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Abstract—Polarized logic is the logic of values and continu-
ations, and their interaction through continuation-passing style.
The main limitations of this logic are the limitations of CPS:
that continuations cannot be composed, and that programs are
fully sequentialized. Delimited control operators were invented
in response to the limitations of classical continuation-passing.
That suggests the question: what is the logic of delimited
continuations?

We offer a simple account of delimited control, through a
natural generalization of the classical notion of polarity. This
amounts to breaking the perfect symmetry between positive and
negative polarity in the following way: answer types are positive.
Despite this asymmetry, we retain all of the classical polarized
connectives, and can explain “intuitionistic polarity” (e.g., in
systems like CBPV) as a restriction on the use of connectives, i.e.,
as a logical fragment. Our analysis complements and generalizes
existing accounts of delimited control operators, while giving us a
rich logical language through which to understand the interaction
of control with monadic effects.

I. I
The original motivation for studying polarity as a property

of logical connectives was to decompose the classical double-
negation translations, and so to better understand the different
ways in which classical logic could be endowed with construc-
tive content [18], [19]. Polarity was a natural distinction in the
context of linear logic (positive ⊗, ⊕, ∃ vs. negative O, N, ∀),
but once this classification was discovered, it became clear
that polarity in linear logic was an elegant demonstration of
a much more general phenomenon. Classical logic could be
understood constructively by way of embedding into linear
logic [8], [29], but it could also be understood on its own
just by polarizing the connectives, i.e., by forcing them to
have positive or negative polarity. This was to some extent
already explicit in Girard’s original papers, and is implicit in
other constructive interpretations of classical logic, such as
Selinger’s (co)control categories [41].

Formally, applying Andreoli’s notion of focusing [3] to
classical logic gives a canonical representation of proofs which
are β-normal, η-long, and in continuation-passing style. The
particular fragment of CPS is determined by how one polarizes
the classical connectives. Polarized logic—where the polarity
of connectives is made explicit, and connectives come in both
positive and negative varieties—can in this sense be seen as
a logic for expressing evaluation order at the local level of
proofs and types, rather than as a global property of a language
(cf. [47]).

Two questions arise naturally.
First, one does not need to start with classical (linear

or non-linear) logic to study polarization and focalization.

Focusing has been applied successfully to guide proof search
in intuitionistic logic [23], [6], [33], while distinctions seem-
ingly related to classical polarity have arisen in intuitionistic
type-theoretic settings. Notably, Filinski [15] and Levy [30]
distinguish value types and computation types to decompose
the monadic view of effects in functional programming, while
Watkins et al. [45] distinguish synchronous and asynchronous
types (adopting Andreoli’s terminology for positive and neg-
ative polarity in classical linear logic) to tame equality in a
dependent logical framework. Yet, intuitionistic logic seems to
blur the precise duality between positive and negative polarity,
and to preclude certain polarizations of the connectives—for
example, none of these systems includes a negative polarity
disjunction. Moreover, there doesn’t appear to be the same
connection with double-negation translation or CPS, although
there is some connection to sequentiality (cf. [45], [12], [46]).
In short, it is unclear exactly how the phenomenon of polarity
in intuitionistic logic is related to the classical case.

Second, from a practical and theoretical perspective, clas-
sical polarity may not give a sufficiently refined notion of
evaluation order, precisely because of this correspondence
with classical continuation-passing. The CPS discipline is a
kind of paranoia, where a term needs to have its entire life
planned before it takes a step. This means that a program
ends up completely sequentialized even in cases where order
of evaluation is irrelevant. Historically, this was the one of
the reasons for the invention of “composable” or “delimited”
control operators [13], [10], [11], which allow a program to
mix continuation-passing and direct style. Besides numerous
practical applications (see the long bibliography of Kiselyov
and Shan [28]), one hint of the foundational relevance of
delimited control is a tantalizing representation theorem due
to Filinski [14], which states that the operators shift and reset
can be used to perform monadic reflection, i.e., to mediate
between internal and external views of computational effects.

Can classical and intuitionistic flavors of polarity be rec-
onciled, and can the relationship between polarized logic and
CPS be extended to delimited continuations?

In this paper, we describe a natural generalization of clas-
sical polarized logic, and explain how it accounts both for
intuitionistic polarity and for delimited control. Our basic
premise is that the perfect symmetry between positive and
negative polarity should be broken: answer types (i.e., con-
tinuations’ result types) are positive. Starting from this thesis,
we generalize the proof theory of polarity in a more or less
directed way, with the important difference that the notion
of equality on proofs may now incorporate the equations of



any given monad, relaxing the strict sequentiality of CPS.
Perhaps surprisingly, we can retain (indeed generalize) all of
the usual polarized connectives (e.g., O), viewing traditional
intuitionistic systems as logical fragments—in effect giving a
double-negation interpretation of intuitionistic logic. We apply
our logical analysis of delimited control operators first to
explain Danvy and Filinski’s original type system, then to re-
visit Filinski’s representation theorem, showing its elementary
character and close link to the Yoneda lemma.

II. C   

Before we go on to describe this generalization of classical
polarized logic and its relationship to intuitionistic polarity
and delimited control, we review the correspondence between
classical polarity and undelimited control. Although the con-
nection between polarities and CPS is by now well-established,
it is not always well understood, sometimes thought to be an
exotic property of linear logic. The connection is mundane,
and can be understood with the intuitions of ordinary func-
tional programming.

