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Abstract

We prove the cut elimination theorem for a wide range of rewrite systems in
sequent calculus modulo. The sequent calculus modulo integrates in deduction
steps some computations on propositions. We restrict our rewrite system to be
confluent and compatible with a well-founded order. We give then an example of
rewrite systems that fits theses conditions.

Introduction

The sequent calculus modulo, introduced in [4] is a deduction system based
on the fact that some axioms can be successfully replaced by rewrite rules
on terms an on propositions. This permits to have a faster proof-search
and more readable proofs. But in general case, we loose the cut-elimination
property that we had for the sequent calculus, the fact that the cut elimi-
nation property holds or not depends on the considered rewrite system (see
below for counterexamples). On the other hand, we can express with the
help of rewrite rules some powerful theories, such as Higher Order Logic [4]
or Peano’s arithmetic [5].

The paper [4] introduces a proof search system extending resolution
for deduction modulo called Extended Narrowing And Resolution (ENAR).
This method is proved complete for rewrite systems for which the cut elim-
ination holds. Conversely, in [10] we have proved that the completness of
ENAR implies the cut elimination property for sequent calculus modulo the
same rewrite system.

Recent results of Stuber [11] prove the completness of ENAR using a
semantic approach. Putting these two results together this leads to a new
cut elimination theorem for the cases studied by Stuber [11]. In this paper,
we give a direct proof of this cut elimination theorem avoiding the detour
by the completness of ENAR.

In this paper, to prove the cut-elimination theorem, we prove the com-
pletness of the cut-free sequent calculus modulo, that is, Godel’s completness
theorem. Conversely, we prove the soundness theorem that is for any prov-

able sequent I' kg A (possibly with cuts), we have I' = A (where I' = A
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means that for all models that validate I', at least one proposition of A is
valid). These two results lead to the cut elimination theorem. Indeed, if
we have I' Fr A, then, by soundness I' = A and then by th completness
theorem T’ I—g A.

In order to prove the Gédel theorem for cut-free sequent calculus modulo,
we will modify the proof based on Henkin witnesses. In a similar approach
than in [11], we introduce an order and construct a model for a consistent,
complete theory that admits Henkin witnesses. We have other modifications
of the usual proof of the completness theorem due to the fact that we con-
sider cut-free proofs. For example, when we have a consistent and complete
theory, T’ I—% P does no more imply that I', P } ;{

1 Deduction rules

1.1 Sequent calculus

Sequent calculus is a proof method for propositions that is equivalent to
natural deduction, hence to proof ¢ la Hilbert [2]. A sequent is written in
the following way:

'FA

where I'; A are multisets of propositions. The proof of a sequence is made
with the help of deduction rules, that have the following shape:

A, n Ay
B

Aq,..., Ay, B are sequents, Ay, ..., A, are called premises and B the conclu-
sion. Deduction rules for sequent calculus are presented in the figure 1.

In automatic reasoning, we start from the conclusion and we try to
construct a proof tree for the conclusion. Sequent calculus is semi-decidable.

In the figure 1, we remark that the cut rule is the only rule where we
have a proposition P in premises that doesn’t appears in the conclusion.
Thus, if we want to apply the cut rule, we are forced to test all the possible
proposition P. Fortunately, a theorem, first proved by Gentzen [8], states
that every sequent that has a proof has also a cut-free proof. This theorem
implies the consistency of sequent calculus. Indeed, this is obvious that the
sequent - has no cut-free proof. Hence by the cut elimination theorem it
has no proof at all.

1.2 Sequent calculus modulo

Proofs contain many steps that seem self-evident, because they are based
on computing, not on reasoning. Assume, for instance, that we are using
Peano’s axioms, and that we want to prove PAF 2+ 2 = 4. In this case,
we would like to simplify the proposition 2 + 2 = 4 into 4 = 4 and then
use the reflexivity axiom. The idea is to use a rewrite rule, rewriting on
terms: S(z)+y — S(z+y), instead of the axiom S(z)+y = S(z+y). The
rewrite rules will not appear in the proof tree and thus proofs become more
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Figure 1: Deduction rule of sequent calculus




compact and readable. Proof search is also improved, because we have to
search a more compact proof. This system was formalized by G. Dowek, Th.
Hardin, Cl. Kirchner [4]. Rules of the sequent calculus are preserved, but
we have a more liberal condition between the premises and the conclusion,
for instance, the A-left rule is:

ILPQRFr A

A-lLif R=p (P A
T,RFg A o = (PAQ)

The sequent calculus modulo is presented in the figure 2, with the help
of the following definitions.

