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Abstract

Variable binding is a prevalent feature of the syntax and proof theory ofmany logical systems. In this paper,
we define a programming language that provides intrinsic support for bothrepresenting and computing with
binding. This language is extracted as the Curry-Howard interpretation ofa focused sequent calculus with
two kinds of implication, of opposite polarity. Therepresentational arrowextends systems of definitional
reflection with the notion of a scoped inference rule, which permits the adequate representation of binding
via higher-order abstract syntax. On the other hand, the usualcomputational arrowclassifies recursive
functions over such higher-order data. Unlike many previous approaches, both binding and computation can
mix freely. Following Zeilberger [POPL 2008], the computational function space admits a form of open-
endedness, in that it is represented by an abstract map from patterns to expressions. As we demonstrate
with Coq and Agda implementations, this has the important practical benefit that we can reuse the pattern
coverage checking of these tools.
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1 Introduction

A logical framework provides a set of abstractions that facilitate the representation oflogical systemssuch
as programming languages and logics. Moreover, logical frameworks enable generic infrastructure, such as
tools for computing with and reasoning about logical systems, to be implemented once for a framework and
reused across many logical systems. In this sense, one of the most well-known logical frameworks is the
datatype mechanism of functional programming languages such as SML andCoq [Milner et al., 1997, Coq
Development Team, 2007]. Datatypes permit facile representations of the first-order algebraic terms that fea-
ture prominently in the syntax and proof theory of logical systems, and the ambient functional programming
language provides a generic mechanism for computing with such representations. The LF logical frame-
work [Harper et al., 1993] enriches ordinary datatypes with one additional abstraction: intrinsic support for
binding and scope, facilitating the representation ofα-convertible variables, capture-avoiding substitution,
and hypothetical judgements (uniform reasoning from assumptions to conclusions). However, LF is only a
representation language, and requires a separate language, such asTwelf [Pfenning and Scḧurmann, 1999],
for computation. Because of this stratification, LF is less general than ML datatypes in one important way:
it is impossible to embed computations in data. There is no LF analogue of a datatype with an SML func-
tion as a component, nor of an iterated inductive definition [Martin-Löf, 1971]. In this work, we focus on
providing an abstraction for representing binding, as in LF, while simultaneously allowing computations to
be embedded in data, as in ML.

Our approach to this problem builds on definitional reflection [Schroeder-Heister, 1984], which is a log-
ical analogue of ML datatypes. Definitional reflection internalizes definitionby inference rules as a logical
primitive: a logic with definitional reflection contains a class of atomsP defined by a databaseΨ of inference
rules, which have the formP ⇐ A1 ⇐ . . . ⇐ An . For example, the two rules(P ⇐ A1 ; P ⇐ A2 ⇐ A3 )
defineP as equivalent toA1 ∨ (A2 ∧ A3 ). Recursive definition is also allowed; for example, the rule
databaseΨN = (nat ; nat ⇐ nat) defines the natural numbers. The sequent calculus right rule for defined
atoms is rule application:

P ⇐ A1 ⇐ . . . ⇐ An ∈ Ψ 〈Ψ〉Γ =⇒ A1 · · · 〈Ψ〉Γ =⇒ An

〈Ψ〉Γ =⇒ P

The left rule for defined atoms is thedefinitional reflectionrule1:

∀(P ⇐ A1 ⇐ . . . ⇐ An ∈ Ψ) : 〈Ψ〉Γ, A1, . . . , An =⇒ C

〈Ψ〉Γ, P =⇒ C

The definitional reflection rule can be read as asserting that the rule database is exhaustive: to reason from
P , it suffices to reason from the premises of all rules concludingP . Through the Curry-Howard correspon-
dence, we can think of inference rules as datatypeconstructors; e.g., the two rules inΨN correspond to zero
and successor. The right rule forP builds a term by applying a datatype constructor. The left rule states that
P may be destructed bypattern-matching, giving a case for each possible constructor.

Now, there turns out to be a close relationship between the ability to destruct alogical constant by
pattern-matching and the logical notions offocusingandpolarity [Andreoli, 1992, Girard, 1993, Zeilberger,
2008]. Roughly, only the constructors forpositiveconnectives (like multiplicative conjunction⊗ and addi-
tive disjunction⊕ in linear logic) can be matched against. Connectives ofnegativepolarity (like additive
conjunctionN and implication−◦ in linear logic) must have explicit destructors (e.g., first and second pro-
jections, application), though there is a dual sense in which these may be matched against toconstructa term.

1I.e., the rule “reflects” upon the possible proofs ofP according to its definition.

1



Our work began by observing a seeming paradox about the polarity of variable binding: In some respects,
binding behaves like implication, ordinarily negative, with application defined by substitution. However,
it is also possible to pattern-match against data with variable binding, suggesting it may correspond to a
positive connective.

In this paper, we propose an extension of definitional reflection calleddefinitional variation,which, via
Curry-Howard, yields a functional programming language with intrinsic support for representing and com-
puting with binding. We present this logic as a focused sequent calculus in which the definitions of atoms
are open-ended, and can be varied by means of logical connectives.One such connective is indeed a positive
form of implicationR ⇒ A, called therepresentational arrow.A proof of R ⇒ A is a proof ofA which
may use the additional inference ruleR: this connective introduces a new, scoped inference rule, which
corresponds to a new, scoped datatype constructor. The representational arrow thus provides an abstraction
for encoding binding through higher-order abstract syntax. On the other hand, the familiarcomputational
arrow →, of negative polarity, classifies clausal, pattern-matching functions oversuch higher-order data.
This yields a programming language which has the expressiveness of ML (via the computational arrow)
while permitting direct representations of variable binding (via the representational arrow). Moreover, both
function spaces can be used in datatype definitions, providing datatypes that freely mix binding and compu-
tation. We leave the study of a dependent version of this language, which would enrich a type theory such
as Coq with intrinsic support for binding and scope, to future work.

Following Zeilberger [2008], our computational arrow admits a form of open-endedness, in that such
functions are represented abstractly by meta-level functions from patterns to expressions. These meta-level
functions can be taken to be constructive, in which case all implications are effectively computable, or non-
constructive, in which case the operational behavior is necessarily oracular (as in Howe [1991]). The open-
endedness of the computational arrow has important practical benefits. First, these meta-level functions can
be presented as programs in existing proof assistants, which permits us to reuse existing pattern coverage
checkers. Second, open-endedness means that functions written in several proof assistants, using different
implementations of binding, can be combined in a single program.

The technical contributions of this paper are as follows:

• In Section 2, we present a focused sequent calculus for definitional variation, and give the expansions
and reductions witnessing admissibility of identity and cut.

• In Section 3, we discuss some interesting distributivity properties of⇒, and prove that the type the-
ory includes (simply-typed) LF as a subsystem—proving that the representational arrow adequately
represents binding.

• In Section 4, we give a proof term assignment to our sequent calculus, yielding a functional pro-
gramming language with an operational semantics given by cut elimination. We prove type safety,
and illustrate programming in this language via several examples that mix binding and computation.
Additionally, we discuss implementations of the type theory in Agda [Norell, 2007] and Coq [Bertot
and Cast́eran, 2004].

Comparison with Other Techniques for Representing Binding

We now describe the high-level differences between our approach to representing binding and other tech-
niques which have been discussed in the literature. We defer a detailed, technical comparison with related
work to Section 5.
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Concrete Implementations One approach to computing with binding is simply to work directly with a
concrete implementation. The most minimalist implementation of binding is de Bruijn indices[de Bruijn,
1972], in which variables are represented as numbers indexing positionally into a context. However, de
Bruijn indices are regarded as being difficult for programmers to work with: for example, terms are thought
to be difficult to write and to read, and structural properties such as weakening (extending a context with
additional variables) and exchange (permuting variables in the context) require indices to be adjusted. Con-
sequently, it is common to represent the indices into the context as some named form of atom (e.g., strings).
Unfortunately, when bound variables are represented by atoms, a given bound variable can be represented
equally well by any atom, so terms must be explicitly quotiented byα-equivalence. When free variables
are represented by atoms, inference rules must be carefully crafted to ensure that they yield general enough
inductive hypotheses for proving theorems by rule induction (see [Aydemir et al., 2008] for comparison
of exists-fresh, forall-fresh, and cofinite rules). An alternative to choosing between de Bruijn and named
form is to use one representation for bound variables and another for free variables. For example, locally
nameless (de Bruijn indices for bound variables) / globally named (names for free variables) is thought to
provide a good balance of advantages and disadvantages [Aydemir et al., 2008].

To our minds, the chief disadvantage of working directly with a concrete implementation of binding
is that it provides too “leaky” an interface. That is, the programmer is exposed to the gory details of the
particular representation of binding, and must program differently for different representations. Moreover,
it may not be easy to port code written with respect to one implementation of binding to another.

In contrast to these concrete implementations, our representational function space provides an abstract
interface for binding. Variables in a logical system of interest (anobject language) are represented by
inference rule variables in our type theory. This interface hides the concrete details of how these variables
are implemented, and, we argue, leads to natural representations and code. Moreover, by exploiting the
open-endedness of our computational function space, programmers who wish to work with a particular
concrete implementation of binding may do so.

Nominal Logic Unlike the above concrete implementations, nominal logic [Gabbay and Pitts, 1999] does
provide an abstract interface for binding, and this interface has been implemented in several programming
languages (e.g., FreshML [Pitts and Gabbay, 2000, Shinwell et al., 2003] and the Isabelle nominal datatype
package [Urban, 2008]). In nominal logic, variables of a logical system are represented using namesa, and
binders are represented by a primitive<a> t, which pairs a namea with a termt . The nominal logic
interface for binding then provides notions of name permutation and freshness,α-equivalence for binders,
and induction and recursion moduloα-equivalence. This interface hides the details of these operations from
programmers, and provides a reusable implementation of binding.

