
CSE301(Functional Programming)
Lecture 2: Higher-order functions and type classes

Noam Zeilberger

version: September 13, 2023

A higher-order function is a function that takes one or more functions as
input. A primary motivation for defining a higher-order function is to express
the common denominator between a collection of first-order functions. Higher-
order functional programming is thus a way to promote code reuse. Although
it may take you a bit more time to understand what a higher-order function
is doing than the corresponding first-order ones, eventually it will help you in
“seeing the forest for the trees”, and hopefully give you insights into solving
certain kinds of programming problems much more quickly.

1 0th example: applying a function twice
We can write a simple higher-order function that takes a function and applies
it twice to some argument.

twice :: (a → a)→ a → a
twice f x = f (f x)

For example, we have1

twice (1+) 3 = 5

twice (\n → n ∗ n) 3 = 81

twice reverse [1, 2, 3] = [1, 2, 3]

In the rest of the lecture we will be considering many more interesting examples.

2 First example: abstracting case-analysis
As we discussed in Lecture 1, sum types obey the general principle that if
f :: a → c and g :: b → c are two functions taking types a and b to the same
target type c, then there is a canonical function

h :: Either a b → c
h (Left x) = f x
h (Right y) = g y

1In Haskell, the expression (1+) is called a (left) section of the infix operator (+). It is
equivalent to the lambda expression \n → 1 + n. The lambda expression \n → n ∗ n denotes
the function which squares its argument.

1

taking the sum type to the same target, defined by pattern-matching on the
Left or Right constructor – or in other words, by case-analysis. Here again are
two concrete examples of functions defined by case-analysis on Either Bool Int :

asInt :: Either Bool Int → Int
asInt (Left b) = if b then 1 else 0
asInt (Right n) = n
isBool :: Either Bool Int → Bool
isBool (Left b) = True
isBool (Right n) = False

The Haskell Prelude defines a higher-order function that “internalizes” the prin-
ciple of case-analysis over sum types, so to speak, by taking the functions f and
g as extra arguments:

either :: (a → c)→ (b → c)→ Either a b → c
either f g (Left x) = f x
either f g (Right y) = g y

Here is how we can redefine asInt and isBool using either and lambda notation:

asInt = either (\b → if b then 1 else 0) (\n → n)
isBool = either (\b → True) (\n → False)

Whereas before we could spot that the two functions were instances of a simple
common “design pattern”, now they are literally two applications of the same
(higher-order) function.

Observe that here we have only partially applied the function either to a
pair of functions f and g , to compute new functions either f g . Alternatively,
we could have defined

asInt v = either (\b → if b then 1 else 0) (\n → n) v
isBool v = either (\b → True) (\n → False) v

supplying an extra argument v :: Either Bool Int , but in Haskell these two
versions are completely equivalent. (They are said to be η-equivalent, in lambda
calculus jargon.) Finally, recall that the arrow type constructor associates to
the right by default, so that the type of either may be equivalently written with
extra parentheses as:

either :: (a → c)→ ((b → c)→ (Either a b → c))

In this form it looks a lot like the logical formula

(A ⊃ C) ⊃ ([B ⊃ C] ⊃ [(A ∨B) ⊃ C])

which you can easily verify is a tautology. And indeed this analogy can be made
precise, with many examples of higher-order functions corresponding to proofs
of nested implications.

3 Second example: mapping over a list
Consider the following first-order functions on lists:

2

(Add one to every element in a list of integers.)

mapAddOne :: [Integer]→ [Integer]

mapAddOne [] = []
mapAddOne (x : xs) = (1 + x) :mapAddOne xs

Example: mapAddOne [1 . . 5] = [2, 3, 4, 5, 6]

(Square every element in a list of integers.)

mapSquare :: [Integer]→ [Integer]

mapSquare [] = []
mapSquare (x : xs) = (x ∗ x) :mapSquare xs

Example: mapSquare [1 . . 5] = [1, 4, 9, 16, 25]

(Compute the length of each list in a list of lists.)