Definition 1 A rewrite rule on a term s a pair of term [ — r such that
variables of r appears in .

A propositional rewrite Tule is a pair of propositions | — r such that [ is
atomic and free variables of r appears in [.

Example of rewrite rule on a term:
zx0—0
Example of rewrite rule on atomic proposition:
zxy=0—(x=0)V(y=0)

In this case, we notice that a non atomic proposition can rewrite on a non-
atomic proposition.

A rewrite system written R is a set of propositional and term rewrite
rules.

Definition 2 Let R a rewrite system. The proposition P rewrites to P' in
R iff:

P, = o(l) and P' = Q[o(r)], for a rule | — 7 € R, an occurence w in
P and a substitution o. When we apply o, we have to rename the bound
variables in order to avoid capture.

We will write P —5 P'.

We write —J, the transitive reflexive closure of —x and =x its transitive,
reflexive, symmetric closure.
In some case, we can add equationnal axioms to the rewrite rules, like
the commutativity axiom:
THY=Y*x

We do not consider such cases here, although extending our results does not
seem to be difficult. We just would have to reason on equivalence classes
modulo equationnal axioms on terms and propositions.

We call the cut-free sequent calculus the calculus presented in 2 without
the cut rule. We will consider this calculus from now. And we will now

write a sequent:
A
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Ior, if Q =g JzP

Figure 2: deduction rules for the sequent calculus modulo




Unfortunately, the cut elimination theorem does not extends to deduction
modulo, for instance, it does not holds for the system defined by the following
rule, which is a reformulation of Crabbé’s counterexample for Naive Set
Theory:

A— BA-A

With this rewrite rule, we can prove the proposition =B under no assump-
tion:
Fr =B

It is easy to see that this sequent doesn’t have a cut-free proof.

Even for systems having good properties like confluence and termination,
this is not always the case (see [6]). The cut elimination property then
depends on the considered rewrite system.

Let’s begin with some basic propositions.

Proposition 1 Let I',TV, A, A’ be multisets of propositions such thatT' =¢
I’ and A = A'.
THI A iff T/ A

Proof: by induction on the proof.

Let’s consider the last rule. We can apply exactly the same on the
premises obtained by induction hypotesis.
For example, if the last rule is 3-left:

T
F]-:,Qzl[;_/Pa”.]l_;RAA E|;1;'Q =R P, C fresh constant

then, we can find, by induction hypothesis, a proof:

7.(.I

I, Qe/z] Fr A

But ¢ may be a non-fresh constant in the sequent IV, Q[c/z] Fr A’. This
is not the good way to obtain this proof. Thus, we replace c in 7 by ¢/, a
fresh constant in 7, IV and A’. By induction hypothesis, we have a proof of

IV, Q|d /x| Fr A!, with ¢ fresh in the sequent. We can now add the 3-left

rule: .
s

I, Q[ /x] Fr A'
I, P Fgr A/
we have dx(Q) =x P’ by transitivity of the relation =%, because by
hypothese P =¢ P'. O
We have the same result with the cut rule, but this is not of interest

J2Q =x P, fresh constant

here.

Proposition 2 Let I', A be two multisets of closed propositions. If I’ l—f,{ A
has a proof, it has a closed proof.

Proof: We can replace each free variable by a constant in the proof. O



2 Definitions

Definition 3 (Confluence) Let R a rewrite system. He is said to be con-
fluent if for all proposition P such that P —% P' and P —%, P", there exists
Q such that P' —% Q and P" —% Q.

Definition 4 (Termination) Let R a rewrite system. He is said to be
terminating if and only if for any term there exists a finite rewrite sequence
starting from this term and ending in a normal term.

He is said to be strongly terminating if and only if all the rewrite se-
quences are finite.

If a rewrite system is terminating and confluent, then each proposition
P has a unique normal form P. In fact, by termination, there existst at
least one normal form of P, say P —* P. If P —* P’ then by confluence,
there exists a proposition @ such that P’ —* Q and P —* Q. By normality
of P, we have that Q = P.

Definition 5 (Completness) A theory I' is said to be complete iff for any
proposition P: T', P I—;{ or T I—;{ P.

