From control-command synchronous programs to hybrid automata

Analysis and Design of Hybrid Systems 2012, Eindhoven

Olivier Bouissou
Laboratory of Modeling and Analysis of Interacting Systems
Hybrid automata is a powerful model for designing control-command systems:

▶ Discrete switches between places encode the discrete dynamics.
▶ Continuous flow conditions encode the continuous dynamics.

Verification of linear hybrid automata is a well-treated problem with extensions to deal with the non-linear cases:

▶ SpaceEx computes guaranteed over-approximations of the reachable sets.
▶ It allows to verify the safety of such models.
Classical model for embedded systems.

An example.

The heater automata

\[
\begin{align*}
F : \dot{x} &= 9 - \frac{x}{3} \\
I : x &\leq 26 \\
F : \dot{x} &= -\frac{x}{3} \\
I : x &\geq 19
\end{align*}
\]

Running SpaceEx on it
In an industrial context
- control-command systems are designed using high-level tools (Matlab/Simulink) and validated using simulations
- the code is then generated, adding many details to the control-law

Implementation details that impact the behavior
- use of floating-point numbers;
- real-time constraints that impose the code to be synchronous.

Consequence
The execution of an embedded program may greatly differ from the execution of the high-level model.
We introduced in [BM08] the HSIMPLE language.

```plaintext
// X is a discrete variable
// t is the temperature
while (true) do
    sens.t?X;
    if (X>=25)
        a=0;
    if (X=<19)
        a=1;
    act.1!a;
    wait(0.1);
```

A hybrid program consists of:
- standard statements;
- sensor statements;
- actuator statements;
- wait statement;
- differential equations.

\[
f_0(t) = -\frac{t}{3}
\]
\[
f_1(t) = 9 - \frac{t}{3}
\]
Some executions of the program.
Comparing model and implementation.

<table>
<thead>
<tr>
<th>Model</th>
<th>Implementation</th>
</tr>
</thead>
</table>
| **Data type:**
 only real numbers. | **Data type:**
 real and floating-point numbers. |
| **Execution model:**
 while(1)
 wait for transition
 execute transition | **Execution model:**
 while (1)
 read inputs
 compute outputs
 write outputs
 wait for tic |
| Verification techniques for the *global* system | Verification techniques for the *discrete* system |
We want to apply formal methods on the embedded code.

The first step is to transform a program into an equivalent hybrid automata:

 * Automatically build a hybrid automata from a HSIMPLe program.
 * Prove the semantics equivalence.

Big picture:

```
// X is a discrete variable
// t is the continuous temperature
while (true) do
  sens.t/X;
  if (t>=26)
    c=0;
  if (t<19)
    c=1;
  act.!c;
  wait(0.1); // delay
```

- HSIMPLe programs
- Sample Hybrid Automata
- Hybrid Automata

\[P \rightarrow A_P \rightarrow \Phi(A_P) \]
We want to apply formal methods on the embedded code. The first step is to transform a program into an equivalent hybrid automata:
 - Automatically build a hybrid automata from a HSIMPLE program.
 - Prove the semantics equivalence.

Big picture:

HSIMPLE programs

```
// X is a discrete variable
// t is the continuous temperature
while (true) do
  sens.t/X; // read value
  if (t>=26)
    c=0;
  else
    c=1;
  act.I/e; // acts on actuators
  wait(0.1); // delay
```

Sample Hybrid Automata

- **ON**
 - Equation: \(F : x = 9 - \alpha/3 \)
 - Initial condition: \(I : x \leq 25 \)
 - Transition: \(g : x \leq 19 \), \(u : x' = x \)

- **OFF**
 - Equation: \(F : x = -\alpha/3 \)
 - Initial condition: \(I : x \geq 19 \)
 - Transition: \(g : x \leq 19 \), \(u : x' = x \)

Hybrid Automata

\[\Phi(\mathcal{A}_P) \]

\[\alpha \]

\[\tau \]
We want to apply formal methods on the embedded code.
The first step is to transform a program into an equivalent hybrid automata:
- Automatically build a hybrid automata from a HSIMPLE program.
- Prove the semantics equivalence.

