
Principles of Type Refinement
(OPLSS 2016)

Noam Zeilberger

June 29 – July 2, 2016

2

Contents

1 Introduction 5
1.1 What is a type refinement system? 5

2 Refining the simply typed lambda calculus 9
2.1 Preliminaries on λ→ . 9
2.2 Refinement, subtyping, and typing in λ�→ 10

2.2.1 Introducing λ�→ . 10
2.2.2 Subtyping and η-expansion 15
2.2.3 The subset interpretation 16
2.2.4 Principal types, type schemes, and bidirectional typing . 18

2.3 Intersection types . 27
2.3.1 The intersection type refinement system λ�∧→ 27
2.3.2 Extending the subset interpretation 30
2.3.3 A further analysis of subtyping 30
2.3.4 Subject expansion and the complexity of type inference . 32
2.3.5 Bidirectional typing for intersection types 34
2.3.6 PSPACE-completeness of bidirectional typing 36

2.4 Refining ML-like languages . 38
2.4.1 Refining datatypes: datasorts and index refinements . . 38
2.4.2 The value restriction . 39
2.4.3 Union types and “tridirectional” typechecking 40

2.5 Notes . 42

3 A categorical perspective on type refinement 43
3.1 Introduction: type theory as an axiomatic theory 43
3.2 Modelling type refinement systems as functors 44

3.2.1 Type refinement systems are not just categories 44
3.2.2 Reading a functor as a type refinement system 46
3.2.3 Some examples of type refinement systems 49
3.2.4 Pulling back and pushing forward 52
3.2.5 Intersection and union types 60
3.2.6 Morphisms and adjunctions of refinement systems . . . 62

3.3 Monoidal closed refinement systems 64

3

4 CONTENTS

3.3.1 Monoidal, symmetric monoidal, and cartesian closed re-
finement systems . 65

3.3.2 Refining the simply typed lambda calculus, revisited . . 68
3.3.3 Playing with tensor, implies, and, or, push, pull 69

Chapter 1

Introduction

1.1 What is a type refinement system?

Since type systems are so useful, it would be nice if we could say exactly what
they were, but actually, it’s difficult to pin down the concept of “type system”
with any mathematical precision while retaining all of the features that make
them so useful in practice.1 Not unrelatedly, the precise denotation of the
phrase “typed programming language” has never been completely settled –
for example, whether it include languages like Python which are dynamically
typed, or pure lambda calculus, which is sometimes said to be “uni-typed”.
With those grains of salt, the following definition of “type refinement system”
nonetheless conveys the right intuitions:

A type refinement system is a type system built on top of a typed
programming language, as an extra layer of typing.

Type refinement systems in this sense have become more popular in recent
years, although the need for new theoretical tools for understanding them is
not yet widely recognized. No doubt part of the reason for this is that in
many instances it is difficult to tell the difference between a type system, a type
refinement system, and a typed programming language, or even to argue that
the difference is important. Nonetheless, the lectures which follow are offered
on the premise that a careful study of these distinctions can be rewarding.

The phrase “type refinement” as I’m using it here comes from a research
program initiated by Frank Pfenning (my thesis co-advisor) in the late 1980s,
and pursued by a long line of his students.2 A hallmark of that line of research
was the consideration of a typed programming language (namely, ML) which
already had a rich language of types with strong theoretical guarantees and

1A point Benjamin Pierce makes in the introduction of Types and Programming Languages.
2Recently, Frank made some remarks about the history of the term in response to a question

by Michael Greenberg, see “A refinement type by any other name” (March 16, 2015), http://www.
weaselhat.com/2015/03/16/a-refinement-type-by-any-other-name/.

5

http://www.weaselhat.com/2015/03/16/a-refinement-type-by-any-other-name/
http://www.weaselhat.com/2015/03/16/a-refinement-type-by-any-other-name/

6 CHAPTER 1. INTRODUCTION

tool support, making it all the more important that any type system layered
on top be conservative in a strong sense. That is, not only should these type
refinement systems keep the semantics of the underlying language unchanged,
but ideally they should also retain the good theoretical and practical properties
of the original type system, such as modular and effective type checking. These
difficult constraints led to the rise of a number of useful general principles for
the construction of type refinement systems.

Among the principles that emerged, a fundamental one was the idea that
type refinement should be distinguished from (and in a sense comes logically
prior to) the more familiar concept of “subtyping”. Intuitively, the refinement
relationship

R @ A “R refines A”

asserts that R is a property (which may or may not hold) of As. For example,

pos, even, odd @ nat

asserts that being positive, even, or odd are different properties of natural
numbers, while

red, tasty, banana @ fruit

asserts that being red, tasty, or a banana are different properties of fruits. On
the other hand, a subtyping relationship

R1 ≤A R2 “R1 is a subtype of R2 (at A)”

asserts that for all As, property R1 implies property R2. For example, the
assertion odd ≤nat pos is valid since every odd natural number is positive.
Although we might leave off the index from a subtyping judgment when we’re
relaxed, really it only makes sense to compare properties of the same kind of
object (we would get funny looks if we asked if being even implies being a
banana), and in that sense the refinement relation comes prior to subtyping.

A related insight that emerged was that this hierarchical view of typing
helps clarify the old distinction in type theory between “types à la Church” and
“types à la Curry” (also called the intrinsic and the extrinsic views of typing).
Recall that in the Church (intrinsic) view, every well-formed term has a uniquely
associated type, and there is no reasonable meaning to be assigned to untyped
terms. In the Curry (extrinsic) view, on the other hand, types express properties
of terms, and so a single term can have many different types (or no type at all),
but it also has an underlying (computational) meaning which is independent
of these types. A more practical aspect of this distinction is that determining
the type of a term under the Church view is usually a trivial task, whereas the
problem of deciding whether a term has a given type under the Curry view can
have high computational complexity, or even be undecidable.

Viewed from the perspective of type refinement systems, the distinction
between types à la Church and types à la Curry can be summarized in the
slogan that “Curry refines Church”:

Curry @ Church

1.1. WHAT IS A TYPE REFINEMENT SYSTEM? 7

In other words, what this view emphasizes is that Curry-style types should not
be considered as properties of terms “in a vacuum”, but rather as properties
of terms constructed using some more primitive, intrinsic typing mechanism.
In many historical instances (not to mention modern ones) of Curry-style typ-
ing these underlying Church-types may initially be difficult to spot (typically
because they involve the solution to a recursive equation like D � D → D),
but being aware of this underlying refinement structure can be very useful in
getting a better handle on the type systems of interest.

The first half of these lectures (Chapter 2) is an introduction to the funda-
mentals of type refinement systems organized around the “Curry @ Church”
slogan, which we’ll take quite literally by using a series of refinements of
Church’s simply typed lambda calculus to navigate topics such as subtyping,
intersection types, and bidirectional typing. The material and presentation are
heavily-inspired by the aforementioned line of work by Frank Pfenning and
collaborators (especially [33]), and more or less follows the standard proof-
theoretic tradition of type theory in terms of overall methodology.

The second half of the lectures (Chapter 3) examines type refinement from a
categorical perspective, based on the idea that a type refinement system should
be seen as an erasure functor from typing derivations to terms. This leads to some
interesting interactions with the theory of bifibrations, and also ties with other
ideas in logic and computer science, such as separation logic. The material in
this half of the lectures is based on joint work with Paul-André Melliès, with
whom I have been collaborating on this subject for a number of years.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Refining the simply typed
lambda calculus

Despite its relatively limited expressive power, the simply typed lambda cal-
culus λ→ plays an important role in programming languages and type theory,
serving as the basis for more powerful extensions such as ML or System F. In this
chapter, rather than extending the language, we will instead consider a series
of refinements of the simply typed lambda calculus, as different type systems
constructed over λ→. The main motivation is that certain general principles
of type refinement systems can already be articulated in this basic setting, and
we’ll see that various interesting and illustrative phenomena arise.

2.1 Preliminaries on λ→
We assume that the reader is already familiar with the standard lambda calculus
notions of free and bound variables, α-conversion, capture-avoiding substitu-
tion, β-reduction, and η-expansion. Here we recall some basic definitions for
the simply typed lambda calculus, and establish some notation.

Definition 2.1.1 (Simple types). Given a set P of atomic types, the simple type
hierarchy generated over P is the least set T [P] containing P and which is
closed under the operation of building function types:

1. if p ∈ P then p ∈ T [P]. (atomic types)

2. if A ∈ T [P] and B ∈ T [P] then A→ B ∈ T [P]. (function types)

In order to define the simply typed terms, we suppose given a collection of
variables x, y, z, . . . , and moreover we suppose that each variable is uniquely
associated with a simple type. Diverging a bit from Church’s original pre-
sentation, we do not indicate the type of x explicitly (Church used subscript
annotations xA), instead viewing this information as determined implicitly by
the context.

9

10 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

Definition 2.1.2 (Simply typed terms). The set of (simply typed) terms of type
A ∈ T [P] is defined inductively by the following rules:

1. If x is a variable of type A then x is a term of type A. (variables)

2. If t is a term of type A→ B and u is a term of type A then t(u) is a term of
type B. (applications)

3. If x is a variable of type A and t is a term of type B then λx.t is a term of
type A→ B. (abstractions)

Notation. We write x1 : A1, . . . , xk : Ak ` t : B to indicate that t is a simply typed
term of type t with free variables x1, . . . , xk of types A1, . . . ,Ak. Here, the list
Γ = x1 : A1, . . . , xk : Ak is called the context of t.
Sometimes we also write t : A, leaving the context Γ implicit.

In the following sections, we will take “λ→” to mean the simply typed lambda
calculus generated over a single atomic type ι. For example,

λx.x : ι→ ι

λx.λy.x : ι→ ι→ ι

λ f .λg.λx.g(f (x)) : (ι→ ι)→ (ι→ ι)→ (ι→ ι)

are a few different terms of λ→.

2.2 Refinement, subtyping, and typing in λ�→
2.2.1 Introducing λ�

→

For Church, the atomic type ι represented an abstract type of “individuals”.
(He probably got this from Bertrand Russell.) Our first type refinement system,
which we call λ�→, will be based on the simple idea of replacing ι by a set of
atomic types P, which we’d like to think of as giving more precise information
about “what kind of individual”. For example, we might takeP as the following
collection of properties:

Pw = { animal,mammal,marine, llama,dolphin, jellyfish,vegetable, carrot }

Moreover, we can express the fact that some of these properties imply others
(every dolphin is a mammal, etc.) by asking that the set Pw be equipped with
a preorder p � q (p, q ∈ P), indicated here by a Hasse diagram:

animal vegetable

mammal marine carrot

llama dolphin jellyfish

2.2. REFINEMENT, SUBTYPING, AND TYPING IN λ�→ 11

In order to define the type refinement system λ�→, we will assume given such an
arbitrary preordered set (P,�) as a parameter. But before discussing the typing
relation, we first introduce two simpler relations, respectively called refinement
and subtyping.

Definition 2.2.1 (Refinement, λ�→). The refinement relation R @ A (R ∈ T [P],
A ∈ T [ι]) (pronounced “R refines A”) for λ�→ is defined inductively by the
following rules:

p ∈ P
p @ ι

R @ A S @ B
R→ S @ A→ B

Terminology. When R @ A holds for some A, I will sometimes refer to R as a
type refinement, or (by transposition) as a refinement type, or (for short) as a
refinement. Types are types, though (whether they be in T [P] or in T [ι]), and
so I will also continue to refer to a type refinement as a type. Hopefully, this
mix of terminology should not be too confusing.

Definition 2.2.2 (Subtyping, λ�→). The subtyping relation R ≤A S (R,S @ A)
(pronounced “R is a subtype of S (at type A)”) for λ�→ is defined inductively by
the following rules:

p � q
p ≤ι q ≤ι

R2 ≤A R1 S1 ≤B S2

R1 → S1 ≤A→B R2 → S2
≤→

Notation. We sometimes omit the subscript, writing R ≤ S instead of R ≤A S
when A is clear from context or not relevant.

Notation. Most often we leave the choice of preordered set (P,�) as an implicit
parameter of λ�→, but if we want to make very clear that we are considering
refinement, subtyping, etc., with respect to a given preorder P = (P,�), we
indicate it by a superscript, writing R @P A, R ≤P S, etc.

The difference between the refinement and subtyping relations might at first be
difficult to fully understand, but let me emphasize that the difference is really
important! Formally, in the definitions above, refinement relates a type inT [P]
to a type in T [ι], while subtyping relates two types in T [P] which both refine
the same type in T [ι]. Moreover, we have the following properties:

Proposition 2.2.3 (@ functional). Refinement is a functional relation, i.e., for every
R ∈ T [P], there exists exactly one A ∈ T [ι] such that R @ A.

Proposition 2.2.4 (≤ preorder). Subtyping is a preorder, i.e., it is reflexive (R ≤A R
for all R @ A) and transitive (if R ≤A S and S ≤A T then R ≤A T for all R,S,T @ A).

The differences between refinement and subtyping should hopefully become
more clear as we progress. One of the reasons why they are sometimes confused
is that if one thinks of types as sets, both the “is a refinement of” relation and
the “is a subtype of” relation look superficially similar to the “is a subset of”

12 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

relation. Prop. 2.2.3 gives us a hint that the refinement relation @ behaves a
bit differently from the usual subset relation ⊆ of set theory, though, and in
Section 2.2.3, we will make this precise by giving a set-theoretic semantics to
λ�→.

Example 2.2.5. Take (Pw,�) as introduced above, and consider the simple type

A = (ι→ ι)→ ι.

It can be refined in many different ways, such as:

R = (mammal→ mammal)→ mammal
S = (dolphin→ animal)→ animal
T = (animal→ dolphin)→ animal

Among these three refinements R,S,T @ A, the subtyping relationships R ≤ T
and S ≤ T hold, but neither R ≤ S nor S ≤ R.

T

R S

�

We now turn to typing, which we will express in the concise and familiar
notation of inference rules.

Definition 2.2.6 (Context refinement). Let Γ and Π be two contexts mentioning
the same collection of variables. We say that Π is a context refinement of Γ
(written Π @ Γ) if the types of the variables in Π refine the types of the variables
in Γ, in other words, if Γ = x1 : A1, . . . , xk : Ak and Π = x1 : R1, . . . , xk : Rk for
some R1 @ A1, . . . ,Rk @ Ak.

Definition 2.2.7 (Typing, λ�→). The typing relation Π ` t : R (Π @ Γ and Γ ` t : A
and R @ A) for λ�→ is defined inductively by the following rules:

x : R ∈ Π
Π ` x : R

var Π ` t : R→ S Π ` u : R
Π ` t(u) : S

app Π, x : R ` t : S
Π ` λx.t : R→ S abs

Π ` t : R R ≤ S
Π ` t : S

sub≤

Clarification. Our convention is to not state explicitly all of the various condi-
tions which are implicitly required for the judgments in the above rules to be
well-formed. For example, it is implicit in the sub≤ rule that Π @ Γ and R,S @ A
for the uniquely determined context Γ and type A such that Γ ` t : A.