This definition is slightly different from the classical definition of completness
(we want that T’ I—;{ =P or T l—;{ P). But it is equivalent under the
hypothesis of confluence, thanks to lemma 6 below.

Definition 6 (Consistency) A theory I' is said to be consistent if and
only if we can’t prove the empty set of proposition.
In our case T is consistent iff T J-3

Again, this definition is slightly different from the classical definitions of
consistency:
I’ is inconsistent if and only if for any/at least one proposition P we have a
proof of I' = P and a proof of ' - —P.
This slight variation is important because we consider cut-free sequent cal-
culus. It can be proved that our definition is a little bit stronger in the
cut-free case.

Definition 7 A theory I' admits Henkin witnesses iff for any proposition Q
with one free variable x, there exists a constant c of the language such that:

T,32Q < implies Q[c/z] €T
and

T FeveQ implies ~Qlc/z] € T

This definition is slightly different of the classical one too, for the reason
as already explained.



Definition 8 (Model for a rewrite system) Let M be a model. We say
that it is a model of the rewrite rules if and only if for any propositions
P =5 Q we have:

MEPffMEQ

In the rest of the paper, when we say model, we mean model of the rewrite
system.

Definition 9 (Model for multisets) Let ', A be multisets of propositions,
and M a model. We say that M 1s a model of —=I'; A and we write:

M-I, A

if there exists one proposition P € I' such that M |= =P or if there exists
one proposition @ € A such that M = Q.

We write I' = A if for any model M we have M |= —-I',A. This is
equivalent to: in any model validating I", at least one proposition of A is
valid.

The two notations are different formulation of the same thing. We will use
the one or the other, depending of convenience of these notations.

3 Hypotheses

We consider the cut-free sequent calculus.

The language of propositions and terms is considered to be denumerable.
In particular, we consider the set of constants to be denumerable.

We will admit the existence of an order on propositions that have the
following properties:

e for any proposition P = A C B where C is a binary connector (A, V, =),
P> Aand P> B,

o P P,
e JxP > P[t/z] for any closed term ¢,
e VzP > P[t/z] for any closed term ¢,

e let t and ¢’ be two propositions or closed terms such that t —x t.
t = t' (compatibility of the rewrite system and the order),

e > is a well-founded order.

We will suppose the rewrite system to be confluent, and compatible
with such an order, thus strongly terminating. Hence the normal form of a
proposition exists and is unique.

Let’s start by the soundness theorem.



4 Soundness

Lemma 3 (Soundness) Let M be any model of rewrite rules, in the sense
of definition 9. If I' Fr A (with possible cuts), then M = —T', A.

Proof: We begin by completing the language £ in adding a set of new
constants, L4, composed of constants of the type c,, where a in an object
of the model M. We extend the model M interpreting a constant c, by
its associated object a € M. The truth value of propositions in £ and the
interpretation of terms in £ remain unchanged.

Now, we make an induction on the proof (that is considered in the lan-
guage LU Lq). Let’s consider some key cases. If the last rule is:

o V-left:
T !
AR A T,BFgr A
I'NAVBFR A

By induction hypothesis M = —I',—=A4, A, and M | -I',-B, A. We
have either M |= —I', A, either M = A and M B B, hence M [ AV
B. In both case: M |=-I',-AV B, A.

o A-left: -

T.A,BFgA

I'NAANBFRr A
By induction hypothesis, M |= -I', A, =B, A. Either M |= -I', A, ei-
ther M |= = A, =B and thus M [~ A or M }£ B, that implies M £ AN
B. In any case: M |= -I',-7A A B, A.

o V-left:
T

T, Plt/z] Fr A

T.VaP kg A
By induction hypothesis, M |= —I', = P[t/z], A. We have two possibil-
ities. The first, if M |= —I', A we have directly M |= —I', -Vz P, A.The
second possibility is M = = P[t/z], that is M F£ P[t/z], that is M EVz P,
and the proof is finished.

o d-left:

™
[, Plc/z] Fr A
T,92P g A

c is a fresh constant. Replacing some constants in the proof © by other
fresh constants, we can replace the constant ¢ by any constant cg:
T

[, Pleg /o] Fr A

By induction hypothesis, we have, for any constant ¢,: M = —I', =P[c, /], A.
Either we have M |= —I', A and the proof is finished, either we have,

for any constant closed term M B~ P[c,/z]. This is exactly the defini-

tion of M p£ 3z P. Hence, we have M |= —I', =3z P, A.



e Cut: By induction hypothesis, we have:

M = -T,-C, A
M= -I,D,A

Remembering that C =x D, we can’t have at the same time M |= -C
and M |= D. Hence, there exists a proposition P in =I', A such that
M P

e All the other cases are similar.