Big picture:

Reach(P) ⊆ Reach(A_p) ⊆ Reach(Φ(A_p))
Step 0: preliminaries.

\[
\begin{align*}
\text{HSIMPLE programs} & \quad \rightarrow \\
\text{Sample Hybrid Automata} & \quad \alpha \rightarrow \\
\Phi(\mathcal{A}_P) & \quad \alpha \\
\end{align*}
\]
A hybrid automata is: $\mathcal{A} = (L, V, Lbl, I, F, T)$.

- The formal verification of hybrid automata over-approximates the set of reachable sets.
- A set is reachable if there is a sequence of transition leading to it.

\[
\begin{align*}
(s, l, o, g, u) & \in T \quad \sigma_v \models g \quad (\sigma_v, \sigma_v') \models u \\
\text{DISCRETE} \quad (s, \sigma_v) \xrightarrow{l} (o, \sigma_v')
\end{align*}
\]

\[
\begin{align*}
\exists \tau > 0 \quad \exists \rho : [0, \tau] \rightarrow \Sigma \quad \rho(0) = \sigma_v \\
\rho(\tau) = \sigma_v' \quad \forall t \in [0, \tau], \rho(t) \models I(s), \rho(t), \dot{\rho}(t) \models F(s) \\
\text{CONTINUOUS} \quad (s, \sigma_v) \xrightarrow{\tau} (s, \sigma_v')
\end{align*}
\]
Step 0: preliminaries.

HSIMPLE language.

while (true) do
 sens.t?X;
 if (X >= 26)
 a = 0;
 else
 if (X < 19)
 a = 1;
 act.1!a;
 wait(0.1);
 f_0(t) = -\frac{t}{3}
 f_1(t) = 9 - \frac{t}{3}

State of a hybrid program:

\[\sigma = \sigma_d \times \sigma_c \times \sigma_a \times c \]

- \(\sigma_d : \text{DVar} \rightarrow \mathbb{F} \) for discrete variables;
- \(\sigma_c : \text{CVar} \rightarrow \mathbb{R} \) for continuous variables;
- \(\sigma_a : \text{AVar} \rightarrow \mathbb{B} \) for shared variables;
- \(c \in \mathbb{B}^m \) for the configuration for the actuators.
A transition system

\[\sigma'_d = \sigma_d[X \mapsto \sigma_c(y)] \]
\[(\text{sens}.y?X; P, \langle \sigma, c \rangle) \rightarrow (P, \langle \sigma', c \rangle) \]

\[c' = c[i \mapsto \sigma_a(b)] \]
\[(\text{act}.i!b; P, \langle \sigma, c \rangle) \rightarrow (P, \langle \sigma, c' \rangle) \]

\[y' = y_\infty(u) \]
\[\sigma'_c = \sigma_c[y \mapsto y'] \]
\[(\text{wait} \ u; P, \langle \sigma, c \rangle) \rightarrow (P, \langle \sigma', c \rangle) \]

The term \(y_\infty \) denotes the solution of the ODE:

\[
\begin{cases}
 y' &= f_c(y) \\
 y(0) &= \sigma(y)
\end{cases}
\]
Step 1: sampled hybrid automata.
A Sample Hybrid Automata (SHA) is a hybrid automata plus a sampling period τ for each location.

In each location, a discrete transition can happen only after τ seconds.

Different locations may have different sampling periods.

\[
\begin{align*}
\text{ON} & : F : \dot{x} = 9 - \frac{x}{3} \\
& : I : x \leq 26 \\
& : \tau : 0.1 \\
\text{OFF} & : F : \dot{x} = -\frac{x}{3} \\
& : I : x \geq 19 \\
& : \tau : 0.1
\end{align*}
\]

\[
\begin{align*}
x \geq 26 \\
x \leq 19
\end{align*}
\]
Definition

A SHA is a pair $S = (\mathcal{A}, \tau)$ such that:

- $\mathcal{A} = (L, V, Lbl, I, F, T)$ is a hybrid automata;
- $\tau : L \to \mathbb{R}_+^*$ maps locations to sampling periods.
We define a transition system for these automata.