Positive and negative polarity are simply two different ways
of defining types. A positive type is defined by describing
the shape of its values—in other words, like any datatype.
If this is taken as a complete definition, i.e., if these are
all the possible shapes of a value of positive type, then we
are justified in using ordinary pattern-matching notation to
define the continuations for that type. Dually, a negative type is
defined by describing the shape of its continuations—similar to
how one defines a record or class, by listing its fields/methods.
Again, if this is taken as a complete definition, then a value
of negative type can be constructed by pattern-matching on
continuations. Values of negative type are therefore understood
as control operators, and naturally lazy—they can be computed
on demand in response to their continuation. Indeed, the
ubiquitous lambda of ordinary functional programming can
be understood in this way, as a degenerate kind of control
operator: defined by matching on a continuation consisting of
a value for the argument, and a continuation for the result.

The subtlety in this description arises at the interaction of
positive and negative polarity. A positive value may contain
negative subcomponents. For a continuation accepting positive
type, this is the point where pattern-matching must end by
binding a value variable, because nothing can be assumed
about the shape of negative values. Again, this is an everyday
fact of life in ML or Haskell, a reflection of the impossibility of
pattern-matching against functional values except by binding
a variable. Likewise, a negative continuation can contain
positive subcomponents. For a negative value, this is the point
where pattern-matching on continuations must stop, binding
the positive continuation to a continuation variable.

A. Proofs

We use logic to make these intuitions precise. Figure 1
presents the rules for building focusing proofs in polarized
classical logic. The presentation is a bit unconventional, so
we’ll explain it gradually (for more background see [47]). We

Contexts ∆,Γ ::= · | ∆1,∆2 | N | •P
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆  [P] Γ ` ∆

Γ ` [P]
∆  [P] −→ Γ,∆ ` #

Γ ` •P

∆  [•N] −→ Γ,∆ ` #
Γ ` N

∆  [•N] Γ ` ∆

Γ ` [•N]
N ∈ Γ Γ ` [•N]

Γ ` #
•P ∈ Γ Γ ` [P]

Γ ` #

Γ ` ·

Γ ` ∆1 Γ ` ∆2

Γ ` ∆1,∆2

Fig. 1. The classical rules of focusing

use the letters P and N to range over positive and negative
propositions, respectively. There are two basic stances we
can take about a proposition: assertion or denial. For positive
propositions, we write these respective judgments as [P] and
•P, while for negative propositions we write N and [•N]. As
we will explain shortly, assertion and denial are merely another
way of reading positionality in “multiple conclusions” sequent
calculus (cf. [38]), while the brackets mark focus in the sense
of Andreoli [3].

Simple contexts ∆,Γ are formed by combining (using the
comma) assertions N of negative propositions and denials •P
of positive propositions, treated up to associativity and unit
laws for the empty context (·). We omit hypotheses of the
form [P] and [•N] because such “complex” hypotheses are
invertible, i.e., they can always be replaced by an equivalent
set (read disjunctively) of simple contexts.

A hypothetical judgment Γ ` J asserts some judgment
J relative to the simple context Γ. In addition to assertion
and denial of propositions, we can assert an entire context
∆ (read conjunctively), or a contradiction #. The connection
between judgments Γ ` J and the typical notation for two-
sided sequents “with punctuation” is a shallow syntactic trans-
formation. Asserted propositions in Γ can be viewed as a “left
context” ΓL = {N | N ∈ Γ}, and refuted propositions as a “right
context” ΓR = {P | •P ∈ Γ}. Contradiction Γ ` # corresponds
to a sequent with no distinguished formula (ΓL ⇒ ΓR), while
Γ ` [P] corresponds to a right-focused sequent (ΓL ⇒ ΓR; [P]),
Γ ` N to a right-inverting sequent (ΓL ⇒ ΓR; N), Γ ` •P to
a left-inverting sequent (P; ΓL ⇒ ΓR), and Γ ` [•N] a left-
focused sequent ([N]; ΓL ⇒ ΓR). We can interpret Γ ` ∆ by
expansion, into a set of sequents.

The eight rules in Figure 1 describe the canonical ways
of deriving Γ ` J, in the sense that any additional forms of
proof can always be reduced to these rules. This is the con-
tent of Andreoli’s focusing completeness theorem. Something
that is different from Andreoli’s original presentation (though
similar to [2]) is that none of the rules mention any logical
connectives, but only “structural connectives”. The point is
that the canonical rules can be stated generically with respect
to a “dictionary” for the logical connectives.

Definition II.1. A dictionary is a pair of inductively defined
relations ∆  [P] and ∆  [•N]. It induces a definition



ordering (an abstract notion of “subformula”), taking all
the propositions in ∆ to be below P (resp. N) if ∆  [P]
(resp. ∆  [•N]).

Definition II.2. In general we write D :: J to indicate that D
is a derivation of the judgment J . A derivation p :: ∆  [P]
is called a proof pattern, while a derivation d :: ∆  [•N] is
called a refutation pattern.

The idea is that p describes the shape of a proof of P with
some “holes” ∆, and likewise d describes the shape of a
refutation of N with holes ∆.