O

Corollary 4 Let M be a model of rewrite rules, in the sense of definition
9. IfT+ A, then M = T, A.

Proof: Exactly the same as lemma 3. We just have to consider one case
less: if the last rule is a cut rule. O

In the remainder of the paper, we shall prove the converse of this corol-
lary 4, namely completness of the cut-free sequent calculus modulo. We
start by a few basic lemmas.

5 Basic results

Lemma 5 Let P,Q be two nmon-atomic propositions such that P =¢ Q.
Then P and Q have the same main connector.

Proof: Confluence of the rewrite system claims that there exists a propo-
sition R such that P —* R and @Q —* R. As propositional rewrite rules are
only on atoms, P and R have the same main connector. We have the same
result for @ and R. O

The following lemma is an extension of a Kleene result [9].

Lemma 6 (Kleene) Let', A be multisets of propositions, and Ay, ..., Ay, Py, ...

propositions such that Ay =g —Py, ..., A, =r ~P,. If
T, Ay, An FS A
then we can construct a proof:
TS P, P A
Proof: By induction over the proof structure.

If the last rule is a rule on I', A, we apply the induction hypothesis on
the premises, to obtain some proofs on which we apply the same rule.

10

;Pn



a

If the last rule is a weak-left rule on Aj:

T, Ag,..., Ay FSI A
T, A1, Ay, ooy An ST A

then we apply the induction hypothesis on premise, and on the ob-
tained proof, we apply the weak-right rule:

T+ Py Py A
T+ PP, .., Py, A

If the last rule is a contraction rule on Aj:

T, Al Ay, Ay, .y A S A
T, Ay, .., Ay FSS A

Al =r A} =g —P;. We apply induction hypothesis on premise, and
on the obtained proof, we apply the contraction-right rule:
T+l PP, Py, ..., Py, A
v Py, P A

If it is a —-left rule, we apply the induction hypothesis on premise, and
we directly found the wanted proof.

If it is an axiom rule on the sequent I', A4, ..., A, l—;:{ A we replace it
by the following proof:

axiom

L,P Py, .. Py, A
r+ p, . P, B,A

with A = B,A’ and B =R A1 =R —IP1.

—-right

we can’t have other rule on A,, because if we have B =g A1 =g P},
B is atomic of its main connector is — by lemma 5

We now prove the key lemma, that will be used for the model construc-

tion. It says that the cut rule is redundant for normal atomic atoms. It
implies that we can not have at the same time I', A I—;{ and I’ I—;{ A for a
normal atom and a consistent theory I', despite the fact that we don’t have
the cut rule.

Lemma 7 (Normal Atomic Cut Elimination) Let I'; A be multisets of
propositions, and A a normal atom. If we have:

T, Ay, ., Ay S A
redaA

with Ay =g Ay =R ... =R An =R A, we can construct a proof of:

F'kFr A

11



Proof: Propositions Ay, ..., A, are atomic. By confluence, there exists P
such that 41 —% P, ..., A, =% P, A =} P. Ais a normal atom, hence
P=A.

We add to each sequent of the proof I', Aq,..., A, Fr A multisets of
propositions I'y and A, (equals respectively to I', A), in order to get a proof
of I'y,I', Ay, ..., Apn I—;{ A, A,. propositions of I'y and I' and of A, and A
will be distinguished by a subscripted star.

At the leaves of the proof, we now have axiom rules:

axiom

., T, AT B, AL A,

I'", A’ may be empty, and A = B.
Thus, we have by hypothesis, if we remember that I'y = I and A, = A:

L, I Ay, A, FS A A, (1)
I, FoA A, (2)

with IV =T and A’ = A.
We construct now by induction on proof 1 a proof of:
I, Al A,
We consider the last rule:
e If it is a rule on propositions of I'Y, A’, by induction hypothesis, we

have a proof of I',, I I—g A" A, to which we can apply the same
rule.

o Ifit is a weak-left or a contract-left rule on A,, we apply the induction
hypothesis.

e If it is an axiom rule on A, then it is of the following shape:
Tu, T Ay ey Ay, ooy Ay FST AT A,

Some proposition P congruent to A, (thus to A) must appear in A’
(see definition of the axiom rule, figure 2). By proposition 1, from the
proof 2 we construct a proof of I, I—g P, A,. Adding weak rules we
get a proof of T, I I—g Al A,.

