[CSE301 / Lecture 4] Side-effects and monads

Noam Zeilberger

Ecole Polytechnique
27 September 2023

What are side-effects?

Everything that a function does besides computing a functional relation from inputs to outputs.

In other words, the difference between "functions in math" and "functions in Python".

What are side-effects?

versus

"pure" function $=$ no side-effects

def $\operatorname{sqr}(x)$:
$\mathrm{y}=\mathrm{x} * * 2$
return y
>>> sqr(3)
9
>>> sqr(4)
16

Printing debugging information

```
def sqr_debug(x):
    y = x ** 2
    print("Squaring {} gives {}!!".format(x, y))
    return y
```

>>> sqr_debug(3)
Squaring 3 gives 9!!
9
>>> sqr_debug(4)
Squaring 4 gives 16!!
16

Getting input from the user, and raising exceptions

```
def exp_by_input(x):
    k = int(input("Enter exponent: "))
    y = x ** k
    return y
```

>>> exp_by_input (3)
Enter exponent: 2
9
>>> exp_by_input (3)
Enter exponent: two
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 7, in exp_by_input
ValueError: invalid literal for int() with base 10: 'two'

Querying a random number generator

```
def exp_by_random(x):
    k = random.randrange(0,10)
    y = x ** k
    return y
```

>>> exp_by_random(3)
2187
>>> exp_by_random(3)
243

Reading and writing global variables

```
k = 0
def exp_by_counter(x):
        global k
        y = x ** k
        k = k + 1
        return y
```

 >>> exp_by_counter (3)
 1
 >>> exp_by_counter (3)
 3
 >>> exp_by_counter (3)
 9

Non-standard control flow (e.g., nondeterminism via generators)

```
def exp_by_nondet(x):
    for k in range(0,10):
        y = x ** k
        yield y
```

>>> exp_by_nondet(3)
<generator object exp_by_nondet at 0x7ff77d38c830>
>>> list(exp_by_nondet(3))
[1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683]

Side-effects in Haskell

Despite claims, Haskell is not really a pure language...

1. Functions may not terminate
2. Functions may raise exceptions
3. Run-time performance can vary wildly due to laziness

Nevertheless, these effects (at least $1 \& 2$) are relatively "benign".
In Haskell, most "serious" effects (like getting input from the user, or reading and writing global variables) are confined to monads.

The idea, very roughly

by

where $M_{\text {world }}$ captures all possible interactions with the world.
We'll make this more precise, but first let's talk a bit about the principles of referential transparency and compositionality...

The principle of referential transparency

Informal principle that we can replace an expression by the value it computes without changing the behavior of a program, e.g.:
>>> sqr (3)
9
>>> 9 == 9
True
>>> $\operatorname{sqr}(3)==9$
True
>>> $\operatorname{sqr}(3)==\operatorname{sqr}(3)$
True

The principle of referential transparency

The presence of side-effects can break referential transparency!
>>> exp_by_counter (3)
9
>>> exp_by_counter(3) == 9
False
>>> exp_by_counter (3) == exp_by_counter (3)
False

Compositional semantics

More generally, a semantics for a programming language is a way of assigning meanings to program expressions. A desired property of a semantics is that it is compositional, in the sense that the meaning of an expression is built from the meanings of its subexpressions.

The presence of side-effects presents a challenge to defining a compositional semantics! ${ }^{1}$ But we can try to surmount it...

[^0]
Toy example: ${ }^{2}$ arithmetic expressions

Consider a little language of arithmetic expressions, with constants, subtraction, and division:

$$
e::=c|e 1-e 2| e 1 / e 2
$$

Each expression e denotes a number $\llbracket e \rrbracket \in \mathbb{R}$, defined inductively:

$$
\begin{aligned}
\llbracket c \rrbracket & =c \\
\llbracket e 1-e 2 \rrbracket & =\llbracket e 1 \rrbracket-\llbracket e 2 \rrbracket \\
\llbracket e 1 / e 2 \rrbracket & =\llbracket e 1 \rrbracket / \llbracket e 2 \rrbracket
\end{aligned}
$$

Division by zero is undefined, so $\llbracket e \rrbracket$ is sometimes undefined.