mapLength :: [[a]]→ [Int]

mapLength [] = []
mapLength (x : xs) = length x :mapLength xs

Example: mapLength ["hello", "world!"] = [5, 6]‘

Clearly there is a common denominator here of “apply some transformation to
every element of a list”. And again, this design pattern can be internalized as a
higher-order function, which is called map in the Prelude:

map :: (a → b)→ [a]→ [b]
map f [] = []
map f (x : xs) = (f x) :map f xs

For example, we have:

mapAddOne = map (1+)
mapSquare = map (\n → n ∗ n)
mapLength = map length

4 Some useful functions on functions
As we’ve talked about before, functions of multiple arguments are usually de-
fined in “curried” form in Haskell, that is, by giving them a right-nested function
type – although it is equally possible to define them as functions taking a prod-
uct type as input, and these two forms are equivalent. Indeed, the “currying
principle” may be internalized as a higher-order function:

curry :: ((a, b)→ c)→ (a → b → c)
curry f x y = f (x , y)

which turns a function on pairs into a curried function, and conversely, there is
an “uncurrying” principle:

3

uncurry :: (a → b → c)→ ((a, b)→ c)
uncurry g (x , y) = g x y

which turns a curried function into a function on pairs. Note that both of these
may be equivalently written using lambda notation:

curry f = \x → \y → f (x , y)
uncurry g = \(x , y)→ g x y

One reason we may want to apply currying or uncurrying in practice is to
transform a function before providing it as an argument to another higher-
order function. For example, map (uncurry (+)) [(0, 1), (2, 3), (4, 5)] = [1, 5, 9].
Similarly to what we saw with the higher-order function either , the types of
the currying and uncurrying transformations can be read as expressing a logical
equivalence, namely that

(A ∧B) ⊃ C ⇐⇒ A ⊃ (B ⊃ C)

which again you can easily verify is a tautology.
Another simple but fundamental principle for defining functions is the prin-

ciple of sequential composition: given a function f :: a → b and a function
g :: b → c there is a function h :: a → c defined by h x = g (f x). Once more,
this principle may be expressed as a higher-order function:

(◦) :: (b → c)→ (a → b)→ (a → c)
(g ◦ f) x = g (f x)

(Or equivalently: g◦f = \x → g (f x).) For example, map ((+1)◦(∗2)) [0 . . 4] =
[1, 3, 5, 7, 9]. Note that in Haskell, composition is actually notated using a period
(g . f), although we use the notation g ◦ f here in these notes to emphasize the
relation to the standard mathematical concept. Logically, the type of function
composition corresponds to the principle of transitivity of implication.

Let us conclude by describing a few more important higher-order functions:2

(Flip the order in which a binary function takes its arguments.)

flip :: (a → b → c)→ (b → a → c)
flip f x y = f y x

Example: flip (−) 2 3 = 1

(Given a value, build the constant function returning that value.)3

const :: b → (a → b)
const x y = x

Example: const 2 3 = 2

(Turn a binary function into a unary function duplicating its input.)

dupl :: (a → a → b)→ (a → b)
dupl f x = f x x

Example: dupl (∗) 3 = 9
2Both flip and const are already defined in the Haskell Prelude, but not dupl . Observe

that the types of all three may be read as basic logical tautologies involving implication.
3Note that const can also be used to turn unary function into a binary function, and more

generally a function of n arguments into a function of n + 1 arguments that ignores its first
argument.

4

5 More higher-order functions on lists
The Haskell Prelude and Standard Library define a number of higher-order
functions that capture common ways of manipulating lists. We describe a few
of them here.