2.2. REFINEMENT, SUBTYPING, AND TYPING IN λ�→ 13

Remark. The typing rules var, app, and abs look suspiciously like rules (1)–(3)
of Defn. 2.1.2, especially if we translate the latter back from the prose to their
more usual modern presentation as inference rules:

x : A ∈ Γ
Γ ` x : A

(1) Γ ` t : A→ B Γ ` u : A
Γ ` t(u) : B

(2)
Γ, x : A ` t : B

Γ ` λx.t : A→ B
(3)

These two sets of rules have a quite different interpretation, though. Whereas
previously we defined the language of simply typed terms indexed together
with their types (in the original style of Church), here we are not extending the
language but rather taking the terms of λ→ as given, and explaining how to
ascribe them additional, more refined types. This distinction becomes sharper
if we look through the lens of the Curry-Howard correspondence, where a
simply typed term Γ ` t : A corresponds to a proof πt of A from assumptions Γ.
Viewed in that light, rules (1)–(3) of Defn. 2.1.2 really would be better translated
as the following standard rules of natural deduction:

A ∈ Γ
Γ ` A

hyp Γ ` A→ B Γ ` A
Γ ` B →E

Γ,A ` B
Γ ` A→ B →I

In particular, these rules do not mention anything about terms...which makes
sense, since via Curry-Howard, terms of λ→ correspond to the proofs them-
selves! On the other hand, if we have in our hands a proof πt of Γ ` A,
corresponding to a simply typed term Γ ` t : A, then we can still ask about the
properties of that particular proof. That’s the role of the system we have just
introduced: a derivation α of Π ` t : R in λ�→ can be seen as a proof πα in a
slightly more powerful logic, saying something about the original proof πt. �

Example 2.2.8. Consider the sequential composition combinator

seq = λ f .λg.λx.g(f (x)) : (ι→ ι)→ (ι→ ι)→ (ι→ ι).

Using the typing and subtyping rules of λ�→, we can, for instance, give it the
following more precise type:

seq : (animal→ llama)→ (mammal→ dolphin)→ (jellyfish→ dolphin)

This might be glossed as, “If I have a procedure for turning any animal into
a llama, and a procedure for turning any mammal into a dolphin, then their
sequential composition gives me a procedure which will turn any jellyfish into
a dolphin, since every jellyfish is an animal, and every llama is a mammal.” On
the other hand, the following type ascription is invalid:

seq : (llama→ llama)→ (vegetable→ vegetable)→ (llama→ vegetable)

Indeed, if we try to compose a llama endomorphism with a vegetable endo-
morphism, we shouldn’t expect any promising results. �

14 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

Besides its interpretation as a type refinement system over λ→, the main nov-
elty of λ�→ relative to standard simply typed lambda calculus is the sub≤ rule,
which is commonly called subsumption. The subsumption rule also has a
contravariant form,

Ω ≤ Π Π ` t : R
Ω ` t : R

sub op
≤

where the judgment Ω ≤ Π is interpreted in the obvious way for two context
refinements Ω,Π @ Γ, namely, that the type assigned to each variable in Ω is
a subtype of the type assigned to the same variable in Π. Although I did not
include sub op

≤
explicitly as part of Defn. 2.2.7, it is easily seen to be admissible.

Proposition 2.2.9 (Contravariant subsumption). sub op
≤

is admissible in λ�→.

Proof. By induction on typing derivations. �

You can warmup to the subsumption rule by working through the following
sequence of exercises, where we’ll restrict (P,�) to be the right-hand side of the
preorder introduced at the beginning of this section,

vegetable

carrot

which if you prefer you can also treat (more blandly) as the two-element pre-
order P2 = ⊥ � >.

Exercise 2.2.10. Let B = ι → ι → ι be the type of the Church booleans, where
true = λx.λy.x and false = λx.λy.y. Find all refinements R @ B such that

a) ` true : R and ` false : R

b) ` true : R but 0 false : R

c) ` false : R but 0 true : R

d) 0 true : R and 0 false : R

Exercise 2.2.11. LetN = (ι → ι) → (ι → ι) be the type of the Church numerals,
where

c0 = λ f .λx.x
c1 = λ f .λx. f (x)
c2 = λ f .λx. f (f (x))

How many different refinements R @ N can you assign each Church numeral
ci, for 0 ≤ i ≤ 2? What about for i > 2?

2.2. REFINEMENT, SUBTYPING, AND TYPING IN λ�→ 15

Exercise 2.2.12. It is often the case in λ�→ that one typing judgment can have
multiple typing derivations. Indeed, if we allow unrestricted applications
of the subsumption rule, then any derivable judgment has infinitely many
derivations, since given a derivation α of Π ` t : R we can always construct a
new derivation

α′ =

α
Π ` t : R R ≤ R

Π ` t : R sub≤

where the second premise is discharged by reflexivity. For the purpose of this
exercise, though, you may assume that there are no such no trivial uses of sub≤.
Under that assumption, how many different derivations are there of...

a) ` λx.x : carrot→ vegetable?

b) ` λx.λy.x : carrot→ vegetable→ vegetable?

c) ` λ f .λx.λy. f yx : (⊥ → > → ⊥)→ (> → ⊥ → ⊥)?

Exercise 2.2.13. Let’s say that a closed term t : A has a principal type if there is a
R @ A such that ` t : R, and moreover such that for any other S @ A, if ` t : S
then R ≤ S. Which of the terms from Exercise 2.2.12 have principal types in this
sense? Would this change if we replaced the preorder of refinements P2 by a
different preorder?

2.2.2 Subtyping and η-expansion

I’d like to take a moment to briefly discuss an important general phenomenon
of type refinement systems that already shows up in λ�→, and which will be
useful later when we turn to intersection types. There’s a sense in which the
subsumption rule sub≤ can be seen as “hiding” implicit η-expansion. Suppose
that we restrict the rule to only its atomic instances:

Π ` t : p p � q
Π ` t : q sub�

I’ll refer to this restriction of λ�→ as λ�→η, motivated by the following:

Proposition 2.2.14 (HO subsumption = atomic subsumption + η-expansion).
The higher-order subsumption rule

Π ` t : R R ≤A S
Π ` ηA[t] : S

sub≤η

is derivable in λ�→η, where ηA[t] is the iterated η-expansion of t defined by:

ηι[t] = t
ηA→B[t] = λx.ηB[t(ηB[x])]

Proof. By induction on A. �

16 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

One immediate corollary is that any higher-order subtyping relation can be
realized as typing of an identity coercion.

Proposition 2.2.15. If R ≤A S then x : R ` ηA[x] : S in λ�→η.

Indeed the converse of Prop. 2.2.15 is also true, as you will be asked to prove in
Exercise 2.2.38. So in that sense subtyping can be seen as a “derived” notion,
less primitive than typing, even though we chose to introduce the subtyping
relation first when we originally defined λ�→.

2.2.3 The subset interpretation

This section is meant to provide some additional intuition for the meaning of
the refinement, subtyping, and typing relations, by explaining how to interpret
them in a simple class of concrete models, where refinements are interpreted
as subsets, and subtyping by inclusion. Let’s begin by recalling the standard
set-theoretic interpretation of λ→, where types are interpreted as sets and terms
as functions. The interpretation of types is given inductively by

~ι� = D
~A→ B� = ~A�→ ~B�

where D is some fixed set given as a parameter of the model, and where
~A�→ ~B� = ~B�~A� denotes the set of all functions from ~A� to ~B�. Contexts
are interpreted as cartesian products of sets,

~·� = 1
~Γ, x : A� = ~Γ� × ~A�

and every term Γ ` t : A is interpreted as a function

~t� : ~Γ�→ ~A�

defined by induction on t:

~xi�γ = ai where Γ = (x1, . . . , xk), γ = (a1, . . . , ak)
~(λx.t)�γ = a 7→ ~t� (γ, a)
~t(u)�γ = (~t�γ)(~u�γ)

This standard set-theoretic interpretation of the simply typed lambda calculus
may be extended to an interpretation of the type refinement system λ�→ as
follows. First, we assume given an order-preserving function

i[−] : P → 2D

from the preordered set of atoms to the lattice of subsets of D, in the sense that
each atom p ∈ P is assigned a subset i[p] ⊆ D such that p � q implies i[p] ⊆ i[q]
for all p, q ∈ P. This interpretation of the atoms may then be extended to an

2.2. REFINEMENT, SUBTYPING, AND TYPING IN λ�→ 17

interpretation of arbitrary refinements R @ A as subsets ~R� ⊆ ~A�, which we
define (by their characteristic functions) as follows:

d ∈
�

p
�
⇔ d ∈ i[p]

f ∈ ~R→ S�⇔ ∀a. a ∈ R implies f (a) ∈ S

Similarly, the refinement Π @ Γ of a context can be interpreted as a subset
~Π� ⊆ ~Γ�, defined by a conjunction of constraints on the components of the
cartesian product:

∗ ∈ ~·�⇔ true
(γ, a) ∈ ~Π, x : R�⇔ γ ∈ ~Π� and a ∈ ~R�

We then have the following easy result:

Proposition 2.2.16 (Soundness of subset interpretation). (i) if R ≤A S then ~R� ⊆
~S� (i.e., for all a : ~A�, if a ∈ ~R� then a ∈ ~S�), and (ii) if Π ` t : R then
~t� (~Π�) ⊆ ~R� (i.e., for all γ : ~Γ�, if γ ∈ ~Π� then ~t� (γ) ∈ ~R�).

Proof. By induction on subtyping and typing derivations. �

Now, if you have some background in category theory, you probably know that
the soundness of the standard set-theoretic interpretation of λ→ can be said to
rely on the fact that Set, the category of sets and functions, is cartesian closed.
So, you might be wondering if the subset interpretation and Prop. 2.2.16 may
likewise be justified by some similarly slick categorical gadget. In fact, subsets
can be arranged into another category Subset whose objects are pairs (A,R) of
a set equipped with a subset of that set (R ⊆ A), and whose morphisms

(A,R) −→ (B,S)

are functions f : A → B sending elements of R to elements of S. Then what is
crucial is that this category Subset is cartesian closed, and moreover that the
forgetful functor Subset→ Set defined by projection

(A,R) 7→ A

strictly preserves this cartesian closed structure. We will return to this idea and
explore it much more deeply in Chapter 3.

Finally, in some situations it might be argued that it is better to interpret
types as partially-ordered sets (posets) and lambda terms as order-preserving
functions. The subset interpretation of λ�→ can be extended to this situation, but
now rather than denoting arbitrary subsets, a refinement R @ A is interpreted
as a downwards-closed subset of ~A�, in the sense that

if a′ ∈ ~R� and a � a′ then a ∈ ~R�

for all a, a′ : ~A�. As with the more basic subset interpretation, the order-
theoretic subset interpretation can be justified on abstract categorical grounds,
relying on the fact that downwards closed subsets of posets can be arranged
into a cartesian closed category Downset, together with a strict cartesian closed
functor Downset→ Poset projecting back to the category of posets and order-
preserving functions.

18 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

2.2.4 Principal types, type schemes, and bidirectional typing

So far we have studied λ�→ as a “type assignment” system, in the sense that
in Section 2.2.1 we gave inductive definitions of the subtyping and typing
relations, and in Section 2.2.3 we showed that these relations admit a natural
interpretation wherein simple types denote sets and refinements denote subsets
of those sets. What we have not done yet, however, is give an explicit algorithm
for deciding whether the subtyping and/or typing relations hold in any given
instance. In fact, the way we defined subtyping, it’s pretty easy to see it is
decidable:

Proposition 2.2.17 (≤ decidable). The subtyping relation R ≤A S of λ�→ is decidable,
provided the underlying preorder p � q is decidable.

Proof. We greedily attempt to construct a derivation of R ≤A S bottom-up, by
induction on A. In each case, only one possible rule applies (either ≤ι or ≤→), so
we apply the appropriate rule until we are left with only premises of the form
p � q, which we can decide by the assumption. �

No such simple argument works for deciding the typing relation, though. You
already got a hint of this if you did Exercise 2.2.12, which explored the fact that
in λ�→ a typing judgment can often have more than one derivation. Besides the
problem that the subsumption rule can be applied at any time, what really gets
in the way of a naive bottom-up interpretation of the typing rules is the form
of app and sub≤,

Π ` t : R→ S Π ` u : R
Π ` t(u) : S

app Π ` t : R R ≤ S
Π ` t : S

sub≤

where the type checking algorithm seemingly has to pull the type R out of thin
air. For example, it happens to be the case that the typing judgment

` (λ f .λx.λy. f yx)(λz.λw.z) : > → ⊥ → > (2.1)

is valid (where ⊥ � >), but how would a type checking algorithm figure out
that it should first verify

` λ f .λx.λy. f yx : (⊥ → > → ⊥)→ (> → ⊥ → >) (2.2)

in order to verify (2.1)?
If you have done any programming in languages like ML or Haskell, then

you know that it is sometimes possible to answer such questions through type
inference, which attempts to compute the principal type of a term. Exercise 2.2.13
above recalled the usual definition of what it means to be a principal type for a
closed term, and more generally one can speak of principal types with respect
to a given typing context.

Definition 2.2.18 (Π-principal types). Let Γ ` t : A be a term and Π @ Γ a
refinement of its context. A principal type under Π (or Π-principal type) of t,
when it exists, is a refinement R @ A such that Π ` t : R, and moreover such
that for any other S @ A, if Π ` t : S then R ≤ S.

2.2. REFINEMENT, SUBTYPING, AND TYPING IN λ�→ 19

As suggested by Exercise 2.2.13, principal types in this sense do not always
exist in λ�→.

Counterexample 2.2.19. Let (Pw,�) be the preorder fixed at the beginning of
Section 2.2.1. Then the identity term λx.x : ι→ ι does not have a principal type
(with respect to any context), since it can be assigned both types

` λx.x : animal→ animal and ` λx.x : vegetable→ vegetable,

neither of which is a subtype of the other. �

Although the lack of principal types might seem like a strong barrier to devising
a type inference algorithm for λ�→, it’s actually a bit of a red herring, and there
at least two different ways of addressing it.

Response 1: Principal type schemes.

One possible response is to say that rather than looking for principal types
in λ�→, we should really be looking for principal type schemes. Indeed, the
well-known Hindley-Milner algorithm (based on unification) can be seen as
computing principal type schemes for simply typed lambda terms without the
sub≤ rule. Something similar will work for λ�→, though we should first make
precise exactly what we mean by a principal type scheme.

Definition 2.2.20 (Atomic type substitutions). Let P = (P,�P) and Q = (Q,�Q)
be preordered sets. An atomic type substitution from P to Q is an order-
preserving function σ : P → Q.