[^1]Toy example: arithmetic expressions

Translated to Haskell:
data Expr $=$ Con Double \mid Sub Expr Expr | Div Expr Expr
eval :: Expr \rightarrow Double
eval $($ Con $c)=c$
eval (Sub e1 e2) = eval e1 - eval e2
eval $($ Div e1 e2) $=$ eval e1 / eval e2

Toy example: arithmetic expressions

Example expressions:

$$
\begin{aligned}
& e 1=\operatorname{Sub}(\operatorname{Div}(\operatorname{Con} 2)(\operatorname{Con} 4))(\operatorname{Con} 3) \\
& e 2=\operatorname{Sub}(\operatorname{Con} 1)(\operatorname{Div}(\operatorname{Con} 2)(\operatorname{Con} 2)) \\
& e 3=\operatorname{Div}(\operatorname{Con} 1)(\operatorname{Sub}(\operatorname{Con} 2)(\operatorname{Con} 2))
\end{aligned}
$$

And their semantics:

$$
\text { eval e1 }=-2.5 \quad \text { eval e2 }=0 \quad \text { eval e3 undefined }
$$

Variation \#1: error-handling

Modify the semantics to handle division-by-zero.
In a language with exceptions, we could simply raise an exception.
Haskell has them, but let's pretend it doesn't and stay "pure"...

Idea: e no longer denotes a number, but a "number or error".
That is, $\llbracket e \rrbracket \in \mathbb{R} \uplus\{$ error $\}$
In Haskell, we can return a Maybe type...

Variation \#1: error-handling

```
eval1 :: Expr \(\rightarrow\) Maybe Double
eval1 (Con c) = Just c
eval1 (Sub e1 e2) =
    case (eval1 e1, eval1 e2) of
    (Just x1, Just x2) \(\rightarrow\) Just ( \(x 1-x 2\) )
    \(\rightarrow\) Nothing
eval1 (Div e1 e2) =
    case (eval1 e1, eval1 e2) of
    (Just x1, Just x2)
    \(\mid x 2 \not \equiv 0 \rightarrow\) Just ( \(x 1 / x 2\) )
    otherwise \(\rightarrow\) Nothing
    \(-\quad \rightarrow\) Nothing
```


Variation \#1: error-handling

The example expressions:

$$
\begin{aligned}
& e 1=\operatorname{Sub}(\operatorname{Div}(\operatorname{Con} 2)(\operatorname{Con} 4))(\operatorname{Con} 3) \\
& e 2=\operatorname{Sub}(\operatorname{Con} 1)(\operatorname{Div}(\operatorname{Con} 2)(\operatorname{Con} 2)) \\
& e 3=\operatorname{Div}(\operatorname{Con} 1)(\operatorname{Sub}(\operatorname{Con} 2)(\operatorname{Con} 2))
\end{aligned}
$$

In the new semantics:

$$
\begin{gathered}
\text { eval1 e1 }=\text { Just }(-2.5) \quad \text { eval1 e2 }=\text { Just } 0.0 \\
\text { eval1 e3 }=\text { Nothing }
\end{gathered}
$$

Variation \#2: global state

Modify the semantics of expressions so that every third constant is interpreted as 0 . (Yeah this is a bit weird, but so is most of life.)

The meaning of a subexpression now depends on its position. E.g., $\llbracket 3-2 \rrbracket=\llbracket 1 \rrbracket$, but $\llbracket 6 /(3-2) \rrbracket=\llbracket 6 /(3-0) \rrbracket \neq \llbracket 6 / 1 \rrbracket$.

Can we define a compositional semantics?...

Variation \#2: global state

...Yes, in state-passing style!
Idea: every subexpression e denotes a function $\llbracket e \rrbracket \in \mathbb{N} \rightarrow \mathbb{R} \times \mathbb{N}$ taking a count of the previously seen constants, and returning a number together with an updated count.

