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[Background]

A few views on
linear & planar λ-calculus

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



Classical lambda calculus

Raw syntax:

t ::=   x     |   t₁ t₂     |   λx.t₁
variable application abstraction

α-equivalence: names are just placeholders

λx.λy.x (y x) ≡α λy.λx.y (x y) ≡α λa.λb.a (b a)

Rewriting rules:

(λx.t₁) t₂ →β t₁[t₂/x]

t →η λx.(t x)



A term is called linear if every free or bound variable occurs exactly once

bound

free

Linear lambda calculus

An abstraction λx.t is said to bind the occurrences of x in t

A variable which is not bound by any λ is said to be free λy.x (y x)

λx.λy.λz.x (y z) λx.λy.x (y x)
λx.λy.λz.(x z) y λx.λy.x

linear! non-linear!

Fun fact: β-normalization of linear terms is PTIME-complete (Mairson 2004)



A (closed) linear term is called ordered (or planar) if every variable is used in
the order it is bound...

Planar lambda calculus

λx.λy.λz.x (y z) λx.λy.λz.(x z) y

ordered! non-ordered!

Open problem: how hard is β-normalization of ordered linear terms?

(The reason why ordered=planar will become clear later.)

(cf. Abramsky, "Temperley-Lieb Algebra: From Knot Theory to Logic & Computation via QM")



Linear lambda calculus, take #2

• Λ(n) = set of α-equivalence classes of linear terms in context x₁,...,xₙ ⊢ t

• ∘ᵢ : Λ(m+1) × Λ(n) → Λ(m+n) defined by (linear) substitution

• symmetric action Sₙ × Λ(n) → Λ(n) defined by permuting the context

Untyped linear terms may be naturally organized into a symmetric operad

(cf. Hyland, "Classical lambda calculus in modern dress")

x ⊢ x

Γ, x ⊢ t₁

Γ ⊢ λx.t₁

Γ ⊢ t₁ Δ ⊢ t₂

Γ, Δ ⊢ t₁ t₂

Γ,y,x,Δ ⊢ t

Γ,x,y,Δ ⊢ t

Θ ⊢ t₂ Γ,x,Δ ⊢ t₁

Γ,Θ,Δ ⊢ t₁[t₂/x]

Untyped ordered terms form a plain operad: just drop the symmetric action



Typed linear terms modulo βη may also be seen as a presentation of the
free closed symmetric multicategory over a set of atomic types

x : A ⊢ x : A

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊸ B

Γ ⊢ t : A ⊸ B Δ ⊢ u : A

Γ, Δ ⊢ t u : B

together with a family of bijections on multi-hom-sets

whose inverse is the operation of post-composition with eval.)

Linear lambda calculus, take #3

(A multicategory M is closed if for any pair of objects A,B there is a binary map

A ⊸ B, A B
eval

λ : M(Γ,A ; B) ≅ M(Γ ; A ⊸ B)

(cf. Lambek, "Deductive systems and categories")



Combining takes #2 and #3, untyped linear terms may be interpreted as
endomorphisms of a reflexive object in a closed symmetric (2-)multicategory.

By "reflexive object" we mean (with a bit of ambiguity) an object U equipped
with an isomorphism/section/adjunction to its space of endomorphisms:

app

With the most liberal definition, the 2-cells app ∘ lam ⇒ id and id ⇒ lam ∘ app
model β-reduction and η-expansion.

lam

Linear lambda calculus, take #4
(cf. Scott, "Relating theories of the λ-calculus")



u : type.

app : u -> (u -> u).
lam : (u -> u) -> u.

t1 : u = lam [x] lam [y] lam [z] app x (app y z).
t2 : u = lam [x] lam [y] lam [z] app (app x z) y.
t3 : u -> u -> u = [x] [y] app (app x y) (lam [z] z).
t4 : u = lam [x] lam [y] app x (app y x).
t5 : u -> u = [x] lam [y] x.