Notation. If σ : P → Q is an atomic type substitution, we write [σ] for the
homomorphic extension of σ to type refinements defined by

[σ]p = σ(p) [σ](R→ S) = [σ]R→ [σ]S

as well as for its homomorphic extension to context refinements defined by

[σ]· = · [σ](Γ, x : R) = [σ]Γ, x : [σ]R

Proposition 2.2.21 (Preservation of typing under type substitution). If Π `P t :
R, and σ : P → Q is an atomic type substitution, then [σ]Π `Q t : [σ]R.

Proof. By induction on typing derivations. �

Definition 2.2.22 (Principal type schemes). Let Γ ` t : A be a term. A type
scheme for t is a triple of a preordered set P = (P,�), a context refinement
Π @P Γ and a type refinement R @P A, such that Π `P t : R. It is said to
be a principal type scheme if for any other type scheme ((Q,�),Ω,S) for t,
there exists an atomic type substitution σ : P → Q such that Ω ≤Q [σ]Π and
[σ]R ≤Q S.

20 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

Although some terms may fail to have principal types in the sense of Defn. 2.2.18,
it turns out that all terms of λ→ have principal type schemes in the sense of
Defn. 2.2.22. For example,

` λx.x : p→ q [p � q] (2.3)

is a principal type scheme for the identity term λx.x : ι→ ι, while

` λ f .λx.λy. f yx : (p→ q→ r)→ (s→ t→ u) [s � q, t � p, r � u] (2.4)

is a principal type scheme for λ f .λx.λy. f yx : (ι → ι → ι) → (ι → ι → ι). Once
we have principal type schemes, it is pretty easy to decide typing. For example,
to check (2.2) using (2.4), it suffices to perform the substitution

p, r, t 7→ ⊥ q, s,u 7→ >

and verify the three inequalities > � >,⊥ � ⊥,⊥ � >.

Exercise 2.2.23. Find principal type schemes for each of the Church numerals
(cf. Exercise 2.2.11).

Exercise 2.2.24. Show that every term Γ ` t : A has a type scheme whereP = { ι }
is the one-element set. Is this a principal type scheme? �

An algorithm computing principal type schemes for a system more or less
equivalent to λ�→ was given by John Mitchell [31] (although there are small
technical differences between our definitions and his). Mitchell’s algorithm
(“Algorithm GA”) is very similar in spirit to the Hindley-Milner algorithm,
and you are asked to reconstruct it in the next two exercises.

Exercise 2.2.25. In the programming language of your choice, write a procedure
which inputs a simply typed lambda term Γ ` t : A, and returns a λ�→ principal
type scheme for t, in the form of a triple of a preorder P = (P,�P), a context
refinement Π @P Γ, and a type refinement R @P A such that Π `P t : R.

Exercise 2.2.26. Like the usual presentation of the Hindley-Milner algorithm,
Mitchell’s Algorithm GA was originally expressed as a type inference procedure
on untyped terms t, which might fail in the case that t does not have a simple
type. Modify your solution from Exercise 2.2.25 to work on untyped terms,
then figure out the right way of adapting Definitions 2.2.20 and 2.2.22 so that
your modified algorithm has the correct specification.

Response 2: Bidirectional typing.

Another possible response to the apparent difficulty we noticed before is to say
that maybe instead of being worried that not every term has a principal type
in λ�→, we should just pay closer attention to the ones that do have principal
types. This gives rise to the idea of bidirectional typing (also called “local type
inference”), which combines type inference on a select class of terms with type
checking for the rest. As a general purpose technique, bidirectional typing has
many practical advantages over computing principal type schemes, especially

2.2. REFINEMENT, SUBTYPING, AND TYPING IN λ�→ 21

as one considers richer type systems. Moreover, it happens to have deep links to
the underlying logical structure and symmetry of the lambda calculus, making
it interesting from a purely theoretical perspective as well.

In order to explain bidirectional typing, let us first recall the classical lambda
calculus notions of normal and neutral terms.

Definition 2.2.27 (Neutral and normal terms). Being neutral or normal are
properties of a lambda term, defined by mutual induction as follows:

1. If x is a variable then x is neutral.

2. If t is neutral and u is normal then t(u) is neutral.

3. If t is neutral then t is normal.

4. If x is a variable and t is normal then λx.t is normal.

Proposition 2.2.28 (β-normal terms are normal). A term t is normal if and only if
it does not contain a β-redex (λx.t′)(u) as a subterm.

The lucky observation which motivates bidirectional typing is that there is a
very simple procedure for checking whether a normal term has a given type,
by inferring principal types for its neutral subterms.

Notation. We use the letters e and m to range over neutral and normal terms,
respectively. More compactly, the definition of neutral and normal terms can
be expressed by the following grammar:

e ::= x | e(m)
m ::= e | λx.m

Definition 2.2.29 (Bidirectional typing, λ�→, normal fragment). Bidirectional
typing for (the normal fragment of) λ�→ consists of a checking relation Π `
m ⇐ R together with a synthesis relation Π ` e ⇒ R, which are defined
inductively by the following rules:

x : R ∈ Π
Π ` x⇒ R var⇒ Π ` e⇒ R→ S Π ` m⇐ R

Π ` e(m)⇒ S
app⇒

Π ` e⇒ R R ≤ S
Π ` e⇐ S

sub⇐
≤

Π, x : R ` m⇐ S
Π ` λx.m⇐ R→ S abs⇐

What is remarkable about the four rules in Defn. 2.2.29 is that they are almost
identical to the four rules in Defn. 2.2.7, yet they have an immediate algorithmic
interpretation. In the terminology of logic programming, the definitions of the
synthesis and checking relations correspond to well-moded logic programs:

input input
Π ` e ⇒ R

output

input input input
Π ` m ⇐ R

22 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

That is, the synthesis relation can be realized as a procedure which takes a
context refinement and a neutral term as input and attempts to compute a type
refinement as output, while checking can be realized as a procedure which
takes a triple of a context refinement, a normal term, and a type refinement as
input, and either succeeds or fails. In particular, the problem we ran into before
with the app and sub≤ rules disappears for their bidirectional versions app⇒ and
sub⇐
≤

, since the synthesis relation uniquely determines the refinement which
we had to somehow mysteriously “guess” before.

Proposition 2.2.30 (⇒ partial functional). For any Π @ Γ and Γ ` e : A, there
exists at most one R @ A such that Π ` e⇒ R, and moreover R must already occur as
a subformula1 in Π.

Proposition 2.2.31 (⇐ decidable). For any Π @ Γ and Γ ` m : A and R @ A, it is
decidable whether Π ` m⇐ R.

The rules of bidirectional typing are obviously sound for the typing relation
(we just replace “⇒” and “⇐” by “:” to obtain the rules in Defn. 2.2.7), but what
makes them interesting is that they are also complete for the typing relation, at
least as restricted to β-normal terms:

Theorem 2.2.32 (Completeness of bidirectional typing, normal fragment). Let
Γ ` t : A, and suppose Π ` t : R for some Π @ Γ and R @ A.

a) If t is neutral, then there exists an R0 @ A such that Π ` t⇒ R0 and R0 ≤ R.

b) If t is normal, then Π ` t⇐ R.

To prove completeness, we rely on a lemma establishing covariant and con-
travariant subsumption principles for the bidirectional system.

Lemma 2.2.33 (Subsumption, bidirectional version). (Subsumption for synthesis:)
If Ω ≤ Π and Π ` e ⇒ R, then Ω ` e ⇒ R0 for some R0 ≤ R. (Subsumption for
checking:) If Ω ≤ Π and Π ` m⇐ R and R ≤ S, then Ω ` m⇐ S.

Proof. Straightforward by induction on derivations. �

Proof of Thm. 2.2.32. By induction on the derivation of Π ` t : R, with the two
statements ordered so we can appeal to (a) from (b) with the same derivation.
For (a) we have the following cases:

Case
x : R ∈ Π
Π ` x : R

var
: Take R0 = R, then Π ` x ⇒ R by the var⇒ rule and R ≤ R

by reflexivity of subtyping.

1By “occur as a subformula” I just mean that R must already appear syntactically somewhere in
Π. This relation can be defined inductively, beginning with the subformula relation RC S between
types, which satisfies R C R for all R, and R C S1 → S2 iff R C S1 or R C S2.

2.2. REFINEMENT, SUBTYPING, AND TYPING IN λ�→ 23

Case
Π ` t′ : R→ S Π ` u : R

Π ` t′(u) : S
app

: By assumption, t′ is neutral and u is nor-
mal. By the induction hypothesis we obtain Π ` t′ ⇒ R′ → S′ for some
R′ → S′ ≤ R → S, as well as Π ` u ⇐ R. By inversion of the subtyping
relation, we have R ≤ R′ and S′ ≤ S, hence Π ` u⇐ R′ by Lemma 2.2.33,
and Π ` t′(u)⇒ S′ by the app⇒ rule.

Case
Π ` t : R R ≤ R′

Π ` t : R′
sub≤: Immediate by the i.h. and transitivity of ≤.

Case (lam): Impossible by assumption that t is neutral.

For (b) we have the following cases:

Case t neutral: Immediate by i.h. (a) and application of the sub⇐
≤

rule.

Case
Π, x : R ` t : S

Π ` λx.t′ : R→ S lam: Immediate by i.h. (b) and application of lam⇐.

Case
Π ` t : R R ≤ R′

Π ` t : R′
sub≤ with t not neutral: Since t is normal, it is neces-

sarily of the form t = λx.t′, while R and R′ are of the form R = R1 → S1,
R′ = R2 → S2. By the i.h., Π ` λx.t′ ⇐ R1 → S1, which implies
Π, x : R1 ` t′ ⇐ S1 by inversion of the checking relation. Since R2 ≤ R1
and S1 ≤ S2, this implies Π, x : R2 ` t′ ⇐ S2 by Lemma 2.2.33, hence
Π ` λx.t′ ⇐ R2 → S2 by lam⇐.

�

Corollary 2.2.34. If Π ` e⇒ R, then R is a Π-principal type for e.

Since bidirectional typing seems to give such a simple answer to the question
of typing β-normal terms, an obvious followup question is, “What about non-
normal terms?” The short answer is that every β-redex should be accompanied
by a type annotation.

Definition 2.2.35 (Bidirectional typing, λ�→, annotations). A (type refinement)
annotation is a pair of a term m : A together with a type refinement R @ A,
written “m : R”. Annotations are typed by the rule of annotation synthesis,

Π ` m⇐ R
Π ` (m : R)⇒ R ann⇒

which says that m : R synthesizes type R just in case m checks against R.

The completeness theorem can now be extended to arbitrary terms, at least in
the more limited sense that it is always possible to place enough annotations
on a term so that it checks.

Proposition 2.2.36 (Annotatability). If Π ` t : R, then there exists an annotated
term m such that |m| = t and Π ` m⇐ R, where |m| erases all annotations from m.

24 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

Note we also need a minor adjustment to Prop. 2.2.30: whenever Π ` e ⇒ R,
the type R must either occur as a subformula in Π or else as a subformula in (an
annotation occurring in) e.

One way to think of type annotations is as a sort of virtual coercion from
normal terms to neutral terms,

e ::= · · · | (m : R)

dual to the inclusion of neutral terms into normal terms. These coercions are
“virtual”, in the sense that the extended grammar

e ::= x | e(m) | (m : R)
m ::= e | λx.m

strictly speaking no longer describes the classical properties of being neutral
or normal (Defn. 2.2.27), but rather can be seen as a way of “polarizing” the
subterms of an arbitrary term, marking them as being amenable to either type
synthesis or type checking.

There’s actually a way of visualizing this bidirectional flow of type infor-
mation, which I’m fond of, so please forgive a momentary digression. This
visualization technique builds on a folklore representation of lambda terms as
certain kinds of labelled graphs. In particular, the operations of application
and abstraction can be represented diagrammatically by considering graphs
with two different types of trivalent vertex: a “@-vertex” having two inputs (t
and u) and one output (t(u)), and a “λ-vertex” having one input (t) and two
outputs (x and λx.t). For example, below are diagrams representing the terms
λx.λy.x(λz.yz) and (λ f .λy.λx. f yx)(λz.λw.z):

λ

λ

@ λ

@

@

@

λ

@

λ

λ

λ

λ

2.2. REFINEMENT, SUBTYPING, AND TYPING IN λ�→ 25

(This is a bit more obvious if we annotate wires with subterms:)

λ

λ

@ λ

@

λxλy.x(λz.yz)

λy.x(λz.yz)

x(λz.yz)
λz.yz

y

x

yz z

@

@

λ

@

λ

λ

λ

λ

f y

f yx

λy. f yx

λx.λy. f yx

λ f .λx.λy. f yx

x

y

f

λw.z

z
w

λz.λw.z
(λ f .λx.λy. f yx)(λz.λw.z)

The “neutral vs. normal” distinction can then be incorporated into these dia-
grams by coloring the wires, say, in blue and red. So, @-vertices get colored

as @ and λ-vertices as λ , while we use explicit “converter boxes” and

to mediate between the two types of wires. For example, here is a bicolored

version of the diagram for (λ f .λy.λx. f yx)(λz.λw.z):

@

@

λ

@

λ

λ

λ

λ

26 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

To now get to bidirectional typing, all we have to do is reverse the red wires! The
idea is we view blue wires as carrying positive information about the principal
types of the corresponding subterms, while we view red wires as carrying
negative information in the form of type checking obligations. The bidirectional
typing algorithm can be described very concisely by four local conditions,

@

R→ S

S R

λ

R→ S

RS

≤

R

S

R

R

R

(†)

which explain how to push this positive and negative information along the
diagram of a term (containing some type annotations), and which correspond
directly to the four typing rules app⇒, lam⇐, sub⇐

≤
, and ann⇒, respectively.2

Turning back to the motivating example at the beginning of our discussion,
in order to verify that

` (λ f .λy.λx. f yx)(λz.λw.z) : > → ⊥ → >

it suffices to annotate the subterm λ f .λy.λx. f yx with an appropriate type, and
bidirectional typing will accomplish the rest:

@

@

λ

@

λ

λ

≤

λ

λ

≤

≥

≥≤

(⊥ → > → ⊥)→ (> → ⊥ → >)

> → ⊥ → >

> → ⊥

⊥ → >

> → ⊥ → >

⊥ → > → ⊥

⊥

> → ⊥

⊥

>

⊥ → > → ⊥> → ⊥ → >

⊥

⊥

>

>

>

⊥

(⊥ → > → ⊥)→ (> → ⊥ → >)

(⊥ → > → ⊥)→ (> → ⊥ → >)

> → ⊥ → >

> → ⊥ → >

Exercise 2.2.37. In the language of your choice, write a bidirectional typechecker
for λ�→, and use it to check your answers to Exercises 2.2.10 and 2.2.11. (You

2The var⇒ rule comes “for free” in the graphical language, by physical connection of wires.

