ L2

Γ, (B ⇒ χ) [A] ⊢ C

Γ, B ⊢ χ [A]
⇒ R2

Γ ⊢ (B ⇒ χ) [A]

Figure 4: Rules of ISL01

24



id
Γ,□ [A] ⊢ □ [A]

Γ, χ [A] , B ⊢ C
∧L1

Γ, (χ ∧B) [A] ⊢ C

Γ ⊢ χ [A] Γ ⊢ B
∧R1

Γ ⊢ (χ ∧B) [A]

Γ, B, χ [A] ⊢ C
∧L2

Γ, (B ∧ χ) [A] ⊢ C

Γ ⊢ B Γ ⊢ χ [A]
∧R2

Γ ⊢ (B ∧ χ) [A]

Γ, χ [A] ⊢ C Γ, B ⊢ C
∨L1

Γ, (χ ∨B) [A] ⊢ C

Γ, λ [C] ⊢ χ [A]
∨R1

Γ, λ [C] ⊢ (χ ∨B) [A]

Γ, B ⊢ C Γ, χ [A] ⊢ C
∨L2

Γ, (B ∨ χ) [A] ⊢ C

Γ, λ [C] ⊢ χ [A]
∨R2

Γ, λ [C] ⊢ (B ∨ χ) [A]

Γ, λ [D] ⊢ χ [A] Γ, B ⊢ C
⇒ L1,

Γ, λ [D] , (χ ⇒ B) [A] ⊢ C

Γ ⊢ χ [A] Γ, B ⊢ ρ [C]
⇒ L1 ⊢

Γ, (χ ⇒ B) [A] ⊢ ρ [C]

Γ, χ [A] ⊢ B
⇒ R1

Γ ⊢ (χ ⇒ B) [A]

Γ ⊢ B Γ, λ [D] , χ [A] ⊢ C
⇒ L2,

Γ, λ [D] , (B ⇒ χ) [A] ⊢ C

Γ ⊢ B Γ, χ [A] ⊢ ρ [C]
⇒ L2 ⊢

Γ, (B ⇒ χ) [A] ⊢ ρ [C]

Γ, B ⊢ χ [B]
⇒ R2

Γ ⊢ (B ⇒ χ) [A]

Figure 5: Rules of ISL02

The ⇒ L1 ⊢ rule is not included in the system, it is only shown for explanatory purposes.

Γ, χ [A] ⊢σ C
∃L

Γ, (∃x.χ) [A] ⊢σ C

Γ, λ [B] ⊢σ χ [A] {σ}
(x ∈ dom(σ)) ∃R

Γ, λ [B] ⊢σ (∃x.χ) [A]

Γ, (∀x.χ) {A} , χ [A] {σ} ⊢σ C
(x ∈ dom(σ)) ∀L

Γ, (∀x.χ) [A] ⊢σ C

Γ ⊢σ χ [A]
∀R

Γ ⊢σ (∀x.χ) [A]

Figure 6: Quantifier rules of ISL12

25



Backward

π {χ [A] ⊢ ξ [B]}
lnp

π {χ {A} ⇒ ξ {B}}

⊤
lnpid

□ [A] ⊢ □ [A]

A ⇒ B
(A ̸= B) unlnp

□ [A] ⊢ □ [B]

C ⇒ (χ ⊢ ξ)
lnplc1

(χ ∧ C) ⊢ ξ

C ⇒ (χ ⊢ ξ)
lnplc2

(C ∧ χ) ⊢ ξ

(λ ⊢ χ) ∧ C
lnprc1

λ ⊢ (χ ∧ C)

C ∧ (λ ⊢ χ)
lnprc2

λ ⊢ (C ∧ χ)

(χ ⊢ ξ) ∧ (C ⇒ ξ)
lnpld1

(χ ∨ C) ⊢ ξ

(C ⇒ ξ) ∧ (χ ⊢ ξ)
lnpld2

(C ∨ χ) ⊢ ξ

(λ ⊢ χ) ∨ C
lnprd1

λ ⊢ (χ ∨ C)

C ∨ (λ ⊢ χ)
lnprd2

λ ⊢ (C ∨ χ)

C ∧ (χ ⊢ ρ)
lnpli2

(C ⇒ χ) ⊢ ρ

(χ ∗ ξ) ⇒ C
lnpri1

χ ⊢ (ξ ⇒ C)

C ⇒ (χ ⊢ ξ)
lnpri2

χ ⊢ (C ⇒ ξ)

Forward

η {χ [A] ∗ ξ [B]}
lnn

η {χ {A} ∧ ξ {B}}

A
lnnid

□ [A] ∗□ [A]

A ∧B
(A ̸= B) unlnn

□ [A] ∗□ [B]

(χ ∗ ξ) ∧ C
lnnc1

χ ∗ (ξ ∧ C)

C ∧ (χ ∗ ξ)
lnnc2

χ ∗ (C ∧ ξ)

(ϕ ∗ χ) ∨ C
lnnd1

ϕ ∗ (χ ∨ C)

C ∨ (ϕ ∗ χ)
lnnd2

ϕ ∗ (C ∨ χ)

(ϕ ⊢ χ) ⇒ C
lnni1

ϕ ∗ (χ ⇒ C)

C ⇒ (ϕ ∗ χ)
lnni2

ϕ ∗ (C ⇒ χ)

ξ ∗ χ
lnncomm

χ ∗ ξ

Figure 7: Rules of DISL0

26



Units

A
⟨◦, †⟩ ∈ {⟨∧,⊤⟩ , ⟨∨,⊥⟩ , ⟨⇒,⊤⟩} neul

† ◦A
A

⟨◦, †⟩ ∈ {⟨∧,⊤⟩ , ⟨∨,⊥⟩} neur
A ◦ †

†
⟨◦, †⟩ ∈ {⟨∧,⊥⟩ , ⟨∨,⊤⟩} absl

† ◦A
†

⟨◦, †⟩ ∈ {⟨∧,⊥⟩ , ⟨∨,⊤⟩ , ⟨⇒,⊤⟩} absr
A ◦ †

⊤
efq

⊥ ⇒ A

Resources

η {A ∧A}
conn

η {A}
η {⊤}

wkn
η {A}

Figure 7: Rules of DISL0

27


	Subformula linking in sequent calculus
	Proof by pointing
	Propositional linking
	Simply deep interaction
	Doubly deep interaction

	First-order linking
	Unification
	Interaction


	Subformula linking in deep inference
	Deep inference
	Propositional linking

	Proof calculi

