
[CSE301 / Lecture 4]
Side-effects and monads

Noam Zeilberger

Ecole Polytechnique

27 September 2023

1 / 51

What are side-effects?

Everything that a function does besides computing a functional
relation from inputs to outputs.

In other words, the difference between “functions in math” and
“functions in Python”.

2 / 51

What are side-effects?

finput output

versus

finput output

world

3 / 51

“pure” function = no side-effects

def sqr(x):
y = x ** 2
return y

>>> sqr(3)
9
>>> sqr(4)
16

4 / 51

Printing debugging information

def sqr_debug(x):
y = x ** 2
print("Squaring {} gives {}!!".format(x, y))
return y

>>> sqr_debug(3)
Squaring 3 gives 9!!
9
>>> sqr_debug(4)
Squaring 4 gives 16!!
16

5 / 51

Getting input from the user, and raising exceptions

def exp_by_input(x):
k = int(input("Enter exponent: "))
y = x ** k
return y

>>> exp_by_input(3)
Enter exponent: 2
9
>>> exp_by_input(3)
Enter exponent: two
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<string>", line 7, in exp_by_input

ValueError: invalid literal for int() with base 10: ’two’

6 / 51

Querying a random number generator

def exp_by_random(x):
k = random.randrange(0,10)
y = x ** k
return y

>>> exp_by_random(3)
2187
>>> exp_by_random(3)
243

7 / 51

Reading and writing global variables

k = 0
def exp_by_counter(x):

global k
y = x ** k
k = k + 1
return y

>>> exp_by_counter(3)
1
>>> exp_by_counter(3)
3
>>> exp_by_counter(3)
9

8 / 51

Non-standard control flow (e.g., nondeterminism via generators)

def exp_by_nondet(x):
for k in range(0,10):

y = x ** k
yield y

>>> exp_by_nondet(3)
<generator object exp_by_nondet at 0x7ff77d38c830>
>>> list(exp_by_nondet(3))
[1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683]

9 / 51

Side-effects in Haskell

Despite claims, Haskell is not really a pure language...
1. Functions may not terminate
2. Functions may raise exceptions
3. Run-time performance can vary wildly due to laziness

Nevertheless, these effects (at least 1 & 2) are relatively “benign”.

In Haskell, most “serious” effects (like getting input from the user,
or reading and writing global variables) are confined to monads.

10 / 51

The idea, very roughly

Replace

finput output

world

by finput Mworld(output)

where Mworld captures all possible interactions with the world.

We’ll make this more precise, but first let’s talk a bit about the
principles of referential transparency and compositionality...

11 / 51

The principle of referential transparency

Informal principle that we can replace an expression by the value it
computes without changing the behavior of a program, e.g.:

>>> sqr(3)
9
>>> 9 == 9
True
>>> sqr(3) == 9
True
>>> sqr(3) == sqr(3)
True

12 / 51

The principle of referential transparency

The presence of side-effects can break referential transparency!

>>> exp_by_counter(3)
9
>>> exp_by_counter(3) == 9
False
>>> exp_by_counter(3) == exp_by_counter(3)
False

13 / 51

Compositional semantics

More generally, a semantics for a programming language is a way of
assigning meanings to program expressions. A desired property of a
semantics is that it is compositional, in the sense that the meaning
of an expression is built from the meanings of its subexpressions.

The presence of side-effects presents a challenge to defining a
compositional semantics!1 But we can try to surmount it...

1Aside: this is also true for semantics of natural languages! See
Chung-chieh Shan’s PhD thesis, Lingustic side effects (2005).

14 / 51

Toy example:2 arithmetic expressions

Consider a little language of arithmetic expressions, with constants,
subtraction, and division:

e ::= c | e1− e2 | e1 / e2

Each expression e denotes a number JeK ∈ R, defined inductively:

JcK = c
Je1− e2K = Je1K− Je2K
Je1 / e2K = Je1K / Je2K

Division by zero is undefined, so JeK is sometimes undefined.

2Inspired in part by Philip Wadler, “Monads for functional programming”,
Proceedings of the Båstad Spring School, May 1995.

15 / 51

Toy example: arithmetic expressions

Translated to Haskell:

data Expr = Con Double | Sub Expr Expr | Div Expr Expr

eval :: Expr → Double
eval (Con c) = c
eval (Sub e1 e2) = eval e1 − eval e2
eval (Div e1 e2) = eval e1 / eval e2

16 / 51

Toy example: arithmetic expressions

Example expressions:

e1 = Sub (Div (Con 2) (Con 4)) (Con 3)
e2 = Sub (Con 1) (Div (Con 2) (Con 2))
e3 = Div (Con 1) (Sub (Con 2) (Con 2))

And their semantics:

eval e1 = −2.5 eval e2 = 0 eval e3 undefined

17 / 51

Variation #1: error-handling

Modify the semantics to handle division-by-zero.