Example II.3. The following inductive clauses define some
of the standard polarized connectives:

·  [1]
∆1  [P1] ∆2  [P2]

∆1,∆2  [P1 ⊗ P2]

(no proof of 0)
∆  [P1]

∆  [P1 ⊕ P2]
∆  [P2]

∆  [P1 ⊕ P2]

(no refutation of >)
∆  [•N1]

∆  [•N1NN2]
∆  [•N2]

∆  [•N1NN2]

·  [•⊥]
∆1  [•N1] ∆2  [•N2]

∆1,∆2  [•N1ON2]

∆1  [P] ∆2  [•N]
∆1,∆2  [•P→ N]

∆  [•N]
∆  [N⊥] N  [↓N] •P  [•↑P]

Most of these rules should be familiar from linear sequent
calculus (following the above guide for translating asser-
tion/denial into left/right positionality), but note that here we
are only building patterns, and there is no linearity restriction
on the use of hypotheses when building actual proofs and
refutations. The connectives ↓ and ↑ play the important role
of coercions between the two polarities, and mark leaves of
patterns. �

The reader can keep this dictionary in mind to get a handle on
our presentation of focusing and its relation to more standard
sequent calculi—but must keep in mind that it is only an
example, an incomplete collection of useful connectives. In
general we need not make any assumptions about the dictio-
nary, even allowing non-well-founded definition orderings (to
encode recursive types).

Now, consider the canonical rules for proving or refuting a
positive proposition:

∆  [P] Γ ` ∆

Γ ` [P]
∆  [P] −→ Γ,∆ ` #

Γ ` •P

The rule of proof follows the intuition we described for the
meaning of patterns: to prove P, we must pick one of the
possible patterns of proof, and fill in all of its holes. Note that
the premise Γ ` ∆ can be expanded, using the canonical rules,
into a list of premises Γ ` Ni and Γ ` •P j.

The rule of refutation follows the intuition we described at
the beginning of this section, that continuations for positive
types may be defined by pattern-matching: to refute P, it
suffices to consider the shape of any possible proof of P, and
thence derive a contradiction. This is a higher-order rule, and
we follow the convention that any meta-variable appearing

to the left of an arrow and not in the rule’s conclusion is
implicitly universally quantified (with tight scope). So in prose
the rule is read, “[For any Γ and P,] If for all ∆ such that
∆  [P], we can derive Γ,∆ ` #, then Γ ` •P”.

Finally, let’s consider the last rule dealing explicitly with
positive polarity, one of the rules of contradiction:

•P ∈ Γ Γ ` [P]
Γ ` #

This says simply that one way of establishing contradiction is
to prove a (positive) proposition assumed to be false.

These three rules of proof, refutation, and contradiction
are of course entirely sound intuitionistically. They give a
constructive interpretation of classical logic in the sense that
we can consider hypothetical judgments Γ ` # as sequents
ΓL ⇒ ΓR, and in particular as · ⇒ ΓR when Γ only contains
denials of positive propositions.1

On the other hand, the rules of proof and refutation for
negative propositions do not seem so intuitionistic:

∆  [•N] −→ Γ,∆ ` #
Γ ` N

∆  [•N] Γ ` ∆

Γ ` [•N]

In particular, for negative propositions, proof means proof-by-
contradiction. Negative refutation is intuitionistically sound (to
refute N, pick a refutation pattern and fill in its holes), but in
fact it is more restrictive than ordinary intuitionistic refuta-
tion. These are really “co-intuitionistic” reasoning principles.
Negative polarization thus yields a more direct constructive
interpretation of classical truth (cf. [43]), although it yields a
less direct interpretation of classical falsehood.

One final, important point about the logical standing of the
rules in Figure 1 is that the meaning of contradiction is also
not complete for the intuitionistic (or co-intuitionistic) reading.
In particular, we do not have ex falso quodlibet: Γ ` # does
not let us deduce Γ ` [P] (or Γ ` [•N]). Instead, # is the
contradiction of minimal logic [25].

Since the rules of focusing define a cut-free sequent calcu-
lus, we should expect some sort of cut-admissibility theorem.
We state this as a composition principle, together with an
identity principle (corresponding to admissibility of initial
axioms A⇒ A):

Principle (Composition).
1) If Γ ` [P] and Γ ` •P then Γ ` #.
2) If Γ ` N and Γ ` [•N] then Γ ` #.
3) If Γ ` ∆ and Γ,∆ ` # then Γ ` #.

Principle (Identity). If ∆ ⊆ Γ then Γ ` ∆.

In fact, the demonstration of both these principles is almost
trivial—the procedures for witnessing them can be given in
an entirely generic way, for an arbitrary dictionary. Whether
or not these procedures terminate depends on whether the
definition ordering is well-founded. It is for the dictionary in
Example II.3, but in general won’t be, and we can accept

1This interpretation of classical logic is essentially Glivenko’s [21].
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V+
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p � Ep
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d � Ed

V−
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d σ
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v K−

E
K−$v

k V+

E
k$V+

σ
·
σ1 σ2
σ

(σ1 ,σ2)

Fig. 2. Classical canonical forms

partiality in the definition of composition, and non-well-
foundedness in the derivation of identity.

B. Programs

The preceding section can already be read directly as an
intrinsic definition [39] of a programming language. The
following table describes the correspondence between logical
derivations and well-typed terms, adopting standard terminol-
ogy in a faithful way:

deriving symbol description
∆  [P] p value pattern

∆  [•N] d continuation pattern
•P ∈ Γ k continuation variable
N ∈ Γ v value variable
Γ ` [P] V+ value of type P
Γ ` N V− value of type N
Γ ` •P K+ continuation accepting P

Γ ` [•N] K− continuation accepting N
Γ ` ∆ σ substitution for ∆

Γ ` # E well-typed expression

In Figure 2 we give a conceptual grammar of the language
induced by focusing proofs, where all we have done is remove
the precise type information from Figure 1, leaving only the
symbol of the corresponding syntactic class—some concrete
syntax for the conclusion is also shown to the right of each
rule. For example, a rough way of restating the rules of proof
and refutation is that a positive value (negative continuation)
can always be decomposed as a value (cont.) pattern together
with a substitution, while a positive continuation (neg. value)
is determined by a map from value (cont.) patterns to expres-
sions.