From reflexive objects to HOAS

Representation of untyped terms using higher-order abstract syntax (in Twelf):



From reflexive objects to string diagrams

A compact closed category is a particular kind of closed category in which

λ
@

A ⊸ B ≈ B ⊗ A*.

By interpreting reflexive objects in the graphical language of compact
closed (2-)categories, we derive a graphical representation for linear terms.



From reflexive objects to string diagrams

Some examples:

lam [x] lam [y] lam [z] app x (app y z) [x] [y] app (app x y) (lam [z] z)lam [x] lam [y] lam [z] app (app x z) y

To play more with these kinds of diagrams, try:
            https://www.georgejkaye.com/fyp/visualiser.html
            https://www.georgejkaye.com/fyp/gallery



An idea from the folklore

[x] app (lam [y] lam [z] app y z) x

Knuth (1970), "Examples of Formal Semantics" Statman (1974), "Structural complexity of proofs"

corresponding HOAS: corresponding HOAS:

lam [x] lam [y] lam [z] app x (app y z)

Representing λ-terms this way is an old idea (just under different names)...



[Background]
1. λa.a
2. (λa.a) (λb.b)
3. λa.a (λb.b)
4. λa.(λb.b) a
5. λa.λb.a b
6. λa.λb.b a
7. (λa.a) ((λb.b) (λc.c))
8. (λa.a) (λb.b (λc.c))
9. (λa.a) (λb.(λc.c) b)
10. (λa.a) (λb.λc.b c)
11. (λa.a) (λb.λc.c b)
12. ((λa.a) (λb.b)) (λc.c)
13. (λa.a (λb.b)) (λc.c)
14. (λa.(λb.b) a) (λc.c)
15. (λa.λb.a b) (λc.c)
16. (λa.λb.b a) (λc.c)
17. λa.a ((λb.b) (λc.c))
18. λa.a (λb.b (λc.c))
19. λa.a (λb.(λc.c) b)
20. λa.a (λb.λc.b c)
21. λa.a (λb.λc.c b)
22. λa.(a (λb.b)) (λc.c)
23. λa.((λb.b) a) (λc.c)
24. λa.(λb.a b) (λc.c)
25. λa.(λb.b a) (λc.c)
26. λa.(λb.b) (a (λc.c))
27. λa.(λb.b) ((λc.c) a)
28. λa.(λb.b) (λc.a c)
29. λa.(λb.b) (λc.c a)
30. λa.((λb.b) (λc.c)) a
31. λa.(λb.b (λc.c)) a
32. λa.(λb.(λc.c) b) a
33. λa.(λb.λc.b c) a

34. λa.(λb.λc.c b) a
35. λa.λb.(a b) (λc.c)
36. λa.λb.(b a) (λc.c)
37. λa.λb.a (b (λc.c))
38. λa.λb.a ((λc.c) b)
39. λa.λb.a (λc.b c)
40. λa.λb.a (λc.c b)
41. λa.λb.(a (λc.c)) b
42. λa.λb.((λc.c) a) b
43. λa.λb.(λc.a c) b
44. λa.λb.(λc.c a) b
45. λa.λb.b (a (λc.c))
46. λa.λb.b ((λc.c) a)
47. λa.λb.b (λc.a c)
48. λa.λb.b (λc.c a)
49. λa.λb.(b (λc.c)) a
50. λa.λb.((λc.c) b) a
51. λa.λb.(λc.b c) a
52. λa.λb.(λc.c b) a
53. λa.λb.(λc.c) (a b)
54. λa.λb.(λc.c) (b a)
55. λa.λb.λc.(a b) c
56. λa.λb.λc.(b a) c
57. λa.λb.λc.(a c) b
58. λa.λb.λc.(c a) b
59. λa.λb.λc.a (b c)
60. λa.λb.λc.a (c b)
61. λa.λb.λc.(b c) a
62. λa.λb.λc.(c b) a
63. λa.λb.λc.b (a c)
64. λa.λb.λc.b (c a)
65. λa.λb.λc.c (a b)
66. λa.λb.λc.c (b a)