For the top-level expression, initialize count to 0 .

Variation \#2: global state

```
eval2 :: Expr -> Int }->\mathrm{ (Double, Int)
eval2 (Conc) n=(if n'mod' 3\equiv2 then 0 else c, n+1)
eval2 (Sub e1 e2) n=
    let (x1,o) = eval2 e1 n in
    let (x2,p) = eval2 e2 o in
    (x1-x2,p)
eval2 (Div e1 e2) n=
    let (x1,o) = eval2 e1 n in
    let (x2,p) = eval2 e2 o in
    (x1/x2,p)
eval2Top :: Expr \(\rightarrow\) Double
eval2Top e = fst (eval2 e 0)
```


Variation \#2: global state

The example expressions:

$$
\begin{aligned}
& e 1=\operatorname{Sub}(\operatorname{Div}(\operatorname{Con} 2)(\operatorname{Con} 4))(\operatorname{Con} 3) \\
& e 2=\operatorname{Sub}(\operatorname{Con} 1)(\operatorname{Div}(\operatorname{Con} 2)(\operatorname{Con} 2)) \\
& e 3=\operatorname{Div}(\operatorname{Con} 1)(\operatorname{Sub}(\operatorname{Con} 2)(\operatorname{Con} 2))
\end{aligned}
$$

In the new semantics:

$$
\text { eval2Top e1 }=\text { eval2Top e3 }=0.5 \quad \text { eval2Top e2 undefined }
$$

Variation \#3: combining error-handling and state

```
eval3 :: Expr ->Int }->\mathrm{ Maybe (Double, Int)
eval3 (Con c) n= Just (if n'mod` 3 \equiv 2 then 0 else c, n+1)
eval3 (Sub e1 e2) n=
    case eval3 e1 n of
    Nothing }->\mathrm{ Nothing
    Just (x1,o) }->\mathrm{ case eval3 e2 o of
        Nothing }->\mathrm{ Nothing
        Just (x2, p) -> Just (x1 - x2, p)
eval3 (Div e1 e2) n=
    case eval3 e1 n of
    Nothing }->\mathrm{ Nothing
    Just (x1,o) -> case eval3 e2 o of
        Nothing }->\mathrm{ Nothing
        Just (x2,p)
        |2 \not\equiv| 0 -> Just (x1 / x2,p)
        otherwise }->\mathrm{ Nothing
```


Variation \#3: combining error-handling and state

$$
\begin{aligned}
& \text { eval3Top }:: \text { Expr } \rightarrow \text { Maybe Double } \\
& \text { eval3Top e }=\text { case eval3 e } 0 \text { of } \\
& \text { Nothing } \rightarrow \text { Nothing } \\
& \text { Just }\left(x,,_{-}\right) \rightarrow \text { Just } x
\end{aligned}
$$

In this last semantics:

$$
\begin{aligned}
& \text { eval3Top e } 1=\text { eval } 3 \text { Top e } 3=\text { Just } 0.5 \\
& \text { eval3Top e } 2=\text { Nothing }
\end{aligned}
$$

Compare with the OCaml version...

```
type expr = Con of float
    | Sub of expr * expr | Div of expr * expr
let cnt = ref 0
let rec eval3 (e : expr) : float =
    match e with
    | Con c -> let n = !cnt in
        (cnt := n+1; if n mod 3 == 2 then 0.0 else c)
    | Sub (e1,e2) -> let x1 = eval3 e1 in
    let x2 = eval3 e2 in
    x1 -. x2
    | Div (e1,e2) -> let x1 = eval3 e1 in
    let x2 = eval3 e2 in
    if x2 <> 0.0 then x1 /. x2
    else raise Division_by_zero
let rec eval3Top e = (cnt := 0; eval3 e)
```