(Keep only those elements of a list satisfying a predicate.)

filter :: (a → Bool)→ [a]→ [a]
filter p [] = []
filter p (x : xs)
| p x = x : filter p xs
| otherwise = filter p xs

Examples:

> filter (>3) [1 . . 5]
[4, 5]
> filter Data.Char .isUpper "Glasgow Haskell Compiler"
"GHC"

(Test whether all/any elements of a list satisfy a predicate, and find
an element that does.)

all , any :: (a → Bool)→ [a]→ Bool
all p [] = True
all p (x : xs) = p x && all p xs
any p [] = False
any p (x : xs) = p x || any p xs

find :: (a → Bool)→ [a]→ Maybe a
find p [] = Nothing
find p (x : xs)
| p x = Just x
| otherwise = find p xs

Examples:

> all (>3) [1 . . 5]
False
> any (>3) [1 . . 5]
True
> find (>3) [1 . . 5]
Just 4

(Return the longest prefix of a list of elements that satisfy a predicate,
or the remaining suffix after this prefix is dropped.)

takeWhile, dropWhile :: (a → Bool)→ [a]→ [a]
takeWhile p [] = []
takeWhile p (x : xs)
| p x = x : takeWhile p xs

5

| otherwise = []
dropWhile p [] = []
dropWhile p (x : xs)
| p x = dropWhile p xs
| otherwise = x : xs

Examples:

> takeWhile (>3) [1 . . 5]
[]
> takeWhile (<3) [1 . . 5]
[1, 2]
> dropWhile (>3) [1 . . 5]
[1, 2, 3, 4, 5]
> dropWhile (<3) [1 . . 5]
[3, 4, 5]

(Map a function sending an element to a list over all the elements of
a list, and concatenate the results.)

concatMap :: (a → [b])→ [a]→ [b]
concatMap f [] = []
concatMap f (x : xs) = f x ++ concatMap f xs

Examples:

> concatMap (\x → [x]) [1 . . 5]
[1, 2, 3, 4, 5]
> concatMap (\x → if x ‘mod ‘ 2 ≡ 1 then [x] else []) [1 . . 5]
[1, 3, 5]
> concatMap (\x → concatMap (\y → [x . . y]) [1 . . 3]) [1 . . 3]
[1, 1, 2, 1, 2, 3, 2, 2, 3, 3]

Note that concatMap f = concat ◦ map f , where concat :: [[a]] → [a]
computes the concatenation of a list of lists.
The higher-order function concatMap may be used to understand “list
comprehension” notation. For example, the expression

[(x , y) | x ← [1 . . 3], y ← [1 . . 3], x < y]

which evaluates to [(1, 2), (1, 3), (2, 3)], may be equivalently expressed us-
ing concatMap as

concatMap (\x → concatMap (\y →
if x < y then [(x , y)] else []) [1 . . 3]) [1 . . 3]

or equivalently (making use of the higher-order function flip) as

flip concatMap [1 . . 3] (\x →
flip concatMap [1 . . 3] (\y →
if x < y then [(x , y)] else []))

(concatMap is also related to the monad structure on lists, which this
translation of list comprehensions implicitly relies upon. We will talk
more about that in Lecture 4.)

6

6 foldr : the Swiss army knife of list functions
Remarkably, all of the higher-order functions on lists that we described in Sec-
tion 5, and many other functions besides, can be defined as instances of a single
higher-order function. Before jumping to the definition of this higher-order
function, let’s give a bit of motivation of where the definition comes from.

Suppose that we want to write a function that transforms a list of as into
a value of type b. Moreover, suppose that we want the function to be defined
inductively, in the sense that we will provide a base case for the value of the
function on the empty list [], and we will explain how to inductively compute
the value of the function on a non-empty list x :: xs from x and the value of the
function on xs. To make this situation a bit more precise, let’s give a name to
the function, h :: [a] → b. To “provide a base case” means that we provide a
value v :: b such that h [] = v , while to “explain how to inductively compute
the value of the function on a non-empty list” means that we provide a function
f :: a → b → b such that h (x :: xs) = f x (h xs). We thus obtain the following
recursive definition of h:

h :: [a]→ b
h [] = v
h (x : xs) = f x (h xs)

The schema for defining h can be summarized by the following diagram (similar
to the coproduct diagram we saw in the previous lecture):

[a] a, [a]

·

b a, b

h id,h

(:)