These rules only allow the construction of terms which
are β-normal, η-long, and in CPS. Which fragment of CPS
depends on the types one is considering, particularly their
polarities. We cannot include a detailed review here, but
the intuition is simple based on the two rules for forming
expressions: the rule for positive polarity passes a value to
a continuation variable, while the rule for negative polarity
passes a continuation to a value variable (cf. [47, Ch. 4]).

There is no problem with considering additional rules for
constructing terms, so long as we read them as notation for
building canonical terms (either statically or dynamically). For
example, given the dictionary of Example II.3, we can add
these rules for building pairs:

Γ ` [P1] Γ ` [P2]
Γ ` [P1 ⊗ P2]

Γ ` N1 Γ ` N2

Γ ` N1NN2

The rules may look isomorphic, but they are justified in
very different ways. To justify the ⊗ rule, we assume that
both premises have canonical introductions, which means
that we have values V+

1 = p1[σ1] and V+

2 = p2[σ2], where
pi :: ∆i  [Pi] and σi :: Γ ` ∆i. From this we can construct
(p1, p2) :: ∆1,∆2  [P1 ⊗ P2] (using the dictionary) and
(σ1, σ2) :: Γ ` ∆1,∆2, then (V+

1 ,V
+

2) :: Γ ` [P1 ⊗ P2] by
(V+

1 ,V
+

2) = (p1, p2)[σ1, σ2]. Without the type annotations, we
might display this local “justification” like so:

(V+

1 ,V
+

2) = (p1, p2)[σ1, σ2]
where V+

1 = p1[σ1],V+

2 = p2[σ2]

To justify the N rule, we consider the conclusion’s canonical
uses, i.e., refutation patterns for N1NN2 with holes ∆, and
show how to derive Γ,∆ ` #. Any such refutation pattern
comes from one for either N1 or N2, with the same ∆, and
in either case we can apply one of the premises to obtain
Γ,∆ ` #. Inventing some reasonable notation for patterns, this
reasoning could be summarized as:

(V−

1 ,V
−

2)(π1; d1) = V−

1(d1)
(V−

1 ,V
−

2)(π2; d2) = V−

2(d2)

Operationally, the different readings of these rules correspond
to the fact that one builds strict pairs, the other lazy.

When writing programs, we of course also want to consider
terms which are not already β-normal and η-long. Thus we
can internalize the composition and identity principles and
interpret them dynamically—in §IV-B we will examine this
in a more general setting.

C. Two ways of saying the same thing
The elegance of classical polarity is that positive and

negative views are perfectly symmetric. The structure of a
negative value is isomorphic to the structure of a positive
continuation, just as the structure of a negative continuation is
isomorphic to the structure of a positive value.

Of course, this elegant symmetry can also be seen as
needless redundancy, and it is tempting to define a more
minimal system by cross-section. Indeed, the positive fragment
of Figure 1 appears again and again (in different guises)
in studies of continuation-passing, including Thielecke’s CPS
calculus [44], response categories [41], Jump-With-Argument
[30], and tensorial logic [34]. While polarized types provide a
rich language for expressing intuitions about control directly,
in the classical setting there is fundamentally no loss of
expressivity in limiting oneself to, say, positive types (e.g.,
instead of building a lazy pair, build a continuation for a strict
sum, etc.).

On the other hand, as we discussed, a similar notion of
polarity seems to extend to intuitionistic systems in which
positive and negative fragments are not simply mirror images.
This suggests that we try to keep our basic intuitions about
polarity, but break the perfect symmetry of the classical notion.
Of course, we will not do this in an arbitrary way, but one
motivated by our desire to understand the laws of delimited
continuations.



III. G 

It is natural to approach delimited control by first general-
izing the answer type of continuations. In classical polarized
logic, every expression (i.e., the computation that results
from combining a value and a continuation) has type #, or
“contradiction”. As we discussed, # is not contradiction in the
usual mathematical sense of the world exploded, but rather in
the sense of something peculiar happened. Formally, # can be
interpreted as a distinguished logical atom.

So should we simply generalize # to an arbitrary proposi-
tion? Operational intuitions instead motivate that we restrict
the type of answers to be positive: think that the purpose of
a computation is to produce some piece of observable data.
In any case, starting from the formal hypothesis of positive
answer types, we can proceed to generalize our analysis of
classical polarity in an almost mechanical way.

A. Positive answers

Generalizing contradiction, for any positive proposition P
we write simply P to assert it as an ultimate consequence.
Generalizing denial, we write (−) .P for an argument towards
P (using the funny notation to emphasize that (−) . P, like
•(−), is a structural rather than a logical connective). Imagine
that we now go through Figure 1 and uniformly replace # by
P, and •(−) by (−) . P. What is the meaning of this formal
move?