Haskell version \#3, rewritten using a monad and do notation

```
eval3' \(::\) Expr \(\rightarrow\) StateT Int Maybe Double
eval3' \((\) Con \(c)=\) do
    \(n \leftarrow g e t\)
    put \((n+1)\)
    return (if \(n\) 'mod' \(3 \equiv 2\) then 0 else \(c\) )
eval3' (Sub e1 e2) = do
    \(x 1 \leftarrow\) eval3' e1
    \(x 2 \leftarrow e v a l 3^{\prime}\) e 2
    return ( \(x 1-x 2\) )
eval3' \((\) Div e1 e2 \()=\mathbf{d o}\)
    \(x 1 \leftarrow\) eval3' e1
    \(x 2 \leftarrow e v a l 3^{\prime}\) e 2
    if \(x 2 \not \equiv 0\) then return \((x 1 / x 2)\) else lift Nothing
eval3' Top e \(=\) runStateT (eval3' e) \(0 \gg\) return \(\circ\) fst
```


What is a monad?

A mathematical concept originating in category theory.
Proposed by Eugenio Moggi as a unifying categorical model for different notions of computation.

Adapted by Phil Wadler as a way of integrating side-effects with pure functional programming, in particular in Haskell.

What is a category?

A category consists of the following:

- A set of objects, and a set of arrows between objects. (Just like a directed graph.)
- For each object a, an identity arrow $a \rightarrow a$.
- For each $a \rightarrow b$ and $b \rightarrow c$, a composite arrow $a \rightarrow c$.
- Such that composition and identity are associative and unital.

Examples:

- $F G=$ category freely generated from a graph G, with nodes as objects and arrows $a \rightarrow b$ given by paths from a to b
- Set = category whose objects are sets and whose arrows $a \rightarrow b$ are functions from a to b
- Rel $=$ category whose objects are sets and whose arrows $a \rightarrow b$ are relations from a to b

A category of pure Haskell functions

Informally, we can think of pure functions (of one argument) as forming the arrows of a category, whose objects are types.

$$
\text { Int } \xrightarrow{(+1)} \text { Int } \quad \text { Int } \xrightarrow{(>0)} \text { Bool etc. }
$$

Composition of arrows is defined by function composition.

The identity function $\backslash x \rightarrow x$ serves as the identity arrow $a \rightarrow a$.

Beyond the category of pure functions

But... we don't always want to program inside this category!
Monads give us a way of building new categories to program in.
A monad is a special kind of functor.

What is a functor?

A functor is a way of mapping one category into another (possibly the same) category:

- It should map both objects and arrows.
(Just like a graph homomorphism.)
- It should preserve identity and composition. (Just like a monoid/group homomorphism.)

Examples:

- $F \phi: F G \rightarrow F H$ where $\phi: G \rightarrow H$ is a graph homomorphism
- the powerset functor P : Set \rightarrow Set

Functors in Haskell

The Functor type class:

$$
\begin{aligned}
& \text { class Functor } f \text { where } \\
& \qquad \text { fmap }::(a \rightarrow b) \rightarrow f a \rightarrow f b
\end{aligned}
$$

Note here f is a type constructor $f:: * \rightarrow *$.
Any instance should satisfy the functor laws:

$$
\text { fmap id }=i d \quad \text { fmap }(f \circ g)=\text { fmap } f \circ f m a p g
$$

Example \#1: the List functor

The list type constructor is a functor:

$$
\begin{aligned}
& \text { instance Functor [] where } \\
& \quad-\mathrm{fmap}::(\mathrm{a}->\mathrm{b})->[\mathrm{a}]->[\mathrm{b}] \\
& \quad \text { fmap }=\operatorname{map}
\end{aligned}
$$

(Exercise: prove the functor laws map id $x s=x s$ and $\operatorname{map}(f \circ g) x s=\operatorname{map} f(\operatorname{map} g x s)$ by structural induction! $)$

Example \#2: the Maybe functor

The Maybe type constructor is a functor:
instance Functor Maybe where
-- fmap :: (a -> b) -> Maybe a -> Maybe b
fmap f Nothing $=$ Nothing
fmap $f($ Just $x)=$ Just $(f x)$

Rough definition of a monad, in category theory

A monad is a functor m from a category to itself, equipped with an arrow $a \rightarrow m$ for every object a, together with a way of transforming arrows $a \rightarrow m b$ into arrows $m a \rightarrow m b$, subject to certain equations.