2.3. INTERSECTION TYPES 27

may either work with a fixed preorder, or else write a modular typechecker
that takes a decidable preorder as a parameter.)
Exercise 2.2.38. Prove that for all R,S @ A, if x : R ` ηA[x] ⇐ S then R ≤A S
(Hint: generalize the induction hypothesis), and combine this with Thm. 2.2.32
to derive a converse to Prop. 2.2.15. Finally, apply this fact to refactor your
typechecker from Exercise 2.2.37, so that it answers questions about higher-
order subtyping by type checking an appropriate identity coercion.

2.3 Intersection types

2.3.1 The intersection type refinement system λ�∧
→

Even though the type refinement system λ�→ is rather limited in its expressive
power, it already gave us a useful illustration of some important principles of
type refinement. The most basic of these principles might just be the simple idea
that a term can have more than one (refinement) type. One way of motivating
intersection type systems (which in general have significantly greater expressive
power than λ�→) is that they give a way to “internalize” the fact that a term
has multiple types. There are quite a few different variations of intersection
typing in the literature, but he we will study intersection types in another well-
behaved refinement of λ→. Like λ�→, the intersection type refinement system
λ�∧→ does not increase the class of expressible programs – these remain limited
to the simply-typed lambda terms – but it increases their class of typings.

In keeping with the approach we took to λ�→, the definition of λ�∧→ will be
parameterized with respect to any preordered set of atoms with finite meets, so
let’s first recall what that means.

Definition 2.3.1 (Finite meets). A meet of a pair of elements p1, p2 of a pre-
ordered set is an element p1 ∧ p2 such that p1 ∧ p2 � p1 and p1 ∧ p2 � p2, and
moreover such that for any other element q, if q � p1 and q � p2 then q � p1∧p2.
A preordered set (P,�) is said to have finite meets if every pair of elements
p1, p2 ∈ P has a meet p1 ∧ p2 ∈ P and there is also a top element > ∈ P, where
q � > for all q ∈ P. (A partial order with finite meets is commonly called a meet
semilattice.)

In a sense, all that intersection types do in λ�∧→ is explain how to extend the
concept of finite meet from atomic elements to arbitrary refinements of simple
types, with the only subtlety being the emergence of some non-trivial subtyping
relations. Let’s begin by studying the refinement and typing rules, before we
get to the subtlety.

For binary intersections we have:

R1 @ A R2 @ A
R1 ∧ R2 @ A

Π ` t : R1 Π ` t : R2

Π ` t : R1 ∧ R2
∧I

Π ` t : R1 ∧ R2

Π ` t : Ri
∧Ei

The refinement rule says that it it is possible to form the intersection of any pair
of refinements of the same type, while the typing rules just formalize the idea

28 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

of combining multiple typings of the same term (NB: the index i in ∧Ei stands
for either 1 or 2, so this is really a pair of rules). The “0-ary” versions of these
rules are even simpler:

>A @ A Π ` t : >A
>I (no elimination rule for >)

Note we index the “top” refinement by the type A it refines, to avoid ambiguity,
although sometimes we can omit this index when it is clear from context.

Now as for subtyping, clearly all of the following subtyping relations and
rules should be admissible:

R1 ∧ R2 ≤A R1 R1 ∧ R2 ≤A R2

S ≤A R1 S ≤A R2

S ≤A R1 ∧ R2 S ≤A >

Essentially, these just express that the preorder of refinements of a type A has
finite meets. It turns out, though, that we should also admit the following
subtyping relations between refinements of function types:

(S→ R1) ∧ (S→ R2) ≤A→B S→ (R1 ∧ R2) (dist-∧)
> ≤A→B S→ > (dist->)

One way you might justify these distributivity principles to yourself is by think-
ing about the subset interpretation of refinement types, and reading intersection
types as intersection of subsets (see Section 2.3.2). You can also justify them
by recalling the discussion of Section 2.2.2, and trying to realize (dist-∧) and
(dist->) as typings of an identity coercion (see Section 2.3.3). For now, though,
for the sake of further analysis, let’s gather all of these rules into one formal
definition.

Definition 2.3.2 (System λ�∧→η). Let (P,�) be a preordered set with finite meets.
The refinement, subtyping, and typing relations for λ�∧→ are defined inductively
by the union of the rules of λ�→ (Definitions 2.2.1, 2.2.2 and 2.2.7) together with:

• Refinement:
R1 @ A R2 @ A

R1 ∧ R2 @ A >A @ A

• Subtyping:

R1 ∧ R2 ≤A R1 R1 ∧ R2 ≤A R2

S ≤A R1 S ≤A R2

S ≤A R1 ∧ R2 S ≤A >

(S→ R1) ∧ (S→ R2) ≤A→B S→ (R1 ∧ R2) > ≤A→B S→ >

R ≤A R
R ≤A S S ≤A T

R ≤A T

2.3. INTERSECTION TYPES 29

• Typing:

Π ` t : R1 Π ` t : R2

Π ` t : R1 ∧ R2
∧I

Π ` t : R1 ∧ R2

Π ` t : Ri
∧Ei Π ` t : >A

>I

Exercise 2.3.3. In this exercise and the next one, take (P,�) to be the two-element
preorder P2 = ⊥ � >, which is also a trivial meet semilattice with

⊥ ∧ ⊥ = ⊥ ∧ > = > ∧ ⊥ = ⊥ and > ∧ > = >

and top element >. Let’s say that two refinements R,S @ A are in the same
equivalence class if R ≤ S and S ≤ R. Verify that the refinements of B = ι→ ι→ ι
are partitioned into five equivalence classes in λ�∧→ , suggestively labeled by the
vertices of the following Hasse diagram:

>B

true false

fuzzy

⊥B

Exercise 2.3.4. Recall the standard definitions of conjunction, disjunction, and
negation on the Church booleans:

and, or : B→ B→ B
and = λp.λq.λx.λy.p (q x y) y

or = λp.λq.λx.λy.p x (q x y)
not : B→ B
not = λp.λx.λy.p y x

Find principal types for and, or, and not with respect to P2. (Hint: beware the
excluded middle!)

Exercise 2.3.5 (cf. Hindley [16], Dunfield [11]). The typing rules for intersection
types look similar to the standard typing rules for product types,

Π ` t1 : R1 Π ` t2 : R2

Π ` (t1, t2) : R1 × R2
×I

Π ` t : R1 × R2

Π ` πi t : Ri
×Ei

except that ×I and ×Ei come with explicit pairing and projection operations on
terms, whereas the term t remains fixed in rules I∧ and Ei∧. Suppose that we

30 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

define an “elaboration” of typing derivations in an intersection type system
into the simply typed lambda calculus with products, by a translation whose
effect on types is to map ∧ to × and leave everything else unchanged:

p∗ = p (R→ S)∗ = R∗ → S∗ (R ∧ S)∗ = R∗ × S∗

Give an example of a (refinement) type R @ A, such that R is uninhabited in
λ�∧→ (i.e., there is no closed term t : A such that t : R), but its translation R∗ is
inhabited in the simply typed lambda calculus with products.

2.3.2 Extending the subset interpretation

The interpretation of refinements as subsets that we discussed in Section 2.2.3
extends in a straightforward way to cover λ�∧→ , with intersection of refinements
(∧) interpreted as intersection of subsets (∩), and “top” refinements interpreted
as the maximal subset:

~R1 ∧ R2� = ~R1� ∩ ~R2� ~>A� = ~A�

The only subtlety is that for this semantics to be coherent, we must also require
the interpretation function

i[−] : P → 2D

to preserve finite meets in addition to being order-preserving. Under that
assumption, the soundness result (Prop. 2.2.16) continues to hold. For example,
the distributivity principle

(S→ R1) ∧ (S→ R2) ≤A→B S→ (R1 ∧ R2)

has the following reading as an inclusion of subsets: if f : A→ B is a function
which maps elements of ~S� to elements of ~R1� and which also maps elements
of ~S� to elements of ~R2�, then f will map elements of ~S� to elements of the
intersection ~R1� ∩ ~R2�.

2.3.3 A further analysis of subtyping

Looking at Defn. 2.3.2, there is some incongruity between the concise statement
of the refinement and typing rules for intersection types, and the definition
of the subtyping relation in λ�∧→ , which seems a lot more complex. This is
largely an artifact of the presentation, though, and there are equivalent but
more elegant ways of defining subtyping.

The quickest way of defining subtyping is to reduce it to typing and η-
expansion, like we discussed in Section 2.2.2. For example, the following (par-
tial) typing derivation shows how one can derive the distributivity principle

2.3. INTERSECTION TYPES 31

(dist-∧) in this manner:

· · · ` x : (S→ R1) ∧ (S→ R1)
· · · ` x : S→ R1

∧E1 . . . , y : S ` y : S
. . . , y : S ` x(y) : R1

app
...

. . . , y : S ` x(y) : R2

. . . , y : S ` x(y) : R1 ∧ R2
∧I

x : (S→ R1) ∧ (S→ R2) ` λy.x(y) : S→ (R1 ∧ R2) abs

We can derive (dist->) similarly (but even more quickly):

x : >, y : S ` x(y) : > >I

x : > ` λy.x(y) : S→ > abs

Another approach inspired by sequent calculus is to generalize the subtyping
judgment to take a list of refinements on the left,

R1, . . . ,Rn �A S

with the intended interpretation that

R1, . . . ,Rn �A S iff R1 ∧ · · · ∧ Rn ≤A S.

The following does the trick:

Notation. We write ~R @ A to stand for a list of refinements of the same type
~R = R1, . . . ,Rn @ A. We write i ∈

(n
k
)

(where k,n are natural numbers) to indicate
that i is a sequence of k distinct indices 1 ≤ i1 < i2 < · · · < ik ≤ n.

Definition 2.3.6 (Sequent subtyping). The sequent subtyping relation ~R�A S
(~R,S @ A) is defined inductively by the following rules:

~R0,R1,R2, ~R�A S
~R0,R1 ∧ R2, ~R�A S

~R�A S1 ~R�A S2

~R�A S1 ∧ S2

~R0, ~R�A S
~R0,>, ~R�A S ~R�A >

p1 ∧ · · · ∧ pn � q
p1, . . . , pn �ι q

i ∈
(n

k
)

R�A Ri1 · · · R�A Rik Si1 , . . . ,Sik �B S
R1 → S1, . . . ,Rn → Sn �A→B R→ S

Like our original definition of subtyping inλ�→, this definition has the advantage
of admitting an immediate algorithmic interpretation, by reading the rules
bottom-up. (Defn. 2.3.2 does not admit a bottom-up interpretation due to the
explicit inclusion of transitivity.) On the other hand, this algorithm is not
particularly efficient: to apply the subtyping rule for function types requires
choosing a k-element subset of the n refinements on the left, and there are a
total of

∑
k
(n

k
)

= 2n possible such choices! We will return to the more general
question of the complexity of type checking intersection types in Section 2.3.6.
For now, let’s record the fact that these various definitions of subtyping are
equivalent.

32 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

Theorem 2.3.7. Let R,S @ A. The following are equivalent in λ�∧→ :

1. R ≤A S is derivable

2. x : R ` ηA[x] : S is derivable with subsumption restricted to atomic instances.

3. R�A S is derivable

Proof sketch. The implication (3) ⇒ (1) is an easy induction applying the in-
tended interpretation of the sequent subtyping judgment described above,
while we have given some indications of the implication (1) ⇒ (2), although
there is some work to do in explaining how to do to deal with reflexivity and
transitivity. The implication (2) ⇒ (3) becomes a lot easier after we’ve intro-
duced a bidirectional type system for intersection types in Section 2.3.5. For
a full proof of an analogous (but more sophisticated) result, see Lovas and
Pfenning [24, §4]. �

2.3.4 Subject expansion and the complexity of type inference

From exercise Exercise 2.3.4 you know that it is sometimes possible to compute
principal types for terms in λ�∧→ , essentially because we can use intersection
types to list all of the distinct possible behaviors of a term (assuming there
are only finitely many atomic refinements). For various reasons, though, this
observation does not necessarily yield the best path towards a practical type
system. One reason is that these principal types can get rather large. For
example, if we keep the same two-element lattice of atomic refinements P2 as
in the exercises, then the term

test : B→ B→ B→ B
test = λp.λq.λr.and p (or (not q) r)

has the following principal type:

test : true→ true→ true→ true
∧ true→ true→ false→ false
∧ true→ true→ fuzzy→ fuzzy
∧ true→ true→ ⊥B → ⊥B
∧ true→ false→ >B → true
∧ true→ fuzzy→ false→ fuzzy
∧ true→ ⊥B → >B → ⊥B
∧ false→ >B → >B → false
∧ fuzzy→ true→ true→ fuzzy
∧ fuzzy→ false→ >B → fuzzy
∧ ⊥B → >B → >B → ⊥B

2.3. INTERSECTION TYPES 33

Of course, if we replace P2 by something else then the principal type could get
even bigger! Moreover, besides being verbose, oftentimes such principal types
are not particularly useful, because they describe the behavior of a program on
inputs which will never be generated – for example, you may have noticed that
there are no closed Church booleans of type fuzzy or⊥B. Rather than attempting
to compute principal types for arbitrary terms, a much more practical solution
to type checking with intersection types is to use bidirectional typing, as we will
discuss in Section 2.3.5. Before we get there, though, I’d like to discuss another
theoretical barrier to pure type inference for λ�∧→ , which is closely related to
some of the historical motivations for studying intersection type systems.

Like many other intersection type systems, λ�∧→ satisfies both the usual
subject reduction (a.k.a. type preservation) property as well as a dual “subject
expansion” property.

Definition 2.3.8 (Subject reduction/expansion). A type system with typing re-
lation Π ` t : R and rewriting relation t→ t′ is said to satisfy...

• subject reduction: if Π ` t : R and t→ t′ implies Π ` t′ : R.

• subject expansion: if t→ t′ and Π ` t′ : R implies Π ` t : R.

As usual, subject reduction (with respect to β-conversion) relies on a substitu-
tion lemma, which is proved by an easy induction.

Lemma 2.3.9 (Substitution, λ�∧→). If Π ` u : R and Π, x : R ` t : S then Π ` t[u/x] :
S.

Dually, subject expansion relies on a converse to the substitution lemma, typical
of intersection type systems.

Lemma 2.3.10 (Converse substitution, λ�∧→). If Π ` t[u/x] : S then there exists an
R such that Π ` u : R and Π, x : R ` t : S.