We notice that we can’t have other rules on A,, because its congruence class
is formed of atomic proposition, as proved at the beginning of this proof.
Especially, we don’t have any connector rule.

We contructed a proof of 'y, I’ I—;{ A, A, AsTy =T et Ay = A, we can

now use many contraction rule, and obtain a proof of what we wanted:

A

12



6 Construction of a theory and a model

Given a consistent theory 7', we are going to construct a complete, consistent
theory I' that admits Henkin witnesses, according to the definition 7. We
then will construct a Herbrand model for T'.

6.1

Construction of the theory

We consider a consistent theory 7 expressed in a denumerable language L.

We add to this language a denumerable set of new constants C.

Definition 10 (Theory construction) We let I = 7, and we enumer-
ate all the proposition of the language:

Py, ..., Py, ...

We define 'y, 11 by induction:

If P, = dzQ and +f T'y,, zQ }L;{ then let ¢ € C a constant that doesn’t
appear in I'y,. This is possible, because a finite number (at most n) of
these constants appear in I'y,. We let Ty =T, U{Q|c/z], P, }-

If Ty, Py S then Ty =T, U{P,}

If P, = VzQ, if T'),,VoQ v and if Ty, )V SIVzQ then we let Tyyyy =
I U{=Qlc/z]|}, ¢ being a fresh constant of C.

Else, we let 'y =Ty

oo
At last, we take I' = U Ty.

n=0

Let’s prove some properties of I':

I' is complete: let P be a proposition, then we know that there exists
a number n such that P, = P in our enumeration.

Either Iy, P, 5/ and this is immediate that T, P -5/, either T, Py, -5
and in this case, P, € I';,11 C T, hence I' I—g P with the axiom rule.
O

I' is consistent: suppose ' F, it means that there exists a finite subset
IY c T such that IV F%.

Let N be the greatest index of a proposition in I'. Then we have
I C 'y, hence 'y Fx.

We take the least IV such that 'y Fr. IN # 0, because 7 is consis-
tent. I'y # I'y—1, because N is the least index. Looking back at the
definition 10, we see that we are in one of the following case:

13



a

— Pno1=VzQ,'n-1,PN-1 F?{ and I'y 4 }‘%PNA-

We have I'y_1, Q[c/x] I—g by construction of I'y and by hy-
pothese, and we conclude that we have I'y_; l—g Qlc/z] by
lemma 6. The constant ¢ is fresh with respect to I'y_1 (by con-
struction 10). We can thus apply the V-right rule and get a proof
of Ty_y Fs vzQ.

— Py_1=3zQandI'y_1,Pyn_1 }Lg We have I'y_1, Pn—1, Q[c/z] l—;{
by definition of I' ;y and by hypothese. ¢ being a fresh constant by
construction, we can apply the rule 3-left, then the contraction-
left rule, and we get I'ny_1, Pnv_1 I—;{.

— Else, we have 'y 1, PN_1 f ;{, and, by hypotheseon 'y, 'y 1, Py_1 l—;{.

In all the three cases we get that I'y_1, Py—1 f ;{ and U'y_1, Py—1 I—;{,
that is a contradiction. O

I' admits Henkin witnesses. Let P = Jdx(Q be a proposition such that
F,P}L;{. Let N be the number such that Py = P. Then 'y, P } 5,
because I'y C I

Hence, there exists a constant ¢ € C such that Q[c/z] € Ty41 CT.

Let now P = Vz(@ be a proposition such that F}‘;{P. Let N be

the index of P in the enumeration. Then we have 'y }’LgP In
particular 'y 41 doesn’t contain P. Hence we can’t have I'y, Py
(see definition 10). In other word:

In,PFg
Ty F P

the second result is obtain because I'yy C I'. Hence, by construction
there exists a constant ¢ such that =Q[e¢/z] € Tyy1 CT.

6.2 Construction of the model

We now construct the model, like in [11].
We only consider the closed propositions of the language. For the domain

of the model we take all closed normal terms. We are going to define the

truth value for each atom, begining with normal atoms.

We interpret a term by its normal form. This is consistent with the

definitions below.

