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The Tamari order

Consider a preorder equipped with a multiplication ∗ which is
monotone in each argument

A1 ≤ A2 B1 ≤ B2
A1 ∗ B1 ≤ A2 ∗ B2

and which satisfies a semi-associative law:

(A ∗ B) ∗ C ≤ A ∗ (B ∗ C)

D. Tamari, “Monoïdes préordonnés et chaînes de Malcev,” Thèse,
Université de Paris, 1951.
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The Tamari order

Concretely, semi-associativity may be visualized as right rotation

−→

acting on the inner nodes of a rooted binary tree.

Example: (p ∗ (q ∗ r)) ∗ s
Tam
≤ p ∗ (q ∗ (r ∗ s))

−→ −→

3 / 26



Tamari lattices

For each n ∈ N, the Cn =
(2n

n
)
/(n + 1) rooted binary trees with n

internal nodes form a finite lattice Yn under the Tamari order.
I D. Tamari, “Sur quelques problèmes d’associativité,” Ann. sci. de

Univ. de Clermont-Ferrand 2, Sér. Math., vol. 24, 1964.
I H. Friedman and D. Tamari, “Problèmes d’associativité: une

structure de treillis finis induite par une loi demi-associative,” J.
Combinatorial Theory, vol. 2, 1967.

I S. Huang and D. Tamari, “Problems of associativity: A simple proof
for the lattice property of systems ordered by a semi-associative
law,” J. Combin. Theory Ser. A, vol. 13, no. 1, 1972.
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The Tamari lattice Y3
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The Tamari lattice Y4

(image credit: David Eppstein)
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Tamari lattices and associahedra

Tamari lattices are closely related to the so-called “Stasheff
polytopes”, better known as associahedra.

I J. D. Stasheff, “Homotopy associativity of H-spaces, I,” Trans.
Amer. Math. Soc., vol. 108, 1963.

I F. Müller-Hoissen and H.-O. Walther, Eds., Associahedra, Tamari
Lattices and Related Structures: Tamari Memorial Festschrift,
Birkhauser, 2012.

(animation credit: Andy Tonks)
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This paper

Summary of contributions:
I A surprisingly simple presentation of the Tamari order as a
sequent calculus in the style of Lambek

I A proof of focusing completeness (a strong form of
cut-elimination) together with a coherence theorem

I An application to combinatorics: a new proof of
Chapoton’s theorem on the number of intervals in Yn
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The sequent calculus

Four rules for deriving sequents of the form A1, . . . ,An −→ B

A −→ A id
Θ −→ A Γ,A,∆ −→ B

Γ,Θ,∆ −→ B cut

A,B,∆ −→ C
A ∗ B,∆ −→ C ∗L

Γ −→ A ∆ −→ B
Γ,∆ −→ A ∗ B ∗R

where “,” denotes concatenation (a strictly associative operation)
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The sequent calculus

These rules are almost straight from Lambek1...

A,B,∆ −→ C
A ∗ B,∆ −→ C ∗L versus Γ,A,B,∆ −→ C

Γ,A ∗ B,∆ −→ C ∗L
amb

This simple restriction makes all the difference!

1J. Lambek, “The mathematics of sentence structure,” The American
Mathematical Monthly, vol. 65, no. 3, pp. 154–170, 1958.
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The sequent calculus

≤

Example: (p ∗ (q ∗ r)) ∗ s
Tam
≤ p ∗ (q ∗ (r ∗ s))

p −→ p

q −→ q
r −→ r s −→ s
r , s −→ r ∗ s R

q, r , s −→ q ∗ (r ∗ s) R

q ∗ r , s −→ q ∗ (r ∗ s) L

p, q ∗ r , s −→ p ∗ (q ∗ (r ∗ s)) R

p ∗ (q ∗ r), s −→ p ∗ (q ∗ (r ∗ s)) L

(p ∗ (q ∗ r)) ∗ s −→ p ∗ (q ∗ (r ∗ s)) L
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The sequent calculus