Only the **Continuous** rule differs.

\[
(s, l, o, g, u) \in T \quad \sigma_v \models g \quad (\sigma_v, \sigma'_v) \models u
\]

\[
(s, \sigma_v) \xrightarrow{\tau} (o, \sigma'_v)
\]

\[
\rho(0) = \sigma_v \quad \rho(\tau(s)) = \sigma'_v \quad \forall t \in [0, \tau(s)], \rho(t), \dot{\rho}(t) \models F(s)
\]

\[
(s, \sigma_v) \xrightarrow{\tau} (s, \sigma'_v)
\]
Step 2: from SHA to hybrid automata.

HSIMPLE programs

// X is a discrete variable
// t is the continuous temperature
while (true) do
 sensit t ; // read value
 if (t > 26) then
 c := 0;
 else
 c := 1;
 end
 act ! c ; // acts on actuators
 wait (0.1); // delay

P

→

Sample Hybrid Automata

ON
F: x = 9 - x/3
l : x ≤ 25

OFF
F: x = - x/3
l : x ≥ 19

Hybrid Automata

ON
F: x = 9 - x/3
l : x ≤ 25

OFF
F: x = - x/3
l : x ≥ 19

Φ(Λ_P)
α → τ

α →
Compilation from SHA to HA.

From a SHA \((\mathcal{A}, \tau)\), we build the HA \(\mathcal{A}'\) by:

1. adding an extra variable \(t\) for time with flow \(\dot{t} = 1\) in each location;
2. replacing all invariants by \(t \leq \tau(s)\);
3. extending the guards with \(t = \tau(s)\);
4. inserting new transitions.

\[
\begin{align*}
F : \dot{x} &= 9 - x/3 \\
I : x &\leq 26 \\
\tau : 0.1 \\
\text{ON} &\quad \text{on} \\
\text{OFF} : \dot{x} &= -x/3 \\
I : x &\geq 19 \\
\tau : 0.1 \\
\end{align*}
\]
Compilation from SHA to HA.

From a SHA \((\mathcal{A}, \tau)\), we build the HA \(\mathcal{A}'\) by:

1. adding an extra variable \(t\) for time with flow \(\dot{t} = 1\) in each location;

\[
\begin{align*}
\dot{x} &= 9 - x/3 \\
\dot{t} &= 1 \\
I : \ x &\leq 26 \\
\tau : \ 0.1
\end{align*}
\]

\[
\begin{align*}
\dot{x} &= -x/3 \\
\dot{t} &= 1 \\
I : \ x &\geq 19 \\
\tau : \ 0.1
\end{align*}
\]
Compilation from SHA to HA.

From a SHA \((A, \tau)\), we build the HA \(A'\) by:

1. adding an extra variable \(t\) for time with flow \(\dot{t} = 1\) in each location;
2. replacing all invariants by \(t \leq \tau(s)\);

\[
\begin{align*}
F & : \begin{cases}
\dot{x} = 9 - x/3 \\
\dot{t} = 1
\end{cases} \\
I & : t \leq 0.1 \\
\tau & : 0.1 \\
\end{align*}
\]

\[
\begin{align*}
F & : \begin{cases}
\dot{x} = -x/3 \\
\dot{t} = 1
\end{cases} \\
I & : t \leq 0.1 \\
\tau & : 0.1 \\
\end{align*}
\]
Compilation from SHA to HA.

From a SHA \((A, \tau)\), we build the HA \(A'\) by:

1. adding an extra variable \(t\) for time with flow \(\dot{t} = 1\) in each location;
2. replacing all invariants by \(t \leq \tau(s)\);
3. extending the guards with \(t = \tau(s)\);

\[
\begin{align*}
\dot{x} & = 9 - x/3 \\
\dot{t} & = 1 \\
I & : t \leq 0.1 \\
\tau & : 0.1 \\
ON & \rightarrow OFF
\end{align*}
\]

\[
\begin{align*}
\dot{x} & = -x/3 \\
\dot{t} & = 1 \\
I & : t \leq 0.1 \\
\tau & : 0.1 \\
OFF & \rightarrow ON
\end{align*}
\]

\[
\begin{align*}
x & \geq 26 \\
t & = 0.1
\end{align*}
\]

\[
\begin{align*}
x & \leq 19 \\
t & = 0.1
\end{align*}
\]
Compilation from SHA to HA.