67. (λa.a) ((λb.b) ((λc.c) (λd.d)))
68. (λa.a) ((λb.b) (λc.c (λd.d)))
69. (λa.a) ((λb.b) (λc.(λd.d) c))
70. (λa.a) ((λb.b) (λc.λd.c d))
71. (λa.a) ((λb.b) (λc.λd.d c))
72. (λa.a) (((λb.b) (λc.c)) (λd.d))
73. (λa.a) ((λb.b (λc.c)) (λd.d))
74. (λa.a) ((λb.(λc.c) b) (λd.d))
75. (λa.a) ((λb.λc.b c) (λd.d))
76. (λa.a) ((λb.λc.c b) (λd.d))
77. (λa.a) (λb.b ((λc.c) (λd.d)))
78. (λa.a) (λb.b (λc.c (λd.d)))
79. (λa.a) (λb.b (λc.(λd.d) c))
80. (λa.a) (λb.b (λc.λd.c d))
81. (λa.a) (λb.b (λc.λd.d c))
82. (λa.a) (λb.(b (λc.c)) (λd.d))
83. (λa.a) (λb.((λc.c) b) (λd.d))
84. (λa.a) (λb.(λc.b c) (λd.d))
85. (λa.a) (λb.(λc.c b) (λd.d))
86. (λa.a) (λb.(λc.c) (b (λd.d)))
87. (λa.a) (λb.(λc.c) ((λd.d) b))
88. (λa.a) (λb.(λc.c) (λd.b d))
89. (λa.a) (λb.(λc.c) (λd.d b))
90. (λa.a) (λb.((λc.c) (λd.d)) b)
91. (λa.a) (λb.(λc.c (λd.d)) b)
92. (λa.a) (λb.(λc.(λd.d) c) b)
93. (λa.a) (λb.(λc.λd.c d) b)
94. (λa.a) (λb.(λc.λd.d c) b)
95. (λa.a) (λb.λc.(b c) (λd.d))
96. (λa.a) (λb.λc.(c b) (λd.d))
97. (λa.a) (λb.λc.b (c (λd.d)))
98. (λa.a) (λb.λc.b ((λd.d) c))
99. (λa.a) (λb.λc.b (λd.c d))

100. (λa.a) (λb.λc.b (λd.d c))
101. (λa.a) (λb.λc.(b (λd.d)) c)
102. (λa.a) (λb.λc.((λd.d) b) c)
103. (λa.a) (λb.λc.(λd.b d) c)
104. (λa.a) (λb.λc.(λd.d b) c)
105. (λa.a) (λb.λc.c (b (λd.d)))
106. (λa.a) (λb.λc.c ((λd.d) b))
107. (λa.a) (λb.λc.c (λd.b d))
108. (λa.a) (λb.λc.c (λd.d b))
109. (λa.a) (λb.λc.(c (λd.d)) b)
110. (λa.a) (λb.λc.((λd.d) c) b)
111. (λa.a) (λb.λc.(λd.c d) b)
112. (λa.a) (λb.λc.(λd.d c) b)
113. (λa.a) (λb.λc.(λd.d) (b c))
114. (λa.a) (λb.λc.(λd.d) (c b))
115. (λa.a) (λb.λc.λd.(b c) d)
116. (λa.a) (λb.λc.λd.(c b) d)
117. (λa.a) (λb.λc.λd.(b d) c)
118. (λa.a) (λb.λc.λd.(d b) c)
119. (λa.a) (λb.λc.λd.b (c d))
120. (λa.a) (λb.λc.λd.b (d c))
121. (λa.a) (λb.λc.λd.(c d) b)
122. (λa.a) (λb.λc.λd.(d c) b)
123. (λa.a) (λb.λc.λd.c (b d))
124. (λa.a) (λb.λc.λd.c (d b))
125. (λa.a) (λb.λc.λd.d (b c))
126. (λa.a) (λb.λc.λd.d (c b))
127. ((λa.a) (λb.b)) ((λc.c) (λd.d))
128. ((λa.a) (λb.b)) (λc.c (λd.d))
129. ((λa.a) (λb.b)) (λc.(λd.d) c)
130. ((λa.a) (λb.b)) (λc.λd.c d)
131. ((λa.a) (λb.b)) (λc.λd.d c)
132. (λa.a (λb.b)) ((λc.c) (λd.d))