[]

v

f

Since this schema for defining h is completely generic in the “base case” v and
the “inductive step” f , we can internalize it as a higher-order function, which is
called foldr in the Haskell Prelude:

foldr :: (a → b → b)→ b → [a]→ b
foldr f v [] = v
foldr f v (x : xs) = f x (foldr f v xs)

Here are definitions for most of the functions in Section 5 in terms of foldr :

filter p = foldr (\x xs → if p x then x : xs else xs) []
all p = foldr (\x b → p x && b) True
any p = foldr (\x b → p x || b) False
find p = foldr (\x mx → if p x then Just x else mx) Nothing
takeWhile p = foldr (\x xs → if p x then x : xs else []) []
concatMap f = foldr (\x ys → f x ++ ys) []

And here are a few more examples of first-order functions defined by pattern-
matching and recursion, and their more concise definitions in terms of foldr :

7

(Take the sum of the numbers in a list.)

sum ::Num a ⇒ [a]→ a
sum [] = 0
sum (x : xs) = x + sum xs

which may be summarized as:

sum = foldr (+) 0

(Take the product of the numbers in a list.)

product ::Num a ⇒ [a]→ a
product [] = 1
product (x : xs) = x ∗ product xs

which may be summarized as:

product = foldr (∗) 1

(Return the length of a list.)

length :: [a]→ Int
length [] = 0
length (x : xs) = 1 + length xs

which may be summarized as:

length = foldr (\x n → 1 + n) 0 = foldr (const (1+)) 0

(Return the concatenation of a list of lists.)

concat :: [[a]]→ [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss

which may be summarized as:

concat = foldr (++) []

(Copy a list.)

copy :: [a]→ [a]
copy [] = []
copy (x : xs) = x : copy xs

which may be summarized as:

copy = foldr (:) []

8

In all of the above examples we used foldr to define a function taking a single
list as input. However, it is possible to use foldr to define functions of multiple
arguments, by seeing them as curried functions, and taking the target type b in
the type schema

foldr :: (a → b → b)→ b → [a]→ b

to be a function type. For example, consider the binary concatenation operation
(++), which we saw how to define recursively in Lecture 1:

(++) :: [a]→ [a]→ [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

To translate this into a fold, let’s first get rid of the infix notation and write
(++) as a prefix operator, just so as to not get distracted by syntax:

(++) :: [a]→ [a]→ [a]
(++) [] ys = ys
(++) (x : xs) ys = x : ((++) xs ys)

And then let’s write the function equivalently using lambda notation, while also
inserting a judicious pair of parentheses into its type:

(++) :: [a]→ ([a]→ [a])
(++) [] = \ys → ys
(++) (x : xs) = \ys → x : ((++) xs ys)

We can now see how to fit (++) within the general inductive schema for defining
functions h :: [a]→ b described at the beginning of this section:

1. We take b = [a]→ [a] as the target type.

2. We take the identity function \ys → ys for the base case v :: [a]→ [a].

3. We take the higher-order function \x g ys → x : g ys for the inductive
case f :: a → ([a]→ [a])→ ([a]→ [a]).

Finally, writing id for the identity function, and observing that

(\x g ys → x : g ys) = (\x g → (x :) ◦ g)

we derive the following concise definition of (++):

(++) = foldr (\x g → (x :) ◦ g) id

Exercise 6.1. Use foldr to define a function altsum ::Num a ⇒ [a]→ a which
takes the alternating sum of the numbers in a list. (Example: altsum [1 . . 5] =
1− 2 + 3− 4 + 5 = 3.)

Exercise 6.2. Use foldr to define the following functions from the standard
library exported by Data.List:

1. intersperse ::a → [a]→ [a] which intersperses a given element between the
elements of a list. (Example: intersperse ’,’ "abcde" = "a,b,c,d,e".)

9

2. tails :: [a] → [[a]] that returns the list of all suffixes of a list. (Example:
tails "abcde" = ["abcde", "bcde", "cde", "de", "e", ""].)