6≤

Counterexample: p ∗ (q ∗ (r ∗ s))
Tam
6≤ (p ∗ (q ∗ r)) ∗ s

p −→ p
q −→ q r −→ r
q, r −→ q ∗ r R

p, q, r −→ p ∗ (q ∗ r) R s −→ s
p, q, r , s −→ (p ∗ (q ∗ r)) ∗ s R

p, q, r ∗ s −→ (p ∗ (q ∗ r)) ∗ s Lamb

p, q ∗ (r ∗ s) −→ (p ∗ (q ∗ r)) ∗ s Lamb

p ∗ (q ∗ (r ∗ s)) −→ (p ∗ (q ∗ r)) ∗ s L
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The sequent calculus

Theorem (Completeness)

If A
Tam
≤ B then A −→ B.

Theorem (Soundness)

If Γ −→ B then φ[Γ]
Tam
≤ B, where φ[−] denotes the left-associated

product of a (non-empty) list of formulas:

φ[A] = A
φ[Γ,A] = φ[Γ] ∗ A
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Focusing completeness

Definition
A context Γ is said to be reducible if its leftmost formula is
compound, and irreducible otherwise. A sequent Γ −→ A is

I left-inverting if Γ is reducible;
I right-focusing if Γ is irreducible and A is compound;
I atomic if Γ is irreducible and A is atomic.

Definition
A closed derivation D is said to be focused if left-inverting
sequents only appear as the conclusions of ∗L, right-focusing
sequents only as the conclusions of ∗R, and atomic sequents only
as the conclusions of id .

14 / 26



Focusing completeness

Proposition
A closed derivation is focused iff it is constructed using only ∗L
and the following restricted forms of ∗R and id (and no cut):

A,B,∆ −→ C
A ∗ B,∆ −→ C ∗L

Γirr −→ A ∆ −→ B
Γirr,∆ −→ A ∗ B ∗R foc

p −→ p idatm

Theorem (Focusing completeness)

Every derivable sequent has a focused derivation.
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The coherence theorem

Lemma
For any context Γ and formula A, there is at most one focused
derivation of Γ −→ A.

Corollary (Coherence)

Every derivable sequent has exactly one focused derivation.

An application of coherence: counting intervals!
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Counting intervals in Tamari lattices

Theorem (Chapoton 2006)

Let In = { (A,B) ∈ Yn×Yn | A
Tam
≤ B }. Then |In| = 2(4n+1)!

(n+1)!(3n+2)! .

For example, Y3 contains 13 intervals:
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Counting intervals in Tamari lattices

The proof of the theorem is in:
I F. Chapoton, “Sur le nombre d’intervalles dans les treillis de

Tamari,” Sém. Lothar. Combin., no. B55f, 2006
Chapoton mentions that he found the formula through the OEIS
(see oeis.org/A000260) before he was able to prove it.

The formula itself was originally derived over half a century ago by
Bill Tutte, but for a completely different family of objects!

I W. T. Tutte, “A census of planar triangulations,” Canad. J.
Math., vol. 14, pp. 21–38, 1962

Tutte proved that 2(4n+1)!
(n+1)!(3n+2)! is the number of (3-connected,

rooted) triangulations of the sphere with 3(n + 1) edges.
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Counting intervals in Tamari lattices
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Counting intervals in Tamari lattices

Chapoton’s observation sparked combinatorialists to look for (and
find) bijective explanations (and extensions) of these connections
between “planar maps” and Tamari intervals, see e.g.:

I O. Bernardi and N. Bonichon, “Intervals in Catalan lattices
and realizers of triangulations,” J. Combin. Theory Ser. A,
vol. 116, no. 1, pp. 55–75, 2009.

I F. Chapoton, G. Châtel, and V. Pons, “Two bijections on
Tamari intervals,” In Proceedings of the 26th International
Conference on Formal Power Series and Algebraic
Combinatorics, pp. 241–252, 2014.