Proof. By induction on the derivation of Π ` t[u/x]. We show some representa-
tive cases:

Case
Π ` t[u/x] : S1 Π ` t[u/x] : S2

Π ` t[u/x] : S1 ∧ S2
∧I: By the i.h. there exists an R1 such that

Π ` u : R1 and Π, x : R1 ` t[u/x] : S1, as well as an R2 such that Π ` u : R2
and Π, x : R2 ` t[u/x] : S2. The two hypothetical derivations can be
weakened to Π, x : R1 ∧ R2 ` t[u/x] : S1 and Π, x : R1 ∧ R2 ` t[u/x] : S2 by
contravariant subsumption. Then by application of I∧ twice we obtain
Π ` u : R1 ∧ R2 and Π, x : R1 ∧ R2 ` t[u/x] : S1 ∧ S2.

Case Π ` t[u/x] : > >I: By I> twice we have Π ` u : > and Π, x : > ` t : >.

Case ∧E: immediate by the i.h. and reapplying ∧E.

Case Π, y : S ` y[u/x] : S
var

: Take R = >.

34 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

Case
Π ` t1[u/x] : S′ → S Π ` t2[u/x] : S′

Π ` t1(t2)[u/x] : S
app

: Similar to I∧.

Case
Π, y : S′ ` t[u/x] : S

Π ` λy.t[u/x] : S′ → S lam: By applying the i.h. and a strengthening lemma.

�

Corollary 2.3.11 (Subject reduction + expansion, λ�∧→). λ�∧→ satisfies both the
subject reduction and subject expansion properties with respect to β-conversion.

Proof. By induction on typing derivations, applying the substitution and con-
verse substitution lemmas. (Incidentally, the subject reduction and expansion
properties also hold with respect to η-conversion, which is related to our dis-
cussion of subtyping in Section 2.3.3.) �

Corollary 2.3.12 (Complexity of typing, λ�∧→). Deciding the typing relation in λ�∧→
requires non-elementary time (i.e., is not bounded by any fixed tower of exponentials),
for any preorder of atomic refinements with at least two inequivalent elements ⊥ ≺ >.

Proof. There are two closed normal terms of type ι → ι → ι in λ→, namely
the Church booleans true = λx.λy.x and false = λx.λy.y. As a consequence of
subject reduction + expansion, we can decide whether a closed term t : ι→ ι→ ι
normalizes to true by asking whether t : ⊥ → > → ⊥. But by Statman’s theorem
[44, 26], deciding whether t normalizes to true requires non-elementary time. �

In addition to the practical issue we already discussed, this complexity issue
imposes a strong theoretical barrier to any approach to type checking λ�∧→ based
on pure inference. Moreover, the fact that the typing relation is decidable at
all relies on a special property of simply typed lambda calculus, that all terms
eventually reduce to a normal form. In contrast, intersection type refinement
systems built on top of Turing-complete languages (such as the original inter-
section type systems refining pure lambda calculus) often have an undecidable
typing relation.

2.3.5 Bidirectional typing for intersection types

The bidirectional typing algorithm we discussed in Section 2.2.4 extends in a
natural way to deal with intersection types. The introduction and elimination
rules for intersection types divide smoothly into checking and synthesis:

Π ` m⇐ >A
>I⇐

Π ` m⇐ R1 Π ` m⇐ R2

Π ` m⇐ R1 ∧ R2
∧I⇐

Π ` e⇒ R1 ∧ R2

Π ` e⇒ Ri
∧E⇒i

Limiting to the case of normal forms for the moment, the biggest difference with
bidirectional typing for λ�→ is that the synthesis relation is nondeterministic, in
other words, it denotes a multifunction from pairs of a context Π and neutral
term e to types R, rather than a partial function.

2.3. INTERSECTION TYPES 35

Proposition 2.3.13 (⇒ multifunctional). For any Π @ Γ and Γ ` e : A, there exist
a finite number (possibly empty) of types R1, . . . ,Rn @ A such that Π ` e ⇒ Ri, and
moreover each of the Ri must already occur as a subformula in Π (or as a subformula
of an annotation in e, in the non-normal case).

The completeness theorem for the normal fragment (Thm. 2.2.32) continues to
hold, with a slightly adjusted statement.

Theorem 2.3.14 (Completeness of bidirectional typing for λ�∧→ , normal frag-
ment). Let Γ ` t : A, and suppose Π ` t : R for some Π @ Γ and R @ A.

a) If t is neutral, then there exist R1, . . . ,Rn @ A such that

Π ` t⇒ R1 · · · Π ` t⇒ Rn

and R1 ∧ · · · ∧ Rn ≤ R.

b) If t is normal, then Π ` t⇐ R.

The main issue for dealing with non-normal terms is that since intersection
typing involves checking the same term against different types, we might end
up needing a different set of annotations depending on which type the term
is being checked against. For example, suppose that our context contains the
binding

+ : (int→ int→ int) ∧ (real→ real→ real)

for an infix operator +, and we want to verify that

λx.(λz.x + z) x : (int→ int) ∧ (real→ real).

To derive the left branch of the intersection, we need to show that

λz.x + z : int→ int

holds in a context extended by x : int, while to derive the right branch we need
to show

λz.x + z : real→ real

in a context extended by x : real. So what annotation should we place on the
subterm λz.x + z? Taking the intersection of these two types

λz.x + z : (int→ int) ∧ (real→ real)

will not work, because in a given typing context, λz.x + z does not have both
types int → int and real → real, rather it just has one or the other depending
on the type of x. (This example is not so contrived, because similar issues arise
whenever one wants to define a function depending on local parameters and
apply it later.)

36 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

A tentative solution to this problem is to specify a list of annotations, and
ask the typechecker to choose the right one as needed in a given context. Such
behavior can be neatly specified by the following rule:

Π ` m⇐ Ri

Π ` (m : R1, . . . ,Rn)⇒ Ri
ann⇒i

For example, using this rule we can now derive

λx.(λz.x + z : int→ int, real→ real) x⇐ (int→ int) ∧ (real→ real)

in the bidirectional type system.
Exercise 2.3.15. Extend the bidirectional typechecker you wrote in Exercise 2.2.37
with intersection types. To check subtyping relations, you can either try to im-
plement the sequent subtyping algorithm described in Section 2.3.3, or else
reuse your solution to Exercise 2.2.38 and save yourself some work.

2.3.6 PSPACE-completeness of bidirectional typing

Since we saw earlier that deciding the λ�∧→ typing relation for general, unanno-
tated terms requires non-elementary time, one might wonder about the situa-
tion for normal terms, or for terms with type annotations. It turns out that John
Reynolds answered this question, showing that intersection typing is PSPACE-
hard even in this situation. Since his proof is conceptual and cute, it seems like
a nice way to conclude our discussion of intersection types.3

You already prepared for understanding this encoding with Exercise 2.3.4.
Besides the operations of conjunction, disjunction, and negation, one can also
define quantifiers over the Church booleans:

forall, exists : (B→ B)→ B
forall = λp.and (p (λx.λy.x)) (p (λx.λy.y))
exists = λp.or (p (λx.λy.x)) (p (λx.λy.y))

These five operations correspond exactly to the language of quantified boolean
formulas (QBF),

φ ::= φ ∧ φ | φ ∨ φ | ¬φ | ∀p.φ | ∃p.φ

and it is clear how any QBF φ can be represented as a term tφ composed out of
and, or, not, forall, and exists.

Once again, let’s consider refinements of the Church booleansB = ι→ ι→ ι
with respect to the two-element lattice of atomic refinements P2 = ⊥ � >, but
now limiting our attention to just these two refinements:

true def
= ⊥ → > → ⊥

false def
= > → ⊥ → ⊥

3Also, Reynolds’ PSPACE-hardness result seems to be relatively unsung – it appears in an
unpublished note [37], and later in the appendix of a technical report [38]. I learned about the
existence of this result from reading William Lovas’ thesis [23].

2.3. INTERSECTION TYPES 37

Then it is easy to verify that the operations and, or,not, forall, exists can be as-
signed the following refinement types:4

and : true→ true→ true
∧ true→ false→ false
∧ false→ true→ false
∧ false→ false→ false

or : true→ true→ true
∧ true→ false→ true
∧ false→ true→ true
∧ false→ false→ false

not : true→ false
∧ false→ true

forall : ((true→ true) ∧ (false→ true))→ true
∧ ((true→ true) ∧ (false→ false))→ false
∧ ((true→ false) ∧ (false→ true))→ false
∧ ((true→ false) ∧ (false→ false))→ false

exists : ((true→ true) ∧ (false→ true))→ true
∧ ((true→ true) ∧ (false→ false))→ true
∧ ((true→ false) ∧ (false→ true))→ true
∧ ((true→ false) ∧ (false→ false))→ false

But since these types are just representations of the truth tables for the corre-
sponding QBF operations, we have that for any QBF φ,

φ true iff mφ ⇐ true

where mφ is the term tφ annotated by the signatures above. Alternatively, we
can also represent φ as an open β-normal term mφ, just by postulating a context
with operations of the above type. In either case, since evaluation of quantified
boolean expressions is PSPACE-complete, this implies PSPACE-hardness.

Theorem 2.3.16 (Reynolds [37, 38]). Deciding the relation Π ` m ⇐ R of λ�∧→ is
PSPACE-hard.

Conversely, it is not difficult to see that the naive logic programming inter-
pretation of the bidirectional typing rules gives an algorithm in PSPACE. This
is just because whenever there is any existential or universal branching, it al-
ways only involves quantification over types and terms which already appear
in the original input (cf. Prop. 2.3.13). Therefore, like the QBF problem itself,
bidirectional typing with intersection types is PSPACE-complete.

Corollary 2.3.17. Deciding the relation Π ` m⇐ R of λ�∧→ is PSPACE-complete.
4Note these are not their principal types!

38 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

2.4 Refining ML-like languages

Before ending this chapter, I want to give a very brief overview of some of the
issues involved in the design of type refinement systems, when passing from
λ→ to an ML-like language.

2.4.1 Refining datatypes: datasorts and index refinements

One of the perks of programming in languages like ML is the ability to define
functions over algebraic datatypes via pattern-matching. A common source of
frustration, though, is that often the types are too imprecise to rule out inputs
which the programmer knows to be impossible, leading to spurious warnings
from the compiler about missing cases (SML/NJ’s infamous “Warning: match
nonexhaustive”).

The idea of refining user-defined datatypes to capture more precise in-
variants of programs was proposed by Freeman and Pfenning in “Refinement
Types for ML” [13]. That paper described a particularly natural and effective
way of specifying such refinements recursively, using a syntax analogous to
ML’s datatype mechanism itself. In the followup literature these have been
referred to as datasort refinements beginning with Rowan Davies’ work [7, 8].

For a demonstration of datasort refinements in action, let’s look at some
simple examples in Davies’ CIDRE system.5 In ML, we know how to define
the natural numbers:

datatype nat = Z | S of nat

Well, in CIDRE, we can also define, say, the positive natural numbers, or the
even and odd natural numbers:

datasort pos = S of nat
datasort even = Z | S of odd

and odd = S of even

For example, we can write the predecessor function by pattern-matching, and
have CIDRE verify that it sends positive natural numbers to arbitrary natural
numbers:

(*[pred <: pos -> nat]*)
fun pred (S n) = n

In particular, here the type checker can statically rule out the Z constructor as an
input to the predecessor function, so there is no need for a warning. Similarly,
we can write addition and multiplication on natural numbers as usual, and ask
CIDRE to check that they have the expected behavior on even/odd numbers:

(*[plus <: (even -> even -> even) & (even -> odd -> odd)
& (odd -> even -> odd) & (odd -> odd -> even)]*)

5Available at https://github.com/rowandavies/sml-cidre.

https://github.com/rowandavies/sml-cidre

2.4. REFINING ML-LIKE LANGUAGES 39

fun plus Z n = n
| plus (S m) n = S (plus m n)

(*[times <: (even -> even -> even) & (even -> odd -> even)
& (odd -> even -> even) & (odd -> odd -> odd)]*)

fun times Z n = Z
| times (S m) n = plus n (times m n)

These more refined type signatures make it easier to catch bugs. For example,
if we had made a mistake in writing times, say,

| times (S m) n = plus m (times m n)

then the program would not have passed the refinement typechecker (although
it would still define a valid ML function of type nat -> nat -> natwhich we
could compile and run). Freeman and Pfenning’s original implementation of
datasort refinements was based on pure type inference, but this was found to
be impractical – essentially for the reasons we discussed in Section 2.3.4 – and
the CIDRE system is based on bidirectional typing.

Another approach to refining ML datatypes is known as index refinements
[46, 45]. Typical examples are refining lists by their length, natural numbers
by an upper bound, or booleans by their value. Many of these examples
are familiar from dependently-typed programming, but the characteristic of
approaches based on refinement is that usually the indices are drawn from some
decidable constraint domain, meaning that in principle there is no additional
proof burden for the programmer besides finding the right type annotations.

Joshua Dunfield [10] has a prototype implementation of a system that com-
bines datasort refinements with index refinements, called Stardust.6 In Star-
dust, it is possible for example to verify the correctness of a procedure for
red-black tree insertion, maintaining the color invariants using datasort refine-
ments, and the height invariants using index refinements.

2.4.2 The value restriction

Davies and Pfenning [9] observed that the standard introduction rule for in-
tersection types (Section 2.3.1) is unsound in the presence of ML-style effects.
The reasons are very similar to the reason unrestricted let-polymorphism is
unsound in ML. For example, consider the following ML program, annotated
in CIDRE:

(*[x <: pos ref & nat ref]*)
val x = ref (S Z)
(*[unsound <: pos]*)
val unsound = (x := Z; !x)

6Available at http://www.mpi-sws.org/~joshua/stardust/.

http://www.mpi-sws.org/~joshua/stardust/

40 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

Clearly the value of unsound = Z is not a positive natural number, so something
is wrong with these type ascriptions. In fact, CIDRE’s typechecker rejects
this program because it imposes a value restriction on intersection introduction,
corresponding to the following rule:

Π ` v : R1 Π ` v : R2

Π ` v : R1 ∧ R2
∧Iv

Here the letter v ranges over values, that is, expressions which are fully eval-
uated. Since the expression ref (S Z) is not a value (at run time, it allocates
a fresh reference to a cell containing the value S Z), it cannot be given an
intersection type. For similar reasons, the subtyping distributivity principle
(dist-∧)

(S→ R1) ∧ (S→ R2) ≤ S→ (R1 ∧ R2)

is unsound for call-by-value languages in the presence of effects, as is its 0-ary
version (dist->), and the introduction rule (I>) also requires a value restriction.