However, the nominal apparatus is, in a sense, more general than what isrequired simply to represent
variable binding. This is because names in nominal logic are atoms withglobal scope: it is always permis-
sible to mention a namea (just as it is always permissible to mention a string in ML) even if there is no
enclosing binder bringinga into scope. Consequently, the nominal interface for binding requires machinery
for ensuring that certain names are fresh with respect to (roughly “notfree in”) certain computations. For
example, in order for a function to be well-defined onα-equivalence classes of nominal terms, it is necessary
to prove that the result of the function is independent of the namea appearing in any binder<a> t that
the function processes—i.e., that the name appearing in the binder is fresh with respect to the result of the
function. Thisfreshness condition for binders[Pitts, 2006] must be proved for each function definition. Pitts
and Gabbay [2000] employ a conservative freshness analysis to discharge these conditions. Pottier [2007]
describes a specification logic in which these conditions can be proved. Shinwell et al. [2003] exploit an
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effectful operational semantics to ensure that the conditions cannot be violated.
In contrast, we present an interface for binding in which variables are inherently scoped: a represen-

tational function introduces a new, scoped constant, notated by a meta-level variable. Just as an ill-scoped
ML program will be rejected by the type checker, an ill-scoped object-language program will not be rep-
resentable as data using this interface for binding. Moreover, it is impossible for a function to violate the
freshness condition for binders: since a binder in our interface isnot a pair of a name (which is a piece
of data) and a term, but a meta-level binder of a variable in a term, there is no name to be dependent
on. Our type theory ensures respect forα-equivalence using little more infrastructure than is necessary to
scope-check an ML program. Nonetheless, when they are in scope, variables are treated just like any other
datatype constructor, and therefore can be pattern-matched against, compared for equality, etc, permitting a
programming style similar to nominal code.

Higher-Order Abstract Syntax In the LF logical framework [Harper et al., 1993], variable binding is rep-
resented usinghigher-order abstract syntax(HOAS): object language variables are represented by LF vari-
ables, and object language binders are represented by the LF functionspace. Object-languageα-conversion
is represented by LFα-conversion, and object-language substitution is represented by LF substitution. Such
substitutions arise fromapplyingan LF function representing a binder, using a standard implication elim-
ination rule (modus ponens). These techniques adequately capture the notion of variable binding because
object-language entities are represented by uninterpreted base types (not inductive types) in LF; conse-
quently, an LF function cannot case-analyze its argument, but must use ituniformly. Thus, the LF function
space provides an adequate interface for representation, but no abilityfor computation. Computational lan-
guages such as Twelf [Pfenning and Schürmann, 1999] provide an additional layer on top of LF, in which the
terms of the LF type theory itself are treated as an inductive definition. For example, in Twelf,Π2 metatheo-
rems about LF terms are proved by using the induction principle for LF terms todefine total relations. This
stratification explains why the LF function space seems to have two differentelimination forms: in LF, a
function is eliminated by application, which gives substitution; in Twelf, where the terms of LF are treated
as an inductive datatype, it is eliminated by pattern-matching. As we noted above, this stratification also
means that there is no way to embed a Twelf computation in an LF representation.

In this paper, we avoid the stratified approach taken by LF/Twelf, as both our representational arrow
(which provides the functionality of the LF function space) and our computational arrow (which provides
the functionality of Twelf metatheorems) are connectives in a single language. However, this means we
must choose sides: is the representational arrow eliminated by application (as in LF) or by pattern-matching
(as in Twelf)? Here, we take the Twelf elimination form as primitive: our representational arrowR ⇒ A is
eliminated by pattern-matching, which exposes a value of typeA potentially using the ruleR. Consequently,
the representational arrow is a funny sort of implication, in that it need notsatisfy modus ponens: we need
not make ana priori commitment to a substitution principle for rulesR in the rule context. In contrast,
because LF functions are internally eliminated by modus ponens, LF representations inherently commit to a
notion of substitution for object-language variables. Our representational implicationR ⇒ A thus provides
primitive support forscoped constants, without committing to structural properties, such as substitution, for
the rule context. Indeed, in our type theory, it is not necessarily the casethat these structural properties
hold for all rule systems, because computational functions can be used in the premises of rules. Such rules
have proven quite useful in frameworks, such as Coq, based on iterated inductive definitions [Martin-L̈of,
1971, Coquand and Paulin-Mohring, 1989]; one common use is to negate an inductive definition, with a
premiseP → ⊥ asserting the refutability ofP . However, such rules can invalidate structural properties: for
example, given a derivation including a proof of〈Ψ〉P → ⊥, it is not possible to weakenΨ by addingP .
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Thus, our language of inference rules is more general than LF, in that itpermits computational premises.
In compensation, this generalization weakens what can be said genericallyabout the class of all rule systems
that can be represented. However, this weakening is not an obstacle in practice: we prove that structural
properties such as substitution hold generically for all LF-like rule systems,recovering the benefits of the
LF elimination form for its function space. By exploiting computational open-endedness, we may imple-
ment this proof as a datatype-generic program, so that when programmersrestrict themselves to LF-style
representations, they can rely on the rule context behaving like a hypothetical judgement. However, if a pro-
grammer uses more general representation techniques, such as iterated inductive definitions, the structural
properties of the hypothetical judgement are not assured, and explicit justification must be provided. In this
sense our calculus unifies the practical benefits of the LF approach, where the structural properties are avail-
able “for free”, with the benefits of more concrete approaches, which permit more general representation
techniques at the expense of demanding proof of the structural properties.

2 Focusing on Definitional Variation

In this section, we present a focused sequent calculus for intuitionistic definitional variation. When describ-
ing this calculus, we foreshadow the proof-term assignment given in Section 4, freely interchanging logical
and type-theoretic terminology (“proposition” and “type”, “implication” and “function space”, “logic” and
“type theory”, etc.).

Before discussing the technical details, we build intuition for the polarities of the connectives. One way
to view positiveandnegativepolarity is in terms of Michael Dummett’s distinction between verificationist
and pragmatist “meaning-theories” [Dummett, 1991]. Positive connectivesare in a sense “defined” by how
you verify them; the sequent calculus we present makes this idea formal, in that a positive connective is fully
specified by axiomatizing the structure of the values that introduce it. Consequently, its elimination form is
any context that consumes all such values. Dually, negative connectives are “defined” by how you use them;
in our presentation, a negative connective is fully specified by the observations its elimination forms make.
Consequently, its introduction form is any data that supports all such observations.

For example, the computational arrow is negative because it is biased towards use: to observe a function
of typeA → B , apply it to any value of typeA and then observe the resultB. Consequently, a computational
arrow may be introduced by giving a proof ofB for every value of typeA—in other words, by defining a
function using pattern-matching. On the other hand, the representational arrow is positive because it is
biased towards verification: to build a value of typeR ⇒ A, build a value of typeA using the additional
inference ruleR. Consequently, a representational arrow iseliminatedby pattern-matching, corresponding
to informal proofs by rule induction on syntax with variable binding.

Our focused sequent calculus is defined in two stages, following the style of Zeilberger [2007]. First,
the (polarized) connectives are defined by axiomatizing the structure of (positive) values and (negative) ob-
servations. Second, there is a general focusing framework that is independent of the particular connectives
of the logic. The two judgements defining the connectives are conceptually prior, in that the remaining
judgements quantify over them. For the sake of presentation, we start by describing the connective judg-
ments in the simple propositional case, then present the general focusing rules, and finally return to revise
the definitions of the connectives in the setting of definitional variation.

We writeC+ andC− to stand for positive and negative formula,X+ andX− for positive and negative
propositional variables (atomic propositions), and∆ to stand for a list of negative formulas and positive
atoms. The positive connectives are defined using the judgement∆  C+, which corresponds to applying
only linear right-rulesto showC+ from ∆. For example, the rules defining conjunction, disjunction, and
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atoms are as follows:

X+  X +

∆1  C+
1

∆2  C+
2

∆1,∆2  C+
1

⊗ C+
2

∆  C+
1

∆  C+
1

⊕ C+
2

∆  C+
2

∆  C+
1

⊕ C+
2

Foreshadowing the Curry-Howard interpretation, we will refer to derivations of this judgement asvalue pat-
terns; linearity captures the restriction familiar from functional programming that a pattern binds a variable
exactly once.

Negative connectives are defined using the judgement∆;C−  γ, which corresponds to usinglinear
left-rulesto decomposeC− into the consequenceγ, which is either a negative atomX− or a positive formula
C+. The derivations are elimination contexts for negative types (which are ordinarily calledspines), except
that the contexts are made up of patterns rather than full terms; hence we refer to them asspine patterns.
The rules for atoms, ordinary implication, and negative conjunction are as follows:

·;X−  X−

∆1  C+
1

∆2;C
−

2
 γ

∆1,∆2;C
+
1

→ C−

2
 γ

∆;C−

1
 γ

∆;C−

1
NC−

2
 γ

∆;C−

2
 γ

∆;C−

1
NC−

2
 γ

We have adopted linear logic notation by writing⊗ for positive andN for negative conjunction. In the
present setting, both of these connectives encode ordinary intuitionistic conjunction with respect to prov-
ability, but they have different proof terms: positive conjunction is introduced by an eager pair whose com-
ponents are values, and eliminated by pattern-matching against both components; negative conjunction is
eliminated by projecting one of the components, and introduced by pattern-matching against either possible
observation, i.e. by constructing a lazy pair.

2.1 Focusing Judgements

In Figure 1, we present the focusing rules. In these rules,Γ stands for a sequence of linear contexts∆, but
Γ itself is treated in an unrestricted manner (i.e., as in ML, variables are bound once in a pattern, but may be
used any number of times within the pattern’s scope).

The first two judgements concern the positive connectives. The judgement Γ ⊢ [C+] defines right-focus
on a positive formula, orvalues: a value is a value pattern under a substitution for its free variables. Focus
judgements make choices: to proveC+ in focus, it is necessary to choose a particular shape of value by
giving a value pattern, and then satisfy the pattern’s free variables. Values are eliminated the left-inversion
judgementΓ; γ0 ⊢ γ, which defines avalue match, or case-analysis. Inversion steps respond to all possible
choices that the corresponding focus step can make: the rule forC+ quantifies over all value patterns for that
formula, producing a result in each case. By convention, we tacitly universally quantify over metavariables
such as∆ that appear first in a judgement that is universally quantified, so in full thepremise reads “for all
∆, if ∆  C+ thenΓ, ∆ ⊢ γ.” Hereγ ranges over consequences, which are either negative atoms or positive
formulae; for atoms, the only case-analysis is the identity. The positive connectives are thus introduced by
choosing a value (focus) and eliminated by contexts that are prepared to handle any such value (inversion).