The rule of positive proof remains unchanged, while the
rule of positive refutation is simply parameterized by a con-
sequence. The twist comes on the negative side:

∆  [N . P] −→ Γ,∆ ` P
Γ ` N

∆  [N . P] Γ ` ∆

Γ ` [N . P]

We have implicitly updated the dictionary here with a gener-
alized notion of refutation pattern—without being too precise
yet about what that means, let us try to understand the two
rules. As in the classical case, the rule of negative refutation
picks a refutation pattern (now in a generalized sense), and
fills in its holes. And the rule of negative proof? Following
the convention we already established, since P appears to the
left of the arrow and not in the rule’s conclusion, it is implicitly
universally quantified in the premise, i.e., “If for all P and ∆

such that ∆  [N . P], we can derive Γ,∆ ` P, then Γ ` N”.
We see that negative proof is still a sort of proof-by-

contradiction, but now polymorphic over consequences. In
particular, we could almost imagine justifying it intuitionis-
tically (bringing to mind Friedman [17]) by instantiating P
with N. . . except that this violates polarity. In §III-B, we will
explain how for a large class of negative types, a proof-by-
contradiction of N can indeed be converted into an intuition-
istic proof of N.

Let us clarify the new structure of the dictionary. We do
not want to consider ∆  [N . P] as an arbitrary relation, but
rather restrict to consequence parametric definitions.

Definition III.1. We write α.∆ to indicate that the conse-
quence variable α is bound in ∆, meaning that it can appear

in a hypothesis P . α ∈ ∆, and can be substituted by a
positive proposition (P . α)[P′/α] = P . P′. A parametric
dictionary is a pair of inductively defined relations ∆  [P]
and α.∆  [N . −].

Example III.2. The definitions of the standard negative con-
nectives (see Example II.3) can be generalized like so:

(no rule for >)
α.∆  [N1 . −]

α.∆  [N1NN2 . −]
α.∆  [N2 . −]

α.∆  [N1NN2 . −]

α.·  [⊥ . −]
α.∆1  [N1 . −] α.∆2  [N2 . −]

α.∆1,∆2  [N1ON2 . −]

∆1  [P] α.∆2  [N . −]
α.∆1,∆2  [P→ N . −] α.P . α  [↑P . −]

The definitions of the standard positive connectives remain
unchanged except for N⊥, which is redefined as a more general
positive connective N � P:

α.∆  [N . −]
∆[P/α]  [N � P] �

Now the way we interpret the negative rules is as follows:

α.∆  [N . −] −→ Γ, α.∆ ` α

Γ ` N
α.∆  [N . −] Γ ` ∆[P/α]

Γ ` [N . P]

In particular, we make explicit in the rule of negative proof
that the reasoning is parametric in the type of consequence,
and in the rule of negative refutation that the chosen pattern
is not limited to a particular consequence.

Finally, we consider the rule for using positive denials.
Under the uniform translation it becomes:

P . P′ ∈ Γ Γ ` [P]
Γ ` P′

Now, if this were the only rule for deriving ultimate con-
sequences from a hypothesis P . P′, it would be seemingly
incomplete—why shouldn’t we be allowed to further analyze
P′ to derive something else? Instead, we will say that P′ is an
intermediate consequence (notated .P′),

P . P′ ∈ Γ Γ ` [P]
Γ ` .P′

and tie the knot by adding the following pair of rules:

Γ ` [P]
Γ ` P

Γ ` .P Γ ` P . P′

Γ ` P′

In other words, ultimate consequences can be shown directly,
or derived by way of intermediate consequences. Collecting
all of these remarks, we arrive at Figure 3.

Principle (Composition).

1) If Γ ` P and Γ ` P . P′ then Γ ` P′.
2) If Γ ` N and Γ ` [N . P′] then Γ ` P′.
3) If Γ ` ∆ and Γ,∆ ` P then Γ ` P.
4) If Γ ` P1 . P2 and Γ ` P2 . P3 then Γ ` P1 . P3.
5) If Γ ` [N1 . P2] and Γ ` P2 . P3 then Γ ` [N1 . P3].



Contexts ∆,Γ ::= · | ∆1,∆2 | N | P . P′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∆  [P] Γ ` ∆

Γ ` [P]
∆  [P] −→ Γ,∆ ` P′

Γ ` P . P′

α.∆  [N . −] −→ Γ, α.∆ ` α

Γ ` N
α.∆  [N . −] Γ ` ∆[P/α]

Γ ` [N . P]

N ∈ Γ Γ ` [N . P]
Γ ` P

P . P′ ∈ Γ Γ ` [P]
Γ ` .P′

Γ ` ·

Γ ` ∆1 Γ ` ∆2

Γ ` ∆1,∆2

Γ ` [P]
Γ ` P

Γ ` .P Γ ` P . P′

Γ ` P′

Fig. 3. Generalized rules of focusing

Principle (Identity).
1) If ∆ ⊆ Γ then Γ ` ∆.
2) Γ ` P . P for all P.

As in §II-A, the definition of the procedures for composition
and identity are completely generic in the dictionary. Although
the long list of composition principles may seem daunting,
they are just the mutually-recursive subroutines of this pro-
cedure (which we will describe in more concrete operational
terms in §IV-B).

