
Integrating graphical proofs in Coq
Pablo Donato

pablo.donato@polytechnique.edu
LIX, Institut Polytechnique de Paris

Palaiseau, France

Benjamin Werner
benjamin.werner@inria.fr

LIX, Institut Polytechnique de Paris
Palaiseau, France

Kaustuv Chaudhuri
kaustuv@chaudhuri.info

Inria & LIX, Institut Polytechnique
de Paris

Palaiseau, France

Abstract
We present Actema, a prototype of graphical user interface
where formal proofs can be built through gestural actions,
and its integration within Coq through the coq-actema plu-
gin. The latter relies on a client-server architecture, where
the plugin requests proof steps from the interface, and then
compiles them to appropriate tactic calls. To avoid clutter-
ing the proof script with these calls, graphical proofs are
stored separately on disk, and recompiled upon execution of
the script. This should also allow to “replay” proofs visually
in the interface, which is vital for readability and mainte-
nance.The plugin is usable with any Coq IDE, and its design
adapted to any goal-directed interactive theoremprover sup-
porting intuitionistic first-order logic.

Keywords: graphical user interfaces, coq plugin, client-server
protocol

1 Introduction
InteractiveTheorem Provers allow the user to incrementally
construct formal proofs through an interaction loop. One
progresses through a sequence of states corresponding to
incomplete proofs. Each of these states is itself described by
a finite set of goals and the proof is completed once there are
no goals left. From the user’s point of view, a goal appears
as a sequent, in the sense coined by Gentzen. In the case of
intuitionistic logic that is:

• One particular proposition𝐴which is to be proved, we
designate it as the goal’s conclusion,

• a set of propositions Γ corresponding to hypotheses.
The user performs actions on one such goal at a time, and
the actions transform the goal, or rather replace the goal by
a new set of goals. When this set is empty, the goal is said
to be solved.

In the dominant paradigm, these commands are provided
by the user in text form; since Robin Milner and LCF [8]
they are called tactics.

The present work is a form of continuation of the Proof-
by-Pointing (PbP) effort, initiated in the 1990s byGilles Kahn,
Yves Bertot, Laurent Théry and their group [3]. Both works

CoqPL 2023, January 21, 2023, Boston, MA, USA
.

share a main idea which is to replace the textual tactic com-
mands by physical actions performed by the user on a graph-
ical user interface. In both cases, the items the user performs
actions on are the current goal’s conclusion and hypotheses.
What is new in our work is that we allow not only to click
on subterms of these items, but also to drag-and-drop (DnD)
one subterm onto another. This enriches the language of ac-
tions in, we argue, an intuitive way.

We have implemented a small web-based prototype called
Actema to demonstrate and explore this approach, that should
be usable directly in anyweb browser[5]. It is based on a cus-
tom proof engine for intuitionistic multi-sorted first-order
logic (hereafter designated as iFOL), which for ease and speed
of prototyping does not certify proofs in a trusted kernel.
While the choice of iFOL as a logical framework simplifies
the semantics of proof actions and makes our approach ap-
plicable to most interactive theorem provers, it is not well
suited to the complete formalization of rich theories. Hence
the main focus of the interface has been put on proposing
graphical ways to perform logical inferences, and there is
currently no way to handle databases of definitions, lemmas
and proofs.

To address the previous limitations, and thus enable a
confrontation of our paradigm to real mathematical devel-
opments, we are building coq-actema, a Coq plugin that di-
rectly connects Actema to a running Coq instance. The idea
is that Actema should act as an enhanced graphical, interac-
tive proof view that integrates in the usual text-based work-
flow of proof scripts. An illustration of this is shown in the
screenshot of figure 1.

In the following, we discuss briefly somemotivations that
lead to the development of coq-actema, and describe its over-
all design and architecture. For a review of the interface of
Actema, we refer to previous work [6] and online documen-
tation [5].