The next two judgements concern the negative connectives, where the relationship between introduc-
tion/elimination and focus/inversion is reversed. A negative formula iseliminatedby the left-focus judge-
mentΓ; [C−] ⊢ γ, which chooses how to observeC− by giving a spine. A spine consists of a spine pattern,
a substitution, and a case-analysis. The spine pattern and substitution decompose a negative typeC− to
some conclusionγ0, for instance a positive typeC+. However, it may take further case-analysis of this
positive type to reach the desired conclusionγ. Dually, negative types areintroducedby inversion, which
responds to left-focus by giving sufficient evidence to support all possible observations. The right-inversion
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Hypothesis α ::= X+ | C−

Consequence γ ::= X− | C+

Linear context ∆ ::= · | ∆, α
Unrestricted context Γ ::= · | Γ,∆

Right Focus Γ ⊢ [C+]
∆  C+ Γ ⊢ ∆

Γ ⊢ [C+]

Left Inversion Γ; γ0 ⊢ γ Γ;X− ⊢ X−

∀(∆  C+) : Γ,∆ ⊢ γ

Γ;C+ ⊢ γ

Left Focus Γ; [C−] ⊢ γ

∆;C−  γ0 Γ ⊢ ∆ Γ; γ0 ⊢ γ

Γ; [C−] ⊢ γ

Right Inversion Γ ⊢ α

∀(∆;C−  γ) : Γ,∆ ⊢ γ

Γ ⊢ C−

X+ ∈ Γ

Γ ⊢ X +

No Focus Γ ⊢ γ

Γ ⊢ [C+]

Γ ⊢ C+

C− ∈ Γ Γ; [C−] ⊢ γ

Γ ⊢ γ

Assumptions Γ ⊢ ∆ Γ ⊢ ·
Γ ⊢ ∆ Γ ⊢ α

Γ ⊢ ∆, α

Figure 1: Focusing rules
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judgementΓ ⊢ α, where assumptionsα are negative formula or positive atoms, specifies the structure of a
spine match. A spine match forC− must show that for all spine patterns decomposingC−, the conclusion
of the spine pattern is justified by the variables bound by the patterns in it.

The judgementΓ ⊢ γ, defines an unfocused sequent, or anexpression: from an expression, one can
right-focus and introduce a value, or left-focus on an assumption inΓ and apply a spine to it. Finally, a
substitutionΓ ⊢ ∆ provides a spine-match for each hypothesis.

At this point, the reader may wish to work through some instances of these rules (using the above pattern
rules) to see that they give the expected derived rules for the connectives:

Γ ⊢ X− Γ ⊢ Y − Γ ⊢ Z−

Γ ⊢ (X−
NY −)NZ−

Γ,X+ ⊢ Z− Γ, Y + ⊢ Z−

Γ ⊢ (X + ⊕ Y +) → Z−

2.2 Patterns for Definitional Variation

Figure 2 defines the syntax of propositions, along with the value and spine pattern judgements fixing their
meaning. Modulo notation, most of the connectives are standard from polarized logic [Girard, 2001, Lau-
rent, 2002, Liang and Miller, 2007, Zeilberger, 2007]: positive formulae (A+) include positive atoms (X +),
nullary and binary products and sums (1,A+ ⊗ B+, 0, A+ ⊕ B+), and shifted negative formulae (↓A−);
negative formulae (A−) include negative atoms (X−), computational implication (A+ → B−), negative
nullary and binary conjunction (⊤ andA−

NB−), and shifted positive formulae (↑A+). Additionally, we
introduce positive defined atoms (P ), defined by an open-ended collection of rules. Inference rules (R) take
the formP ⇐ A+

1
⇐ . . . ⇐ A+

n (“concludeP given proofs ofA+
1 throughA+

n ”), and are collected in the
rule contextΨ. Above, we tookC+ andC− to range over polarized formulae, but in this more general
setting they range overcontextualpolarized formulae〈Ψ〉A+ and〈Ψ〉A−.

Intuitively, a derivation of∆  〈Ψ〉A+ represents a value pattern of typeA+ using the constructors
in Ψ an arbitrary number of times, and naming the variables in∆ linearly. Since values of negative types
cannot be decomposed, as a base case we have〈Ψ〉A−  〈Ψ〉 ↓A− corresponding to a variable pattern.
Likewise, spines of positive type cannot be decomposed, so that we have ·; 〈Ψ〉 ↑A+  〈Ψ〉A+ as a base
case. Note that rule contexts are not associated with atomic hypothesesX+ or consequencesX−.

The truly exotic connectives are⇒ (of positive polarity) andf (of negative polarity), which manipulate
the rule context. The meanings of these connectives are explained as follows: To build a value of type
R ⇒ A+, extend the rule context withR and build a value of typeA+. To observeR fA−, extend the
rule context withR and observeA−. Note that in both cases, the new rules can eventually find their way
into contextual hypotheses or conclusions. Ignoring structural punctuation, the definition of⇒ is simply the
usual implication right-rule, while the definition off is simply a conjunction left-rule. However, as we will
see in Section 3.1, in many ways these connectives behave quite differentlyfrom “ordinary” implication and
conjunction.

Taken together, the pattern rule for defined atomsP , which introducesP by application of a rule inΨ,
and the rules for right- and left- inversion, which universally quantify over all such introductions, yield the
definitional reflection rule cited in Section 1. E.g., forΨ = 〈P ⇐ X + ; P ⇐ Y + ⇐ Z+〉 , the following
rule is derivable:

Γ,X + ⊢ γ Γ,Y +,Z+ ⊢ γ

Γ; 〈Ψ〉P ⊢ γ

However, whereas the traditional definitional reflection rule performs only a single step of unrolling a def-
inition, the focusing inversion rule unrolls definitions until they reach a polarity switch, which in some
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Pos. formula A+ ::= X+ | ↓A− | 1 | A+ ⊗ B+ | 0 | A+ ⊕ B+ | P | R ⇒ A+

Rule R ::= P ⇐ A+
1
⇐ . . . ⇐ A+

n

Neg. formula A− ::= X− | ↑A+ | A+ → B− | ⊤ | A−
NB− | R f B−

Rule Context Ψ ::= · | Ψ, R
CPF C+ ::= 〈Ψ〉A+

CNF C− ::= 〈Ψ〉A−

∆  〈Ψ〉A+

X+  〈Ψ〉X + 〈Ψ〉A−  〈Ψ〉 ↓A−

·  〈Ψ〉 1

∆1  〈Ψ〉A+ ∆2  〈Ψ〉B+

∆1,∆2  〈Ψ〉A+ ⊗ B+

(no rule for 0)

∆  〈Ψ〉A+

∆  〈Ψ〉A+ ⊕ B+

∆  〈Ψ〉B+

∆  〈Ψ〉A+ ⊕ B+

∆  〈Ψ,R〉B+

∆  〈Ψ〉R ⇒ B+

P ⇐ A+
1
⇐ . . . ⇐ A+

n
∈ Ψ

∆1  〈Ψ〉A+
1

. . . ∆n  〈Ψ〉A+
n

∆1, . . . ,∆n  〈Ψ〉P

∆; 〈Ψ〉A−  γ

·; 〈Ψ〉X−  X− ·; 〈Ψ〉 ↑A+  〈Ψ〉A+

∆1  〈Ψ〉A+ ∆2; 〈Ψ〉B−  γ

∆1,∆2; 〈Ψ〉A+ → B−  γ

(no rule for⊤)

∆; 〈Ψ〉A−  γ

∆; 〈Ψ〉A−
NB−  γ

∆; 〈Ψ〉B−  γ

∆; 〈Ψ〉A−
NB−  γ

∆; 〈Ψ,R〉B−  γ

∆; 〈Ψ〉R f B−  γ

Figure 2: Value and spine patterns
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cases gives anω-rule. For example, for the rule contextΨN defined in the introduction, a derivation of
Γ; 〈ΨN〉 nat ⊢ γ has one premise for each natural number.

Example Consider the syntax of the untypedλ-calculus:

e ::= x | λx.e | e1 e2

This syntax is represented in our type theory by the following definition signature:

lam : exp ⇐ (exp ⇒ exp)
app : exp ⇐ exp ⇐ exp

For clarity, we name the rules in the rule context here, foreshadowing the presentation with proof terms in
Section 4. Theλ-calculus terms with free variablesx1, . . . , xn are isomorphic to derivations of the value
pattern judgement·  〈Ψλ, x1 : exp, . . . , xn : exp〉 exp. The fact that the rules definingexp may vary during
a derivation is essential to this representation of the new variables bound ina term. Thecomputationalarrow
then provides the means to induct over such higher-order data. E.g., a term · ⊢ 〈Ψλ〉 exp → ↑exp represents
a function fromλ-terms in the empty context toλ-terms in the empty context.

2.3 Identity and Cut

In addition to inductive types likeexp, the contextΨ can be used to define arbitrary recursive types. For
example, consider a base typeD defined by one constant

d : D ⇐ ↓(D → ↑D)

The typeD defined by this constant is essentially the recursive typeµD.D → D, which can be used to write
non-terminating programs.

Because the rule context permits the definition of general recursive types, it should not be surprising
that the identity and cut principles are not admissible in general. Through theCurry-Howard interpretation,
however, we can still make sense of the identity and cut principles as corresponding, respectively, to the
possibly infiniteprocessesof η-expansion andβ-reduction. We now state these principles, “prove” them
by operationally sound but possibly non-terminating arguments, and then discuss criteria under which these
proofs are well-founded.

Principle 1 (Identity).