B. Generalized ¬¬ interpretations

Here we describe how the generalized notion of polarity
corresponds to a generalized class of double-negation in-
terpretations into second-order intuitionistic logic, including
different interpretations of intuitionistic logic itself. For con-
creteness, we limit our attention to the connectives (re)defined
in Examples II.3 and III.2. We begin by defining a positive
translation P+ together with a negative (dualizing) translation
N−α, from polarized formulas to second-order intuitionistic
formulas free in a monadic predicate T :

1+ = T 0+ = F >−α = F ⊥−α = T

(P1 ⊗ P2)+ = P1
+ ∧ P2

+ (N1ON2)−α = N1
−α ∧ N2

−α

(P1 ⊕ P2)+ = P1
+ ∨ P2

+ (N1NN2)−α = N1
−α ∨ N2

−α

(N � P)+ = N−α[P+/α] (P→ N)−α = P+ ∧ N−α

(↓N)+ = ∀α.N−α ⊃ Tα (↑P)−α = P+ ⊃ Tα

Next we extend the translation to judgments:

[P]∗ = P+ P∗ = .P∗ = T P N∗ = ∀α.N−α ⊃ Tα

(P1 . P2)∗ = P1
+ ⊃ T P2

+ ([N] . P)∗ = N−α[P+/α]

(·)∗ = T (∆1,∆2)∗ = ∆∗1 ∧ ∆∗2

We also define the formulas UnitT = ∀α.α ⊃ Tα, ExtT =

∀αβ.(α ⊃ Tβ) ⊃ (Tα ⊃ Tβ), and MonT = UnitT ∧ ExtT , as well
as the operator Iα = α, observing that for any formula ϕ free
in T , if `ip2 MonT ⊃ ϕ then `ip2 ϕ[I/T ].

Theorem III.3. If Γ ` J then `ip2 MonT ⊃ Γ∗ ⊃ J∗

Theorem III.4. For any positive or negative proposition A, if
`ip2 A∗[I/T ], then ` A.

Proof: Very similar to the proofs in the classical setting
(see Theorems 3.5.1 and 3.5.2 of [47]), with the main differ-
ence that the proof of Theorem III.3 applies the assumptions
UnitT and ExtT to deal with the two new rules.
The translation uses only a small fragment of second-order
logic, and sometimes this means we can derive a direct
correspondence with (intuitionistic) propositional logic. Let
|A| be the translation that collapses polarized connectives and
erases coercions, i.e., with some abuse of notation:

|1| = |>| = T |0| = |⊥| = F | ↓| = | ↑| = ·

|⊗| = |N| = ∧ |⊕| = |O| = ∨ |→| = |�| = ⊃

Definition III.5. A standard polarized proposition is orderly
if it does not contain O, and pure if it does not contain �.
A proposition is immaculate if it is both orderly and pure.

Theorem III.6. For A immaculate, ` A iff `ip |A|

Proof: Corollary of Theorems III.3 and III.4, because we
can prove in ip2 (which is conservative over ip) that A∗[I/T ] ≡
|A| for immaculate A. These equivalences are immediate in
the case of pure positive connectives and the coercion ↓, rely
on quantifier commutations in the case of orderly negative
connectives, and apply a substitution of |P| for α in the case
(↑P)∗[I/T ] = ∀α.(P∗ ⊃ α) ⊃ α.
Although there exist non-immaculate polarizations of intu-
itionistic logic, in general, O is unsound with respect to
intuitionistic disjunction, while � is incomplete for impli-
cation. For example, it is easy to construct a closed proof
of (P → ⊥)O ↑P (which is isomorphic to P → ↑P), while
in general it is impossible to prove NNM�(↓N ⊗ ↓M). We
note that the immaculate fragment coincides precisely with the
standard definition of polarized intuitionistic logic (cf. [31],
[33]), as well as with the type structure of Call-By-Push-Value
[30].

But we must also make clear that although O and � may
not be immaculate, they are not immoral: they are perfectly
constructive. As the translation into second-order logic sug-
gests, O is essentially the Church encoding of disjunction,
while (as we will explain in §IV-C) � internalizes continua-
tions as values. Both connectives are useful computationally,
and because they have first-class status as logical connectives,
do not interfere with the pure and orderly lives of their
neighbors.

It is also worth considering the logical content of the
interpretation instantiated with predicates T other than I. For
example, taking Tα = # (the fixed atom # representing
absurdity) yields classical logic as in the classical double-
negation translations—except that this definition only satisfies
UnitT if we explicitly assert inconsistency (as in [20]). With
other T , we might hope to recover other modal logics and
intermediate logics (e.g., Tα = α ∨ #, cf. [17], [27]).

IV. D    

In this section we elaborate the sense in which the gen-
eralized rules of focusing provide a foundation for reasoning
about delimited continuations and control operators, and their
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Fig. 4. Generalized canonical forms

interaction with side-effects. We do not have space to include
many examples here, and the reader is instead referred to our
Twelf formalization,2 which closely follows and elaborates this
section.

A. Syntax of normal forms

Since Figure 3 is only a slight modification of Figure 1,
the interpretation of §II-B also only requires minor adjust-
ment. Our taxonomy of values, continuations, substitutions,
and expressions remains unchanged, except that continuations
are associated with positive answer types, and expressions
with positive types that are either synthesized or checked
(depending on whether they correspond to intermediate or
ultimate consequences). In Figure 4, we again give an abstract
syntax of canonical forms, derived from Figure 3 in the same
way Figure 2 was derived from Figure 1.

