
[CSE301 / Lecture 3]
Lambda calculus and propositions-as-types

Noam Zeilberger

Ecole Polytechnique

20 September 2023

1 / 37



What is lambda calculus?

– A notation for defining functions and higher-order functions.
– The “original” functional programming language.
– An important tool in the study of programming languages,

w/applications to category theory, linguistics, combinatorics...

2 / 37



What is propositions-as-types?

– A salient analogy between proving and programming.
– The retrospective observation that certain formal systems that

were defined independently are in fact isomorphic.
– A guiding principle for designing the programming languages

and the proof assistants of the future!

3 / 37



Agenda for today (aspirational)

We will go on a whirlwind tour of...
– some core concepts of lambda calculus
– how to program in untyped lambda calculus
– simply-typed λ-calculus and its link with natural deduction
– polymorphic lambda calculus
– the basic machinery of type inference
– a little bit of history

For a long and excellent treatment, see:
– Peter Selinger, Lecture Notes on the Lambda Calculus

4 / 37



Recall on algebraic notation

An advantage of usual algebraic notation for arithmetic expressions
is that it avoids explicitly staging intermediate computations.

We write
e = (x + y) × z2

rather than

Let w = x + y , then let u = z2, then let e = w × u.

5 / 37



Recall on algebraic notation

Diagrammatically, the expression « e = (x + y) × z2 » can be
represented as a tree:

×

+ -²

x y z

e

We don’t need to label all the inner edges!

6 / 37



A notation for defining intermediate functions

Similarly, rather than writing

Let f be the function x 7→ x2. Then consider e = f (5)...

in the lambda calculus we just write

e = (λx .x2)(5)

The variable x is said to be free in the subexpression x2, and
bound in λx .x2. An expression like e with only bound variables is
said to be closed.

Of course the variable name x is arbitrary, e.g., the expression
e′ = (λy .y2)(5) is equivalent. (e and e′ are “alpha equivalent”)

7 / 37



A notation for defining intermediate functions

Diagrammatically, the expression « e = (λx .x2)(5) » can be
represented as a graph:

@

λ 5

-²

e

8 / 37



Beta reduction

Application of a λ-expression to a value is defined by substitution.

(λx .e)(d) →β e[d/x ]

This rule is called beta reduction.

Example:
(λx .x2)(5) →β 52 ↠ 25

9 / 37



Beta reduction (visually)

@

λ

→β

λ

-²

@
→β

5

-²

5

~

5

-²

↠ 25

10 / 37



Origins of lambda calculus

Invented by Alonzo Church, first published early 1930s.

Original goal: foundation for logic without free variables.
And it should be more natural than Principia Mathematica...

Just one minor defect: Church’s original system was inconsistent!

Church (w/help from Kleene and Rosser) was able to salvage the
situation by dividing the system in two parts: an untyped
λ-calculus for computation, and a typed λ-calculus for logic.

11 / 37



Untyped lambda calculus

Three ways of building untyped λ-expressions:

e ::= x (variable)
| e e′ (application)
| λx .e (abstraction)

... and nothing else!

Always consider expressions modulo α-equivalence.

β-reduction is the only rule of computation.
(But it can be applied to any subexpression.)

12 / 37



Beta normalization

Normalization = repeatedly applying (β-)reductions until there are
none left, i.e., the expression is in (β-)normal form.

Church-Rosser theorem (cf. Selinger §4.2–4.4):

e

d1 d2

c

Corollary: every expression has at most one normal form.

...But some have no normal form!

13 / 37



Beta normalization1

(λx .x)(λy .(λz .z)y)

λy .(λz .z)y (λx .x)(λy .y)

λy .y

ω = (λx .x x)(λx .x x) (λx .x x)(λx .x x) . . .

1A handy tool for visualizing lambda term reduction:
https://www.georgejkaye.com/lamviz/visualiser/

14 / 37

https://www.georgejkaye.com/lamviz/visualiser/


Untyped lambda calculus

If a β-normal form exists, we can always find it by applying a
“leftmost outermost” reduction strategy. But determining whether
a λ-expression has a normal form is undecidable, as established by
Church in 1936.2

His proof relied on first showing how to express a lot of arithmetic
in untyped lambda calculus. This was kind of surprising, since pure
λ-calculus does not have any built-in numbers or even booleans!

2This was actually the first example of an undecidable problem in print!
Turing’s paper on the Halting Problem came out a year later.

15 / 37



Church encoding: the booleans

Idea: “a boolean is a function that selects between two options.”