1. (neg. identity) IfC− ∈ Γ thenΓ ⊢ C−.

2. (pos. identity)Γ; C+ ⊢ C+

3. (identity substitution) If∆ ⊆ Γ thenΓ ⊢ ∆.

Procedure.The first identity principle reduces to the second and third as follows:

∀(∆;C−  γ) :

C− ∈ Γ

∆;C−  γ
ID3

Γ,∆ ⊢ ∆
ID2

Γ; γ ⊢ γ

Γ,∆; [C−] ⊢ γ

Γ,∆ ⊢ γ

Γ ⊢ C−

10



The second identity reduces to the third as follows:

∀(∆  C+) :

∆  C+
ID3

Γ,∆ ⊢ ∆

Γ,∆ ⊢ [C+]

Γ,∆ ⊢ C+

Γ;C+ ⊢ C+

Finally, the third identity reduces to the first applied over all hypothesesC− ∈ ∆.

Principle 2 (Cut).

1. (neg. reduction) IfΓ ⊢ C− andΓ; [C−] ⊢ γ thenΓ ⊢ γ.

2. (pos. reduction) IfΓ ⊢ [C+] andΓ; C+ ⊢ γ thenΓ ⊢ γ.

3. (composition)

(a) If Γ ⊢ γ0 andΓ; γ0 ⊢ γ thenΓ ⊢ γ.

(b) If Γ; [C−] ⊢ γ0 andΓ; γ0 ⊢ γ thenΓ; [C−] ⊢ γ.

(c) If Γ; γ1 ⊢ γ0 andΓ; γ0 ⊢ γ thenΓ; γ1 ⊢ γ.

4. (substitution) For all six focusing judgementsJ , if Γ ⊢ ∆ andΓ, ∆ ⊢ J thenΓ ⊢ J .

Procedure.Consider the first cut principle. The two derivations must take the followingform:

∀(∆;C−  γ0 ) : Γ,∆ ⊢ γ0

Γ ⊢ C−

∆;C−  γ0 Γ ⊢ ∆ Γ; γ0 ⊢ γ

Γ; [C−] ⊢ γ

By plugging∆;C−  γ0 from the right derivation into the higher-order premise of the left derivation, we
obtainΓ, ∆ ⊢ γ0 . ThenΓ ⊢ γ0 by substitution withΓ ⊢ ∆, whenceΓ ⊢ γ by composition withΓ; γ0 ⊢ γ.
The case of positive reduction is analogous (but appeals only to substitution).

In all cases of composition, ifγ0 = X− then the statement is trivial. Otherwise, we examine the last
rule of the left derivation. For the first composition principle, there are twocases: either the sequent was
derived by right-focusing on the conclusionγ0 = C+, or else by left-focusing on some hypothesisC− ∈ Γ.
In the former case, we immediately appeal to positive reduction. In the latter case, we apply the second
composition principle, which in turn reduces to the third, which then reduces back to the first.

Likewise, to show substitution we examine the rule concludingΓ, ∆ ⊢ J . Dually to the composition
principle, the only interesting case is when the sequent was derived by left-focusing onC− ∈ ∆, wherein
we immediately apply a negative reduction.

Observe that the above procedures make no mention of particular connectives or rule contexts, instead
reasoning uniformly about focusing derivations. As we alluded to above, however, in general these proce-
dures are not terminating. Here we state sufficient conditions for termination. They are stated in terms of a
strict subformula ordering,a more abstract version of the usual structural subformula ordering.

Definition 1 (Strict subformula ordering). We define an orderingC1 > C2 between contextual formulas as
the least relation closed under transitivity and the following properties:

11



• If ∆;C−

1
 γ andC−

2 ∈ ∆ thenC−

1 > C−

2

• If ∆;C−

1
 γ andC+

2 = γ thenC−

1 > C+
2

• If ∆  C+
1

andC−

2 ∈ ∆ thenC+
1 > C−

2

For any contextual formulaC, we define>C to be the restriction of> to formulas belowC.

The strict subformula ordering does not mention atomsX+ or X−, since they only play a trivial role in
identity and cut.

Definition 2 (Well-founded formulas). We say that a contextual formulaC is well-founded if>C is well-
founded.

Proposition 1. Positive and negative identity are admissible on well-founded formulas.

Proof. By inspection of the above procedure. Positive and negative identity areproved by mutual induction
using the order>C , with a side induction on the length of∆ to show substitution identity.

Proposition 2. Positive and negative reduction are admissible on well-founded formulas.

Proof. By inspection of the above procedure. Positive and negative reductionare proved by mutual in-
duction using the order>C , with a side induction on the left derivation to show composition, and a side
induction on the right derivation to show substitution.

Definition 3 (Pure rules). A ruleR is calledpureif it contains no shifted negative formulas↓A− as premises
(or structural subformulas of premises). For example,exp ⇐ (exp ⇒ exp) is pure, butD ⇐ ↓(D → ↑D) is
not.

Lemma 1. Suppose〈Ψ〉A contains only pure rules (i.e., inΨ, or as structural subformulas ofA). Then
〈Ψ〉A is well-founded.

Proof. By induction on the structure ofA. Every pattern typing rule (recall Figure 2) examines only struc-
tural subformulas ofA, except whenA = P . But anyP defined by pure rulesP ⇐ A+

1
⇐ . . . ⇐ A+

n in fact
hasnostrict subformulas, since the∆i such that∆i  〈Ψ〉A+

i
can contain only atomic formulasX+.

The restriction to pure rules precludes premises involving the computational arrow. However, as we
show below, it includes all inference rules definable in the LF logical framework, generalizing Schroeder-
Heister’s [1992] proof of cut-elimination for the fragment of definitional reflection with→-free rules (since
pure rules donot exclude⇒’s). Moreover, as we explained, the identity and cut principles are always
operationally meaningful, even in the presence of arbitrary recursive types. Technically, as in Girard [2001],
we could adopt a coinductive reading of the rules in Figure 1, in which case identity is always admissible,
and cut-elimination is a partial operation that attempts to build a cut-free proof bottom-up. Even under a
coinductive reading, we conjecture that cut-elimination is total assuming a positivity restriction for rules, in
the sense of Mendler [1987].
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3 Logical Properties of⇒ andf.

3.1 Shock therapy

In §6.2 of “Locus Solum”, Girard [2001] considers several “shocking equalities”—counterintuitive prop-
erties of the universal and existential quantifiers that emerge when they are given non-standard polarities.
For example, positive∀ commutes under⊕, while negative∃ commutes overN. In our setting,⇒ behaves
almost like a positive universal quantifier, andf almost like a negative existential.2 And indeed, we can
reproduce analogues of Girard’s commutations.

Definition 4. For two positive contextual formulasC+
1 andC+

2 , we say thatC+
1 . C+

2 if ·; C+
1 ⊢ C+

2
. For

negativeC−

1 andC−

2 , we sayC−

1 . C−

2 if C−

1 ⊢ C−

2
. We writeC1 ≈ C2 when bothC1 . C2 andC2 . C1.

These relations are extended to (non-contextual) polarized formulas if they hold under all rule contexts.

Proposition 3 (“Shocking” equalities).

1. R ⇒ (A+ ⊕ B+) ≈ (R ⇒ A+) ⊕ (R ⇒ B+)

2. (R fA−)N(R f B−) ≈ R f (A−
NB−)

Proof. Immediate—indeed, in each case, both sides have an isomorphic set of (value/spine) patterns.

Why are these equalities shocking? Well, if we ignore polarity and treat all theconnectives as ordinary
implication, disjunction, and conjunction, then (2) is reasonable but (1) is only valid in classical logic. And
if we interpret⇒ andf as∀ and∃, then both equations are shockingly anticlassical:

1. ∀x.(A ⊕ B) ≈ (∀x .A) ⊕ (∀x .B)

2. (∃x .A)N(∃x .B) ≈ ∃x.(ANB)

On the other hand, from a computational perspective, these equalities arequite familiar. For example, (1)
says that a value of typeA ⊕ B with a free variable is either the left injection of anA with a free variable or
the right injection of aB with a free variable.

We can state another pair of surprising equivalencesbetweenthe connectives⇒ andf under polarity
shifts:

Proposition 4 (Some/any).

1. ↓(R fA−) ≈ R ⇒ ↓A−

2. ↑(R ⇒ A+) ≈ R f ↑A+

Again, this coincidence under shifts is nottoo surprising, since it recalls the some/any quantifierNx .A
of nominal logic [Pitts, 2003], as well as the self-dual∇ connective of Miller and Tiu [2003]. Nx .A can
be interpreted as asserting either thatA holds for some fresh name, or forall fresh names—with both
interpretations being equivalent.
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Type τ ::= P | τ1 ⊃ τ2
Canonical Form M ::= x (M1 , . . . ,Mn) | λ x .M
Signature Σ ::= · | Σ, x : τ
Context Φ ::= · | Φ, x : τ

Φ ⊢Σ M : τ

Φ, x : τ1 ⊢Σ M : τ2
Φ ⊢Σ λ x .M : τ1 ⊃ τ2

x : τ1 ⊃ . . . ⊃ τn ⊃ P ∈ Σ or Φ
Φ ⊢Σ M1 : τ1 . . . Φ ⊢Σ M1 : τn

Φ ⊢Σ x (M1 , . . . ,Mn) : P

Figure 3: Simply-typed LF

3.2 Embedding of Simply-Typed LF

The canonical forms of simply-typed LF (STLF) are summarized in Figure 3;see Watkins et al. [2002] for
an introduction to canonical-forms presentations of logical frameworks. In this section, we show that the
STLF terms exist as closed patterns, and therefore as values, in our typetheory. This shows that our type
theory can represent any logical system that has been represented inSTLF.

Every STLF typeτ can be parsed both as an inference ruler(τ) and as a positive formulap(τ) (for
convenience, we identify LF base types with our defined atomsP ):

r(τ1 ⊃ . . . ⊃ τn ⊃ P) = P ⇐ p(τ1 ) ⇐ . . . ⇐ p(τn)

p(P ) = P

p(τ1 ⊃ τ2 ) = r(τ1 ) ⇒ p(τ2 )

The functionr(τ) can be used to map STLF signaturesΣ and contextsΦ to inference rule contextsΨ in the
obvious manner.