In a language with exceptions, we could simply raise an exception.
Haskell has them, but let’s pretend it doesn’t and stay “pure”...

Idea: e no longer denotes a number, but a “number or error”.

That is, JeK ∈ R ⊎ {error}

In Haskell, we can return a Maybe type...

18 / 51

Variation #1: error-handling

eval1 :: Expr → Maybe Double
eval1 (Con c) = Just c
eval1 (Sub e1 e2) =

case (eval1 e1 , eval1 e2) of
(Just x1 , Just x2)→ Just (x1 − x2)
→ Nothing

eval1 (Div e1 e2) =
case (eval1 e1 , eval1 e2) of

(Just x1 , Just x2)
| x2 ̸≡ 0→ Just (x1 / x2)
| otherwise → Nothing

→ Nothing

19 / 51

Variation #1: error-handling

The example expressions:

e1 = Sub (Div (Con 2) (Con 4)) (Con 3)
e2 = Sub (Con 1) (Div (Con 2) (Con 2))
e3 = Div (Con 1) (Sub (Con 2) (Con 2))

In the new semantics:

eval1 e1 = Just (−2.5) eval1 e2 = Just 0.0
eval1 e3 = Nothing

20 / 51

Variation #2: global state

Modify the semantics of expressions so that every third constant is
interpreted as 0. (Yeah this is a bit weird, but so is most of life.)

The meaning of a subexpression now depends on its position. E.g.,
J3− 2K = J1K, but J6 / (3− 2)K = J6 / (3− 0)K ̸= J6 / 1K.

Can we define a compositional semantics?...

21 / 51

Variation #2: global state

...Yes, in state-passing style!

Idea: every subexpression e denotes a function JeK ∈ N→ R× N
taking a count of the previously seen constants, and returning a
number together with an updated count.

For the top-level expression, initialize count to 0.

22 / 51

Variation #2: global state

eval2 :: Expr → Int → (Double, Int)
eval2 (Con c) n = (if n ‘mod ‘ 3 ≡ 2 then 0 else c, n + 1)
eval2 (Sub e1 e2) n =

let (x1 , o) = eval2 e1 n in
let (x2 , p) = eval2 e2 o in
(x1 − x2 , p)

eval2 (Div e1 e2) n =
let (x1 , o) = eval2 e1 n in
let (x2 , p) = eval2 e2 o in
(x1 / x2 , p)

eval2Top :: Expr → Double
eval2Top e = fst (eval2 e 0)

23 / 51

Variation #2: global state

The example expressions:

e1 = Sub (Div (Con 2) (Con 4)) (Con 3)
e2 = Sub (Con 1) (Div (Con 2) (Con 2))
e3 = Div (Con 1) (Sub (Con 2) (Con 2))

In the new semantics:

eval2Top e1 = eval2Top e3 = 0.5 eval2Top e2 undefined

24 / 51

Variation #3: combining error-handling and state

eval3 :: Expr → Int → Maybe (Double, Int)
eval3 (Con c) n = Just (if n ‘mod ‘ 3 ≡ 2 then 0 else c, n + 1)
eval3 (Sub e1 e2) n =

case eval3 e1 n of
Nothing → Nothing
Just (x1 , o)→ case eval3 e2 o of

Nothing → Nothing
Just (x2 , p)→ Just (x1 − x2 , p)

eval3 (Div e1 e2) n =
case eval3 e1 n of

Nothing → Nothing
Just (x1 , o)→ case eval3 e2 o of

Nothing → Nothing
Just (x2 , p)
| x2 ̸≡ 0→ Just (x1 / x2 , p)
| otherwise → Nothing

25 / 51

Variation #3: combining error-handling and state

eval3Top :: Expr → Maybe Double
eval3Top e = case eval3 e 0 of

Nothing → Nothing
Just (x ,)→ Just x

In this last semantics:

eval3Top e1 = eval3Top e3 = Just 0.5
eval3Top e2 = Nothing

26 / 51

Compare with the OCaml version...

type expr = Con of float
| Sub of expr * expr | Div of expr * expr

let cnt = ref 0
let rec eval3 (e : expr) : float =

match e with
| Con c -> let n = !cnt in

(cnt := n+1; if n mod 3 == 2 then 0.0 else c)
| Sub (e1,e2) -> let x1 = eval3 e1 in

let x2 = eval3 e2 in
x1 -. x2

| Div (e1,e2) -> let x1 = eval3 e1 in
let x2 = eval3 e2 in
if x2 <> 0.0 then x1 /. x2
else raise Division_by_zero

let rec eval3Top e = (cnt := 0; eval3 e)