True def= λxy .x False def= λxy .y

Conditional expressions are easy in this representation:

if b then e else e′ def= b e e′

Negation, conjunction, disjunction:

not def= λbxy .b y x and def= λbc.b c False or def= λbc.b True c

16 / 37



Church encoding: the natural numbers

Idea: “a natural number is a higher-order function sending any
function to its n-fold composition.”

0 def= λf .λx .x 1 def= λf .λx .f (x) 2 def= λf .λx .f (f (x)) . . .

Successor function:

succ def= λn.λf .λx .f (n f x)

Addition and multiplication:

add def= λmnfx .m f (n f x) mult def= λmnfx .m (n f ) x

Test for zero:
isZero def= λn.n (λb.False)True

17 / 37



Church encoding other data types

Lists: [a1, . . . , an] def= λf .λx .f a1 (f a2 (. . . (f an x)))
(Does this remind you of anything?)

Pairs: (u, v) def= λf .f u v

et cetera

18 / 37



Defining the predecessor function (slightly apocryphal anecdote)

From Henk Barendregt’s essay, “Gems of Corrado Böhm”:
At first neither Church nor his students could find a way to
lambda define the predecessor function. At the dentist’s office
Kleene did see how to simulate recursion by iteration and could
in that way construct a lambda term defining the predecessor
function, [Cro75]. (I believe Kleene told me it was under the in-
fluence of laughing gas, N2O, used as anesthetic.) When Church
saw that result he stated “Then all intuitively computable func-
tions must be lambda definable.”

19 / 37



Defining recursive functions

Key idea: first define a fixed point operator in untyped LC.

Here is one:3 Θ def= (λxy .y(xxy))(λxy .y(xxy))

We have Θ f ↠ f (Θ f ) for any f , meaning that

f (Θ f ) =β Θ f .

Thus Θ finds a fixed point of f !

3Due to Alan Turing, who used it to prove the equivalence between the
expressive power of untyped λ-calculus and Turing machines. Another famous
fixed point operator is Haskell Curry’s Y = λf .(λx .f (x x)) (λx .f (x x)).

20 / 37



Defining recursive functions

Fixed point operators can be used to define recursive functions.

For example:

fact def= Θ(λfn.isZero n 1 (mult n (f (pred n))))

We have that

fact n ↠ isZero n 1 (mult n (fact (pred n)))

21 / 37



(Aside: Alonzo Church as a teacher)

From “Indiscrete Thoughts” by Gian-Carlo Rota:

He looked like a cross between a panda and a large owl. He spoke
slowly in complete paragraphs which seemed to have been read
out of a book, evenly and slowly enunciated, as by a talking
machine. When interrupted, he would pause for an uncomfort-
ably long period to recover the thread of the argument. He
never made casual remarks: they did not belong in the baggage
of formal logic. For example, he would not say: "It is raining."
Such a statement, taken in isolation, makes no sense. (Whether
it is actually raining or not does not matter; what matters is con-
sistency.) He would say instead: "I must postpone my departure
for Nassau Street, inasmuch as it is raining, a fact which I can
verify by looking out the window." (These were not his exact
words.) [...]

22 / 37



Simply-typed lambda calculus

In Church’s original formulation (1940), every variable is annotated
with a type, and expressions are built up in a way that ensures that
every well-typed expression has a unique type.

For example,
λxι.λyι.xι and λxι.λyι.yι

are well-typed expressions of type ι → ι → ι, and

λfι→ι→ι.λxι.λyι.f y x

is a well-typed expression of type (ι → ι → ι) → (ι → ι → ι).

23 / 37



Typing contexts and typing rules

In more modern terms, we consider an expression in a typing
context for its free variables.

We write Γ ⊢ e : B to mean that e is an expression of type B in a
context Γ = x1 : A1, . . . , xn : An of types for its free variables.

Typing rules:

x : A ∈ Γ
Γ ⊢ x : A

Γ ⊢ e : A → B Γ ⊢ e′ : A
Γ ⊢ e e′ : B

Γ, x : A ⊢ e : B
Γ ⊢ λx .e : A → B

24 / 37



Type safety and strong normalization

Preservation: if e : A and e → e′ then e′ : A.

Progress: if e : A then either e is β-normal or ∃e′.e → e′.

Termination: if e : A then e ↠ v to some (unique) β-normal v .

Corollary: ω and Θ can’t be typed!

25 / 37



Product and sum types

Easy to extend STLC with products.

Γ ⊢ e1 : A Γ ⊢ e2 : B
Γ ⊢ (e1, e2) : A × B

Γ ⊢ e : A × B
Γ ⊢ π1e : A

Γ ⊢ e : A × B
Γ ⊢ π2e : A

π1(e1, e2) → e1 π2(e1, e2) → e1

Can similarly add typing rules and reductions for sum types.