Theorem 1 (Embedding of STLF). Let r(Σ) = ΨΣ and r(Φ) = ΨΦ and p(τ) = A+. Then there is a
bijection between canonical STLF termsM such thatΦ ⊢Σ M : τ and derivations of·  〈ΨΣ, ΨΦ〉A

+.

Proof. Mapλ x .M to the pattern rule for⇒, and mapx (M1 , . . . ,Mn) to the pattern rule forP .

This theorem permits us to inherit en masse the adequacy of all systems that have been represented in
STLF. For example the above signatureΨλ adequately represents the informal syntax of untypedλ-terms
becauseΨλ is the image of the usual LF encoding of this syntax. To complete the discussionof adequacy,
we should also check that LF substitution is faithfully modelled in our calculus; todo so, we must consider
substitution for rule variables.

3.3 Rule Substitution

As discussed above, there is no reason to expect the rule contextΨ to satisfy substitution in general, but we
can prove a generic substitution theorem that covers the STLF fragment. We abuse notation and writeL to
double both for rulesr(τ) and typesp(τ) in the image of the LF encoding.

2These would become real quantifiers in an extension to dependent types.
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Value pattern p ::= x | () | (p1 , p2 ) | inl p | inr p | u p1 . . . pn | λ u. p | box p

Spine pattern k ::= ǫ | p ; k | fst; k | snd; k | out; k | unpack; u.k | undia; k

Value v ::= p [σ]
Value match m ::= ǫ | match+(φ+) | ǫ | m2 ◦ m1

whereφ+ ::= {p1 7→ e1 | · · · | pn 7→ en}
Spine s ::= k [σ];m | m ◦ s

Spine match n ::= x | match−(φ−) | x | fix(x .n)

whereφ− ::= {k1 7→ e1 | · · · | kn 7→ en}

Expression e ::= v | s • x | s • n | m • v | m ◦ e

Substitution σ ::= · | σ,n/x | id | σ1, σ2

Figure 4: Proof Terms

Theorem 2(Rule Substitution). For arbitrary Ψ andA+, for any ruleL in the LF fragment, if·  〈Ψ,L〉A+

and·  〈Ψ〉L then·  〈Ψ〉A+.

Proof. The proof is an adaptation of the standard hereditary substitution algorithm for LF [Watkins et al.,
2002] to our pattern syntax.

In a constructive type theory such as Agda, this theorem is witnessed by ageneric function implement-
ing substitution. This function can be applied, for example, to promote a representational arrowL ⇒ A+

to a computational arrowL → ↑A+. Weakening, contraction, exchange, and identity can be proved sim-
ilarly, and consequently LF-style representations enjoy all the usual structural properties. Representations
using more general techniques may enjoy these properties as well, but thena programmer wishing to use a
structural property must provide explicit justification that it holds.

It is possible to generalize the above theorem to patterns that bind variables:

Theorem 3 (Rule Substitution With Pattern Variables). For arbitrary Ψ andA+, for any ruleL in the LF
fragment, if∆  〈Ψ,L〉A+ and∆0  〈Ψ〉L then there exists a∆′ such that∆′  〈Ψ〉A+. Moreover, for
all X+ ∈ ∆′, X+ ∈ ∆0, ∆, and for all〈Ψ′〉A− ∈ ∆′, there exists aΨ such that〈Ψ〉A− ∈ ∆0, ∆.

The conclusion of this theorem is fairly weak: It is always possible to substitute one pattern into another.
However, the contextsΨ′ in the types of pattern variables in∆′ may be different from the contextsΨ in
∆1, ∆2 (because the substituted ruleL is removed from contexts in∆, and because contexts in∆0 are
weakened as the pattern is moved under binders). Thus, it is not necessarily the case that∆0, ∆ ⊢ ∆′, so the
pattern constructed by the above theorem cannot necessarily be used toform a value in the context∆0, ∆.
However, in certain circumstances it is possible to produce such substitutions, as we show in an example
below.

4 Programming with Definitional Variation

4.1 Proof Terms

In Figure 4, we present a proof term assignment to the focused sequent calculus described above. There is
one proof term for each rule in the calculus. For example, the pattern rule for R ⇒ A is represented by a
binding formλ u. p, where the variable represents the new pattern constructor. Additionally,we internalize
the cut and identity principles:s • n andv • m witness reduction;m ◦ e, m ◦ s, andm2 ◦ m1 witness
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e  e ′

φ+(p) defined

match+(φ+) • p [σ] φ+(p) [σ]
pr

(m2 ◦ m1 ) • v  m2 ◦ (m1 • v)
mm

ǫ • v  v idm

φ−(k) defined

(k [σ];m) • match−(φ−) m ◦ (φ−(k) [σ])
nr

(m ◦ s) • n  m ◦ (s • n)
ms

s • fix(x .n) s • n [fix(x .n)/x ]
fix

e  e ′

m ◦ e  m ◦ e ′
mee

m ◦ v  m • v mev

Figure 5: Operational Semantics

composition; andx , ǫ, andid witness identity. For programming convenience (see Section 4.3), we also in-
ternalize the admissible substitution concatenation principle (σ1, σ2), a general recursion operatorfix(x .n),
(negative) recursive typesν X−.A−, and two new connectives@A+ and⋄A−. The latter act as modal op-
erators on the rule context: a value of〈Ψ〉@A+ is a value of〈·〉A+; to use〈Ψ〉 ⋄A−, use〈·〉A−. (Like
⇒ andf, these modal connectives are equivalent under polarity shifts.) The full typing rules are presented
in Figures 6 and 7. To make the examples below more concise, we tacitly parametrize all judgements by a
fixed initial definition contextΣ, which acts as a prefix on each contextual formula in the judgement forms
(i.e.,〈Ψ〉A acts as〈Σ, Ψ〉A did without the signature).

In Figure 5, we adapt the above cut-elimination procedure into a small-step operational semantics on
closed expressions. The rulesnr andpr correspond to the negative and positive reduction cases; these rules
use an auxiliary operatione [σ] implementing (standard, capture-avoiding) substitution, which we leave as
a meta-operation rather than internalize as a proof term. The rulesms andmm handle instances of com-
position principles (b) and (c), although in a slightly different manner than above: because the operational
semantics consider only closed expressions, it suffices to reassociate the expression to reveal a redex. Sim-
ilarly, the rulesmee andmev simply reduce the expression scrutinized by the case to a value, creating a
positive cut. Finally the rulefix unrolls the fixed point, and the ruleidm reduces a cut against the internal-
ized identity principle. Type safety can then be formulated as usual, and indeed has an exceptionally easy
proof since (as for the cut-elimination procedure in Section 2.3) it need notmention any connectives.

Theorem 4(Type safety).

Progress: If · ⊢ e : γ thene = v or e  e ′.

Preservation: If · ⊢ e : γ ande  e ′ then· ⊢ e : γ

4.2 Implementation

Our type theory is, by design, open-ended with respect to the meta-functionsφ mapping patterns to expres-
sions. The focusing framework ensures that any means of presenting these meta-functions is acceptable,
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Hypothesis α ::= X+ | C−

Consequence γ ::= X− | C+

Linear context ∆ ::= · | ∆, x :α
Unrestricted context Γ ::= · | Γ,∆

Γ ⊢ v :: C+

∆  p :: C+ Γ ⊢ σ : ∆

Γ ⊢ p [σ] :: C+

Γ ⊢ m : γ0 > γ

Γ ⊢ ǫ : X− > X−

∀(∆  p :: C+) : Γ,∆ ⊢ φ+(p) : γ

Γ ⊢ match+(φ+) : C+ > γ

Γ ⊢ ǫ : C+ > C+

Γ ⊢ m1 : γ0 > γ1 Γ ⊢ m2 : γ1 > γ

Γ ⊢ m2 ◦ m1 : γ0 > γ

Γ ⊢ s :: C− > γ

∆  k :: C− > γ0 Γ ⊢ σ : ∆ Γ ⊢ m : γ0 > γ

Γ ⊢ k [σ];m :: C− > γ

Γ ⊢ s :: C− > γ0 Γ ⊢ m : γ0 > γ

Γ ⊢ m ◦ s :: C− > γ

Γ ⊢ n : α

x :X + ∈ Γ

Γ ⊢ x : X +

∀(∆  k :: C− > γ) : Γ,∆ ⊢ φ−(k) : γ

Γ ⊢ match−(φ−) : C−

x :C− ∈ Γ

Γ ⊢ x : C−

Γ, x :C− ⊢ n : C−

Γ ⊢ fix(x .n) : C−

Γ ⊢ e : γ

Γ ⊢ v :: C+

Γ ⊢ v : C+

x :C− ∈ Γ Γ ⊢ s :: C− > γ

Γ ⊢ s • x : γ

Γ ⊢ n : C− Γ ⊢ s :: C− > γ

Γ ⊢ s • n : γ

Γ ⊢ v :: C+ Γ ⊢ m : C+ > γ

Γ ⊢ m • v : γ

Γ ⊢ e : γ0 Γ ⊢ m : γ0 > γ

Γ ⊢ m ◦ e : γ

Γ ⊢ σ : ∆

Γ ⊢ · : ·
Γ ⊢ σ : ∆ Γ ⊢ n : C−

Γ ⊢ σ,n/x : ∆, x :C−

∆ ⊆ Γ

Γ ⊢ id : ∆

Γ ⊢ σ1 : ∆1 Γ ⊢ σ2 : ∆2

Γ ⊢ σ1 , σ2 : ∆1,∆2

identity principles cut principles convenient principles

Figure 6: Focusing rules with proof terms
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Pos. formula A+ ::= X+ | ↓A− | 1 | A+ ⊗ B+ | 0 | A+ ⊕ B+ | P | R ⇒ A+ | @A+