27 / 51

Haskell version #3, rewritten using a monad and do notation

eval3 ′ :: Expr → StateT Int Maybe Double
eval3 ′ (Con c) = do

n← get
put (n + 1)
return (if n ‘mod ‘ 3 ≡ 2 then 0 else c)

eval3 ′ (Sub e1 e2) = do
x1 ← eval3 ′ e1
x2 ← eval3 ′ e2
return (x1 − x2)

eval3 ′ (Div e1 e2) = do
x1 ← eval3 ′ e1
x2 ← eval3 ′ e2
if x2 ̸≡ 0 then return (x1 / x2) else lift Nothing

eval3 ′Top e = runStateT (eval3 ′ e) 0 >>= return ◦ fst

28 / 51

What is a monad?

A mathematical concept originating in category theory.

Proposed by Eugenio Moggi as a unifying categorical model for
different notions of computation.

Adapted by Phil Wadler as a way of integrating side-effects with
pure functional programming, in particular in Haskell.

29 / 51

What is a category?

A category consists of the following:
– A set of objects, and a set of arrows between objects.

(Just like a directed graph.)
– For each object a, an identity arrow a→ a.
– For each a→ b and b → c, a composite arrow a→ c.
– Such that composition and identity are associative and unital.

Examples:
– FG = category freely generated from a graph G , with nodes

as objects and arrows a→ b given by paths from a to b
– Set = category whose objects are sets and whose arrows

a→ b are functions from a to b
– Rel = category whose objects are sets and whose arrows

a→ b are relations from a to b

30 / 51

A category of pure Haskell functions

Informally, we can think of pure functions (of one argument) as
forming the arrows of a category, whose objects are types.

Int Int Int Bool etc.
(+1) (>0)

Composition of arrows is defined by function composition.

Int Int Bool(+1)

(>0)◦(+1)

(>0)

The identity function \x → x serves as the identity arrow a→ a.

31 / 51

Beyond the category of pure functions

But... we don’t always want to program inside this category!

Monads give us a way of building new categories to program in.

A monad is a special kind of functor.

32 / 51

What is a functor?

A functor is a way of mapping one category into another (possibly
the same) category:

– It should map both objects and arrows.
(Just like a graph homomorphism.)

– It should preserve identity and composition.
(Just like a monoid/group homomorphism.)

Examples:
– Fϕ : FG → FH where ϕ : G → H is a graph homomorphism
– the powerset functor P : Set→ Set

33 / 51

Functors in Haskell

The Functor type class:

class Functor f where
fmap :: (a→ b)→ f a→ f b

Note here f is a type constructor f :: ∗ → ∗.

Any instance should satisfy the functor laws:

fmap id = id fmap (f ◦ g) = fmap f ◦ fmap g

34 / 51

Example #1: the List functor

The list type constructor is a functor:

instance Functor [] where
-- fmap :: (a -> b) -> [a] -> [b]
fmap = map

(Exercise: prove the functor laws map id xs = xs and
map (f ◦ g) xs = map f (map g xs) by structural induction!)

35 / 51

Example #2: the Maybe functor

The Maybe type constructor is a functor:

instance Functor Maybe where
-- fmap :: (a -> b) -> Maybe a -> Maybe b
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

36 / 51

Rough definition of a monad, in category theory

A monad is a functor m from a category to itself, equipped with
an arrow a→ m a for every object a, together with a way of
transforming arrows a→ m b into arrows m a→ m b, subject to
certain equations.

For example, the powerset functor is a monad: the functions
a→ m a are defined by taking singletons, and any function
a→ m b extends to a function m a→ m b by taking unions.

37 / 51

Rough definition of a monad, in category theory

What’s remarkable about the definition is that it allows to build a
new category with the same objects, but where an arrow a→ b in
the new category corresponds to an arrow a→ m b in the old
category. This is called the “Kleisli category” construction.

For example, taking the Kleisli category of the powerset monad
gives a category with sets as objects but whose arrows are relations.

38 / 51

Monads in Haskell (before 2014)

The Monad type class:

class Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b -- pronounced "bind"

Subject to the monad laws:

return x >>= f = f x
mx >>= return = mx
(mx >>= f) >>= g = mx >>= (\x → (f x >>= g))

(Note that flip (>>=) :: (a→ m b)→ (m a→ m b).)