2.4.3 Union types and “tridirectional” typechecking

Union types are dual to intersection types. They arise naturally when consid-
ering datasort refinements. For example, from the datasort declarations we
might expect that the subtyping relation

nat ≤ even ∨ odd

should hold, i.e., that every value of natural number type is either even or odd.
At an even more basic level, we could imagine decomposing datasort declarations
in terms of unions and constructor refinements. Intuitively, for example, the
above datasort declarations for even and odd say that an even number is either
zero or the successor of an odd number, and an odd number is the successor of
an even number. We could equivalently express these definitions in terms of
unions and constructor refinements:

even, odd @ nat
even = z ∨ s(odd)
odd = s(even)

We will have more to say about this kind of decomposition in Chapter 3.
The refinement rules for union types (both in binary and 0-ary form) are

just like the refinement rules for intersection:

R1 @ A R2 @ A
R1 ∨ R2 @ A ⊥A @ A

Likewise, the introduction rules for ∨ and ⊥ are dual to the elimination rules
for ∧ and >:

Π ` t : Ri

Π ` t : R1 ∨ R2
∨Ii (no introduction rule for ⊥)

2.4. REFINING ML-LIKE LANGUAGES 41

The elimination rules for union types are where it gets more interesting. It
turns out that in the presence of effects, a sort of dual to the value restriction is
needed:

Π ` t : R1 ∨ R2 Π, x : R1 ` C[x] : S Π, x : R2 ` C[x] : S
Π ` C[t] : S

∨Ev

Here the letter C ranges over evaluation contexts, so that C[t] stands for a term
with an occurrence of t in evaluation position. The rule says that if t has
union type R1 ∨ R2, and the evaluation context C[x] can be assigned type S
assuming that the hole x has either type R1 or type R2, then C[t] has type S.
A potential generalization of this rule that one might consider is to eliminate
arbitrarily many occurrences of a term of union type, which are not necessarily
in evaluation position:

Π ` t : R1 ∨ R2 Π, x : R1 ` t′ : S Π, x : R2 ` t′ : S
Π ` t′[t/x] : S ∨E

Indeed, such a rule has been proposed for union types in the setting of pure
lambda calculus [1]. However, Dunfield and Pfenning [12] observed that the
(∨E) rule is unsound in the presence of effects. As a simple counterexample,
we might imagine having an operation

flip : [0, 1]→ true ∨ false

taking as input a real number 0 ≤ p ≤ 1, such that flip(p) evaluates to true with
probability p and to false with probability 1− p. Well, using the unrestricted ∨E
rule we can derive the typing judgment

flip(0.5) == flip(0.5) : true (2.5)

from the pair of typing judgments

x : true ` x == x : true (2.6)
x : false ` x == x : true (2.7)

after first factoring the original expression as t′ = x == x[f lip(0.5)/x]. Yet,
although (2.6) and (2.7) are sound (since the types true and false are singletons),
the typing judgment (2.5) is unsound, since the two occurrences of flip(0.5)
might evaluate to different booleans. The restricted elimination rule (Ev∨)
avoids this issue, since only one occurrence of flip(0.5) can be eliminated at a
time, in the order of evaluation. For similar reasons, the elimination rule for
0-ary unions also requires an evaluation context restriction in the presence of
effects:

Π ` t : ⊥A

Π ` C[t] : S
⊥Ev

Dunfield and Pfenning’s paper [12] combined order-of-evaluation dependent
typing rules with bidirectional typechecking, hence the origin of the tongue-in-
cheek “tridirectional” typechecking.

42 CHAPTER 2. REFINING THE SIMPLY TYPED LAMBDA CALCULUS

2.5 Notes

The presentation of λ�→ and λ�∧→ I’ve given here owes much to Pfenning’s
expository essay [33], which considered simply typed lambda calculus refined
with an atomic subtyping relationship and intersection types (I’ve ignored the
interesting subject of hereditary substitution, which Pfenning’s article reviews in
depth). Type systems essentially equivalent to λ�→ have been considered earlier,
albeit usually without an explicit recognition of the refinement relationship:
this is essentially what Benjamin Pierce [34] calls λ≤, and which he attributes
to Luca Cardelli [4] as a “core calculus of subtyping”. As already mentioned
in Section 2.2.4, Mitchell [31] also looked at a system essentially equivalent
to λ�→ under the guise of “typing with atomic coercions”, and came up with
an algorithm for computing principal type schemes. Pierce has some more
discussion of the difference between principal types and principal type schemes
(“principal typings”) in Chapter 22 of Types and Programming Languages [35].
(Some older sources are [30, 22].)

The use of bidirectional typing for intersection type systems was an inno-
vation of Rowan Davies’ thesis work [8]. He also introduced the ann⇒i rule,
adapting the idea of using multi-type annotations from Reynolds’ older work
on the Forsythe language [38]. Something which is perhaps not completely sat-
isfactory about ann⇒i is that it seems to introduce new nondeterminism into the
type checker; to reduce the amount of nondeterminism, Dunfield and Pfenning
proposed “contextual annotations” [12].

Intersection types were originally invented by Coppo and Dezani in the
study of normalization of pure lambda terms [6, 2], in particular to give type-
theoretic characterizations of different normalization properties. This has the
consequence that pure type inference is usually undecidable. The idea of using
intersection types in a practical type system to express more precise properties
of programs was pioneered by Reynolds [38].

The idea of viewing types à la Curry as refinements of types à la Church
is advocated explicitly by Pfenning in [33], and is also mentioned by Rowan
Davies in the introduction to [8]. No doubt traces of this idea can be found
earlier. For example, it is suggested reasonably explicitly by Sørensen and
Urzyczyn in Lectures on the Curry-Howard Isomorphism [43, §11.4].

Chapter 3

A categorical perspective on
type refinement

3.1 Introduction: type theory as an axiomatic theory

Type theory is a very formal branch of mathematics. We’re used to thinking
of type systems and programming languages as deductive systems, and via
propositions-as-types, using them to prove formal theorems – whether they
be simple tautologies of propositional logic derived in simply typed lambda
calculus, or complex mathematical statements such as the four color theorem
proved using Coq. In the past couple decades it has also become common
to use formal proof assistants when establishing meta-theoretic properties of
particular type systems and programming languages, such as type safety or
strong normalization theorems.

That said, type theory as a “theory” is a bit different from other mathe-
matical theories such as, say, group theory or graph theory, in that it doesn’t
follow the typical sociological pattern of a growing body of open problems,
theorems, examples, and counterexamples built over a collection of widely-
accepted (if evolving) definitions. Instead, type theory has many “one-shot
theorems” about individual formal systems – it’s true that often the proofs of
these theorems can be retooled to prove similar properties of similar systems,
but only rarely are they reused directly to obtain deeper results. In that sense,
although type theory is characterized by a high degree of formal rigour, it is
not an axiomatic theory in the same way that fields such as group theory and
graph theory are (or at least pretend to be). This is not necessarily always a
disadvantage, but it does make it more difficult for type theory to communicate
with the rest of mathematics, and in general makes the field less accessible to
outsiders.

To some extent this issue is addressed by the categorical approach to type
theory pioneered in the 1970s and ’80s, of which a paradigmatic example is
Lambek’s connection between simply typed lambda calculus with products

43

44 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

and cartesian closed categories [20, 21]. In general, typed languages can be
modelled axiomatically as categories with certain additional structure, which
makes it possible to abstract away from particular presentations and prove
general theorems about wide classes of languages. Still, despite many notable
successes, the adoption of categorical methods within type theory (and pro-
gramming languages more generally) has met with some resistance...and not
always for bad reasons! In fact, this resistance is understandable, since there are
many important aspects of type theory (and programming languages) which
have so far eluded the categorical perspective.

The material that follows describes a categorical perspective on type re-
finement that I have been developing for several years in collaboration with
Paul-André Melliès, some of which has been previously published [27, 28, 29].
One of the long-term motivations for this work is to build better mathematical
tools that are adapted to the concerns of researchers in type theory and pro-
gramming languages, and something specifically which seems to have been
missing from standard categorical approaches was a clear articulation of the
extrinsic view of typing. The basic idea here is to generalize Lambek’s account
by replacing categories with functors: a type refinement system can be mod-
elled as a functor from a category whose objects are “types à la Curry” and
morphisms are typing derivations to a category whose objects are “types à la
Church” and morphisms are terms.

Experts may recognize that this approach has a very “fibrational” flavor,
and in many ways our treatment of type refinement aligns with classical ideas
in categorical logic – although the careful reader will observe that there are
various subtle differences, stemming from the fact that we consider general
functors rather than fibrations as the basic object of study. For people without
a background in categorical logic, I hope that the interpretations provided here
might also provide some alternative sources of intuition for this fascinating
branch of mathematics.

3.2 Modelling type refinement systems as functors

3.2.1 Type refinement systems are not just categories

Before jumping to our study of type refinement systems as functors, it might
be a good idea to explain what makes it difficult to study them directly as
categories. Also, before everything else, let’s recall the definition of a category
and fix some notation:

Definition 3.2.1 (Categories). A category C consists of:

• a collection C0 of objects (A,B, . . .);

• a collection C1 of morphisms (f , g, . . .), together with operations src, tgt :
C1 → C0 assigning to each morphism a unique source and target;

3.2. MODELLING TYPE REFINEMENT SYSTEMS AS FUNCTORS 45

• for every pair f , g ∈ C1 such that src(g) = tgt(f), a composition g ◦ f ∈ C1
such that src(g ◦ f) = src(f) and tgt(g ◦ f) = tgt(g);

• for every A ∈ C0, an identity idA ∈ C1 such that src(A) = tgt(A) = A;

• such that the associativity and unit laws hold whenever they make sense:

h ◦ (g ◦ f) = (h ◦ g) ◦ f
f ◦ idA = f = idB ◦ f

Notation. We write f : A→ B or A
f
−→ B to indicate that f is a morphism such

that src(f) = A and tgt(f) = B. Given f : A→ B and g : B→ C, we write either
(g ◦ f) : A → C or (f ; g) : A → C to denote their composition. We sometimes
write A or id instead of idA for an identity morphism, the former when it is
clear that we are speaking about a morphism, and the latter when the object A
is clear from context or not important.

Now, the standard analogy between type systems and categories begins in
saying that a term with one free variable

x : A ` t : B

can be interpreted as a morphism

A
f // B

in a category with sufficient structure. More generally this extends to an inter-
pretation of terms with any number of free variables by considering categories
with products (or multicategories), but the basic interpretation is already suffi-
cient for illustrating the following problem.

Thinking back to the type refinement systems we considered in the previous
chapter, what are we supposed to make of, say, the subsumption rule, or the
introduction rule for intersection types?

Π ` t : R R ≤ S
Π ` t : S

Π ` t : R1 Π ` t : R2

Π ` t : R1 ∧ R2

In both cases we have multiple typing judgments made about the same term.
But in a category, it does not really make sense to make multiple assertions

A
f // B1 A

f // B2

about the source and target of a single morphism. Or at least one can’t make
distinct assertions: in this case, if tgt(f) = B1 and tgt(f) = B2, then B1 = B2 by
symmetry and transitivity. In other words, the interpretation of type systems
as categories is inherently biased towards the intrinsic view of typing, which
makes no distinction between terms and typing derivations.

46 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

3.2.2 Reading a functor as a type refinement system

Our solution is to incorporate the distinction between terms and typing deriva-
tions directly into the model, by viewing a type refinement system not as a
category but as a functor from one category to another. Again, for reference let’s
recall:

Definition 3.2.2 (Functors). Let D and T be categories. A functor r : D → T
consists of:

• a pair of mappings r : D0 → T0 and r : D1 → T1, which are compatible
in the sense that α : R→ S inD is sent to r(α) : r(R)→ r(S) in T ;

• such that composition and identity are preserved:

r(β ◦ α) = r(β) ◦ r(α)
r(idR) = idr(R)

The idea is that a type refinement system can be modelled as the “erasure”
functor (or “forgetful” functor) which maps a type refinement to the type that
it refines, and a typing derivation to the term that it types. In fact, for the
remainder of this chapter we will find it convenient to take this as a definition
of “type refinement system” (or “refinement system” for short), as being in the
most general case simply an arbitrary functor.

Definition 3.2.3. A (type) refinement system is a functor r : D→ T .

Although this definition may seem a bit austere, there is a legitimate sense in
which any functor r : D → T can be interpreted as a very elementary type
refinement system.

Definition 3.2.4 (Refinement). We say that an object R ∈ D refines an object
A ∈ T (notated R @ A) if r(R) = A.

Definition 3.2.5 (Judgments). A typing judgment is a triple (R, f ,S), where f
is a morphism of T such that R @ src(f) and S @ tgt(f) (notated R =⇒

f
S). In the

special case where R and S refine the same object R,S @ A and f is the identity
morphism f = idA, the typing judgment (R, f ,S) is also called a subtyping
judgment (notated R =⇒

A
S).

Definition 3.2.6 (Derivations). A derivation of a (sub)typing judgment (R, f ,S)

is a morphism α : R→ S inD such that r(α) = f (notated
α

R =⇒
f

S).

Since these definitions are all parameterized with respect to an arbitrary functor
r, to be completely precise we should speak of r-judgments, r-derivations, etc.,
but usually the functor will be clear from context and we can leave off the prefix.

3.2. MODELLING TYPE REFINEMENT SYSTEMS AS FUNCTORS 47

Example 3.2.7. Consider a pair of categories D and T freely generated from a
pair of graphs:

D = R1

R2

S
Tγ

α1

α2 β
T =

A
B

Cf g

h

Let’s define a functor r : D→ T with the action indicated on the left on objects,
and the action indicated on the right on morphisms:

R1

R2

S
Tγ

α1

α2 β

A
B

Cf g

h

γ 7→ idA

α1 7→ f
α2 7→ f
β 7→ g

For this refinement system r, we have that R1,R2 @ A and S @ B and T @ C in
the sense of Defn. 3.2.4, that

R1 =⇒
A

R2 R1 =⇒
f

S R2 =⇒
f

S S =⇒
g

T S =⇒
h

T

are typing (and subtyping) judgments in the sense of Defn. 3.2.5, and that

γ
R1 =⇒

A
R2

α1
R1 =⇒

f
S

α2
R2 =⇒

f
S

β
S =⇒

g
T

are typing derivations in the sense of Defn. 3.2.6. Observe that the typing
judgment S =⇒

h
T is not derivable in r. �

We will also find it helpful to adapt the proof-theoretic notation of inference
rules. In general, we say that a typing rule

S1 =⇒
f1

T1 . . . Sn =⇒
fn

Tn

S =⇒
f

T

is admissible for a type refinement system (in the sense of Defn. 3.2.3) if, given
derivations of the premises (in the sense of Defn. 3.2.6), we can construct a
derivation of the conclusion. (When we write down a rule, it is always left
implicit that the typing judgments are well-formed in the sense of Defn. 3.2.5.)