Rule R ::= P ⇐ A+
1
⇐ . . . ⇐ A+

n

Rule Context Ψ ::= · | Ψ, u :R
Neg. formula A− ::= X− | ↑A+ | A+ → B− | ⊤ | A−

NB− | ν X−.A− | R f B− | ⋄A−

CPF C+ ::= 〈Ψ〉A+

CNF C− ::= 〈Ψ〉A−

∆  p :: 〈Ψ〉A+

x :X +  x :: 〈Ψ〉X + x : 〈Ψ〉A−  x :: 〈Ψ〉 ↓A−

·  () :: 〈Ψ〉 1

∆1  p1 :: 〈Ψ〉A+ ∆2  p2 :: 〈Ψ〉B+

∆1,∆2  (p1 , p2 ) :: 〈Ψ〉A+ ⊗ B+

(no rule for 0)

∆  p :: 〈Ψ〉A+

∆  inl p :: 〈Ψ〉A+ ⊕ B+

∆  p :: 〈Ψ〉B+

∆  inr p :: 〈Ψ〉A+ ⊕ B+

u : P ⇐ A+
1
⇐ . . . ⇐ A+

n
∈ (Σ,Ψ)

∆1  p1 :: 〈Ψ〉A+
1

. . . ∆n  pn :: 〈Ψ〉A+
n

∆1, . . . ,∆n  u p1 . . . pn :: 〈Ψ〉P

∆  p :: 〈Ψ, u :R〉B+

∆  λ u. p :: 〈Ψ〉R ⇒ B+

∆  p :: 〈·〉A+

∆  box p :: 〈Ψ〉@A+

∆  k :: 〈Ψ〉A− > γ

·  ǫ :: 〈Ψ〉X− > X− ·  ǫ :: 〈Ψ〉 ↑A+ > 〈Ψ〉A+

∆1  p :: 〈Ψ〉A+ ∆2  k :: 〈Ψ〉B− > γ

∆1,∆2  p ; k :: 〈Ψ〉A+ → B− > γ

(no rule for⊤)

∆  k :: 〈Ψ〉A− > γ

∆  fst; k :: 〈Ψ〉A−
NB− > γ

∆  k :: 〈Ψ〉B− > γ

∆  snd; k :: 〈Ψ〉A−
NB− > γ

∆  k :: 〈Ψ〉 [ν X−.A−/X−]A− > γ

∆  out; k :: 〈Ψ〉 ν X−.A− > γ

∆  k :: 〈Ψ, u :R〉B− > γ

∆  unpack; u.k :: 〈Ψ〉R f B− > γ

∆  k :: 〈·〉A− > γ

∆  undia; k :: 〈Ψ〉 ⋄A− > γ

Figure 7: Value and spine patterns
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provided only that they define total functions mapping patterns to expressions. One could, for example,
extend our theory with a formalism for meta-functions that are defined by primitive recursion over patterns.
However, experience (e.g., [Harper and Morrisett, 1995]) has shown that such restricted formalisms are very
difficult to use in practice, since they amount to a commitment to a particular form of termination proof.
Instead we prefer to harness the expressive power of existing tools to prove meta-functions total.

Thus, an implementation of our type theory must include an embedding of its syntax into the language
of some (perhaps more than one) proof assistant in which we are to carryout proofs of totality. We may use
any means of representing patterns and expressions, such as de Bruijnindices or locally nameless form, and
any method for proving such functions total. We are also free to make use ofsyntactic support for translating
concrete named forms into a name-free form suitable for that environment. The focusing framework ensures
that all that is required of a proof assistant is a means of computingφ+(p) andφ−(k) for given meta-
functionsφ+ andφ− and argumentsp andk, respectively.

At present, we have built simple embeddings of our language in Agda and Coq, both using de Bruijn
index representations.3 In the remainder of this section, we use a convenient surface syntax to present
the examples; the interested reader may refer to the companion Agda code for a more precise account. It
may also be possible to embed our language into Twelf, using higher-order abstract syntax, and relying
on the Twelf totality and coverage checkers to check that meta-functions, presented as relations between
patterns and expressions, are total functions. The logic programming interpretation of types in Twelf would
then provide the means of computingφ+(p) andφ−(k), with termination being ensured by the totality
checker.

4.3 Examples

4.3.1 Induction over First-Order Data

In this section, we instantiate our type theory with a global definition signature for natural numbersΣN =
〈Z : nat ; S : nat ⇐ nat〉 . As a most basic programming example, we define a functionadd1, which simply
wraps the successor pattern constructorS as a function on natural numbers:

· ⊢ add1: 〈〉 nat → ↑nat

add1= match−(p ; ǫ 7→ (S p) [id])

The body of this spine match is a meta-level function (i.e., an Agda function in our Agda implementation)
that maps spine patterns to expressions. In particular, for every spine pattern∆  k :: 〈〉 nat → ↑nat > γ,
it must give an expression∆ ⊢ e : γ. In this case, all spine patterns for〈〉 nat → ↑nat have the formp ; ǫ,
where∆  p :: 〈〉 nat andγ = 〈〉 nat. In ΣN, every suchp is a numeral, so extensionally, we wish to define
the following meta-function:

Z ; ǫ 7→ (S Z) [id]

S Z ; ǫ 7→ (S (S Z)) [id]

S (S Z) ; ǫ 7→ (S (S (S Z))) [id]

... 7→
...

In each case, this function adds a successor to the pattern, and places this new pattern under the identity
substitution (we abbreviate·, id by id) to form a value and therefore an expression. However, we cannot

3Available fromhttp://www.cs.cmu.edu/∼drl/
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list a case for each numeral explicitly, so in the above codep ; ǫ 7→ (S p) [id] we use ametavariablep to
treat all such patterns uniformly. The metavariable is a variable, ranging over patterns, in the meta-language
(e.g., an Agda variable in our Agda implementation), permitting a finite representation of the infinite set
of ordered pairs in the extension of the function. Note that, because numerals bind no variables in∆, we
could equivalently have used the empty substitution· in place of the identity substitutionid; however, the
type-correctness of this modification would require the inductive proof that ∆  p :: 〈〉 nat implies∆ = ·,
whereas the identity-substitution version is type-correct for any∆.

Next, we define addition as follows:

· ⊢ plus : 〈〉 nat → nat →↑nat

plus= match−(p1 ; p2 ; ǫ 7→ plus∗ p1 p2 ))

That is, every spine pattern decomposing〈〉 nat → nat →↑nat is composed of two value patterns, which are
matched by the metavariablesp1 andp2 , and then passed to an auxiliary meta-functionplus∗:

∀(∆  p1 :: 〈〉 nat, ∆2  p2 :: 〈〉 nat) : (∆1, ∆2 ⊢ plus∗ p1 p2 : nat)
plus∗ Z p2 7→ p2 [id]
plus∗ (S p1 ) p2 7→ match+(n 7→ ((n ; ǫ)[id]; ǫ) • add1) ◦ (plus∗ p1 p2 )

This auxiliary function maps two patterns to an expression that computes their sum, using meta-level case-
analysis and induction on the first pattern. The result of the second branch can be made much more readable
by employing a bit of syntactic sugar: we writecase e of φ+ for match+(φ+) ◦ e, write s • n asn s, and
elide both theǫ at the end of spine patterns and the identity caseǫ following a spine pattern and substitution.
Then this branch is written as follows:

plus∗ (S p1 ) p2 7→ case (plus∗ p1 p2 ) of n 7→ add1(n[id])

Thecase explicitly sequences the evaluation of the expression produced by the inductive call (plus∗ p1 p2 )
down to a value, which is matched by the metavariablen. This sequencing is necessary because spines
can be composed only of values, not arbitrary expressions. As an example invocation,plus∗ (S (S Z)) (S Z)
builds the expression

case (case (S Z) [id] of n 7→ add1(n[id])) of n 7→ add1(n[id])

which computes as expected under the above operational semantics.

4.3.2 Induction Over Data With Binding

Next, we illustrate recursion over data with variable binding. As a simple first example, we count the
variables (leaves) of an untypedλ-term. We work in the signature

Σλ = ΣN , lam : exp ⇐ (exp ⇒ exp) , app : exp ⇐ exp ⇐ exp

In general, a computational function such asadd1or plusdoes not necessarily remain well-typed when the
signatureΣ is extended (i.e., signatures may not necessarily be weakened): the extension could create new
cases that the function does not handle. However, in this case the functionsadd1andplusremain well-typed,
since the constantslam andapp do not change the definition ofnat.
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Closed Terms First, we implement a functioncv that counts the variables of a closedλ-term (generaliza-
tions to open terms are considered below):

· ⊢ cv : 〈〉 exp →↑nat

cv = match−(p ; ǫ 7→ cv∗ p)

∀(∆  p :: 〈〉 exp) : (∆ ⊢ cv∗ p : 〈〉 nat)

The body ofcv is a meta-functioncv∗, which must map patterns representing closedλ-terms to expressions
of type 〈〉 nat. However, when we attempt to define a meta-function with this type, we will run into a
problem in thelam-case:

cv∗ (lam(λ u. p)) 7→ ???

We would like to make a recursive call to count the variables in the body of thefunction, which is a pattern
∆  p :: 〈u : exp〉 exp. However, the meta-functioncv∗ is stated only for closedλ-terms, represented by
patterns∆  p ′ :: 〈〉 exp.

The solution is to generalize the type ofcv∗ so that it is defined simultaneously for all rule contextsΨv of
the formu1 : exp, . . . , un : exp. (In the setting of Twelf, the analogous technique is proving a metatheorem
in a regular world [Pfenning and Schürmann, 1999].)

∀(Ψv , ∆  p :: 〈Ψv〉 exp) : ∆ ⊢ (cv∗ Ψv p) : 〈〉 nat

cv∗ Ψ u whereu ∈ Ψ 7→ (S Z) [id]
cv∗ Ψ lam (λ u. p) 7→ cv∗ (Ψ, u : exp) p

cv∗ Ψ app p1 p2 7→ case (cv∗ Ψ p1 ) of n1 7→ case (cv∗ Ψ p2 ) of n2 7→ plus(n1 ;n2 )[id]

Here, we write the contextΨ as an explicit argument to the meta-function; however, becauseΨ appears in
the type ofp, it should be possible to infer this argument—indeed, our Agda implementation ofthis function
treatsΨ as an implicit argument. Because result ofcv∗ is an expression of typenat in the empty rule context,
we may call to the previously-defined addition function, which is defined onlyfor closednats, plus in the
app case.