39 / 51

The List and Maybe monads

instance Monad [] where
-- return :: a -> [a]
return x = [x]
-- (»=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = concatMap f xs

instance Monad Maybe where
-- return :: a -> Maybe a
return x = Just x
-- (»=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= f = Nothing
Just x >>= f = f x

40 / 51

Monads as notions of computation

Via the Kleisli category constructions...
– List monad: category of nondeterministic functions a→ [b].
– Maybe monad: category of partial functions a→ Maybe b.

41 / 51

Evaluator #1, re-expressed using the Maybe monad

eval1 ′ :: Expr → Maybe Double
eval1 ′ (Con c) = return c
eval1 ′ (Sub e1 e2) =

eval1 ′ e1 >>= \x1 →
eval1 ′ e2 >>= \x2 →
return (x1 − x2)

eval1 ′ (Div e1 e2) =
eval1 ′ e1 >>= \x1 →
eval1 ′ e2 >>= \x2 →
if x2 ̸≡ 0 then return (x1 / x2) else Nothing

42 / 51

The State monad

The type constructor State s is defined essentially as follows:

newtype State s a = State {runState :: s → (a, s)}

It is a monad:

instance Monad State where
return x = State (\s → (x , s))
xt >>= f = State (\s0 →

let (x , s1) = runState xt s0 in
runState (f x) s1)

43 / 51

The State monad

Also, it supports “get” and “set” operations:

get :: State s s
get = State (\s → (s, s))
put :: s → State s ()
put s ′ = State (\s → ((), s ′))

44 / 51

Evaluator #2, redefined using the State monad

eval2 ′ :: Expr → State Int Double
eval2 ′ (Con c) =

get >>= \n→
put (n + 1) >>= _→
return (if n ‘mod ‘ 3 ≡ 2 then 0 else c)

eval2 ′ (Sub e1 e2) =
eval2 ′ e1 >>= \x1 →
eval2 ′ e2 >>= \x2 →
return (x1 − x2)

eval2 ′ (Div e1 e2) =
eval2 ′ e1 >>= \x1 →
eval2 ′ e2 >>= \x2 →
return (x1 / x2)

eval2Top′ e = fst (runState (eval2 ′ e) 0)

45 / 51

Do notation

do x1 ← e1
x2 ← e2
...
xn← en
f x1 x2 ... xn

is syntactic sugar for

e1 >>= \x1 →
e2 >>= \x2 →
...
en >>= \xn→
f x1 x2 ... xn

46 / 51

Evaluator #2, equivalently expressed with do notation

eval2 ′ :: Expr → State Int Double
eval2 ′ (Con c) = do

n← get
put (n + 1)
return (if n ‘mod ‘ 3 ≡ 2 then 0 else c)

eval2 ′ (Sub e1 e2) = do
x1 ← eval2 ′ e1
x2 ← eval2 ′ e2
return (x1 − x2)

eval2 ′ (Div e1 e2) =
x1 ← eval2 ′ e1
x2 ← eval2 ′ e2
return (x1 / x2)

47 / 51

The IO monad

A built-in monad used to perform real system I/O.

Supports operations like

getLine :: IO String
putStrLn :: String → IO ()

etc.

The use of a monad ensures proper sequentialization, as we can
never “escape” the IO monad!3

3Technically, this is not true. There is a back door in the form of a function
unsafePerformIO :: IO a → a, contained in the module System.IO.Unsafe. But
as the name suggests, this function should be used with care...

48 / 51

Monads in Haskell (post 2014)

A bit more heavy since the “Functor-Applicative-Monad” hierarchy:

class Functor f where
fmap :: (a→ b)→ f a→ f b

class Functor f ⇒ Applicative f where
pure :: a→ f a
(⟨∗⟩) :: f (a→ b)→ f a→ f b

class Applicative m⇒ Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b
return = pure

So to define an instance of Monad, you first need instances of
Functor and Applicative.

49 / 51

Monads in Haskell (post 2014)

But instances of Functor and Applicative can always be retrofitted
from a Monad instance:

instance Functor M where
fmap f xm = xm >>= return ◦ f

instance Applicative M where
pure = return
fm ⟨∗⟩ xm = fm >>= \f → xm >>= return ◦ f

50 / 51

Combining monads

To define Evaluator #3, we implicitly used a monad transformer:

newtype StateT s m a = StateT {runStateT :: s → m (a, s)}

Given a monad m representing some notion of computation (e.g.,
partiality or nondeterminism), StateT s m defines a new monad
with s state wrapped around an m-computation.

But it is not always clear how to combine monads.

More generally, the question of how to organize and reason about
programs with side-effects remains an important open problem!

51 / 51