For example, the powerset functor is a monad: the functions $a \rightarrow m a$ are defined by taking singletons, and any function $a \rightarrow m b$ extends to a function $m a \rightarrow m b$ by taking unions.

Rough definition of a monad, in category theory

What's remarkable about the definition is that it allows to build a new category with the same objects, but where an arrow $a \rightarrow b$ in the new category corresponds to an arrow $a \rightarrow m b$ in the old category. This is called the "Kleisli category" construction.

For example, taking the Kleisli category of the powerset monad gives a category with sets as objects but whose arrows are relations.

Monads in Haskell (before 2014)

The Monad type class:

$$
\begin{aligned}
& \text { class Monad } m \text { where } \\
& \text { return :: } a \rightarrow m a \\
& (\gg):: m a \rightarrow(a \rightarrow m b) \rightarrow m b \quad \text {-- pronounced "bind" }
\end{aligned}
$$

Subject to the monad laws:

$$
\begin{aligned}
& \text { return } x \gg f=f x \\
& m x \gg \text { return }=m x \\
& (m x \gg f) \gg g=m x \gg(\backslash x \rightarrow(f x \gg g))
\end{aligned}
$$

(Note that flip $(\gg)::(a \rightarrow m b) \rightarrow(m a \rightarrow m b)$.)

The List and Maybe monads

instance Monad [] where
-- return :: a -> [a]
return $x=[x]$
-- (»=) :: [a] -> (a -> [b]) -> [b]
$x s \gg f=$ concatMap f xs
instance Monad Maybe where
-- return :: a -> Maybe a
return $x=$ Just x
-- (»=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing $\gg f=$ Nothing
Just $x \gg f=f x$

Monads as notions of computation

Via the Kleisli category constructions...

- List monad: category of nondeterministic functions $a \rightarrow[b]$.
- Maybe monad: category of partial functions $a \rightarrow$ Maybe b.

Evaluator \#1, re-expressed using the Maybe monad

```
eval1' :: Expr \(\rightarrow\) Maybe Double
eval1' \((\) Con \(c)=\) return \(c\)
eval1' (Sub e1 e2) =
    eval1' e1 \(\gg \backslash x 1 \rightarrow\)
    eval1' e2 >>= \x2 \(\rightarrow\)
    return ( \(x 1-x 2\) )
eval1' (Div e1 e2) \(=\)
    eval1' e1 >>= \(\backslash x 1 \rightarrow\)
    eval1' e2 > \(\gg \backslash x 2 \rightarrow\)
    if \(x 2 \not \equiv 0\) then return ( \(x 1 / x 2\) ) else Nothing
```


The State monad

The type constructor State s is defined essentially as follows:
newtype State $s a=$ State $\{$ runState $:: s \rightarrow(a, s)\}$
It is a monad:
instance Monad State where

$$
\begin{aligned}
& \text { return } x=\text { State }(\backslash s \rightarrow(x, s)) \\
& x t \gg f=\text { State }(\backslash s 0 \rightarrow \\
& \text { let }(x, s 1)=\text { runState } x t s 0 \text { in } \\
& \quad \text { runState }(f x) s 1)
\end{aligned}
$$

The State monad

Also, it supports "get" and "set" operations:

```
get :: State s s
get =State (\s->(s,s))
put :: s }->\mathrm{ State s ()
put s' = State (\s -> ((), s'))
```


Evaluator \#2, redefined using the State monad

```
eval2' :: Expr }->\mathrm{ State Int Double
eval2'}(\mathrm{ Con c) =
    get >>\n->
    put (n+1)>> \_ }
    return (if n'mod' 3\equiv2 then 0 else c)
eval2' (Sub e1 e2) =
    eval2' e1>>\x1 }
    eval2' e2>>\x2 ->
    return (x1 - x2)
eval2'(Div e1 e2) =
    eval2' e1>> \x1 }
    eval2' e2>>\\x2 }
    return (x1 / x2)
eval2Top' e = fst (runState (eval2' e) 0)
```