B. Dynamic semantics

Here we explain how to turn the composition and identity
principles of §III-A into dynamic processes, as usual in a type-
generic way. First we introduce a bit of notation:

1. K+ $ E 2. K− $ V− 3. E[σ] 4. K+

2 ◦ K+

1 5. K+

2 ◦ K−1

Each of these constructs internalizes one of the composition
principles, swapping the order of the two premises and leaving
type constraints implicit. Principles (1) and (2) are justified by
the following reductions to principles (3)–(5):

K+$!p[σ] { K+(p)[σ] d[σ] $ V− { V−(d)[σ]

K+ $ (K+

1 $ .E) { (K+ ◦ K+

1 ) $ .E K+ $ (K−1 $ v) { (K+ ◦ K−1 ) $ v

Principles (3) and (4) are reduced as follows:
3) E[σ] is the capture-avoiding substitution of σ into E

(which creates instances of (1) and (2))
4) K+

2 ◦ K+

1 is defined by (K+

2 ◦ K+

1)(p) = K+

2 $ K+

1(p)
Finally, (5) reduces to multiple applications of (4), relying on
the following observation:

Proposition IV.1. Any α.∆ decomposes as the interleaving
of a constant context ∆′ with a parametric context α.P1 .
α, . . . , Pn . α. Thus any substitution σ for ∆[P/α] decomposes
as the interleaving of a substitution σ′ for ∆′ together with
a substitution (K+

1, . . . ,K
+

n) for P1 . P, . . . , Pn . P, which we
express as σ = σ′ + (K+

1, . . . ,K
+

n).

Composition principle (5) is therefore reduced as:

K+

2 ◦ d[σ′ + (K′1
+, . . . ,K′n

+)] { d[σ′ + (K+

2 ◦ K′1
+, . . . ,K+

2 ◦ K′n
+)]

2http://www.pps.jussieu.fr/~noam/delimited/

We likewise internalize the identity principles. Let {∆} denote
the list of variables bound by a context, and {p} the list of
variables bound by a pattern. Then the identity substitution
id{∆} is defined together with the identity continuation Id, by
the clauses id{·} = ·, id{∆1,∆2} = (id{∆1}, id{∆2}), and

idk(p) = Id $ k $ p[id{p}] idv(d) = d[id{d}] $ v

Id(p) =!p[id{p}]

C. Delimited control operators

We have used the logical notion of polarity to reconstruct
the operational notions of value, continuation, substitution
and expression. Delimited control operators can already be
seen as living inside this logical universe—but where? As we
explained earlier, negative values are themselves a general
form of control operator, defined by pattern-matching on
continuations. Recall their generic introduction rule:

α.∆  [N . −] −→ Γ, α.∆ ` α

Γ ` N

The requirement of answer type polymorphism is a strong
restriction, however, which can be relaxed by replacing values
of type N with continuations of type N � Pi .Po (parse this as
(N � Pi).Po). By definition of the positive-polarity implication
�, note the following derived inference rule:

α.∆  [N . −] −→ Γ,∆[Pi/α] ` Po

Γ ` N � Pi . Po

Decomposing delimited control effects as a triple brings to
mind Danvy and Filinski’s original type-and-effect system
[10] for shift and reset (DF89), but whereas DF89 requires
various non-logical rules (including the four-place connective
τ/δ → α/δ to represent functions with embedded control ef-
fects), we simply instantiate N with basic logical connectives.
By instantiating N with P → N we derive the typing rule
for functions with embedded effects, and by instantiating it
with ↑P we derive the “shift” operator, which binds a single
continuation variable:

Γ, P . Pi ` Po

Γ ` ↑P� Pi . Po

We emphasize that we are not inventing any new rules here,
merely expanding definitions. A useful exercise for the reader
is to likewise verify the following rules for building strict and
lazy pairs of terms with delimited control effects, by the same
sort of transformations we gave at the end of §II-B (we elide
the fixed context Γ):
↑P1 � Px . Po ↑P2 � Pi . Px

↑(P1 ⊗ P2)� Pi . Po

N1 � Pi . Po N2 � Pi . Po

N1NN2 � Pi . Po

Observe that the answer types in the ⊗ rule now reflect left-
to-right evaluation, whereas the unbiased N rule reflects lazy
evaluation.

This analysis is very close to Kiselyov and Shan [28],
who also make use of three kinds of “arrows”. More or
less, what we write →, �, and ., they write as →, ↑, and
↓ (unfortunately clashing with our notation for the polarity

http://www.pps.jussieu.fr/~noam/delimited/


coercions). An important feature of their type system, which
is more general than DF89, is that it allows access to delim-
ited continuations beyond the nearest dynamically-enclosing
delimiter. Essentially, this is because (their) ↓ can be nested.
Here, the same is achieved by internalizing . with �, since
any positive continuation K :: P . Pr can be represented as
a positive value ↑K :: ↑P� Pr. Like Kiselyov and Shan, we
derive the “reset” operation, which converts ↑P� P.Po to Po

by plugging the continuation with the value ↑Id, where Id is
the identity continuation P . P.

Finally, we note that the relationship between values of
type N and continuations of type N � Pi . Po accords with
Asai and Kameyama’s definition [4] of purity as answer type
polymorphism.

D. Equality and external effects

Again, we view the identity and composition principles of
§IV-B as included among potentially many different notations
for canonical forms (cf. [40]). Equivalence of notations is
defined as equality of their denoted canonical forms. Now,
in the classical case, we placed no non-trivial equations on
focusing proofs themselves (only α-equivalence), with every
syntactically distinct expression representing a semantically
distinct, sequential evaluation strategy. In the general setting,
though, we have new possibilities. Consider the following
expression (where .E $K+ is sugar for K+ $ .E):

.E1 $p1 � .E2 $p2 � E(p1,p2)

Assuming that p1 and p2 bind distinct variables and that .E2
does not depend on p1, the preceding might be considered
equivalent to

.E2 $p2 � .E1 $p1 � E(p1,p2)

On the other hand, intuitively this equivalence is only valid if
.E1 and .E2 do not have interfering side-effects.