I W. Fang, “Planar triangulations, bridgeless planar maps and
Tamari intervals,” arXiv:1611.07922, 2016.
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Counting intervals in Tamari lattices

Outline of our proof of Chapoton’s theorem (|In| = 2(4n+1)!
(n+1)!(3n+2)!):

1. Observe # intervals = # focused derivations (by coherence)
2. Consider generating functions L(z , x) and R(z , x) counting

focused derivations of Γ→ A (resp. Γirr → A) by size(A) and
length(Γ). The following eqns are essentially immediate:

L(z , x) = x R(z , x)− R(z , 1)
x − 1 (1)

R(z , x) = zR(z , x)L(z , x) + x (2)

3. Use “off-the-shelf” algebraic combinatorics to solve (1) & (2),
obtaining the Tutte–Chapoton formula for coeff. of zn in

R(z , 1) = 1 + z + 3z2 + 13z3 + 68z4 + 399z5 + . . .
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Aside: the surprising combinatorics of linear lambda calculus

My original motivation for this work was wanting to better
understand an apparent link between the Tamari order and lambda
calculus, inferred indirectly via their mutual connection to the
combinatorics of embedded graphs.
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Aside: the surprising combinatorics of linear lambda calculus

family of lambda terms family of rooted maps OEIS
linear terms1,4 trivalent maps A062980
planar terms4 planar trivalent maps A002005
indecomposable linear4 bridgeless trivalent A267827
indecomposable planar4 bridgeless planar trivalent A000309
normal linear terms/∼3 (combinatorial) maps A000698
normal planar terms2 planar maps A000168
normal ind. linear/∼5 bridgeless maps A000699
normal ind. planar bridgeless planar A000260

1. Olivier Bodini, Danièle Gardy, and Alice Jacquot, TCS 502, 2013.
2. Z, Alain Giorgetti, LMCS 11(3:22), 2015.
3. Z, arXiv:1509.07596, 2015.
4. Z, JFP 26(e21), 2016.
5. Julien Courtiel, Karen Yeats, and Z, arXiv:1611.04611, 2017.
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Aside: the surprising combinatorics of linear lambda calculus

An explicit (albeit somewhat roundabout) bijection between
indecomposable normal planar terms and Tamari intervals was
given in an earlier, longer version of the paper (arXiv:1701.02917).

Conceptually, this link seems closely related to the duality between
skew-monoidal categories and skew-closed categories.

I Kornél Szlachányi. Skew-monoidal categories and
bialgebroids. Advances in Math., 231(3–4):1694–1730, 2012.

I Ross Street. Skew-closed categories. J. Pure and Appl. Alg.,
217(6):973–988, 2013.
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Conclusions and questions

We have a natural encoding of semi-associativity in sequent
calculus, with a surprising application to combinatorics.

The simplicity of the solution suggests natural questions and
directions for research:

I Is the SC helpful for understanding lattice structure of Yn?
I Extending the logic with additional connectives.2

I Proving categorical coherence theorems via focusing.
I Linguistic motivations for semi-associativity? (cf. Lambek ’58

& ’61.) Applications to (LR) parsing?
I Other bridges between proof theory and combinatorics?

2Cf. Jason Reed’s “Queue logic: An undisplayable logic?” (unpublished
manuscript, April 2009), jcreed.org/papers/queuelogic.pdf.
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Postscript: a missed connection

From “Sur quelques problèmes d’associativité” (Tamari, 1964):
En 1951, après sa thèse [21] et après la publication de
[12],3 l’auteur a proposé à LAMBEK un travail commun,
pour mettre en évidence le rôle prépondérant joué par
l’associativité générale. Malheureusement, par suite de
circonstances extérieures, ce travail n’a jamais été écrit.

In 1951, after his thesis [21] and after the publication of
[12], the author proposed to Lambek joint work, to
highlight the important role played by general
associativity. Unfortunately, due to external
circumstances, this work has never been written.

3[12] = J. Lambek, “The immersibility of a semigroup into a group”,
Canad. J. of Math., vol. 3, pp. 34–43, 1951.
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