The surprising combinatorics
of linear λ-terms

[Background]



Some enumerative connections

family of rooted maps family of lambda terms sequence OEIS

trivalent maps (genus g≥0)
planar trivalent maps
bridgeless trivalent maps
bridgeless planar trivalent maps
 
maps (genus g≥0)
planar maps
bridgeless maps
bridgeless planar maps

linear terms
ordered terms
unitless linear terms
unitless ordered terms
 
normal linear terms (mod ~)
normal ordered terms
normal unitless linear terms (mod ~)
normal unitless ordered terms

A062980
A002005
A267827
A000309
 
A000698
A000168
A000699
A000260

1,5,60,1105,27120,...
1,4,32,336,4096,...
1,2,20,352,8624,...
1,1,4,24,176,1456,...
 
1,2,10,74,706,8162,...
1,2,9,54,378,2916,...
1,1,4,27,248,2830,...
1,1,3,13,68,399,...
 

1. O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCI and BCK lambda terms, TCS 502: 227-238
2. Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-39
3. Z (2015), Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596
4. Z (2016), Linear lambda terms as invariants of rooted trivalent maps, J. Functional Programming 26(e21)
5. J. Courtiel, K. Yeats, Z (2016), Connected chord diagrams and bridgeless maps, arXiv:1611.04611
6. Z (2017), A sequent calculus for a semi-associative law, FSCD



[Background]

A few views on maps



Topological definition

map = 2-cell embedding of a graph into a surface*

considered up to deformation of the underlying surface.

*All surfaces are assumed to be connected and oriented throughout this talk
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Algebraic definition

map = transitive permutation representation of the group

considered up to G-equivariant isomorphism.

G = 



Combinatorial definition

map = connected graph + cyclic ordering of
the half-edges around each vertex (say, as given
by a drawing with "virtual crossings").
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Graph versus Map

≡ ≢

≡
graph

map

≡
graph

map



Some special kinds of maps

planar

bridgeless

3-valent



Four Colour Theorem

The 4CT is a statement about maps.

every bridgeless planar map
has a proper face 4-coloring

By a well-known reduction (Tait 1880), 4CT is equivalent
to a statement about 3-valent maps

every bridgeless planar 3-valent map
has a proper edge 3-coloring



Map enumeration

From time to time in a graph-theoretical career one's thoughts turn
to the Four Colour Problem. It occurred to me once that it might be
possible to get results of interest in the theory of map-colourings
without actually solving the Problem. For example, it might be
possible to find the average number of colourings on vertices, for
planar triangulations of a given size.
 
One would determine the number of triangulations of 2n faces, and
then the number of 4-coloured triangulations of 2n faces. Then one
would divide the second number by the first to get the required
average. I gathered that this sort of retreat from a difficult problem to
a related average was not unknown in other branches of
Mathematics, and that it was particularly common in Number Theory.

