
CSE301(Functional Programming)
Lecture 0: Introduction to functional programming

Noam Zeilberger

September 4, 2023

1 What is functional programming?
It is difficult to give a precise definition of “functional programming”, but a
rough approximation is that it is

a style of programming that emphasizes function application and
function composition.

Here, application refers to the act of evaluating a function on some argument
to compute a result. For example, the application of the square root function
f(x) =

√
x to the number two evaluates to about f(2) ≈ 1.41421. Depend-

ing on the implementation of a programming language, performing a function
application may involve machine-level operations like pushing arguments onto
a stack, jumping to the function’s entry point, and popping arguments off the
stack when the function returns – although a functional programmer certainly
has the right (and at times the obligation) to consider such low-level details, at
least to a first approximation they can treat function application as a high-level
abstraction, which behaves more or less like the evaluation of a mathematical
function on its argument.

Function composition is the act of combining two or more functions to define
a new function. For example, given three functions from numbers to numbers,
say f(x) =

√
x, g(x) = sinx, and h(x) = ex, we can define another function

from numbers to numbers

i(x) = h(f(x) + g(x))

which applies both f and g to its argument and then passes the sum of the
two results to h. Here we observe that functions are being composed both “in
sequence” (the outputs of f and g are summed and then passed as an input to h)
and “in parallel” (the outputs of f and g on the input x can be computed inde-
pendently). Again, although a low-level implementation of i may have to make
some additional choices (such as to store the value of f(x) in memory before
computing g(x), or conversely to store g(x) before computing f(x), or alterna-
tively to compute them both in parallel on a multicore machine), the functional
notation nicely captures just the logical dependencies of the computation.

It is possible to program in a functional style in almost any programming
language, but a functional programming language is one that makes this easier,
typically by including at least some of the following language features:

1

- pattern-matching, which enables the programmer to define functions
more concisely by case-analysis on input values;

- higher-order functions, which enable the programmer to define func-
tions that take functions as inputs and return functions as outputs; and

- a rigorous type system, which enables the programmer to write inter-
faces to functions and ensure that they are respected.

Certainly, a language need not have all of these features to count as a functional
programming language. For example, untyped lambda calculus, a minimalistic
language that serves as a kind of lingua franca of functional programming, has
higher-order functions and nothing else! Still, established functional program-
ming languages like Haskell and OCaml, as well as newer languages such as Rust
(popular for systems programming) and Lean (increasingly popular for theorem
proving), all include some support for pattern-matching and higher-order func-
tions, as well as rigorous type systems with varying degrees of expressive power.

2 Why learn functional programming?
For a while, functional programming had a reputation of being mostly confined
to academia, perhaps in part due to the perception of being too abstract, and in
part due to real performance issues. Functional programming has been gaining
in popularity, however, and by now functional languages like Haskell and OCaml
have been deployed in industry for at least two decades, with a growing list of
users.1 Moreover, concepts of functional programming have been gradually
incorporated into more mainstream programming languages.2

One reason why functional programming languages are used in both academia
and industry is that, in general, they facilitate the task of passing from an ab-
stract description of a problem to an implementation in code, more quickly and
reliably. In part, this has to do with the fact that the notations of functional pro-
gramming (such as pattern-matching and types) are often inspired by notations
of mathematics and logic. But it also has to do with the fact that functional
programming languages permit more careful control of so-called “side-effects”,
which roughly speaking are all those aspects of a function’s behavior that one
may need to take into account other than its input-output behavior, such as
reading and writing global variables, displaying graphics to the screen, jumping
to an error-handling routine, etc. Functions without any side-effects are said to
be “pure”, and admit much simpler reasoning principles than impure functions,
for instance because a pure function will always return the same output when
applied to a given input.

Closer control over side-effects also means that functional code is often easier
to parallelize and run on multicore architectures than non-functional code. This
property, combined with strong type systems that enable a compiler to be more
aggressive when optimizing code, has reduced much of the performance gap
between general-purpose functional programming languages like OCaml and
Haskell and languages like C and C++. Although functional programming is

1See wiki.haskell.org/Haskell_in_industry and ocaml.org/industrial-users.
2Most recently, with Microsoft’s announcement of support for lambda notation in Excel!

2

https://wiki.haskell.org/Haskell_in_industry
https://ocaml.org/industrial-users
https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/

not yet widely used in the domain of high-performance computing, there is hope
that these theoretical advantages could eventually lead to such uses.3

Beyond its significant practical applications, another reason to learn func-
tional programming is simply because it is beautiful. The use of functional
programming techniques (including pattern-matching, higher-order functions,
types, and beyond) can often lead to extremely concise and elegant encodings
of algorithms, and understanding how such terse, almost tautological descrip-
tions of a mathematical problem translate into runnable code can be a thrilling
intellectual exercise. In the larger scheme of things, functional programming
is just a manifestation of the deep links that exist between mathematics and
computation, but it is an important example from which much can be learned.

