
Mini-defense manuscript

Interactive Deep Reasoning
Pablo Donato

May 7, 2022

1 General context
Proof assistants are software systems allowing for the precise synthesis and veri-
fication of mathematical proofs. They are based on the idea that mathematical
knowledge can be represented syntactically and unambiguously inside proof for-
malisms. These have been developed since the beginning of the 20th century, in the
well-established field of mathematical logic known as proof theory.

State-of-the-art proof assistants such as Coq or Isabelle are usually based on very
expressive logics, so that virtually any mathematical development can be expressed
in them. While this generality hinders the potential for fully-automated theorem-
proving, formal proofs still tend to be too detailed and verbose to be written by
hand, much like assembly code. This demands for a higher-level, more interactive
approach to computer-assisted proof authoring.

The problem is usually tackled through tactic languages, which offer to users
a set of primitive text commands to manipulate the proof state, as well as basic
combinators to build more complex tactics. For example, given (hypothetical) proofs
H1 of 𝐴 and H2 of 𝐴 ⇒ 𝐵, one can type the command apply H2 in H1 to get a
proof of 𝐵.

2 Initial research problem
While basic logical reasoning is considered universal, if not intuitive, each proof
assistant currently has its own syntax to perform it. This induces an unnecessary
cognitive burden for newcomers, especially those unfamiliar with textual interfaces;
but also for seasoned practicioners, who spend a non-negligible amount of time
performing mundane tasks such as naming, destructuring and application of hy-
potheses, or selection of subterms. This calls for friendlier and more ergonomic
interfaces, which fully exploit the capabilities of modern devices.

A first attempt in this direction was made in the 90’s by the team of G. Kahn
at Inria, where they coined the “Proof-by-Pointing” (hereafter PbP) paradigm [1].
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The idea was to synthesize complex tactics from the simple act of pointing at parts
of expressions, typically with a mouse cursor. More recently [2], K. Chaudhuri
proposed a variation on this idea termed “subformula linking”, where instead of
selecting expressions in isolation, one can link two of them together to make them
interact. In both cases, the expressions considered were logical formulas, and the
associated actions chains of inferences in first-order logic (hereafter FOL).

The purpose of this thesis is to explore to how extent these two proof paradigms,
and potentially others, can be integrated together in a single framework, in order
to provide a unified, extensible, and complete graphical user interface to general-
purpose proof assistants. By complete, we mean that interaction with the software
should be mainly driven by graphical actions — in this case direct manipulation of
logical propositions with a pointing device — rather than textual commands.

To that effect, we have two main axis of investigation: one, more practical,
consists in developing a prototype of graphical interface called Actema, which allows
us to test out the feasability and usefulness of various graphical proof actions, as
well as their integration together. The other, more foundational, tries to understand
the proof-theoretical structure of the transformations performed by these actions,
but also explores how old and new ideas in proof theory, programming language
theory and automated theorem proving can inspire new interaction principles, or
unify existing ones.

3 Logical reasoning through Drag-and-Drop
3.1 PbP-based DnD
At the beginning of my PhD, the first thing I did was to extend ideas explored
during my master’s internship within the Typical team, where I was already under
the supervision of Benjamin Werner and Pierre-Yves Strub. At the time, I had
performed the following tasks:

1. Familiarizing myself with the usage and codebase of Actema, the prototype of
GUI for interactive theorem proving developed by the team.

2. Designing and implementing a so-called drag-and-drop (herafter DnD) proof
tactic in Actema.

An example of such a DnD action corresponds to the familiar apply tactic mentioned
earlier: given two hypotheses 𝑃(𝑡) and ∀𝑥.𝑃(𝑥) ⇒ 𝑄(𝑥), the user can grab one of
them and bring it to the other, in order to produce a new hypothesis 𝑄(𝑡). This is
an instance of forward reasoning. Another example involves the conclusion of the
goal to be proved: given a hypothesis 𝐴 and a conclusion 𝐵∧ (𝐴∨𝐶)∧𝐷, bringing
the two items together will have the effect of simplifying the conclusion into 𝐵∧𝐷.
This is an instance of backward reasoning.
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While the first example could be handled by the tactic I developed during my
internship, the second could not. This is because it was based on a variant of the
PbP algorithm [1], whose principle is to systematically decompose formulas starting
from their topmost connective by applying rules of sequent calculus. In this case
it would have generated two subgoals 𝐴 ⊢ 𝐵 and 𝐴 ⊢ 𝐷, which correspond to the
premisses of the following partial derivation:

𝐴 ⊢ 𝐵

𝐴 ⊢ 𝐴
∨𝑅1𝐴 ⊢ 𝐴 ∨ 𝐶 𝐴 ⊢ 𝐷

∧𝑅
𝐴 ⊢ (𝐴 ∨ 𝐶) ∧ 𝐷

∧𝑅
𝐴 ⊢ 𝐵 ∧ (𝐴 ∨ 𝐶) ∧ 𝐷

3.2 SFL-based DnD
The solution was to use a different algorithm, based on the subformula linking
(hereafter SFL) paradigm of [2]. At the end of my internship, I sketched a variant
of SFL for intuitionistic propositional logic (hereafter IPL), since at the time it was
only formulated for linear FOL, and Actema is based on intuitionistic FOL. In the
first months of my PhD, I improved intuitionistic SFL and completed the extension
to the first-order case. It consisted in first designing proper inference rules for the
deep inference system which would underlie the DnD algorithm. In particular, the
rules handling first-order quantifiers differ from the original SFL of [2], in that they
are designed to work with a substitution which instantiates positive ∃ and negative
∀. This substitution is pre-computed by unification during the DnD, which is a
novelty of our approach.

Then I implemented the SFL-based DnD tactic in Actema, which allowed me to
reveal some bugs and make adjustments. I completed the design process with a proof
of correctness of the algorithm on paper, which comprises both logical soundness and
a property called productivity, ensuring termination with a result of the expected
form. I did not however prove completeness as in [2]: since the tactic was integrated
in an already complete system1, this was not necessary. I still intend to prove it in
the future, for foundational rather than practical purposes.

All this lead to the redaction of an article presenting the Actema system and the
DnD tactic, which was not accepted for publication. We did have the opportunity
though to present our work at two conferences ([3], [4]).

3.3 Rewriting equalities
In the following months, I extended the DnD paradigm by adding support for rewrit-
ing of equalities. The basic idea is that linking an equality hypothesis 𝑡 = 𝑢 with

1Indeed, one could already prove goals in Actema through click actions, which implement rules
from natural deduction and sequent calculus.
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occurrences of 𝑡 (resp. 𝑢) in the goal should rewrite them into 𝑢 (resp. 𝑡). In our
graphical setting, it is easy for the user to specify a selection of subterm occurrences
to be rewritten, especially since selection of multiple entities through pointing is a
pervasive interaction mechanism in modern interfaces.

I first implemented these rewrite DnD actions in Actema as a frontend to a
standard rewrite tactic, completely separate from the SFL tactic underlying all other
DnD actions. This required a clear conceptual separation in the interaction model
between tactics, and so-called linkages, which correspond to the data of a selection
of subterms in a given subgoal being linked by DnD. While a tactic specifies a
function turning a goal into multiple subgoals, a linkage specifies arguments to this
tactic that can be retrieved from the goal. This emphasizes another distinction
between the “internal” arguments of a tactic, and the “external” ones which cannot
be provided by linkages, and in our graphical setting would need an additional input
mechanism.

Then at some point I realized that the semantics of the rewrite tactic could be
accounted for in the SFL tactic, by adding two rules for equality in the underlying
deep inference system. We noticed that this extension is not only simple and ele-
gant, but that it generates non-trivial and interesting rewriting behaviors, because
of the interaction with the semantics of purely logical SFL. In particular, two fea-
tures that are found in current proof assistants can be implemented by SFL with
equality: rewriting modulo unification and conditional rewriting, which correspond
respectively to the combination of quantifiers and implication with equality. The
benefit of the deep inference approach is two-fold: on a technical level, it is in the
first-order case a wide generalization of state-of-the-art rewrite tactics, since it sup-
ports arbitrary combinations of logical connectives, and not only hypotheses of the
form ∀𝑥1,… , ∀𝑥𝑛.𝐴1 ⇒ … ⇒ 𝐴𝑛 ⇒ 𝐴. On a philosophical level, it gives a proof-
theoretical explanation to the behavior of rewrite tactics, and suggests that other
tactics might be expressed and related in this framework.

To experiment with this “deep rewriting” tactic, I added ad hoc support in
Actema for Peano arithmetic, and in particular induction on natural numbers with
a dedicated click action. In equational theories like PA, rewriting makes for an
important part of proofs, and doing so with DnD actions seems to be both more
intuitive and ergonomic than with textual commands. But we still need extensive
testing, and possibly user studies to assess this on firm ground.