48 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

Proposition 3.2.8. The following rules are admissible for any refinement system:

R =⇒
f

S S =⇒
g

T

R =⇒
f ;g

T
;

R =⇒
A

R id

Proof. This is essentially a restatement of functoriality. For example, suppose
α is a derivation of (R, f ,S) and β is a derivation of (S, g,T). By definition, this
means that α : R→ S and r(α) = f , and β : S→ T and r(β) = g. But then (α; β) is
a derivation of (R, (f ; g),T), since (α; β) : R→ T and r(α; β) = (r(α); r(β)) = (f ; g).
Similarly, assuming R @ A, then idR : R→ R is a derivation of (R, idA,R), since
r(idR) = idr(R) = idA. �

Proposition 3.2.9. Subtyping is reflexive and transitive, and admits rules of covariant
and contravariant subsumption:

R =⇒
A

R

R =⇒
A

S S =⇒
A

T

R =⇒
A

T

R =⇒
f

S1 S1 =⇒
B

S2

R =⇒
f

S2

R1 =⇒
A

R2 R2 =⇒
g

T

R1 =⇒
g

S

Proof. Reflexivity of subtyping is by definition just another name for the id
typing rule of Prop. 3.2.8, while transitivity and subsumption are all special
cases of “;” with one or both of f and g set to the identity term. �

Remark. The proof of Prop. 3.2.9 illustrates that constructing a typing deriva-
tion sometimes involves reasoning about equality of terms (i.e., morphisms in
T). For clarity it is sometimes useful to mark applications of an equality by an
explicit conversion step:

R =⇒
f

S

R =⇒
g

S
∼

For example, the covariant subsumption rule can be more explicitly derived as
follows:

R =⇒
f

S1 S1 =⇒
B

S2

R =⇒
f ;B

S2
;

R =⇒
f

S2
∼

�

Remark. Although we often use inference rule notation, we should keep in
mind that this is just a notation, and that formally, a derivation of a typing
judgment is just a particular kind of morphism in the categoryD. In particular,
the categorical axioms imply that various ways of composing inference rules
must end up naming the same typing derivation. For example, the associativity

3.2. MODELLING TYPE REFINEMENT SYSTEMS AS FUNCTORS 49

axioms imply that

α
R =⇒

f
S

β
S =⇒

g
T

R =⇒
f ;g

T
; γ

T =⇒
h

T′

R =⇒
(f ;g);h

T′
;

=

α
R =⇒

f
S

β
S =⇒

g
T

γ
T =⇒

h
T′

S =⇒
g;h

T′
;

R =⇒
f ;(g;h)

T′
;

while the unit laws imply that

α
R =⇒

f
S S =⇒

B
S id

R =⇒
f ;B

S
;

=
α

R =⇒
f

S =

R =⇒
A

R id α
R =⇒

f
S

R =⇒
A; f

S
;

One case where checking such equations is particularly easy is when the type
refinement system is proof-irrelevant, in the sense that there is at most one
derivation of any typing judgment. The refinement system constructed in Ex-
ample 3.2.7 happens to be proof-irrelevant, but many other refinement systems
which we will be interested in are not. �

Remark. Finally, the definition of a type refinement system as an arbitrary
functor does not, a priori, give us any hint of how to decide whether there
exists a derivation of a given typing judgment, and in that sense it can be seen
as an abstract specification of a “type assignment” system. For the most part,
in this chapter we will avoid dealing directly with questions of type checking
– although this is not to suggest that such questions are unimportant, and
we should hope to eventually be able to speak about such issues within the
framework. �

3.2.3 Some examples of type refinement systems

One of the nice things about having an abstract mathematical definition of a
serious scientific concept is that you can come up with silly examples. The
following pair of degenerate examples of type refinement systems may be silly,
but they nonetheless come in handy sometimes, since they help in relating con-
structions on refinement systems back to standard constructions on categories.

Example 3.2.10. For any category C, there is a refinement system ! : C → 1
mapping every object and morphism of C to the unique object and morphism
of the terminal category 1. In terms of the definitions of the previous section,
this means that A @ ∗ for every object A ∈ C (where ∗ denotes the unique object
of 1), and a (sub)typing judgment

A =⇒
∗

B

is derivable just in case there exists a morphism A→ B in C. �

50 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

Example 3.2.11. For any category C, there is a refinement system id : C → C
corresponding to the identity functor onC. This means that A @ A for all objects
A, and that every typing judgment

A =⇒
f

B

has a derivation (provided, as usual, that it is well-formed), in particular given
by f itself. �

Now let’s discuss some actual reasonable examples.

Example 3.2.12. A natural class of examples of type refinement systems comes
from the Floyd-Hoare approach to program verification. In abstract terms,
these refinement systems can be described as follows:

• Take T to be a category with one object W (representing the state space)
and a morphism c : W → W for every possible command (viewed as a
state transformer), noting that we need to include the identity command
(“skip”) and sequential composition to ensure that we get a category.

• Take D to be a category whose objects P,Q are predicates over the state
space, and whose morphisms (c, α) : P → Q are pairs of a command c
equipped with a verification α that it will take any state satisfying P to a
state satisfying Q.

• Take r : D → T to be the evident forgetful functor, which sends every
predicate P to the object W, and every “verified” command (c, α) to the
underlying command c.

In this case, a typing judgment is nothing but a Hoare triple {P}c{Q}, while
the composition typing rule and rules of co- and contravariant subsumption
are nothing but the rules of sequential composition, of post-weakening, and of
pre-strengthening, respectively:

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

{P}c{Q1} Q1 ⊃ Q2

{P}c{Q2}

P1 ⊃ P2 {P2}c{Q}
{P1}c{Q}

This is really a class of examples because we can vary the collection of com-
mands and the language of predicates to obtain different refinement systems
with different properties, as we will see soon. It is also possible to adapt this
example to separation logic, which we will get to later. �

Example 3.2.13. The previous example can also be seen from the following
slightly different perspective. Any monoid M induces a category BM (called
the delooping of M) with one object ∗ and a morphism m : ∗ → ∗ for every monoid
element m ∈ M. Then if C is an arbitrary category, a functor p : C → BM can
be seen as a “weighting” of the morphisms of C by elements of m, and for any
pair of objects A,B ∈ C, the typing judgment

A =⇒
m

B

3.2. MODELLING TYPE REFINEMENT SYSTEMS AS FUNCTORS 51

is derivable (possibly with multiple derivations) just in case there exists in C a
morphism from A to B of weight m.

As another instance of this pattern, any finite state automaton (possibly
nondeterministic and with ε-transitions) can be viewed as a refinement system
δ : Q → BΣ∗, where BΣ∗ is the one-object category corresponding to the monoid
of words on an alphabet Σ, where Q is a category whose objects are states and
whose morphisms correspond to transitions of the automaton, and where δ is
the functor that assigns the corresponding input word to each transition of the
machine. A typing judgment

q1 =⇒
w

q2

is derivable (again, possibly with multiple derivations) just in case there is
a transition from state q1 to state q2 on input w. In particular, a subtyping
judgment q1 =⇒

∗
q2 is derivable iff there is an ε-transition from q1 to q2. �

Example 3.2.14. We already got a preview of another natural refinement system
in Section 2.2.3, where we introduced the category Subset whose objects are
pairs (A,R ⊆ A), and whose morphisms (A,R) −→ (B,S) are functions f : A→ B
such that a ∈ R implies f (a) ∈ S for all a. The evident projection functor
Subset → Set then defines a refinement system which seems to capture the
intuitive model people often have in mind when they talk about “refinement
types”, although we should be aware that it is just one model.

As also alluded to at the end of Section 2.2.3, this example has a straightfor-
ward generalization where we replace sets by partially-ordered sets and arbitrary
subsets by downwards-closed subsets. The refinement system Downset→ Poset
is again defined by a projection functor, where Poset is the category of posets
and order-preserving maps, and Downset is the category whose objects are
pairs of a poset together with a downwards-closed subset of that poset, and
with morphisms defined as for Subset. (Note that both of these examples are
“large” in the category-theoretic sense, since Set, Poset, etc., are all large cate-
gories; such size issues will not be important for any of what we do, though.) �

Example 3.2.15. Finally, both Subset→ Set and Downset→ Poset can be fur-
ther generalized by replacing (po)sets with categories and subsets by presheaves.
The refinement system Psh→ Cat is defined as follows:

• Cat is the (large) category whose objects are categories and morphisms
are functors.

• Objects of Psh are pairs (A, φ), whereA is a category and φ : A op
→ Set

is a contravariant presheaf over that category.

• Morphisms (A, φ) → (B, ψ) of Psh are pairs (F, θ), where F : A → B is a
functor and θ : φ⇒ (ψ ◦ F op) is a natural transformation.

• Psh→ Cat is the evident projection.

Note that whereas the refinement systems Subset→ Set and Downset→ Poset
are proof-irrelevant, the refinement system Psh→ Cat is not. �

52 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

And of course, the list goes on! There are many examples of functors in the
world, and so far all that we’ve done is explain how to read the data of a functor
in a type-theoretic accent. The actual motivation for looking at type refinement
in this way is only really apparent after we’ve seen how to describe various
natural properties of and constructions on type refinement systems as natural
properties of and constructions on functors.

3.2.4 Pulling back and pushing forward

Suppose we’ve fixed some refinement system r : D → T . Given a refinement
R @ A and a morphism f : A→ B, a natural question is whether there exists an
S @ B such that

R =⇒
f

S

is derivable. Moreover, if there are several such S, we might hope for there to
exist a “best” one, in the sense that it is a subtype of all the others. The definition
of pushforward refinements is a categorical formalization of this concept.

Definition 3.2.16 (Pushforward refinements). Let R @ A and f : A → B. A
pushforward of R along f , when it exists, is a refinement f� R @ B

R @ A f : A→ B
f� R @ B

equipped with a pair of typing rules

R =⇒
f

f� R
f�I

R =⇒
f ;g

S

f� R =⇒
g

S
f�E

satisfying a pair of equations on typing derivations

R =⇒
f

f� R
f�I

β
R =⇒

f ;g
S

f� R =⇒
g

S
f�E

R =⇒
f ;g

S
;

=
β

R =⇒
f ;g

S

and

η
f� R =⇒

g
S =

R =⇒
f

f� R
f�I

η
f� R =⇒

g
S

R =⇒
f ;g

S
;

f� R =⇒
g

S
f�E

Evidently, there is also a dual concept of “pulling back”.

3.2. MODELLING TYPE REFINEMENT SYSTEMS AS FUNCTORS 53

Definition 3.2.17 (Pullback refinements). Let f : A→ B and S @ B. A pullback
of S along f , when it exists, is a refinement f � S @ A

f : A→ B S @ B
f � S @ A

equipped with a pair of typing rules

f � S =⇒
f

S
f �E

R =⇒
g; f

S

R =⇒
g

f � S
f �I

satisfying the pair of equations on typing derivations

R
β

=⇒
g; f

S

R =⇒
g

f � S
f �I

f � S =⇒
f

S
f �E

R =⇒
g; f

S
;

= R
β

=⇒
g; f

S

and

R
η

=⇒
g

f � S =

R
η

=⇒
g

f � S f � S =⇒
f

S
f �E

R =⇒
g; f

S
;

R =⇒
g

f � S
f �I

Before moving on, it might be helpful to give a few examples, beginning with
the most familiar.

Example 3.2.18. For the refinement system Subset → Set, the operations of
pushing forward and pulling back correspond respectively to taking the image
or inverse image of a subset along a function:

f�(A,R) = (B, f (R))

f �(B,S) = (A, f−1(S))

Given the interpretation of typing judgments, the typing rules are essentially
vacuous, while the equations hold trivially since the refinement system is proof-
irrelevant. �

Example 3.2.19. For the class of “Hoare logic refinement systems” introduced
in Example 3.2.12, a pushforward c� P of a predicate along a command is essen-
tially a strongest postcondition c� P = sp(c,P), while a pullback c� Q is essentially a

54 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

weakest precondition c� Q = wp(c,Q).1 Whether strongest postconditions and/or
weakest preconditions exist depends, though, on the specific set of commands
of predicates. For example, suppose that the language includes three primitive
assignment statements

x := 0 , x := 1 , x := 1 − x

which are closed under sequential composition (to get a category), and that we
are using a very restricted logic with just two predicates [x = 0] and [x = 1] and
nothing else. In this situation, strongest postconditions are easy to compute,
corresponding to forward execution:

sp(x := 0, [x = 0]) = sp(x := 0, [x = 1]) = [x = 0]
sp(x := 1, [x = 0]) = sp(x := 1, [x = 1] = [x = 1]

sp(x := 1 − x, [x = 0]) = [x = 1]
sp(x := 1 − x, [x = 1]) = [x = 0]

sp(skip,P) = P
sp((c1; c2),P) = sp(c2, sp(c1,P))

On the other hand, with this very limited language of predicates, weakest
preconditions can only be computed in certain cases, namely for the x := 1 − x
command and its compositions:

wp(x := 1 − x, [x = 0]) = [x = 1]
wp(x := 1 − x, [x = 1]) = [x = 0]

wp(skip,P) = P
wp((c1; c2),P) = wp(c1,wp(c2,P))

Intuitively, the reason why we can’t compute the others is because backwards ex-
ecution of constant assignment statements is nondeterministic and potentially
aborting. We can recover these “missing” weakest preconditions, though, by
adding finite disjunctions to the language of predicates:

wp(x := i, [x = i]) = [x = 0] ∨ [x = 1]
wp(x := i, [x = 1 − 1]) = ⊥

�
1Recall that a strongest postcondition is a predicate sp(c,P) such that {P}c{sp(c,P)}, and such that

for any other Q, if {P}c{Q} then sp(c,P) ⊃ Q. Dually, a weakest precondition is a predicate wp(c,Q)
such that {wp(c,Q)}c{Q}, and such that for any other P, if {P}c{Q} then P ⊃ wp(c,Q). It is easy to
see that these properties are implied by Definitions 3.2.16 and 3.2.17. The converse is almost true
(we can safely ignore the equations by assuming proof-irrelevance), but not quite, in the sense that
for the standard definition of, e.g., weakest preconditions, the triple {P}d; c{Q} does not necessarily
imply the triple {P}d{wp(c,Q)} for general d. It is true in many situations, though, such as when
the refinement system is a fibration (see below). (In the categorical literature, this issue comes up
in the question of the precise definition of “cartesian morphism”, with the standard definition of
wp(c,Q) corresponding to what is sometimes called “weakly cartesian”.)

3.2. MODELLING TYPE REFINEMENT SYSTEMS AS FUNCTORS 55

As we see, a given refinement system may or may not have pushforwards
and/or pullbacks for all refinements along all morphisms. In the lucky situation
that it does, it gets a special name:

Definition 3.2.20 (Fibrations et al.). A refinement system (= functor) is said
to be a fibration if there exists a pullback (f � S, f �E, f �I) for every f : A → B
and S @ B, an opfibration if there exists a pushforward (f� R, f�E, f�I) for every
f : A→ B and R @ A, and a bifibration if it is both a fibration and an opfibration.

These definitions go back to Grothendieck, albeit in a slightly different notation
(cf. [3, 18]). Part of the original motivation for the definitions is that fibrations
and opfibrations can be interpreted as indexed categories in a certain sense that
we’ll review.