We completecvby callingcv∗ in the empty rule context:cv = match−(p ; ǫ 7→ cv∗ · p).

Terms in a Fixed Context The above functioncv of type 〈〉 exp →↑nat can only be applied to a closed
λ-term. As a first generalization, we write an analogous function that can beapplied to anyλ-term in an
arbitrary, but fixed, contextΨv:

· ⊢ cv′ : 〈Ψv〉 exp → ↑nat

The meta-functioncv∗ above was stated generally for any suchΨv, so we should be able to reuse it to
implementcv′. However, there is a slight difference betweencv∗ and the meta-function required to imple-
mentcv′. The type〈Ψv〉 exp → ↑nat classifies functions that consumeλ-terms inΨv and produce numbers
in Ψv. Formally, to implement a function of type〈Ψv〉 exp → ↑nat it suffices to give a meta-function
∀(∆  p :: 〈Ψv〉 exp) : ∆ ⊢ e : 〈Ψv〉 nat. In contrast,(cv∗ Ψv) consumesλ-terms inΨv but produces
closednumbers.

To usecv∗ to implementcv′, we have two choices. First, we may explicitly coerce the result ofcv∗

from 〈〉 nat to 〈Ψv〉 nat. Such a coercion function is definable because weakening withexp variables is
admissible fornat values—essentially because the assumptionsx : exp in Ψv do not alter the definition of
nat. Second, we may refine the type ofcv′ to capture the invariant that the result is closed. To do so, we use
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a connective⋄A−, which classifies anA− in the empty rule context (see Figure 7 for its spine rule). Then
we can implementcv′ as follows:

· ⊢ cv′ : 〈Ψv〉 exp → ⋄↑nat

cv′ = match−(p ; undia; ǫ) 7→ cv∗ Ψv p

Unlike cv, the functioncv′ can be applied to anyλ-term constructed from variables inΨv.

Regular Worlds Finally, we consider representing Twelf’s regular worlds in our type system. Regular
worlds are a kind of context polymorphism: rather than proving a theorem for a fixed context, you prove a
theorem for all contexts of a particular shape. Consequently, it is permissible to appeal to the theorem from
any context in the world. To recur under binders, it is often necessaryto generalize a theorem statement
about closed terms to a regular world containing variables. Our meta-function cv∗ is an example of this
phenomenon: to recur in thelam case, we wrote a function that can be called from any contextΨv in
the regular worldexp∗, which contains contexts of the formu1 : exp, . . . , un : exp. We now show how to
internalize this generality as a type.

We would like a type∀exp∗(exp → ⋄↑nat) with the property that we can call this function on anyλ-term
in any contextΨv in exp∗. Such a type is equivalent to the conjunction of the following infinite list of
contextual types:

〈〉 exp → ⋄↑nat

〈u1 : exp〉 exp → ⋄↑nat

〈u1 : exp, u2 : exp〉 exp → ⋄↑nat
...

To give a finite representation of this list, we first internalize each fixed contextΨv using thef connective:

〈〉 (exp → ⋄↑nat)
〈〉 expf (exp → ⋄↑nat)
〈〉 expf (expf (exp → ⋄↑nat))

...

Because of this internalization, all of these types are in the same (empty) rule context, which enables us to
conjoin them. Thus, we could prove them all at once by proving the infinitaryconjunction

〈〉N
∞

n=0 (expn f (exp → ⋄↑nat))

whereexpn fA− iterates (expf ) n times. While our type theory does not have infinite conjunctions as
a primitive notion, we can define them using a (negative) recursive type.In this case, we use the following
type:

ν X−.(exp → ⋄↑nat)N(expfX−)

(See Figure 7 for the typing rule forν X−.A−.) The typeν X−.A−
N(expfX−) is anA− under a variable

number of new constants of typeexp. To extract a function〈(u : exp)n〉 exp → ↑nat, we use the spine pattern
((out; snd; unpack)n; out; fst) from this type. We abbreviate this recursive type using the regular worlds
syntax∀exp∗(exp → ⋄↑nat).

And indeed,cv∗ suffices to implement the type· ⊢ cv′′ : 〈〉 ∀exp∗(exp → ⋄↑nat). The implementation
uses an auxiliary inversion lemma:

∀(∆  k :: 〈Ψv〉 ∀exp∗(exp → ⋄↑nat) > γ) : ∃Ψ′

v. ·  invert k :: 〈Ψ′

v〉 exp andγ = 〈〉 nat
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This lemma transforms any spine pattern of this type into anexp pattern in some contextΨ′

v, and is defined
defined by a simple induction over the spine patterns for the recursive type. Thencv′′ is defined as follows:

· ⊢ cv′′ : 〈〉 ∀exp∗(exp → ⋄↑nat)
cv′′ = match−(k 7→ cv∗ Ψ′

v (invert k))

Thus, our type theory provides an analogue of Twelf’s regular worldsusingf, N, andν.

4.3.3 Using Substitution

In Theorem 2, we proved a substitution theorem for LF-like rules in closedpatterns. The proof of this
theorem defines a meta-function from patterns to patterns:

∀(·  p0 :: 〈Ψ〉L and·  p :: 〈Ψ, u :L〉A+) : ·  [p0/u]p :: 〈Ψ〉A+

We can exploit this theorem to give a simple definition ofβ-reduction on untypedλ-terms: there is
no need to define substitution explicitly for this individual object language. We define a functionred that
reduces a term one step, if such a reduction is possible; the body of this function is the following meta-
function:

∀(Ψv and∆  p :: 〈Ψv〉 exp) : ∆ ⊢ red∗ p : 〈Ψv〉 exp ⊕ 1

red∗ u whereu ∈ Ψ 7→ inr () [·]
red∗ lam (λ u. p) 7→ case red∗ p of

inr () 7→ inr () [·]
inl p ′ 7→ inl (lam λ u. p ′) [id]

red∗ app (lam (λ u. p)) p2 7→ inl ([p2/u]p) [·]
red∗ app p1 p2 7→ case red∗ p1 of

inr () 7→ case red∗ p2 of

inr () 7→ inr () [·]
inl p ′

2
7→ inl (app p1 p ′

2
) [id]

inl p ′

1
7→ inl (app p ′

1
p2 ) [id]

In this definition, we leave the context argumentΨ implicit—it can be inferred from the type of the
pattern argument. The appeal to substitution in theβ-redex case is type-correct because any patternp

such that∆  p :: 〈Ψ〉 exp in fact satisfies·  p :: 〈Ψ〉 exp—because there are no shifted nega-
tive formulae as hypotheses of the rules definingexp. This meta-function implements the recursive type
· ⊢ red : 〈〉 ∀exp∗(exp → ↑(exp ⊕ 1)), similarly tocv′′ above.

4.3.4 Mixing Representational and Computational Functions

Next, to illustrate the combination of representational and computational arrows in a single set of rules, we
represent the syntax of a simple language of arithmetic expressions, where numeric primitives are repre-
sented by computational functions. In LF, each primitive operation would require its own constructor; here,
we represent binary primops (binops) uniformly as computational functions of typenat → nat → ↑nat. The
language includes numeric constants, binops, and let-binding, and is represented byΣari:

23



Σnat,
num : ari ⇐ nat

binop : ari ⇐ ari⇐ (nat → nat → ↑nat)⇐ ari

let : ari ⇐ ari⇐ (ari ⇒ ari)

For example, the value(binop (num 4) f (num 5)) [plus/f ] represents an addition instruction. Observe that
plusremains well-typed in this extended signature.

We can implement an evaluator for closed programs using a fixed point at typeAev = 〈〉 ari → ↑nat:

· ⊢ eval : Aev

eval= fix(ev .match−(p ; ǫ 7→ ev∗ p))

Then the body of the spine match is defined as follows, where the variableev is the recursive reference:

∀(∆  p :: 〈〉 ari) : (ev :Aev , ∆ ⊢ (ev∗ p) : 〈〉 nat)
ev∗ num n 7→ n [id]
ev∗ binop p1 f p2 7→ ev (p1 [id];match+(n1 7→ ev (p2 [id];match+(n2 7→ f (n1 ;n2 [id])))))
ev∗ let p0 (λ u. p) 7→ ev ({p0/u}p[σtr ])

In the binop case, evaluation calls the embedded computational function on the values of the arguments.
In the let case, evaluation substitutes the argument (a pattern∆0  p0 :: 〈〉 ari) into the body (a pattern
∆  p :: 〈u : ari〉 ari) and evaluates the result. The explicit fixed point is necessary becausethe recursive
call on the result of substitution is not structural. The pattern substitution operation{ / } implements the
proof of Theorem 3, and produces a pattern∆′  {p0/u}p :: 〈〉 exp, where∆′ is related to∆0, ∆ as
prescribed by that theorem. To complete this case, we must give a substitution∆0, ∆ ⊢ σtr : ∆′.

This substitution is constructed by the following reasoning: All rule contextsΨ arising in patterns
∆  p :: 〈〉 ari have the formu1 : ari, . . . , un : ari, and all pattern variable contexts∆ contain only as-
sumptionsx : 〈Ψ〉 nat → nat → ↑nat for such a contextΨ. Theorem 3 shows that for every assumption
f ′ : 〈Ψ′〉 nat → nat → ↑nat in ∆′, there is an assumptionf : 〈Ψ〉 nat → nat → ↑nat in ∆0, ∆, andΨ con-
tains onlyari assumptions as well. Thus, we can show∆0, ∆ ⊢ σtr : ∆′ if we can show how to transport a
function f of typenat → nat → ↑nat from Ψ to Ψ′. Becauseari assumptions are irrelevant tonat, we can
write a function transporting anat from Ψ to Ψ′ (or vice versa), and then use this function to wrapf . Our
Agda code formalizes this reasoning and uses it to constructσtr. This reasoning is similar to Twelf’s tech-
nology for subordination-based world subsumption; in future work, we plan to consider whether Twelf’s
technology can be adapted to infer these substitution transformers automatically in certain cases.