From a SHA (A, τ), we build the HA A' by:

1. adding an extra variable t for time with flow $\dot{t} = 1$ in each location;
2. replacing all invariants by $t \leq \tau(s)$;
3. extending the guards with $t = \tau(s)$;
4. inserting new transitions.

\[
\begin{align*}
F : & \begin{cases}
\dot{x} = 9 - x/3 \\
\dot{t} = 1
\end{cases} \\
I : & t \leq 0.1
\end{align*}
\]

\[
\begin{align*}
F : & \begin{cases}
\dot{x} = -x/3 \\
\dot{t} = 1
\end{cases} \\
I : & t \leq 0.1
\end{align*}
\]

\[
\begin{align*}
F : & \begin{cases}
\dot{x} = 9 - x/3 \\
\dot{t} = 1
\end{cases} \\
I : & t \leq 0.1
\end{align*}
\]

\[
\begin{align*}
F : & \begin{cases}
\dot{x} = -x/3 \\
\dot{t} = 1
\end{cases} \\
I : & t \leq 0.1
\end{align*}
\]

\[
\begin{align*}
F : & \begin{cases}
\dot{x} = 9 - x/3 \\
\dot{t} = 1
\end{cases} \\
I : & t \leq 0.1
\end{align*}
\]

\[
\begin{align*}
F : & \begin{cases}
\dot{x} = -x/3 \\
\dot{t} = 1
\end{cases} \\
I : & t \leq 0.1
\end{align*}
\]
Compilation from SHA to HA.

Formally.

Definition

For all SHA $A = (A, \tau)$, we define $\phi(A)$ by

$$
\phi(A) = (L, V', Lbl', I', F', T')
$$

- $V' = V \cup \{t\}$ where t is a fresh variable representing the time;
- $Lbl' = Lbl \cup \{\tau\}$ where τ is a fresh label;
- $\forall s \in L, \ I'(s) = t \leq \tau(s)$ and $F'(s) = F(s) \land t = 1$;
- $\forall (s, l, o, g, u) \in T, (s, l, o, g \land t = \tau(s), u \land t' = \tau(o)) \in T'$;
- $\forall s \in L, (s, \tau, s, I(s) \land t = \tau(l), t' = 0) \in T'$.

This transformation preserves the semantics: the reachable sets are the same (more on that later).
Step 3: from HSIMPLE to SHA.

HSIMPLE programs

```
// X is a discrete variable
// t is the continuous temperature
while (true) do
    sens.t/X; // read value
    if (t>20)
        c:=0;
    if (t<19)
        c:=1;
    act.1!; // acts on actuators
    wait(0.1); // delay
```

Sample Hybrid Automata

```
ON
F: \dot{x} = 9-x/3
I: x \leq 25
\begin{align*}
g: x \leq 19 \\
u: u' = x
\end{align*}
OFF
F: \dot{x} = -x/3
I: x \geq 19
\begin{align*}
g: x \leq 19 \\
u: u' = x
\end{align*}
```

Hybrid Automata

```
ON
F: \dot{x} = 9-x/3
I: x \leq 25
\begin{align*}
g: x \leq 19 \\
u: u' = x
\end{align*}
OFF
F: \dot{x} = -x/3
I: x \geq 19
\begin{align*}
g: x \leq 19 \\
u: u' = x
\end{align*}
```

\[P \xrightarrow{\alpha} A_P \xrightarrow{\alpha} \Phi(A_P) \]
We consider hybrid programs of the form:

```plaintext
init(X); // Initialization of discrete variables
while (true) do
    sens.t1?X1; sens.t2?X2;... // Sensing the input values
    treat(X, c);
    act.1!c1; act.2!c2;... // Computing the output values
    wait(u);
    \{f_c | c ∈ \mathbb{B}^m\} // Waiting for next sampling
```

- Each actuator configuration $c ∈ \mathbb{B}^m$ represents a discrete state.
- There is a jump from $c = (0, 1)$ to $c' = (1, 0)$ iff the statements:
 - act.1!1;
 - act.2!0;

are executed.
Detecting when statements are executed.