3 An example
To get a more concrete sense of what functional programming is about, let’s
consider a small example in Haskell, implementing the QuickSort algorithm:

partition :: (a → Bool) → [a] → ([a], [a])
partition p [] = ([], [])
partition p (x : xs) = if p x then (x : ts, fs) else (ts, x : fs)
where
(ts, fs) = partition p xs

qsort ::Ord a ⇒ [a] → [a]
qsort [] = []
qsort (x : xs) = qsort left ++ [x] ++ qsort right
where
(left , right) = partition (\y → y < x) xs

Without getting too preoccupied in the details of Haskell syntax (which you will
eventually learn), here are a few comments to help understand this code:

• The program contains the definitions of two functions: partition4 which
takes a predicate p and a list as input, and returns a pair of lists by
partitioning the input into the elements that satisfy p and the elements
that don’t; and qsort , a recursive implementation of QuickSort that uses
the first element of the list as a “pivot”.

• The line partition :: (a → Bool) → [a] → ([a], [a]) is a type signature,
declaring that partition is a higher-order function which takes a boolean-
valued function (i.e., a predicate) as input, and that returns a function
from lists to pairs of lists. We say that this type is “polymorphic” in the
variable a, since the implementation of partition does not care about the
underlying type of values stored in the list.

• The type signature qsort :: Ord a ⇒ [a] → [a] likewise declares that
qsort is a function from lists to lists, which again is polymorphic in the
type of list values so long as it supports a comparison operation (this is

3See, e.g., Sven-Bodo Scholz’s talk at FHPNC 2021, “Is Functional HPC the Key to Low
Carbon Computing?”.

4This function is already defined in the Haskell standard library, but we include the defi-
nition here for expository reasons.

3

https://www.youtube.com/watch?v=Hxr-o1GOrRg
https://www.youtube.com/watch?v=Hxr-o1GOrRg

indicated by the condition Ord a, which is called a “type class” constraint
in Haskell).

• The definitions of both functions are given by pattern-matching on the
input list, with one case for the empty list [] and one case for a non-empty
list. In the latter case, the pattern x : xs indicates both the “head” x and
the “tail” xs of the list.

• The predicate (\y → y < x) used in the call to partition from qsort is
an example of “lambda” notation (backslash ‘\’ is Haskell’s stand-in for
the Greek letter λ). Here we define a function which, for any given input
value y , returns the result of comparing y with x , where x was previously
defined by pattern-matching.

• In the expression qsort left ++ [x] ++ qsort right , the binary operator (++)
denotes list concatenation.

With those explanations in mind, do you find the Haskell code above to be
simpler or more complicated than the way you would go about implementing
QuickSort in a language you are more familiar with? (Certainly the answer to
this question is a matter of taste, and your taste may evolve as you become
more versed in functional programming.)

One nice aspect of the functional approach is that we can often determine
the value of a function on a given input by hand simply by referring to its
defining equations, without having to actually run the program, or even know
much about the precise semantics of the programming language in which it was
written. This is called equational reasoning, and it resembles closely to the kinds
of reasoning one might find in a proof from an algebra textbook. Let’s try a
small example:

qsort [3, 1, 4, 2]

Since the input list is of the form x : xs, with head x = 3 and tail xs = [1, 4, 2],
the second clause in the definition of qsort applies, and we have that

qsort [3, 1, 4, 2] = qsort left ++ [3] ++ qsort right

where left and right are defined by:

(left , right) = partition (\y → y < 3) [1, 4, 2]

From the definition of partition, we can derive in a few steps5 that

(left , right) = ([1, 2], [4])

5Repeatedly applying the definition of partition and introducing fresh variable names for
the intermediate results, we derive that

(left , right) = partition (\y → y < 3) [1, 4, 2] = (1 : ts, fs) (since 1 < 3)

where (ts, fs) = partition (\y → y < 3) [4, 2] = (ts′, 4 : fs′) (since 4 ̸< 3)

where (ts′, fs′) = partition (\y → y < 3) [2] = (2 : ts′′, fs′′) (since 2 < 3)

where (ts′′, fs′′) = partition (\y → y < 3) [] = ([], [])

and hence (ts′, fs′) = ([2], []), (ts, fs) = ([2], [4]), (left , right) = ([1, 2], [4]).