3. isPrefixOf :: Eq a ⇒ [a]→ [a]→ Bool determining whether the first list
is a prefix of the second. (Examples: isPrefixOf "abc" "abcde" = True
but isPrefixOf "abc" "def" = False.)

Exercise 6.3. The astute reader will have noticed that we did not define
dropWhile when we showed how to define the higher-order functions from Sec-
tion 5 in terms of foldr . Nevertheless it is possible to define dropWhile p just
using foldr , without using recursion. Explain how. Hint: Be careful not to de-
fine a variation of filter . You are allowed to invoke foldr and then do something
with the result, as long as you do not use recursion. Note that there is more
than one solution to this problem.

7 Aside: Folding from the left
Let’s have a closer look at the way that the definition of sum in terms of foldr
is used to compute the sum of the numbers 1 through 5:

sum [1 . . 5] = foldr (+) 0 [1, 2, 3, 4, 5]
= 1 + foldr (+) 0 [2, 3, 4, 5]
= 1 + (2 + foldr (+) 0 [3, 4, 5]
= 1 + (2 + (3 + foldr (+) 0 [4, 5]
= 1 + (2 + (3 + (4 + foldr (+) 0 [5]
= 1 + (2 + (3 + (4 + (5 + foldr (+) 0 []))))
= 1 + (2 + (3 + (4 + (5 + 0))))
= 1 + (2 + (3 + (4 + 5)))
= 1 + (2 + (3 + 9))
= 1 + (2 + 12)
= 1 + 14
= 15

We see that the additions are performed from right to left. In general, foldr f v xs
computes its answer by starting with the value v and combining it using f with
each of the elements of xs, going right-to-left from the last element to the first.

Sometimes it can be more natural and/or more efficient to go in the other
direction, applying the operation to the elements of the list from left to right.
This general pattern of recursion is captured by the higher-order function foldl :

foldl :: (b → a → b)→ b → [a]→ b
foldl f v [] = v
foldl f v (x : xs) = foldl f (f v x) xs

Many of the functions we defined using foldr in Section 6 may also be defined
using foldl , for instance:

sum = foldl (+) 0
product = foldl (∗) 1
concat = foldl (++) []

10

These definitions are equivalent to the ones using foldr in the sense that they
yield the same functions from inputs to output, but in fact the recursive com-
putations are very different. For example, here is the computation of the sum
of the numbers 1 through 5 using foldl :

foldl (+) 0 [1, 2, 3, 4, 5]
= foldl (+) 1 [2, 3, 4, 5]
= foldl (+) 3 [3, 4, 5]
= foldl (+) 6 [4, 5]
= foldl (+) 10 [5]
= foldl (+) 15 []
= 15

We see that now the additions are evaluated from left to right. Of course the
order of evaluation does not matter for the final result here because addition is
an associative operation, although it may matter for efficiency.

Exercise 7.1. The computation of foldl (+) 0 [1, 2, 3, 4, 5] might remind you
of the implementation of reverse using an accumulator that we discussed in
Lecture 1. Show how to define reverse just using foldl .

Exercise 7.2. Prove that if f :: a → a → a and v :: a satisfy the equations of a
monoid, then foldr f v = foldl f v .

8 Higher-order functions over trees
We’ve spent a while discussing higher-order functions over lists, but it is of-
ten useful to define higher-order functions over other data types as well. For
instance, recall the data type of binary trees with labelled nodes that we intro-
duced in Lecture 1:

data BinTree a = Leaf | Node a (BinTree a) (BinTree a)
deriving (Show ,Eq)

It supports a natural analogue of the map function on lists, applying some
transformation to every node label contained in the tree:

mapBT :: (a → b)→ BinTree a → BinTree b
mapBT f Leaf = Leaf
mapBT f (Node x tL tR) = Node (f x) (mapBT f tL) (mapBT f tR)

For example, we have:

5

42

3

4

31

2

11

There is also a natural analogue of foldr , which inductively defines a function
BinTree a → b by providing a “base case” and an “inductive step”:

foldBT :: b → (a → b → b → b)→ BinTree a → b
foldBT v f Leaf = v
foldBT v f (Node x tL tR) = f x (foldBT v f tL) (foldBT v f tR)