- The transitions will take place when the act statements are executed.
- We must define when this is the case.

Definition

For each act statement, we define the function $F_j : \Sigma_c \times \mathbb{B}^m \rightarrow \mathbb{B}$ such that $F_j(\sigma_c, c) = 1$ if the statement is executed with input σ_c and in the configuration c.

```plaintext
while (true) do
    sens.t? X;
    if (X >= 26)
        c = 0;
    if (X <= 19)
        c = 1;
    if (c == 0)
        act.1!0;
    else
        act.1!1;
    wait(0.1);
```

$F_1(\sigma_c) = \sigma_c(t) \geq 26$

$F_2(\sigma_c) = \sigma_c(t) \leq 19$
We consider a program with 2 actuators, so four states.

- We thus have 4 functions:
 - F_1 that detects when actuator 1 is turned on (act .1!1)
 - F_2 that detects when actuator 2 is turned on (act .2!1)
 - F_3 that detects when actuator 1 is turned off (act .1!0)
 - F_4 that detects when actuator 2 is turned off (act .2!0)
Abstraction of the detection functions.

- It is often the case that the function F_i are not computable.
- We can use interval analysis to compute an over-approximation of it.
- In such a case, we replace the conditions $F_i(\sigma_c)$ by their abstract version.
- More details are in the paper.
Step 4: equivalence theorem.

Reach(P) ⊆ Reach(/tcp) ⊆ Reach(Φ/tcp)
What we have so far.

- A model for embedded programs in an extension of imperative programs.
 - Explicit statements for sensors and actuators.
 - Description of the environment using differential equations.

- Hybrid automata as a higher level model for hybrid systems.
 - Discrete transitions are modeled by state changes.
 - Abstract away the notions of floating point numbers and sampling periods.

- A translation from HSIMPLE to SHA and a translation from SHA to HA.

Question
Are these translations correct?
Let P be a hybrid program and A_P be the constructed SHA.

Remember

P and A_P have the same set of continuous variables but P also has discrete variables.

- $\text{Reach}(P)$ is the set of states $\sigma = (\sigma_c, \sigma_d, \sigma_a)$ within the transitive closure of \rightarrow.
- $\text{Reach}(A_P)$ is the set of states $\sigma = (\sigma_c, q)$ within the transitive closure of \rightarrow_τ.

Theorem 1.

$$\Pi_c(\text{Reach}(P)) \subseteq \Pi_c(\text{Reach}(A_P))$$
Correctness theorem 2.

Correctness of the translation from SHA to HA.

Let \mathcal{A} be a SHA and $\Phi(\mathcal{A})$ be the constructed HA.

Remember

\mathcal{A} can only make temporal evolution of duration $\tau(l)$ in each location l.

Consequence: reachable sets will only be equal at sampling times.

Theorem 2.

$$\text{Reach}(\mathcal{A}) = \downarrow \text{Reach}(\Phi(\mathcal{A}))$$

$$= \left\{ (s, \sigma_v) \mid \exists (s', \sigma'_{v}) \in \text{Reach}_{\mathcal{A}'} : \sigma'_{v}(t) = \tau(s) \text{ and } \forall v \in V, \sigma'_{v}(v) = \sigma_{v}(v) \right\}$$
We presented a new model for embedded programs which is very close to existing programming languages.

We presented a complete translation from HSIMPLE to hybrid automata, using an intermediate formalism.

We showed that the resulting automata can be used to prove the absence of errors in the embedded program.

Perspectives

- Extend this transformation to programs with *numerical* actuators.
- Develop better abstraction techniques to construct automata that are better suited for verification tools.
- Limit the number of discrete states using abstract interpretation techniques (as in [BJ10]).