4

and so it remains to recursively compute qsort [1, 2] and qsort [4]. By similar
reasoning as above, we have that

qsort [1, 2] = qsort [] ++ [1] ++ qsort [2]

= qsort [] ++ [1] ++ (qsort [] ++ [2] ++ qsort [])

qsort [4] = qsort [] ++ [4] ++ qsort []

Finally, using the base case qsort [] = [] and appealing to properties of list
concatenation, we derive:

qsort [3, 1, 4, 2] = qsort [1, 2] ++ [3] ++ qsort [4]

= ([] ++ [1] ++ [] ++ [2] ++ []) ++ [3] ++ ([] ++ [4] ++ [])

= [1, 2, 3, 4]

which is indeed the result we expect of a sorting function!

4 A brief (pre-)history
Since its origins almost a hundred years ago, the history of functional pro-
gramming has been filled with fruitful interactions between logicians, computer
scientists, and mathematicians. Here we mention but a few key milestones.

The roots of functional programming are often traced back to the lambda
calculus, which was developed by the American logician Alonzo Church start-
ing in the late 1920s.6 Although Church was originally interested in building a
foundation for logical reasoning (analogous to, but intended to be more natural
than, the system of Principia Mathematica introduced by Russell and White-
head in the previous decade), collaborations with his students Kleene and Rosser
helped reveal the deep computational nature of lambda calculus, and eventually
Church (1936) isolated a minimal system for defining functions that is nowadays
called the untyped lambda calculus. Soon afterwards, Turing (1937) proved the
equivalence between the now standard notion of computability based on Tur-
ing machines (from his famous 1936 paper “On computable numbers, with an
application to the Enscheidungsproblem”) and Church’s notion of λ-definability
based on untyped lambda calculus. In a sense, we can see Turing’s 1937 paper as
providing the first formal link between functional programming and imperative
programming7...although of course this was before the first computer program-
ming languages were implemented, and even before the first digital computers!

LISP was the first functional programming language designed to be run
on real computers, developed by John McCarthy in the late 1950s, with influ-
ences from lambda calculus although by no means a direct implementation of it.
LISP stands for “LIS-t P-rocessing”, and one of the language’s important con-
ceptual contributions was to show how much of computation could be elegantly
expressed just in terms of simple manipulation of lists. Another innovation
was garbage collection, which freed the programmer from having to deal with

6See Cardone and Hindley (2006) for a longer and fascinating account of the history of
lambda calculus.

7Like Kleene and Rosser, Alan Turing was also a PhD student of Church at Princeton Uni-
versity, moving back to England shortly before the start of World War II. However, anecdotes
about Church’s advising style and about Turing’s interests (see, e.g., Dana Scott’s account
(Shustek 2022)) suggest it is unlikely that the two ever had a close collaboration.

5

low-level memory management, albeit at the cost of sometimes unpredictable
performance. On the more theoretical side, Peter Landin wrote a series of pa-
pers in the mid-1960s where he promoted lambda calculus as a conceptual tool
for reasoning about the syntax and semantics of programming languages. In his
influential article on “The next 700 programming languages”, he also directly
tackled the question of articulating what exactly is the difference between im-
perative programming and functional programming, suggesting that it has to do
with the distinction “between indicating what behavior, step-by-step, you want
the machine to perform, and merely indicating what outcome you want” (Landin
1966, p.162).8

The 1970s (and late ’60s) saw some striking connections forged between pro-
gramming, logic, and mathematics. One important development was the rise
of domain theory as a mathematical framework for giving rigorous semantics to
recursive programs, originating in a deep insight by Dana Scott that computer
programs exhibit a form of continuity in the topological sense (intuitively, the
more information you provide to a function about its input, the more informa-
tion it can return about its output). Another important development was the
polymorphic lambda calculus, which coincidentally was reinvented twice within
the span of a few years: first by the logician Jean-Yves Girard, and then inde-
pendently by the computer scientist John Reynolds. A few years later Robin
Milner described a practical algorithm for performing polymorphic type infer-
ence, which, in another coincidence, had also been discovered a decade earlier
by the logician J. Roger Hindley. These kinds of coincidences – with logicians
and computer scientists bumping into each other in the realm of ideas – occur
remarkably often in the history of functional programming, and are manifesta-
tions of what is sometimes called “propositions as types”, or “proofs as programs”,
or the “Curry-Howard correspondence”. Other instances of this correspondence
include, for example:

• dependent type theory, introduced by the philosopher Per Martin-Löf as a
generalization of first-order logic, and which has since served as a founda-
tion for both proof assistants and functional programming languages;

• control operators such as Scheme’s call/cc, which it turns out are deeply
related to tautologies like Peirce’s law and the law of the excluded middle;

• modal logic, whose modern formulation dates back to a set of axioms
written down by C. I. Lewis in 1912, but which has since found applications
in the analysis of staged computation.