For example, all of the functions we defined in Lecture 1 can be equivalently
expressed as folds:

nodes = foldBT 0 (\x m n → 1 +m + n)
leaves = foldBT 1 (\x m n → m + n)
height = foldBT 0 (\x m n → 1 +max m n)
mirror = foldBT Leaf (\x tL′ tR′ → Node x tR′ tL′)

9 Type classes
By now we’ve seen several examples of polymorphic functions with type class
constraints, such as

sort ::Ord a ⇒ [a]→ [a]
lookup :: Eq a ⇒ a → [(a, b)]→ Maybe b
sum, prod ::Num a ⇒ [a]→ a

and so on. Intuitively, these constraints express the minimal requirements on
the type a needed in order to define these functions – for example, sort requires
a comparison operation on elements, lookup requires an equality test, and sum
and prod require some notion of “number” equipped with addition/multiplication
operations.

Formally, a type class is defined by specifying the type signatures of opera-
tions that need to be implemented to qualify as a member of the class, possibly
together with default implementations of some of the operations in terms of the
others. For example, the Eq class is defined as follows:

class Eq a where
(≡), (̸≡) :: a → a → Bool
x ̸≡ y = not (x ≡ y)
x ≡ y = not (x ̸≡ y)

This says that to satisfy the Eq type class constraint, a type a needs to at
least provide either an equality operation (≡) :: a → a → Bool or an inequality
operation (̸≡) :: a → a → Bool , and if both are not provided then one is defined
as the negation of the other by default. The way that we show that a type class
constraint is satisfied is by providing an instance. For example, we can define
an instance of the Eq class for booleans like so:

instance Eq Bool where
False ≡ b = not b
True ≡ b = b

12

Sometimes we can derive a type class instance for a type constructor if we
assume instances for its arguments. For example, two lists can be tested for
equality provided that their underlying type of elements supports an equality
test:

instance Eq a ⇒ Eq [a] where
[] ≡ [] = True
(x : xs) ≡ (y : ys) = x ≡ y && xs ≡ ys
≡ = False

In Haskell it is also possible to express that one type class inherits operations
from another type class, in a manner similar to the class hierarchy in object-
oriented programming. For example, here is how the Ord class is defined in the
Prelude (note Ordering is a datatype with three values LT , EQ , and GT):

class Eq a ⇒ Ord a where
compare :: a → a → Ordering
(<), (⩽), (>), (⩾) :: a → a → Bool
max ,min :: a → a → a

compare x y = if x ≡ y then EQ
else if x ⩽ y then LT
else GT

x < y = case compare x y of {LT → True; → False }
x ⩽ y = case compare x y of {GT → False; → True }
x > y = case compare x y of {GT → True; → False }
x ⩾ y = case compare x y of {LT → False; → True }
max x y = if x ⩽ y then y else x
min x y = if x ⩽ y then x else y

The definition might look a bit complicated, but that’s mainly because of all of
the default implementations. To provide an instance of Ord it suffices to give
an implementation of (⩽) :: a → a → Bool or of compare :: a → a → Ordering ,
assuming you already have an instance of Eq .

It is often implicit in the definition of a type class that the operations obey
certain laws. For example, for any instance of the Eq class, the binary operation
(≡) should be reflexive ((x ≡ x) = True), symmetric ((x ≡ y) = (y = x)), and
transitive (if (x ≡ y && y ≡ z) = True then (x ≡ z) = True): mathematically,
we summarize this by saying that (≡) should be an equivalence relation. Sim-
ilarly, for any instance of Ord , the operation (⩽) should be a linear ordering,
i.e., reflexive, transitive, anti-symmetric (if (x ⩽ y && y ⩽ x) = True then
(x ≡ y) = True), and total ((x ⩽ y || y ⩽ x) = True). However, although these
expectations are sometimes described in the documentation of a type class, it is
up to the programmer to respect them when defining an instance of the class,
as they are not enforced by the language.4

Finally, let’s quickly have a look at the Num type class:

class Num a where
(+), (−), (∗) :: a → a → a

4Although they could be, in principle, potentially at the cost of an additional burden of
proof on the part of the programmer. In dependently-typed languages such as Coq and Agda
it is possible to enforce such properties via the type system.