On the basis of these positive experiments, we rewrote the DnD tactic article
in order to include the deep rewriting extension, but also to improve the overall
presentation. The article was accepted for publication at the CPP conference [5].
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4 Reasoning without formulas
4.1 The chemical metaphor
The Actema prototype offers multiple ways to the user to attack the proof of a
theorem: DnD actions for SFL and rewriting are the main mechanism, but they
only work in a goal comprising multiple items. Since it is customary in proof as-
sistants to specify the goal to be proved as a single logical formula, one needs a
way to decompose it into many items for further processing through DnD. This is
precisely what the introduction rules for logical connectives in sequent calculus do,
and following the PbP paradigm we map them to click actions2.

So visually, a proof in Actema consists in breaking logical items into subitems
positioned freely in space, and then bringing those items together to make them
interact and produce a new item. This is quite evocative of a chemical reaction
controlled by the user, where logical formulas are akin to molecules made of proposi-
tional atoms linked together by logical connectives3. Click actions are then a mean to
“heat” molecules to the point of breaking these chemical bonds. The most canonical
examples are the right-introduction rule for implication ⇒ and the left-introduction
rule for conjunction ∧, which break respectively a conclusion/red item/positive ion
into a hypothesis/blue item/negative ion and a new conclusion, and a hypothesis
into two hypotheses. In fact, it is strongly conjectured that these are the only
click actions needed to obtain a complete deductive system for IPL: breaking red
implications allows for backward DnDs, and blue conjunctions for forward DnDs4.

Rather than completeness, the issue here is consistency of the user interface:
if the user is allowed to decompose red ⇒ and blue ∧, she will assume naturally
that she can also decompose blue ⇒ and red ∧, as well as ∨ of any color. While
red ∨ can be handled by increasing the depth of PbP by 1 in order to select the
disjunct to be proved, other configurations correspond to rules of sequent calculus
with multiple premisses. In Actema, this corresponds to creating a new subgoal
for each premise, where subgoals are displayed one at a time in different tabs: this
new interface mechanism breaks the chemical metaphor. The root cause lies in the
way sequent calculus implements context-scoping: each subgoal will share the same
initial context of hypotheses, but future hypotheses “buried” in the conclusions must
be available only in their respective subgoals. The tabs mechanism implements this
by forcing the user to focus on exactly one tab/subgoal, thus making it impossible
to display items from different subgoals on the same screen, which makes interaction
between them physically impossible.

2although we restrict ourselves to the topmost connectives of propositions, since deep reasoning
is already (and better) handled by SFL.

3Chemical metaphors were already drawn by logicians as early as Peirce [6] and Wittgenstein
[7].

4Interestingly, those rules are the basis for the adjunction between ∧ and ⇒ in the interpretation
of IPL into cartesian closed categories.
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4.2 Adding bubbles
In order to accomodate context-scoping within the chemical metaphor, we were led
to explore a notion of bubble inspired by the membranes of the Chemical Abstract
Machine [8]. The latter are used to delineate zones of local interaction, which are
still porous to external data. This is precisely what we want to do here: let us
consider that the user tries to prove the sequent Γ ⊢ 𝐴 ∧ 𝐵. By clicking on the
red item 𝐴 ∧ 𝐵, she will break it into two bubbles ⦇⊢ 𝐴⦈ and ⦇⊢ 𝐵⦈. Then she
might decompose 𝐴 and 𝐵 further into sequents 𝜎𝐴 = Γ𝐴 ⊢ 𝐶𝐴 and 𝜎𝐵 = Γ𝐵 ⊢ 𝐶𝐵,
and use hypotheses from Γ by dragging them inside either ⦇𝜎𝐴⦈ or ⦇𝜎𝐵⦈. However,
hypotheses from Γ𝐴 and Γ𝐵 cannot be dragged out from their respective bubble,
since then they could be used in the other bubble and violate context-scoping.

Bubbles can be seen as a way to internalize in the syntax of sequents the notion
of subgoal, which requires in turn to allow nesting of sequents inside each other.
The proof state is not a set of subgoals anymore, but a single nested sequent of this
sort, that we call a solution. In textual syntax, solutions 𝜎 are generated by the
following grammar:

𝜎 ∶∶= Γ ⟨𝜎1 ; … ; 𝜎𝑛⟩ Δ Γ ∶∶= 𝐴1,… ,𝐴𝑛 Δ ∶∶= ⌀ ∣ 𝐴
Inference rules are just rewriting rules on solutions, and a proof of a solution is a
sequence of rewrites starting from (or in our proof-search setting, ending with) the
empty solution ⟨⟩. Thus we arrived at a formalism which is a blend of deep infer-
ence and sequent calculus, and therefore that can express the rules associated with
both click and DnD actions. We call this system the single-succedant intuitionistic
bubble calculus, or BJs for short, and a more visual presentation in terms of multiset
rewriting as in [8] is available in draft [9].