For each normal atom, we let:

if 0, A+ |A|p = 0 (False)
if T+ A, |Alp =1 (True)

This definition is valid, because lemma 7 asserts that we can’t have the two

cases at the same time for a consistent theory.

14



For each normal proposition, we now construct its tree.

The tree for the proposition AV B is a tree whose root is V and whose
sons are the two trees of the normal forms of A and B.
The tree for the proposition A A B is a tree whose root is A and whose sons
are the two trees of the normal forms of A and B.
The tree for the proposition A = B is a tree whose root is = and whose
left son is the tree of A and right son is the tree of B
The tree for the proposition —A is a tree whose root is = and whose son is
the tree of the normal forms of A.
The tree of the normal proposition 3z A is a tree whose root is labeled 3 and
whose sons are the trees of the normal forms of A[t/z], for each closed term
t.
The tree of the normal proposition Vzx A is a tree whose root is labeled V and
whose sons are the trees of the normal forms of A[t/z], for each closed term .

The tree is finite, because each time we go down in the tree, we decrease
the well-founded order .

To a tree whose root is V, we assign the True truth value if and only if
at least one of its sons has the True thruth value, else we assign the false
truth value.

To a tree whose root is A, we assign the True truth value if and only if both
of its sons has the True thruth value, else we assign the False truth value.
To a tree whose root is =, we assign the True truth value if and only if the
left son has the False truth value or if the right son has the True truth value,
else we assign the false truth value.

To a tree whose root is -, we assign the True truth value if and only if its
son has the False thruth value, else we assign the False truth value.

We assign the True truth value to a tree whose root is 3 if and only if at
least one of its sons has the True truth value.

We assign the True truth value to a tree whose root is V if and only if all of
its sons has the True truth value.

The truth value of a non-normal proposition is the truth value of its
normal form.

We can easily verify that the model M is a model of the rewrite rules,
and is such that for each normal atom:

LA it M= A

We prove now that this result extends to all propositions. More generally,
if we have a model of the rewrite rules verifying this property, this result
always extends, as we will see.

Lemma 8 Let I' be a complete, consistent theory containing Henkin wit-
nesses. Let M a model of the rewrite rules, with underlying set the set of
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closed terms, and such that for any normal atom:
ME AT, AR
then, for any proposition P:

if T, P f5 then M= P
if T ¥ P then M £ P

Proof: By induction on the well-founded order:

e P is a normal atom. This is the hypothesis on the model.

e P=AVB,case 3. ThenT'; AV B }L;{ implies:

T, Ay
OR
;I

by induction hypothesis, that implies:

M A
OR
M= B

ie. M= AV B.
e P=AANB case 3, then ', AA B}*‘%f implies:

T, Apd
AND
T,By

by induction hypothesis:

M A
AND
M= B

That result implies M = A A B.

e P = —(Q case 3. That implies ' %;{Q, and then M }£ @ by induction
hypothesis, hence M = P.

o P = Vz(Q case 3. I',VzQ }Lg implies that for any closed term ¢,
I, Alt/z] %;{, by induction hypothesis, for any ¢t € 7, M = Q[t/z],
hence M |= P.

e P = dz(@ case 3. With the help of Henkin witnesses, we can find a con-
stant ¢ such that T', Plc/z| %, that implies by induction hypothesis
that M = Qc/z], hence M = JzP.
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e P = Jx@ case 3, that implies that for any closed term ¢, we have
r }‘gQ[t/x], and by induction hypothesis, for any t € 7, M [ Q[t/z],
that is to say M [~ P.

o P=Vz(Q case 3, I' f gVacQ implies the existence of a constant ¢ such
that =Q[c/z] € T'. Hence, as I' is consistent, we have I', ~Q][c/z] }L;{
That implies T’ }L;{Q[c/ac] by lemma 6, and, by induction hypothesis,
M B Q[e/x], that is the same as M £ VzQ.

e If P is a non normal atom, we rewrite it and we apply the induction
hypothesis, because I', P } %f is equivalent to I', P } ;{ by proposition
1, and because M is a model of te rewrite rules.

e the remaining cases are similar.

At each step, we are decreasing the order . Because the order is well-
founded, this induction terminates. O

7 Theorems

Theorem 9 (Completness) Suppose we have a confluent rewrite system,
a well-founded order compatible with the rewrite rules and having the sub-
formula property.