As hinted by the translation of §III-B, we can interpret
proofs/programs with respect to an ambient notion of com-
putation T , indeed a monad [36]. The syntactic inclusion ! of
values V+ in (checking) expressions E may be recognized as
the unit of the monad, and the application of a continuation
K+ to a (synthesizing) expression .E as its bind operation. In
general, then, which additional equations we need to place on
these canonical forms depends on the monad we have in mind.
This general question is beyond our scope here, but we can
consider a few interesting cases:
• T the free monad: no additional equations.
• T a commutative monad [26]: the above and similar

equations should be derivable.
• T = I (identity monad): further equation should be

derivable, expressing that computations can be freely
duplicated or thrown away.

The commutative monad equations are dealt with in CLF
[45] in terms of a notion of concurrent contexts (which
generalize evaluation contexts), and we believe this approach
can be adapted to validate the additional equations of the
identity monad, yielding a decision procedure in the finitary

case (i.e., when each type has finitely many patterns and the
definition ordering is well-founded). Combining this with The-
orem III.6, it should be possible to connect equality of focusing
proofs in the free/identity monad cases to normalization-by-
evaluation-based decision procedures for lambda calculus with
weak/strong sums [9], [1].

E. Monadic reflection

We end this section by briefly relating the concepts we’ve
been exploring to Filinski’s monadic reflection [14], [16],
a way of mediating between the “internal view” of effects
(typical of Haskell) where monads are used as a way of
organizing purely functional code, and the “external view”
(typical of ML) where at least a few effectful operations are
built into the operational semantics of the language. Intuitively,
reflect takes a pure piece of data of some monadic type Tα
and performs the effect it represents, yielding a computation
of type α. Conversely, reify takes an effectful computation of
type α and represents it as a pure term of type Tα. “Filinski’s
representation theorem” is the observation that the delimited
control operators shift and reset can be used to implement
reflect and reify for any monad [14].

To begin, we will explain Filinski’s representation theorem
in terms of elementary category theory [32].3 We then describe
how to program this theorem directly, given one more natural
generalization of the proof theory of polarity.

Let Set be the category of sets. A monad on Set is a triple
of a functor T : Set → Set, a map ηP : P → T P (the unit of
the monad) for each object P ∈ Set, and a map K∗ : T P1 →

T P2 (the extension operation) for each map K : P1 → T P2,
satisfying the equations

η∗P = IdT P K∗ ◦ η = K (K∗1 ◦ K2)∗ = K∗1 ◦ K∗2

Given a monad T on Set, the Kleisli category SetT shares
the same objects as Set and has morphisms SetT (P1, P2) =

Set(P1,T P2), with identity and composition defined using
the monad’s unit and extension operation. The functor ET :
SetT → Set is defined by ET P = T P and ET K = K∗.

Now by the Yoneda lemma, for every object P ∈ SetT , there
is a bijection between ET P and the set of natural transforma-
tions from the hom-functor SetT (P,−) to ET . Concretely, given
an element E ∈ T P, we can form the natural transformation
which maps any K : P → T P′ to K∗(E) ∈ T P′. Conversely,
given V ∈ Nat(SetT (P,−),ET ), we can obtain V(ηP) ∈ T P.

We claim that the two directions of the Yoneda isomorphism
are Filinski’s original implementation of reflect and reify, up
to minor details (e.g., Filinski uses a universal type to get
around limitations of ML’s type system).

To see this directly in polarized logic, we have to make
explicit some of the type structure which has thus far been
implicit in our analysis. We explained (§III-B, §IV-D) that
polarized types and terms can be interpreted with respect to a
monad, implicit and hence fixed. Suppose we make the monad

3The connection between Filinski and Yoneda has as far as I know not
been previously pointed out, although a very similar connection was drawn
in a blog post by Dan Piponi [37].



explicit on the negative side, defining a class of negative types
NT for any internal monad T . An internal monad is defined
as above, by a family of continuations ηP :: P . T P and
continuation transformers (−)∗ :: P.T P′ ` T P.T P′, satisfying
the above equations. The positive-to-negative coercion is then
written ↑T P (annotated explicitly with an internal monad),
defined by α.P . Tα  [↑T P . −]. We forgo recapitulating the
generic rules of inference and composition for negative types
NT , which are straightforward generalizations of the rules with
the implicit monad.4

Now, Filinski’s representation theorem is realized as a
simple isomorphism between expressions of positive type T P
and values of negative type ↑T P: given an expression E :: T P,
we can form the negative value ↑k � k∗ $ E :: ↑T P, and
conversely, given a negative value V− :: ↑T P, we can form the
expression ↑ηP $ V− :: T P.

V. C

Much of the classical literature on polarity takes place in the
context of classical linear logic, with elegant connections to
game semantics and continuation-passing. On the other hand,
less systematic polarity-like distinctions have been invented to
tackle difficult problems in intuitionistic circles, particularly to
better understand effectful programming and dependent types.
We have shown that “intuitionistic polarity” really does arise
from the same principles as classical polarity, but in the more
general framework of delimited continuation-passing, and that
this setting enriches constructive logic with delimited control
operators.

Although we believe this particular generalization of the
notion of polarity is well-motivated, it is also clearly only a
step towards better understanding and further generalization.
How does our interpretation of negative polarity relate to the
algebraic view in other recent studies of control and effects
[24], [35]? Can the manipulations we made in §IV-E be related
to the more abstract study of the Yoneda lemma [42]? Can
the hierarchy of control operators [11], [5] be related to the
polarized generalization of the quantifier hierarchy [7], and to
hierarchies in higher category theory? And what can we learn
from such relationships?
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