4.4 Differences with Agda Implementation

We have manually compiled the above examples to the Agda implementation of our typetheory. The Agda
versions of these examples differ from the above as follows:

• Variables, both fromΓ and fromΨ, are represented as de Bruijn indices.

• Some explicit calls to a weakening lemma forΓ are inserted, in order to weaken some expressions
computed by meta-functions.

• The premise∆ ⊆ Γ of the typing rule for the identity substitutionid is proved explicitly whenever
the identity substitution is used.
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• A lemma that∆  p :: 〈Ψv〉 exp implies∆ = ·, which justifies the call to the generic substitution
routine fromred∗, is proved and used.

• The above informal description of the construction ofσtr is made formal.

We leave the formal definition of a surface syntax and elaboration algorithmfor meta-functions to future
work.

5 Related Work

In Section 1, we highlighted some contrasts between our work and concreteimplementations of binding,
nominal logic, and HOAS in LF. In summary: The concrete implementations are complementary to the
present work, in that the representational arrow⇒ provides alogical interfacefor binding and scope, while
leaving the implementation of this interface abstract. Moreover, the computational open-endedness of→
permits programmers who are fond of a particular implementation of binding to program directly using that
implementation, while still ensuring compatibility with other implementations. In this sense,our calculus
provides functionality similar to Ott [Sewell et al., 2007], a proof-assistant-independent tool for describing
binding structures; however, we provide a proof-assistant-independent account of computation with binding
as well. The central difference between our approach and nominal logicis that all names in nominal logic
have global scope, whereas the connectives⇒ andf intrinsically capture the notion of scope. However,
the connectives⇒ andf share the some/any coincidence of the self-dual connectiveN[Pitts, 2003]. The
chief difference between the representational function space and HOAS in LF is that, like names in nominal
logic, our rule variables are nota priori committed to structural properties such as substitution. Instead,
representational functions are eliminated by pattern matching, which is similar to the elimination form
used to reasonaboutLF terms in computational languages such as Twelf [Pfenning and Schürmann, 1999],
Delphin [Poswolsky and Schürmann, 2008], and Pientka’s recent work [2008] based on contextual modal
type theory [Nanevski et al., 2007]. Whereas we generalize LF by allowing computations in rules, all of
these approaches treat LF as a pure fragment, though Pientka discusses the potential usefulness of allowing
some form of computation within signatures.

The idea of representing variable binding by a function space is very old,going back at least to Church
[1940]. However, integrating higher-order representations with computation in a single language has proved
difficult. The essential impediment is that one cannot simultaneously represent syntax as an inductive def-
inition inside a type theory and adequately represent binding as the full computational function space of
that type theory. There are two reasons for this: First, it is is not permissible to place a type to the left
of a computational arrow in its own inductive definition. Second, even if onecould, there would be many
more computational functions of such a type than the uniform ones that adequately represent binding. This
dilemma can be resolved in various ways. LF gives up on treating syntax as an inductive definition inside
the type theory. Internally to LF, binding is represented by a “computational”arrow, in the sense that the LF
function space has the usual implication rules. However, LF functions have no interesting data to compute
with, because object-language syntax is represented by uninterpreted base types. This necessitates a strati-
fied approach, where the terms of LF are externally treated as data in a separate language, such as Twelf, with
its own computational arrow (from this external perspective, the LF function space serves a representational
role). In this work, we take the alternative approach: we represent object-language syntax by an inductive
type, but we do not represent binding by computational functions. Our representational functions, which
reason from a fresh constant, are much less powerful than computational functions, which circumscribe the
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entirety of their domain. Consequently, it is not problematic to put a type to the left of a representational
arrow in its inductive definition, as our cut admissibility proof in Section 2 shows. Moreover, as we proved
in Section 3, our representational functions adequately represent binding.

Several other single-language resolutions of this dilemma have been studied. Scḧurmann et al. [2001]
describe an approach based on making a type distinction between representational and computational func-
tions. In their language, a modal type�A classifies closed terms of typeA and is eliminated by primitive re-
cursion; Despeyroux and Leleu [1999] describe a generalization with dependent types. Unlike the LF-based
approaches described above, these languages are not syntactically stratified into separate representational
and computational parts. Instead, they reuse the same arrow for representational functions (e.g., a function
A → B whereA andB do not include�, is used for representation) and computational functions (e.g.,
a function�A → B can decomposeA by primitive recursion). However, unlike the present work, these
languages do not permit computational functions such as�A → B in datatype definitions.

Despeyroux et al. [1995] propose representing object-language syntax as an inductive type (say,exp) in
Coq, where a binder is represented using a Coq computational functionvar → exp. This “weak” higher-
order abstract syntax is a valid inductive definition because the domain of computational functions repre-
senting binders is a separate typevar representing variables. This representation encodes object-language
α-equivalence using Coqα-equivalence, but object-language substitution must be programmed explicitly.
Care must still be taken to ensure adequacy. Despeyroux et al. [1995]expose the implementation of the type
var (e.g., natural numbers), which necessitates a predicate recognizing those functions of typevar → exp

which adequately represent object-language terms. Another approachis to leave the typevar abstract,
though programming with such a representation requires some extra semantically justified axioms about
variables [Bucalo et al., 2006]. Ambler et al. [2003] present a variationon weak HOAS in which free vari-
ables are represented as projections from an infinite context (a stream of variables); this approach mitigates
Isabelle’s lack of dependent types, which could be used to characterize terms’ contexts more precisely.

Another solution is to give an interface based on computational functions, but implement it using
a concrete representation. For example, the Hybrid approach [Ambler etal., 2002, Capretta and Felty,
2007, Momigliano et al., 2007], which has been implemented in Isabelle and Coq, uses an underlying de
Bruijn implementation of binding. This circumvents the problems with using computational functions di-
rectly in an inductive definition. The challenge is then to provide a useful higher-order interface to this
concrete implementation. Providing higher-order constructors is not difficult: for example, a constructor
lam : (exp → exp) → exp (whereexp is the type of the de Bruijn implementation) can be implemented by
applying the argument function to an appropriate de Bruijn index. However, to compute or reason using the
higher-order interface, it is necessary to restrict attention to those computational functions that adequately
represent binders. In Hybrid, this is accomplished by defining a predicate recognizing those computational
functions whose application is equivalent to the de Bruijn implementation of substitution—i.e., recognizing
substitution functions. While the setting and technical details are quite different, Hickey et al. [2006] also
mix de Bruijn and higher-order syntax, using the de Bruijn representation tocarve out a class of representa-
tional functions and to define an induction principle for them.

All of these approaches for representing binding as computational functions have the advantage that
they can be carried out in existing proof assistants. In contrast, by defining a new type theory, we are able
to give a simple account of the abstraction that these constructions are trying achieve. Our representational
functions provide a direct tool for adequately encoding binding, and their elimination form gives structural
recursion on open terms. Moreover, as we hope to have demonstrated,→ and⇒ are really quite orthogonal
connectives, and encoding one in terms of the other ignores some of their essential properties (such as, for
example, the distributivity principles in Section 3.1).
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Miller [1990] shared this stance, and proposed an extension to ML with a new type’a => ’b rep-
resenting a term of type’b with abstracted parameter’a, as well as a restricted form of higher-order
pattern-matching. Although it came long before the proof-theoretic innovations that made our work possi-
ble, Miller’s proposal has several interesting features that can be reexamined in light of our analysis. For
example, the domain’a must be not only an equality type, but also a user-defined datatype, sincethe mean-
ings of base types such asint or string should not be open-ended. This is related to (although less
general than) the present restriction that the domain ofR ⇒ A+ be a rule extending the meaning of a de-
fined atomP (thoughR need not beP itself). The fact that the codomain’b must be an equality type in
Miller’s proposal is related to (although less general than) the present restriction that the codomainA+ be
positive (thoughA+ can contain embedded negative formulas, which are not equality types). Technically,
we are able to go beyond Miller’s proposal because we associate negative hypotheses with a context of pa-
rameters. This idea appears in Miller’s more recent work [Miller and Tiu, 2003], as well as in contextual
modal type theory [Nanevski et al., 2007]. Indeed, Miller and Tiu’s proof theory bears many similarities
with ours, although their overall approach is based on the computation-as-proof-search paradigm (i.e., logic
programming), whereas ours is based on a proofs-as-programs interpretation of focusing [Zeilberger, 2007],
using polarity to segregate computation from data.

Fiore et al. [1999] and Hofmann [1999] give semantic accounts of variable binding. It would be inter-
esting to see whether these semantic accounts can be extended to rule systemssuch as ours which permit
computational functions in premises.

6 Conclusion

We have presented a language that enables the free interaction of bindingwith computation, extracted as the
Curry-Howard interpretation of a focused sequent calculus with two forms of implication. We believe this
provides an appropriate logical foundation, but much work remains to be done. We plan to pursue a practical
implementation of our language following the plan sketched in Section 4.2. Additionally, a generalization to
dependent types (in which both→ and⇒ would become dependent function spaces) would realize the goal
of primitively supporting higher-order abstract syntax in a constructivetype theory, combining the best of
frameworks such as Twelf and Coq. Another tantalizing possibility is that the combination of computational
open-endedness with higher-order abstract syntax could shed light on the problem of meta-programming.
In Section 4.3, we already saw how it was possible to write programs in the object-language using the full
power of the meta-language.

Finally, the present paper serves as a case study inpolarized type theory.We were able to construct a
simple and elegant language, solving a traditionally thorny problem, in part because we based our proof-
theoretic analysis on polarity and focusing, which provide a general framework for analyzing the interaction
of rules independently of particular connectives. In “Locus Solum”, Girard proposed this framework as a
new approach to the study of logic. We believe this approach also has much potential for practical program-
ming.
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