Beyond the recovered uniformity of the user interface in terms of the chemi-
cal metaphor, BJs exhibits many features that are interesting both at the proof-
theoretical and user-experience levels:

• It implements a form of context-sharing between subgoals: that is, one can
perform transformations on shared hypotheses (forward reasoning) without
going back to a proof state anterior to the splitting of said subgoals.

• The tree structure of subgoals is immediately apparent in the proof state
through nested bubbles. Thus part of the information on the proof construc-
tion process, which was made implicit and temporal in the proof state history,
is now made explicit and spatial in the proof state itself5. There are multiple
ways to visualize trees on a planar surface, but if we are to maintain the bubble
metaphor, zoomable user interfaces seem to be a right fit: they allow for ef-
ficient space management and navigation, and zooming in intuitively conveys

5This concern of finding an explicit graphical representation of the “motions of reasoning in
actu”, and not only the states of mind, can be found already in the works of Peirce on his existential
graphs [10]. We will come back to this soon.
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the idea of focusing on a specific subgoal. One could also zoom out to have an
overview of the different subgoals and their shared context, something which
is hard to do in current proof assistants.

• Most inference rules are local, in the sense that applying some action to one or
two items will not involve other items (the only exceptions are clicks on blue
⊥ and ∨, but the only extra item they involve is the conclusion). Non-local
rules are less natural for a beginner, because they modify a global state (here
other items) which is not clearly correlated to the transformed data. This is of
limited importance however in our case, because sequent calculus rules always
perform the same trivial operation on the global state: duplicating the whole
context of hypotheses.

4.3 Reducing non-determinism
In all known sequent calculus formulations of IPL, there are at least two rules which
are invariably irreversible:

1. a left introduction of ⇒ (there might be many ones, as in the calculus LJT of
[11]);

2. the right introduction of either:

• ∨ when sequents have at most or exactly one conclusion;
• ⇒ when sequents have multiple conclusions, e.g. in the multi-succedant

variant of LJT in [11].

In BJs, this means that click actions on blue ⇒ and red ∨ need to be performed in
a specific order to complete proofs.

In his thesis [12], N. Guenot introduced a specific kind of nested sequent system,
where like in BJs inference rules are expressed as rewriting rules. An interesting
feature of these systems is that all introduction rules for connectives are reversible,
which means that in proof-search, formulas can be completely decomposed until
atoms are reached before applying other rules. Non-determinism then arises in the
choice of atoms that are to be connected in axioms, as well as the choice of sub-
sequents to be duplicated for reuse.

In our setting, this would translate to an interface where all click actions are
redundant, and in fact even logical connectives could be entirely dispensed with. As
in the original SFL of [2], only DnD actions would remain. But the important point
is that all logical connectives would be replaced by metaphorical constructs such
as bubbles, which suggest physically the possible transformations/inferences, and
could make for a very intuitive and discoverable proving interface. Unfortunately,
the systems in [12] only handle classical logic and the implicative fragment of IPL.
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Thus began our quest for a nested sequent system in the style of Guenot capturing
full IPL6.

4.4 Coloring bubbles
The first direction I followed was to go from the single-succedant BJs to a multi-
succedant version BJ. Thus the grammar of succedants is changed to:

Δ ∶∶= 𝐴1,… ,𝐴𝑛

The main difficulty lies in the way one should interpret a multi-succedant solution
𝜎 as a formula ⌊𝜎⌋. In the single-succedant case it was straightforward:

⌊Γ ⟨𝜎1 ; … ; 𝜎𝑛⟩ 𝐶⌋ = (⋀
𝐴∈Γ

𝐴) ⇒ (𝐶 ∧ ⋀
1≤𝑖≤𝑛

⌊𝜎𝑖⌋)

But in multi-succedant sequent calculi, one distributes the context Δ of conclusions
in all premisses, just the same way as for the context of hypotheses Γ. A first
approximation would be:

⌊Γ ⟨Γ1 ⟨𝒮1⟩ Δ1 ; … ; Γ𝑛 ⟨𝒮𝑛⟩ Δ𝑛⟩ Δ⌋ = ⋀
1≤𝑖≤𝑛

⌊Γ, Γ𝑖 ⟨𝒮𝑖⟩ Δ𝑖,Δ⌋

where the 𝒮𝑖 denote multisets of solutions. But this only handles the distribution
part, and we clearly miss a base case. Thus we add a new judgment corresponding
to standard sequents Γ ⊢ Δ that we call subgoals, which represent leaves of the
subgoal tree:

𝜎 ∶∶= Γ ⊢ Δ ∣ Γ ⟨𝒮⟩ Δ

The usual solutions that contain bubbles are now called branchings, following the
terminology of [12] for a similar device in classical systems. The interpretation of
subgoals is the standard one for sequents:

⌊Γ ⊢ Δ⌋ = (⋀
𝐴∈Γ

𝐴) ⇒ ( ⋁
𝐵∈Δ

𝐵)

In terms of graphical representation, this induces a small overhead because we need
to make a clear visual distinction between the two judgments. One possibility would
be to fill the interior of branchings Γ⟨𝒮⟩Δ (that is, the space where the Γ, Δ reside)
with a different color.

The second difficulty that arises has to do with the right introduction rule of
⇒: in shallow multi-succedant systems, the idea is to erase every succedant but the

6nested sequent systems for IPL based on tree-shaped proofs already exist, see e.g. [13]
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conclusion of the implication. In addition to being non-local, this makes the rule
irreversible, and thus unfit for our purpose.

The solution comes from the system of Fitting [13]: nesting of sequents should
not only be allowed in bubbles, but also in succedants. Thus the grammar of suc-
cedants is changed to:

Δ ∶∶= 𝜄1,… , 𝜄𝑛 𝜄 ∶∶= 𝐴 ∣ 𝜎
Graphically, the corresponding metaphor would be to allow red bubbles joined dis-
junctively, in addition to the gray bubbles joined conjunctively. Indeed, the same
idea of localized interaction is at work: the canonical example is the formula 𝑎∨(𝑎 ⇒
𝑏), which is not provable intuitionistically but has a classical proof based on the jus-
tification of the left 𝑎 by the right 𝑎. Like gray bubbles, red bubbles trap hypotheses
within, thus in the corresponding solution ⊢ 𝑎, (𝑎 ⊢ 𝑏) the right 𝑎 cannot be moved
outside: this would give the solution 𝑎 ⊢ 𝑎, 𝑏, where the left 𝑎 is now in scope of
the right 𝑎. In formulas, this translates to the rejection of the classical principle
(𝐴 ⇒ (𝐵 ∨ 𝐶)) ⇒ (𝐵 ∨ (𝐴 ⇒ 𝐶)), sometimes called Grishin (a) [14]. But in this
case, the same result would be obtained by moving the left 𝑎 inside the bubble, thus
red bubbles must be made hermetic to red items (and stay porous to blue items).

Interestingly, one notices that these positively asserted physical restrictions are
in exact correspondance with the propagation rules of the system BiILL𝑑𝑛 [14], more
precisely with the negatively asserted absence of converses to the rules 𝑝𝑙1 and 𝑝𝑟2.
One may be tempted to add the symmetric rules 𝑝𝑟1 and 𝑝𝑙2, which in terms of
solutions means allowing nesting of solutions in antecedants:

Γ ∶∶= 𝜄1,… , 𝜄𝑛
As in [14], this is the basis for an extension to bi-intuitionistic logic, where blue
bubbles are interpreted as nested subtractions −. A basic presentation of the full
bi-intuitionistic system BiBJ is available in draft [15]. The proofs of soundness
and completeness are not written down properly in LaTeX yet, but they are fully
sketched on paper.

To summarize: we have designed a sound and complete system BiBJ of nested
sequents for bi-intuitionistic propositional logic, based on a novel distinction between
subgoals Γ ⊢ Δ and branchings Γ ⟨𝒮⟩ Δ. Restricting nesting to only succedants or
antecedants gives respectively a system BJ for IPL or BJ for dual IPL. With nesting
only in branchings, one can still have a complete system by restricting the cardinal
of succedants (resp. antecedants) to at most 1, and changing the right introduction
rules of ∨ and ⇒ (resp. left introduction rule of −) to their usual version. In this
way we have almost gone back full circle to BJs, modulo the splitting of judgments
in two.

4.5 From bubbles to existential graphs
There are two problems remaining with BJ:
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• The left introduction rule of ⇒ is still irreversible, because based on the stan-
dard sequent calculus formulation instead of the calculus of structure-inspired
version of [12]. This allows a neat symmetry with the dual-intuitionistic ver-
sion, but gets in the way of the full formula decomposition property.