Do notation

$$
\begin{gathered}
\text { do } x 1 \leftarrow e 1 \\
x 2 \leftarrow e 2 \\
\ldots \\
x n \leftarrow e n \\
f x 1 \times 2 \ldots x n
\end{gathered}
$$

is syntactic sugar for

$$
\begin{aligned}
& e 1 \gg \backslash x 1 \rightarrow \\
& e 2 \gg \backslash x 2 \rightarrow \\
& \ldots \\
& e n \gg \backslash x n \rightarrow \\
& f \times 1 \times 2 \ldots x n
\end{aligned}
$$

Evaluator \#2, equivalently expressed with do notation

```
eval2' :: Expr }->\mathrm{ State Int Double
eval2'}(\mathrm{ Con c) = do
    n}\leftarrowge
    put (n+1)
    return (if n'mod' 3\equiv2 then 0 else c)
eval2'(Sub e1 e2) = do
    x1 \leftarroweval2' e1
    x2 \leftarroweval2' e2
    return (x1 - x2)
eval2'(Div e1 e2)=
    x1\leftarroweval2' e1
    x2 \leftarroweval2' e2
    return (x1 / x2)
```


The IO monad

A built-in monad used to perform real system I/O.
Supports operations like

$$
\begin{aligned}
& \text { getLine :: IO String } \\
& \text { putStrLn }:: \text { String } \rightarrow I O()
\end{aligned}
$$

etc.
The use of a monad ensures proper sequentialization, as we can never "escape" the IO monad! ${ }^{3}$
> ${ }^{3}$ Technically, this is not true. There is a back door in the form of a function unsafePerformIO :: IO a \rightarrow a, contained in the module System.IO. Unsafe. But as the name suggests, this function should be used with care...

Monads in Haskell (post 2014)

A bit more heavy since the "Functor-Applicative-Monad" hierarchy:
class Functor f where

$$
\text { fmap }::(a \rightarrow b) \rightarrow f a \rightarrow f b
$$

class Functor $f \Rightarrow$ Applicative f where

$$
\text { pure }:: a \rightarrow f a
$$

$$
(\langle *\rangle):: f(a \rightarrow b) \rightarrow f a \rightarrow f b
$$

class Applicative $m \Rightarrow$ Monad m where

$$
\text { return }:: a \rightarrow m a
$$

$$
(\gg=):: m a \rightarrow(a \rightarrow m b) \rightarrow m b
$$

$$
\text { return }=\text { pure }
$$

So to define an instance of Monad, you first need instances of Functor and Applicative.

Monads in Haskell (post 2014)

But instances of Functor and Applicative can always be retrofitted from a Monad instance:
instance Functor M where
fmap $f x m=x m \gg$ return $\circ f$
instance Applicative M where
pure $=$ return
$f m\langle *\rangle x m=f m \gg \backslash \backslash \rightarrow x m \gg=$ return $\circ f$

Combining monads

To define Evaluator \#3, we implicitly used a monad transformer:

$$
\text { newtype State } T \text { s } m a=\text { State } T\{\text { runState } T:: s \rightarrow m(a, s)\}
$$

Given a monad m representing some notion of computation (e.g., partiality or nondeterminism), StateT $s m$ defines a new monad with s state wrapped around an m-computation.

But it is not always clear how to combine monads.
More generally, the question of how to organize and reason about programs with side-effects remains an important open problem!

[^0]: ${ }^{1}$ Aside: this is also true for semantics of natural languages! See Chung-chieh Shan's PhD thesis, Lingustic side effects (2005).

[^1]: ${ }^{2}$ Inspired in part by Philip Wadler, "Monads for functional programming", Proceedings of the Båstad Spring School, May 1995.