2 Motivations
Usually, integrated development environments for Coq live
in an independent process, and exchange datawith Coq through
a high-level communication protocol: either coqtop’s com-
mand line interface, Coq’s default XML protocol, or its im-
proved superset SerAPI [7]. In particular, SerAPI emerged
from the development of jsCoq [1], an IDE that runs entirely
in web browsers by embedding a version of Coq compiled
with js_of_ocaml [9]. Since Actema is also web-based and

https://orcid.org/0000-0001-7883-6754
https://orcid.org/0000-0003-2938-547X


CoqPL 2023, January 21, 2023, Boston, MA, USA Pablo Donato, Benjamin Werner, and Kaustuv Chaudhuri

Figure 1. Developing proofs graphically within a textual setting. On the left, the usual interactive view of the proof script,
in the VsCoq IDE. On the right, the graphical proof view of Actema. Blue items correspond to hypotheses, the red item
corresponds to the conclusion, and tabs allow to switch focus between subgoals.

uses js_of_ocaml, our first idea was essentially to fork js-
Coq and replace its interface by that of Actema. However
as noted by E. J. G. Arias, the SerAPI protocol — and in fact
all the other protocols turn out to be too high-level for our
purpose. Typically we need to (partially) translate Coq goals
into iFOL goals, which can be done much more easily with a
direct access to Coq’s low-level API for manipulating kernel
terms. We also heavily rely on unification to interactively
suggest valid actions on subterms of the goal, and none of
the protocols implement unification queries. 1.

Now, remember that Actema is notmeant as a full-fledged
IDE that can manage the state of the proof script and ver-
nacular commands, but only as an enhanced proof view for
manipulating already-parsed logical terms. Considering this
and all the above, the solution of a Coq plugin made a lot
more sense, with the important benefit of ensuring com-
patibility with all existing IDEs. This would also entail eas-
ier adoption of Actema into existing Coq developments and
workflows.

In this setting, Actema still runs in a process indepen-
dent from Coq. It is already made of two layers: a JavaScript
frontend which handles the graphical layout and interac-
tion with the user, and an OCaml backend for the proof en-
gine. We add to this picture a third layer, namely a HTTP
server that handles communication of requests from, and
responses to the Coq plugin. Of course the server runs in a
process of its own, to avoid any delay in the interface. Then
we bundle everything in an Electron application, so that the
interface can easily be run locally on most operating sys-
tems.

1Note that currently, we still perform unification in the backend of Actema.
But having access to Coq’s unification shall prove useful in the future to
support the full logic of Coq, while limiting Actema’s role to that of a graph-
ical frontend.

3 Plugin
On the plugin side, there remains the question of how to in-
tegrate concretely the graphical proofs of Actema into tex-
tual proof scripts. In fact this begs for a deeper question:
how do we represent statically a sequence of graphical ac-
tions, let alone a single action? For a machine representa-
tion, we can just dump the user inputs that triggered the
action, typically the paths that lead to selected subterms in
a drag-and-drop action. But finding a human-readable repre-
sentation that an average user can quickly manipulate and
reason about is a lot more delicate.Themost direct waymay
be to abandon text altogether, and just replay the action on
the interface through a graphical animation. This is an in-
trisically temporal and dynamic representation, akin to a
mathematician unfolding her demonstration on the black-
board.

For nowwe dispensewith such considerations, and choose
to represent a full sequence of actions as a single call to an
actema tactic. When run, it executes essentially the follow-
ing interaction protocol:

1. if the current goal G0 does not have any saved action
sequence associated to it, the plugin sends an action
request to Actema with ⟦G0⟧ as its body, where ⟦·⟧
is a translation function from Coq goals to the iFOL
goals of Actema;

2. then the user can either:
• perform a proof action on ⟦G0⟧ in Actema: this re-

turns an action response withholding the machine
representation A0 of the action. The plugin then
compiles A0 into a tactic ⟦A0⟧, runs it on G0, and
sends the new set of goals in another action re-
quest. This might give back a new action A1, but
this time with an additional index 𝑛1 to indicate the
goal/tab being focused inActema, and thus onwhich
goal ⟦A1⟧ must be applied;

• click on the Done button (top-left corner of fig. 1):
this returns a done response, which ends the inter-
action loop.The sequence (A𝑖 , 𝑛𝑖 ) of actions is saved



Integrating graphical proofs in Coq CoqPL 2023, January 21, 2023, Boston, MA, USA

on disk in a file ℎ(⟦G0⟧), where ℎ is a hash function
on Actema goals.