W. T. Tutte, Graph Theory as I Have Known It



One of his insights was to consider rooted maps

Tutte wrote a pioneering series of papers (1962-1969)

W. T. Tutte (1962), A census of planar triangulations. Canadian Journal of Mathematics 14:21–38
W. T. Tutte (1962), A census of Hamiltonian polygons. Can. J. Math. 14:402–417
W. T. Tutte (1962), A census of slicings. Can. J. Math. 14:708–722
W. T. Tutte (1963), A census of planar maps. Can. J. Math. 15:249–271
W. T. Tutte (1968), On the enumeration of planar maps. Bulletin of the American Mathematical Society 74:64–74
W. T. Tutte (1969), On the enumeration of four-colored maps. SIAM Journal on Applied Mathematics 17:454–460

Key property: rooted maps have
no non-trivial automorphisms

Map enumeration



Ultimately, Tutte obtained some remarkably simple formulas
for counting different families of rooted planar maps.

Map enumeration



[Background]

A bijection between linear λ-terms
and rooted 3-valent maps

(cf. Bodini et al 2013, Z 2016)



From linear terms to rooted 3-valent maps
via string diagrams

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



From linear terms to rooted 3-valent maps
via string diagrams

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



From linear terms to rooted 3-valent maps
via string diagrams

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



Observation: any rooted 3-valent map must have one of the following forms.

T1 T2 T1

disconnecting
root vertex

connecting
root vertex

no
root vertex

From rooted 3-valent maps to linear terms
by induction



...but this exactly mirrors the inductive structure of linear lambda terms!

application abstraction variable

T1 T2 T1

From rooted 3-valent maps to linear terms
by induction



An example



An example

connecting



An example



An example



An example



An example

disconnecting



An example



An example

λa.λb.λc.λd.λe.a(λf.c(e(b(df))))



Some more examples*

*computed with the help of https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

λabcde.a (λfg.b (λh.c (λi.d (λj.e (f (λk.g (h (i (j k)))))))))



Some more examples*

*computed with the help of https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

λabcdefghi.a (λjk.b (λlm.(λno.c (λp.d (λq.e (λr.n (o (p (q r))))))) (λst.f (λu.g (λv.h (λw.s (t (u (v w))))))) (λx.i (j (k l (m x))))))



Some more examples*

*computed with the help of https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

λabcdefghijklm.a (λn.c (λopqr.(λstuv.d (λw.e (g ((λx.s (λy.t (v (n (b o) p (y u)))) (j (l x)) k) m (w f))))) (λz.h (i (q z) r))))



[Background]

Higher connectivity
of linear λ-terms

[work-in-progress]
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from the description of the bijection φ, it's not hard to prove that...

characterization of bridgeless terms
*reminder: bridgeless = stays connected after removing any edge.

M bridgeless ⇔ φ(M) has no closed subterms

one corollary: equivalent λ-calculus reformulation of 4CT!
(cf. JFP 2016, LICS 2018)



a graph is k-edge-connected if it stays connected after cutting any j < k edges

(e.g., 1-edge-connected = connected, 2-edge-connected = bridgeless)

turns out useful to weaken to "internal" k-edge-connection (only trivial j-cuts)

k-edge-connection

What does it mean for a λ-term to be internally k-edge-connected?

internally 4-edge-connected
(trivial 3-cut, non-trivial 4-cut)



a term which is 2- but not 3-edge-connected

a, b ⊢ λc.a (λd.(b c) d)



a 3-edge-connected term

a, b ⊢ λc.a (λd.b (c d))



A cut is a decomposition

towards a logical characterization

This definition gets a lot more interesting if we represent terms using HOAS
and allow ("generalized") subterms to have higher type.