13

negate :: a → a
abs :: a → a
signum :: a → a
fromInteger :: Integer → a

x − y = x + negate y
negate x = 0− x

The operations (+), (−), (∗) are expected to satisfy the usual arithmetic laws
(associativity, distributivity, etc.), while signum x and abs x are meant to return
the sign and absolute value, respectively, of the value x , satisfying the equation
x = signum x ∗abs x . The Haskell Prelude defines several instances of the Num
type class, such as Num Int , Num Integer , and Num Double.

Type classes are a very appealing and useful feature of Haskell, but it is
worth mentioning that in a certain sense they may be seen as “just” a convenient
mechanism for defining higher-order functions. Indeed, a type class constraint
in the type signature of a function may always be replaced by the types of the
operations in (a minimal definition of) the corresponding type class, turning
these operations into additional arguments to be passed to the function. For
example, instead of the first-order function lookup :: Eq a ⇒ a → [(a, b)] →
Maybe b with a constrained polymorphic type, we can define a higher-order
function

lookupHO :: (a → a → Bool)→ a → [(a, b)]→ Maybe b
lookupHO eq k [] = Nothing
lookupHO eq k ((k ′, v) : kvs)
| eq k k ′ = Just v
| otherwise = lookupHO eq k kvs

taking an equality operation as its first argument. Indeed, its definition is almost
exactly the same as the definition of lookup we saw in Lecture 1, except that calls
to the equality operation (≡) have been replaced by calls to the first argument
eq . Similarly, instead of defining a function sort :: Ord a ⇒ [a] → [a] with a
constrained polymorphic type, we can define a higher-order sorting function

sortHO :: (a → a → Bool)→ [a]→ [a]

that expects a comparison operation as its first argument. Then when we want
to apply sortHO to some list, we simply have to supply this additional compar-
ison operation explicitly.

Still, although this translation of type class constraints into higher-order
functions is semantically valid, it does have certain drawbacks. Note that every
call to the higher-order functions sortHO and lookupHO has to pass an extra
argument, corresponding to the chosen comparison/equality operation – and
while in these examples there is only one additional argument, in general a type
class constraint could translate to many extra arguments. One practical benefit
of Haskell’s type class mechanism is that these “semantically implicit” arguments
are in effect automatically inferred by the type system, by examining the various
instances defined within the program and the libraries that it imports. Although
that too has its drawbacks – in Haskell it is only possible to define one instance
of a type class for a given type, although there may not be a single canonical
instance.

14

For example, the type class Monoid a expresses that the type a is a monoid,
equipped with operations mappend :: a → a → a and mempty :: a that should
be associative and unital. But there is no canonical way to define an instance
Monoid Integer ; we could for example take mappend = (+) and mempty = 0,
or alternatively mappend = (∗) and mempty = 1. As a slightly more concrete
example, sometimes we may want to compare machine integers for equality
modulo 10 or modulo 256 (say), but we can’t redefine the Eq instance for Int .
One way around this limitation is to introduce a new type isomorphic to Int
using the newtype mechanism, solely for the purpose of defining new type class
instances, e.g.:

newtype Int10 = I10 Int

instance Eq Int10 where
I10 x ≡ I10 y = (mod x 10 ≡ mod y 10)

We can then for example write

lookup (I10 3) [(I10 2, "a"), (I10 13, "b")]

which evaluates to Just "b".

15

	0th example: applying a function twice
	First example: abstracting case-analysis
	Second example: mapping over a list
	Some useful functions on functions
	More higher-order functions on lists
	foldr: the Swiss army knife of list functions
	Aside: Folding from the left
	Higher-order functions over trees
	Type classes