Type safety and strong normalization are preserved.

26 / 37



A surprising correspondence

STLC turns out to be isomorphic to (a subsystem of) a proof
system for logic introduced earlier by Gerhard Gentzen, called
natural deduction.

A key idea of ND is that every logical connective is governed by
“introduction” and “elimination” rules.

27 / 37



Natural deduction

For example, conjunction defined by the following rules:

A B
A ∧ B

∧I A ∧ B
A

∧E1
A ∧ B

B
∧E2

And universal quantification by the following rules:

A[a/x ]
∀x .A

∀I ∀x .A
A[t/x ]

∀E

(where a is a fresh variable not appearing in A, and t is any term.)

28 / 37



Natural deduction

Implication defined by:
xA
...
B

A ⊃ B
⊃Ix A ⊃ B A

B
⊃E

Note the special form of the intro: “Suppose we can derive B from
the assumption of A, then A ⊃ B holds.”

The ⊃I rule is said to “discharge” the assumption labelled x .

A proof with no undischarged assumptions is said to be closed.

29 / 37



Natural deduction

Example of a closed proof:

xB ⊃ C
y A ⊃ B zA

B
⊃E

C
⊃E

A ⊃ C
⊃Iz

(A ⊃ B) ⊃ (A ⊃ C)
⊃Iy

(B ⊃ C) ⊃ (A ⊃ B) ⊃ (A ⊃ C)
⊃Ix

30 / 37



ND ∼ STLC

We can alternatively describe rules ⊃I and ⊃E using explicit
contexts of assumptions, and using lambda notation for the proofs.
While we’re at it, let’s write ⊃ as →:

Γ, x : A ⊢ e : B
Γ ⊢ λx .e : A → B

→I Γ ⊢ e : A → B Γ ⊢ e′ : A
Γ ⊢ e e′ : B

→E

But these are the typing rules of simply-typed lambda calculus!

Indeed, every simply-typed λ-term may be seen as a proof in
(intuitionistic4, implicational) natural deduction, and vice versa.

4Intuitionistic logic (also called constructive logic) is a generalization of
classical logic where one does not accept non-constructive principles such as
the law of excluded middle A ∨ ¬A and double-negation elimination ¬¬A ⊃ A.

31 / 37



Polymorphism

The identity function λx .x can be given type A → A for any A.

Intuitively, it works “the same way” regardless of the choice of A,
but there is no way of expressing that in STLC.

Using polymorphic quantification we can say λx .x has type

∀a.a → a

where a is a type variable. (Logically, ∀a may be seen as
quantifying over formulas.)

32 / 37



Polymorphic lambda calculus

Invented independently by a logician and a computer scientist:

Jean-Yves Girard
John C. Reynolds

33 / 37



Polymorphic lambda calculus

One nice property: typed Church encodings!

Bool = ∀a. a → a → a
Nat = ∀a. (a → a) → (a → a)

List a = ∀b. (a → b → b) → (b → b)
Both a b = ∀c.(a → b → c) → c

But note we still have strong normalization. (So still can’t type Θ)

Let’s try this out in Agda and Haskell...

34 / 37



Polymorphism in Haskell and OCaml

In Girard and Reynold’s calculus, applying a polymorphic function
requires explicitly passing a type argument.

In Haskell and OCaml, types are inferred automatically through
Hindley-Milner type inference, as long as you stick to prenex
polymorphism of the form ∀a1 . . . ∀an.A (with A monomorphic).

Both also include some support for higher-rank polymorphism
(polymorphic types as an argument to a function), but type
inference becomes more difficult or undecidable.

35 / 37



Hindley-Milner type inference

Basically: examine the program to generate a lot of typing
constraints, and try to solve them!

(Let’s try some some examples by hand and by ghci...)

ghci> :t (\f x -> f (f x))
...

ghci> :t (\x y z -> x (y z))
...

36 / 37



Hindley-Milner type inference

It works very well when it works, but sometimes gives misleading
error messages...

ghci> foldl (flip (++)) [] "hello"

<interactive>:128:22-28: error:
* Couldn’t match type ’Char’ with ’[a]’

Expected type: [[a]]
Actual type: [Char]

* In the third argument of ’foldl’, namely ’"hello"’
In the expression: foldl (flip (++)) [] "hello"
In an equation for ’it’: it = foldl (flip (++)) [] "hello"

* Relevant bindings include
it :: [a] (bound at <interactive>:128:1)

ghci> foldl (flip (:)) [] "hello"
"olleh"

37 / 37