Then we say that the type of a cut t₁ = C{t₂} is the type of t₂.

of a term t₁ into a subterm t₂ together with its surrounding context C. 
Roughly speaking, a "context" is just a term with a hole/metavariable.

t₁ = C{t₂}



t₁ : U ⊸ (U ⊸ U)
t₁ = [a] [b] lam [c] app a (lam [d] app (app b c) d)

t₂ : U ⊸ U
t₂ = [x] lam [d] app x d

C : (U ⊸ U) ⇒ (U ⊸ (U ⊸ U))
C = {X} [a] [b] lam [c] app a (X (app b c))

For example, a few slides ago, we saw a term with a cut of type U ⊸ U

towards a logical characterization

a, b ⊢ λc.a (λd.(b c) d)



t₁ : U
t₁ = lam [a] lam [b] lam [c] app a (lam [d] lam [e] lam [f]
          app (app b (app c d)) (app e f))

t₂ : (U ⊸ U) ⊸ U
t₂ = [G] lam [e] lam [f] G (app e f)

C : (U ⊸ U) ⊸ U ⇒ U
C = {X}lam [a] lam [b] lam [c]
          app a (lam [d]
            X ([y] app (app b (app c d)) y))

Here is an example of a term with a yellow cut of type (U ⊸ U) ⊸ U
and a blue cut of type U ⊸ (U ⊸ U)

λa.λb.λc.a (λd.λe.λf.(b (c d)) (e f))

t₂' : U ⊸ (U ⊸ U)
t₂' = [b] [c] lam [d] lam [e] lam [f]
        app (app b (app c d)) (app e f))
C' : U ⊸ (U ⊸ U) ⇒ U
C' = {X} lam [a] lam [b] lam [c] app a (X b c)

towards a logical characterization



Definition: a term is k-indecomposable if it has no non-trivial τ-cuts for |τ| < k

Let us say that a cut t₁ = C{t₂} is trivial if either C is the identity context
or t₂ is one of the following elementary terms:

λx.x
app
lam

: U ⊸ U
: U ⊸ (U ⊸ U)
: (U ⊸ U) ⊸ U

Claim (conjecture): t is k-indecomposable iff t is internally k-edge-connected.

towards a logical characterization

Define the size of a type as the number of occurrences of "U" (e.g., |U ⊸ U| = 2)

λ
@



Internally 3- and 4-edge-connected planar 3-valent maps were first
enumerated by Tutte (1961) who found some nice counting formulas.

Surprisingly, Tutte's formula for 3-edge-connected planar 3-valent maps
also counts β-normal 2-indecomposable ordered terms (A000260).

Indeed, there is a simple bijection

       [3-ind ordered terms] ↔ [β-normal 2-ind ordered terms]

motivations & questions

λc.a (λd.b (c d)) ↔ a (λc.b (λd.c d))

λc.λd.a (b (c d)) ↔ a (λc.λd.b (c d))

λc.λd.a ((b c) d) ↔ a (λc.λd.(b c) d)

a (λd.b (c d)) ↔ a (b (λd.c d))

λd.a (b (c d)) ↔ a (λd.b (c d))

λd.a ((b c) d) ↔ a (λd.(b c) d)

λd.(a b) (c d) ↔ (a b) (λd.c d)

(λd.a (b d)) c ↔ (a (λd.b d)) c

a (b (c d)) ↔ a (b (c d))

a ((b c) d) ↔ a ((b c) d)

(a b) (c d) ↔ (a b) (c d)

(a (b c)) d ↔ (a (b c)) d

((a b) c) d ↔ ((a b) c) d

the bijection goes by way of open "neutral" terms,

although it is not obviously meaningful...  here is the

graph of the bijection at n=3 apps:

Conjecture: β-normal 3-ind ordered terms are counted by A000257.



one of our original motivations was to revisit some old results in graph theory,
such as Whitney's theorem (1931) that every internally 4-edge-connected
planar 3-valent map has a Hamiltonian cycle on its faces.

motivations & questions



Question: is there a nice/new proof of Whitney's theorem as a statement
about 4-indecomposable ordered λ-terms?

motivations & questions

f

e

g h

b

d

c

a



motivations & questions

More broadly speaking, would like to better understand the relationships
between a term and its (generalized) subterms.

How do cuts evolve over the course of evaluation?

What are the λ-analogues of graph minor theorems?

→β →β