If T is a consistent denumerable theory, it has a model.

Proof: We construct a consistent, complete theory I' containing 7 and
having Henkin witnesses, like in section 6.1. T is expressed in a language £’.
Let P be a proposition such that 7 I—;{ P, and let M’ the model constructed
in section 6.2. By corollary 4 we have: M’ |= =7, P.

Let @ be a proposition of 7. We have I', Q }L,c,{ by consistency of I,
hence M’ = @Q by lemma 8.

Thus we must have M’ = P. If we call M the reducted model of M’ to
the language £, we have M |= P. O

Another formulation of this theorem is the following.

Proposition 10 Let I' be a theory and P be a proposition. IfT' |= P, then:
Tl p

Proof: If F}*‘gP, then by lemma 6 we have I', =P }‘g Hence I', =P
has a model M, according to theorem 9, and M FEA. O
We generalize this proposition to a set of propositions:

Proposition 11 Let I’ be a theory and A be a multiset of propositions. If
' = A then:

T A
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Proof: If " }L;{A, by lemma 6, we have I', A }L% Hence, ', —A has a
model, according to theorem 9. O
And we conclude with the cut elimination theorem:

Theorem 12 (Cut elimination theorem) If there ezists a proof of:
F'Fr A

there exists a proof of:
Tl A

Proof: If I' k¢ A has a proof (possibly cuts), by soundness (lemma 3),
we have I' = A. We apply proposition 11 and obtain a proof of:

A

a

8 Examples

Now, we give an example of sets of rewrite rules that have the cut elimina-
tion property. Theses rewrite systems are known as quantifier free rewrite
systems [7].

Definition 11 A rewrite system is said quantifier free if there is no rule
A — P with P containing quantifiers.

We suppose the rewrite system to be confluent, terminating and quanti-
fier free.

We just have, for such a system, to construct a well-founded order. This
is done in the following way.
We will write P the normal form of P, fy(P) the number of quantifiers (V, 3)
of the proposition P and §,(P) the number of connectors (A, V,=, =) of the
proposition P.

Definition 12 (Order for normal propositions) Let A, B be two nor-
mal propositions. We say that A >~ B:

o if fy(A4) > tv(B)
o or if fy(A) = fv(B) and §2(A) > §A(B)

Definition 13 (Order for propositions) Let A, B be two propositions.
A-BifA-Borif A=B andA—»,EB.

This order is well founded. Suppose we have an infinite sequence A; >

. > A,. As there is no infinite rewrite sequence A4, —T ... -7 A, we
can extract an infinite subsequence A,y > ... = A,qy > ... such that
Ap1y > . > Ap(n) > -... But the order on normal propositions is the same
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as the order on the couple (§y(P), A (P)) that is well-founded. Hence, the
extracted sequence is finite. This is a contradiction. Hence our order is
well-founded.

This order is compatible with the rewrite rules. Let A —>7'§ B. We have
A = B by termination and confluence. Hence, by the definition of the order,
A > B.

This order has the subterm property (for any binary or unary connector).
In fact, let P = A C B a proposition with a connector C. We have P =
A C B = A C B, because we have atomic rewrite rules. Hence, the number
of quantifiers of A is at most the same that the one of P, and the number
of connectors strictly less. Thus P > A and P > B.
Let now P = Qz A where Q is a quantifier. A[t/z] has stricly less quantifiers
than P because the rewrite system is quantifier free. Hence P > A[t/z] for

any t.

We have constructed an order that fits to our hypotesis. Then, the cut
elimination theorem holds for all theses systems. Many rules are quantifier
free. For example, in set theory:

r€EAUB —-x€ AVvz€eB
r€ANB—oxc ANz €EB

Or in arithmetic:

zxy=0—-z=0VvVy=0

zx0—0

Conclusion

The cut elimination property is already proved for the systems of last section,
but with the help of pre-models, a construction we replaced by models and
an order condition. The next step would be to supress the order condition,
that appears only in section 6.2, to have a more general condition on models.
The difficult point would be then to construct an adequate model, maybe
following the way of the pre-model construction [7].

The proof of [11] is an optimized proof for automatic proof searching.
We proved in this paper that this result extends and can apply to proof the-
ory. This paper also enhanced links between completness, models and cut-
elimination, as seen in last section. It gives a new proof of cut-elimination
for sequent calculus, that is the same as sequent calculus modulo without
rewrite rules.
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