Then the next time the actema tactic is called on goal G0,
the plugin will recompile the saved (A𝑖 , 𝑛𝑖 ) into the corre-
sponding Coq tactics, without having to put them explicitly
in the proof script. The user can also overwrite the previous
sequence with the actema_force variant, and store multi-
ple sequences for the same goal by supplying as argument
to the actema tactics an arbitrary Coq string, which plays
the role of an identifier.

Acknowledgments
We would like to thank E. J. G. Arias for his help and ad-
vice on the (now abandoned) option of embedding Coq in
the browser as a backend for Actema. We also thank Luc
Chabassier for fruitful discussions and ideas concerning the
design and implementation of coq-actema.

References
[1] Emilio Jesús Gallego Arias, Benoît Pin, and Pierre Jouvelot. 2017. jsCoq:

Towards Hybrid Theorem Proving Interfaces. Electronic Proceedings in
Theoretical Computer Science 239 (jan 2017), 15–27. https://doi.org/10.
4204/eptcs.239.2

[2] Edward W. Ayers, Mateja Jamnik, and W. T. Gowers. 2021. A Graph-
ical User Interface Framework for Formal Verification. In 12th Inter-
national Conference on Interactive Theorem Proving (ITP 2021) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 193), Liron Cohen

and Cezary Kaliszyk (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik, Dagstuhl, Germany, 4:1–4:16. https://doi.org/10.4230/LIPIcs.
ITP.2021.4

[3] Yves Bertot, Gilles Kahn, and Laurent Théry. 1994. Proof by point-
ing. In Theoretical Aspects of Computer Software, Masami Hagiya and
John C. Mitchell (Eds.). Vol. 789. Springer Berlin Heidelberg, here, 141–
160. https://doi.org/10.1007/3-540-57887-0_94 Series Title: Lecture
Notes in Computer Science.

[4] Kaustuv Chaudhuri. 2021. Subformula Linking for Intuitionistic Logic
with Application to Type Theory. In Automated Deduction - CADE
28 - 28th International Conference on Automated Deduction, Virtual
Event, July 12-15, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer, here, 200–
216. https://doi.org/10.1007/978-3-030-79876-5_12

[5] Pablo Donato, Pierre-Yves Strub, and Benjamin Werner. 2022. The
Actema prototype (online version). https://www.actema.xyz.

[6] Pablo Donato, Pierre-Yves Strub, and Benjamin Werner. 2022. A Drag-
and-Drop Proof Tactic. In Proceedings of the 11th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs (Philadelphia, PA,
USA) (CPP 2022). Association for Computing Machinery, New York,
NY, USA, 197–209. https://doi.org/10.1145/3497775.3503692

[7] Emilio Jesús Gallego Arias. 2016. SerAPI: Machine-Friendly,
Data-Centric Serialization for COQ. (Oct. 2016). https://hal-
mines-paristech.archives-ouvertes.fr/hal-01384408 working paper or
preprint.

[8] Robin Milner. 1984. The use of machines to assist in rig-
orous proof. Philosophical Transactions of the Royal Society
of London. Series A, Mathematical and Physical Sciences 312,
1522 (1984), 411–422. https://doi.org/10.1098/rsta.1984.0067
arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1984.0067

[9] Jérôme Vouillon and Vincent Balat. 2014. From bytecode to JavaScript:
the Js_of_ocaml compiler. Software: Practice and Experience 44, 8 (Aug.
2014), 951–972. https://doi.org/10.1002/spe.2187

https://doi.org/10.4204/eptcs.239.2
https://doi.org/10.4204/eptcs.239.2
https://doi.org/10.4230/LIPIcs.ITP.2021.4
https://doi.org/10.4230/LIPIcs.ITP.2021.4
https://doi.org/10.1007/3-540-57887-0_94
https://doi.org/10.1007/978-3-030-79876-5_12
https://www.actema.xyz
https://doi.org/10.1145/3497775.3503692
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
https://doi.org/10.1098/rsta.1984.0067
https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1984.0067
https://doi.org/10.1002/spe.2187

	Abstract
	1 Introduction
	2 Motivations
	3 Plugin
	Acknowledgments
	References