8A bit further in the article, Landin continues (p.163):
It follows that functional programming has little to do with functional notation.
It is a trivial and pointless task to rearrange some piece of symbolism into pre-
fixed operators and heavy bracketing. It is an intellectually demanding activity
to characterize some physical or logical system as a set of entities and functional
relations among them. However, it may be less demanding and more revealing
than characterizing the system by a conventional program, and it may serve the
same purpose. Having formulated the model, a specific desired feature of the
system can be systematically expressed in functional notation. But other nota-
tions may be better human engineering. So the role of functional notation is a
standard by which to describe others, and a standby when they fail.

6

Yet another important development in the 1970s was Joachim Lambek’s work
on cartesian closed categories, or “ccc”s, establishing a close connection between
cccs and Church’s simply-typed lambda calculus. Lambek built on Bill Law-
vere’s earlier work on categorical logic, as well as his own older work exploring
connections between mathematical linguistics, deductive systems, and canonical
morphisms in certain categories.

Over time, these theoretical advances came to be incorporated into real
functional programming languages. Still in the 1970s, Sussman and Steele de-
veloped the Scheme language at MIT, which used a LISP syntax but with a
semantics closer to lambda calculus, while at the same time incorporating some
imperative features. During this time they also wrote the famous “Lambda:
The Ultimate” series of papers. Around the same time, Milner and others at
Edinburgh began work on the ML language, which continued through the 1980s
and eventually evolved into Standard ML. In parallel, Gérard Huet and others
at INRIA in France, influenced by ML, developed the CAML language, which
later evolved into OCaml. Like Scheme, the ML family of languages combine a
lambda calculus-like functional core with imperative features such as mutable
references and control operators.

Meanwhile, David Turner experimented with a series of languages based on
another model of evaluating functional programs, so-called “lazy” evaluation, in
which different parts of the program are only evaluated as they are needed to
make progress with the overall computation. His work culminated in the Mi-
randa system, which combined laziness with polymorphism and type inference,
and was distributed commercially by Turner’s company Research Software Ltd.
Miranda in turn was a big influence on Haskell, which originally started as a
standardization project by an international committee in 1987, with the goal of
designing a pure, lazy language that could be used to better communicate ideas
within the functional programming community, and as a stable foundation for
applications (Hudak et al. 2007). Two important early language innovations
were type classes, introduced by Philip Wadler as a way to give a principled
solution to operator overloading, and monads, also promoted by Wadler based
on earlier ideas of Eugenio Moggi as an approach to the problem of side-effects.
The publication of the Haskell 98 standard (in 1999) as well as the development
of the Glasgow Haskell Compiler (GHC) contributed to the success of the lan-
guage in gaining academic and industrial users, and the language has continued
to evolve over the past two decades.

Today, functional programming remains an active topic of research, inter-
secting with an ever-widening swath of mathematics while also gaining more
and more mainstream traction.

References
Cardone, Felice and J. R. Hindley (2006). “History of Lambda-Calculus and

Combinatory Logic”. In Handbook of the History of Logic. Ed. by D. M.
Gabbay and J. Woods. Vol. 5. Elsevier. url: http://www.users.waitrose.
com/~hindley/SomePapers_PDFs/2006CarHin,HistlamRp.pdf.

Church, Alonzo (1936). “An Unsolvable Problem of Elementary Number The-
ory”. American J. Math. 58:2, pp. 345–363.

7

http://www.users.waitrose.com/~hindley/SomePapers_PDFs/2006CarHin,HistlamRp.pdf
http://www.users.waitrose.com/~hindley/SomePapers_PDFs/2006CarHin,HistlamRp.pdf

Hudak, Paul et al. (2007). “A history of Haskell: being lazy with class”. In
Proceedings of the 3rd ACM SIGPLAN History of Programming Languages
Conference (HOPL-III), pp. 1–55.

Landin, P. J. (1966). “The next 700 Programming Languages”. Communications
of the ACM 9:3, pp. 157–166.

Shustek, Len (2022). “An Interview with Dana Scott”. Communications of the
ACM 65:8, pp. 25–29. Condensed transcript of a four-part series of interviews
of Scott by Gordon Plotkin from November 2020 to February 2021.

Turing, Alan (1937). “Computability and λ-definability”. J. Symbolic Logic 2:
pp. 153–163.

8

	What is functional programming?
	Why learn functional programming?
	An example
	A brief (pre-)history