• The right introduction rule of ∧ is subject to restrictions on the form of judg-
ments in order to stay reversible, which also gets in the way of full decompo-
sition.

To overcome these limitations, a first intuition I had was to drop the “gray
bubbles” or branchings encoding the subgoal tree, and replace them by “colored
zones” corresponding to a polarization of said branchings. A very experimental
system called the pasting calculus implementing this idea is available in draft [16].
It turned out to be very complicated to formulate, making it hard to even prove
soundness, and unfit as an intuitive graphical proof system.

Very soon after, I stumbled by chance upon a graphical proof formalism de-
veloped by the logician C. S. Peirce at the end of his life called existential graphs
(hereafter EGs). I was surprised to see that it is based on a metaphor very similar
visually to bubbles, that Peirce calls cuts. The difference is that cuts are a way
to represent negation, and the conjunctive interpretation of bubbles is handled in
Peirce’s formalism by simple juxtaposition of graphs.

This can be understood as the consequence of a shift in viewpoint on polarities:
whereas the difference between negative and positive knowledge was a property of
statements in our paradigm (being a blue or a red item), it becomes a property of
the space where statements are uttered in EGs (being in an odd or even number
of cuts). I had a glimpse of this intuition with the colored zones, but it was still
polluted by the red/blue paradigm attributing different polarities to objects residing
in the same space. The main insight of Peirce is that change of polarity should be
tightly coupled with context scoping7.

4.6 From existential graphs to flowers
EGs, in their alpha variant, form a system capturing classical propositional logic.
By the functional completeness of the {¬, ∧} fragment, they satisfy the full formula
decomposition property quite trivially: just replace ¬𝐴 by a so-called cut around 𝐴,
and 𝐴 ∧ 𝐵 by the juxtaposition of 𝐴 and 𝐵. Peirce devised a sound and complete
set of deep inference rules on graphs, thus achieving a fully graphical, formula-free
proof system.

From there, I tried to design an intuitionistic variant of EGs, which would exhibit
the same properties. It turns out that this has already been done in [18], with a
calculus called GrIn. However, GrIn adds on top of EGs a number of rules and axioms

7This intuition seems to be also present in the tensorial logic of Melliès [17], where juxtaposition
and cuts can represent respectively the tensor and tensorial negation.
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that are not very natural in our opinion. It is also based on a graphical syntax
which has the merit of being very close to EGs, but is cumbersome to manipulate
in practice because of the high level of nesting of cuts.

My idea was to turn the so-called inloops (in EGs, the inner cut in a double-
cut) inside-out: when there is a sufficient number of them, they start looking like
petals of a flower disposed around the outloop, which thus becomes a kind of pistil.
This botanical metaphor inspired in turn a simplification of the rules, giving a new
system dubbed the flower calculus, or FJ. I also devised an inductive, nested-sequent
style syntax for flowers, which could prove useful in the comparison with previous
systems like BJ. I have sketched proofs of soundness and completeness for FJ by
bisimulation with sequent calculus. In particular, soundness is much simpler than
in BJ thanks to a straightforward interpretation of flowers into formulas. A succint
presentation of the system is available in draft [19]. I also have an experimental
extension to FOL in draft [20].

5 Future works
Following is a non-exhaustive list of possible continuations for my research.

5.1 Actema
• Interfacing with Coq

5.2 Subformula linking
• Proof of productivity property in Coq

• Extensions and variants: classical (bilateral), HOL, type theory

• Computational content:

– tangible functional programming [21] (∧, ⇒)
– axiom elimination in stellar resolution [22] (⊗, `)

5.3 Bubbles
• Complete the first-order extension

• Investigate the relations with classical and linear logic through restrictions on
resources and flow rules

• Internal cut-elimination

• Graphical ZUI with physical boundary detection for BJs?
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5.4 Flowers
• Complete the first-order extension

• Prove completeness of the natural fragment for IPL

• Fix and formalize the proof-search algorithm based on the natural fragment,
and prove its completeness

• Links between proof search, connection method [23], and combinatorial proofs
[24]

• Encoding of SFL by double-pollination (as in proof search)

• Notion of cut and cut-elimination

• Computational content/Curry-Howard (possibly through SFL)

• Dual/bi-intuitionistic logic?

• Extensions and variants: higher-order logic, type theory, linear

• Graphical ZUI with physical boundary detection
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