Definition 3.2.21 (Subcategories of refinements). Given a refinement system
r : D → T and type A ∈ T , the subcategory of refinements of A is defined as
the category DA whose objects are refinements R @ A and whose morphisms
R1 → R2 are subtyping derivations, i.e., morphisms α : R1 → R2 inD such that
r(α) = idA. (Note: the category DA is often referred to as the fiber of A in the
categorical literature.)

Definition 3.2.22 (Strong equivalence). Let R1,R2 @ A be two refinements of the
same type. We say that R1 and R2 are strongly equivalent (written R1 ≡ R2) if
they are isomorphic in the subcategory of refinements of A. In other words, R1 is
strongly equivalent to R2 just in case there exist a pair of subtyping derivations

α1
R1 =⇒

A
R2 and

α2
R2 =⇒

A
R1 which compose to the identities on R1 and R2. (Note:

a strong equivalence is sometimes referred to as a vertical isomorphism in the
literature on fibrations.)

Exercise 3.2.23. Show that when f� R and f � S exist, they are determined uniquely
up to strong equivalence.

Given a refinement system r : D→ T , consider the mapping

A 7→ DA

which sends any type to its subcategory of refinements. When r is a fibration
or opfibration, this mapping can be extended to a (contravariant or covariant)
functor from T to Cat. More generally, the operations of pushing forward and
pulling back have the following properties:

Proposition 3.2.24. For any refinement system, whenever the corresponding push-
forward and/or pullback refinements exist:

1. the following subtyping rules are admissible:

R1 =⇒
A

R2

f� R1 =⇒
B

f� R2
≤ f�

S1 =⇒
B

S2

f � S1 =⇒
A

f � S2
≤ f�

56 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

2. there are strong equivalences

(g ◦ f)� R ≡ g� f� R (g; f)� S ≡ g� f � S

id� R ≡ R id� S ≡ S

Proof. For (1), here is a very explicit derivation of the subtyping rule for push-
forwards (the one for pullbacks can be derived symmetrically):

R1 =⇒
A

R2 R2 =⇒
f

f� R2
f�I

R1 =⇒
idA; f

f� R2
;

R1 =⇒
f ;idB

f� R2
∼

f� R1 =⇒
B

f� R2
f�E

For (2), to show (g; f)� S ≡ g� f � S for instance, we begin by exhibiting subtyping
derivations in both directions:

(g; f)� S =⇒
g; f

S
(g; f)�E

(g; f)� S =⇒
g

f � S
f �I

(g; f)� S =⇒ g� f � S
g�I

g� f � S =⇒
g

f � S
g�E

f � S =⇒
f

S
f �E

g� f � S =⇒
g; f

S
;

g� f � S =⇒ (g; f)� S
(g; f)�I

Then we must also show that these two subtyping derivations compose to a
pair of identities, which we can do using the equations from Defn. 3.2.17. �

Part (1) of Prop. 3.2.24 is almost enough to establish that in a refinement system
which is an opfibration and/or fibration, every morphism f : A → B induces
functors

f� : DA →DB and/or f � : DB →DA

between the corresponding subcategories of refinements. To guarantee that
these are really functors, though, we must also check that they preserve identity
and composition.

Exercise 3.2.25. Express the property that the functors f� and f � preserve identity
and composition as equations on subtyping derivations constructed using ≤ f�
and ≤ f� and identity and composition. Prove that these equations follow from
Definitions 3.2.16 and 3.2.17.

Assuming this property, part (2) of Prop. 3.2.24 then implies that when r : D→
T is an opfibration, the mapping A 7→ DA can be extended via the pushforward
operation to a functor T → Cat, while in the case that r : D→ T is a fibration,
the mapping can be extended via the pullback operation to a functor T op

→

Cat. (Technically, these functors to Cat are actually called “pseudofunctors”,
since preservation of composition and identity is only guaranteed up to strong
equivalence.)

3.2. MODELLING TYPE REFINEMENT SYSTEMS AS FUNCTORS 57

These properties also have a sort of converse, which is known as the
“Grothendieck construction”. Given any (pseudo)functor

F : T → Cat

one can construct an opfibration

πF :
∫

F→ T

where ∫ F is the category whose objects are pairs (A,R) of an object A ∈ T
together with an object R ∈ F(A), and whose morphisms (A,R)→ (B,S) are pairs
(f , α) of a morphism f : A→ B in T together with a morphism α : F(f)(R)→ S
in F(B). The evident projection functor πF is an opfibration, with pushforward
refinements defined by the functorial action of F:

f� R = F(f)(R)

Dually, any (pseudo)functor

G : T op
→ Cat

gives rise to a fibration
πG :

∫ op
G→ T

where ∫
op G is the category whose objects again are pairs (A,R) of an object

A ∈ T together with an object R ∈ G(A), but now with the morphisms (A,R)→
(B,S) being pairs (f , α) of a morphism f : A→ B inT together with a morphism
α : R → G(f)(S) in G(A). This time, the functorial action of G is used to define
pullback refinements:

f � S = G(f)(S)

Remark. If we view functors as type refinement systems, the relationship be-
tween (op)fibrations and indexed categories can be interpreted as expressing a
relationship between typing and subtyping. In a sense the Grothendieck con-
struction says that each can be reduced to the other in the presence of sufficient
pullbacks and/or pushforwards. Still, there are good reasons to give precedence
to typing, and from Chapter 2 we are already familiar with some advantages of
reducing subtyping to typing of the identity (see Sections 2.2.2 and 2.3.3). One
disadvantage of going the other way around and reducing typing to subtyping
(via either the covariant or the contravariant versions of the Grothendieck con-
structions) is that it forces a particular orientation on the original refinement
system. This is especially flagrant in the case of a bifibration, where we have a
three-way correspondence

f� R =⇒
B

S

R =⇒
f

S

R =⇒
A

f � S

but it seems that none of the judgments should be privileged over the others. �

58 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

Example 3.2.26. The two trivial examples of refinement systems ! : C → 1 and
id : C → C (Examples 3.2.10 and 3.2.11) are also trivial examples of bifibrations.
In the former case, there is nothing to push or pull along except for the identity
on ∗ (and these must correspond to identity operations by Prop. 3.2.24), while
in the latter case, pulling or pushing along a morphism f : A → B just returns
the source/target of f :

f� A = B f � B = A

�

Example 3.2.27. Like Subset → Set, the refinement system Downset → Poset
is also a bifibration, albeit with a more asymmetrical interpretation of pushfor-
ward and pullback. Let’s write R as a convenient abuse-of-notation for the pair
(A,R) of a (po)set A equipped with a (downwards-closed) subset R ⊆ A, leav-
ing the A implicit. As already mentioned, in Subset → Set pushforward and
pullbacks are computed using image and inverse image, equivalently written
as follows:

f � S = { a | f (a) ∈ S }
f� R = { f (a) | a ∈ R }

The definitions in Downset→ Poset are almost identical, except that we have
to take the downwards-closure of the image:

f � S = { a | f (a) ∈ S }
f� R = { b | ∃a. b �B f (a) ∧ a ∈ R }

The reason for the different treatment is that the inverse image of a downwards-
closed subset along an order-preserving function is always downwards-closed,
but the image is not necessarily. �

Example 3.2.28. Similarly, the refinement system Psh → Cat (Example 3.2.15)
is also a bifibration, where the definitions of pullback and pushforward can be
seen as a categorical generalization of the definitions for Downset→ Poset. In
particular, the pullback of a presheaf ψ : B op

→ Set along a functor F : A → B
is defined via precomposition:

F� ψ : A op
→ Set

F� ψ = a 7→ ψ(Fa)

And the pushforward of a presheaf φ : A op
→ Set along a functor F : A → B

is defined as a coend [19]:

F� φ : B op
→ Set

F� φ = b 7→
∫ a

B(b,Fa) × φ(a)

�

3.2. MODELLING TYPE REFINEMENT SYSTEMS AS FUNCTORS 59

Finally, it is worth mentioning a relational generalization of Subset→ Set.2

Example 3.2.29. Let Rel be the category whose objects are sets A,B and whose
morphisms A → B are relations between A and B. The composition of two
relations

A M // B N // C

is defined by relational composition

a (M; N) c ⇔ ∃b. a M b ∧ b N c

while the identities

A
idA // A

are given by the equality relation:

a1 idA a2 ⇔ a1 = a2

Next let Rel• be the category whose objects are pairs (A,R ⊆ A) and whose
morphisms (A,R) → (B,S) are relations M : A → B such that a ∈ R and a M b
implies b ∈ S for all a and b. (The name “Rel•” is because a subset R ⊆ A
is the same thing as a morphism R : 1 → A in Rel, i.e., Rel• can be seen as
a “pointed” version of Rel.) Interestingly, Rel• → Rel is a bifibration where
the pushforward and pullback are computed respectively by existential and
universal quantification along a relation:

M� R = { b | ∃a. a M b ∧ a ∈ R }
M� S = { a | ∀b. a M b⇒ b ∈ S }

�

Exercise 3.2.30. In proof theory, an inference rule is said to be invertible if given
a derivation of the conclusion, one can obtain a derivation of the premises.
Explain how the f�E and f �I rules are invertible in the stronger sense that
they witness one half of an isomorphism between derivations of the premise
and derivations of the conclusion. Use this to prove that in a bifibration, the
functors f� : DA →DB and f � : DB →DA form an adjoint pair f� a f �.

Exercise 3.2.31. Let δ : Q → BΣ∗ be the refinement system associated to a finite
state automaton (see Example 3.2.13). In what situations is δ an opfibration? In
what situations is it a bifibration?

2This example comes from [29]. Be warned that there is also another well-known “relational
generalization” of Subset→ Set, corresponding to the pullback of Subset→ Set along the cartesian
product functor Set×Set→ Set. That gives rise to another bifibration Subset2 → Set×Set, where
Subset2 has as objects triples (A,B,R ⊆ A× B), and morphisms (A,B,R)→ (C,D,S) given by a pair
of functions f : A → C, g : B → D such that R(a, b) implies S(f a, gb) for all a and b. Keep in mind
that Subset2 and Rel are very different categories: the former has relations as objects, the latter has
relations as morphisms.

60 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

3.2.5 Intersection and union types

Now that we’ve put some effort into understanding the operations of a bifi-
bration, we can take another look at old friends from Chapter 2. It turns out
that we can define the concept of intersection and union type refinements in a
modular way for any refinement system.

Definition 3.2.32 (Union and bottom refinements). Let R1,R2 @ A. A union of
R1 and R2, when it exists, is a refinement R1 ∨ R2 @ A

R1 @ A R2 @ A
R1 ∨ R2 @ A

equipped with typing rules

R1 =⇒
f

S R2 =⇒
f

S

R1 ∨ R2 =⇒
f

S ∨E Ri =⇒
A

R1 ∨ R2
∨Ri

satisfying the equation

Ri =⇒
f

R1 ∨ R2
∨Ri

R1

β1
=⇒

f
S R2

β2
=⇒

f
S

R1 ∨ R2 =⇒
f

S ∨E

Ri =⇒
f

S
;

= Ri

βi
=⇒

f
S

(for each i ∈ { 1, 2 }) as well as the equation

R1∨R2

η
=⇒

f
S =

R1 ∨ R2

η
=⇒

f
S R1 =⇒

f
R1 ∨ R2

∨R1

R1 =⇒
f

S
;

R1 ∨ R2

η
=⇒

f
S R2 =⇒

f
R1 ∨ R2

∨R2

R2 =⇒
f

S
;

R1 ∨ R2 =⇒
f

S ∨E

Similarly, a bottom refinement for a type A is a refinement ⊥A @ A

⊥A @ A

equipped with a typing rule

⊥A =⇒
f

S ⊥E

satisfying the equation

⊥A

η
=⇒

f
S = ⊥A =⇒

f
S ⊥E

3.2. MODELLING TYPE REFINEMENT SYSTEMS AS FUNCTORS 61

Definition 3.2.33 (Intersection and top refinements). Let R1,R2 @ A. An inter-
section of R1 and R2, when it exists, is a refinement R1 ∧ R2 @ A

R1 @ A R2 @ A
R1 ∧ R2 @ A

equipped with typing rules

R1 ∧ R2 =⇒
A

Ri
∧Li

S =⇒
f

R1 S =⇒
f

R2

S =⇒
f

R1 ∧ R2
∧I

satisfying the equation

S
β1

=⇒
f

R1 S
β2

=⇒
f

R2

S =⇒
f

R1 ∧ R2
∧I R1 ∧ R2 =⇒

f
Ri
∧Li

S =⇒
f

Ri
;

= S
βi

=⇒
f

Ri

and the equation

S
η

=⇒
f

R1∧R2 =

S
η

=⇒
f

R1 ∧ R2 R1 ∧ R2 =⇒
f

R1
∧L1

S =⇒
f

R1
;

S
η

=⇒
f

R1 ∧ R2 R1 ∧ R2 =⇒
f

R2
∧L2

S =⇒
f

R2
;

S =⇒
f

R1 ∧ R2
∧I

Similarly, a top refinement for a type A is a refinement >A @ A

>A @ A

equipped with a typing rule

S =⇒
f
>A
>I

satisfying the equation

S
η

=⇒
f
>A = S =⇒

f
>A
>I

Definition 3.2.34 (Finite intersections and unions). A refinement system is said
to have finite intersections if there exists an intersection refinement R ∧ S for
all R,S @ A, as well as a top refinement >A for all A. Dually it is said to have
finite unions if there exists a union refinement R∨S for all R,S @ A, as well as a
bottom refinement ⊥A for all A. (Note: intersections and unions are essentially
what are called fibered products and coproducts in the literature on fibrations,
although our definition is more general since it applies to any functor, not just
to fibrations.)

62 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

This definition of intersection and union refinements is very reminiscent of the
refinement and typing rules we considered in Chapter 2 while defining λ�∧→ , but
a key difference is that here we can apply them to reason about intersections
and unions in any type refinement system, not just one particular inductively-
defined system. The equations on typing derivations are less familiar, but are
needed if we want to talk about intersections and unions in proof-relevant
refinement systems.

Example 3.2.35. The refinement system Subset → Set has finite intersections
and unions, computed (of course) as intersections and unions of subsets. �

Example 3.2.36. In Psh → Cat, finite intersections and unions are computed
“pointwise”, using the cartesian product and disjoint union of sets. Like so (for
any φ,ψ : A op

→ Set):

φ ∧ ψ = a 7→ φ(a) × ψ(a)
φ ∨ ψ = a 7→ φ(a) + ψ(a)
>A = a 7→ { ∗ }
⊥A = a 7→ ∅

�

Exercise 3.2.37. Prove that pullbacks preserve intersections and pushforwards
preserve unions, in the sense that there are strong equivalences

f�(R ∨ S) ≡ f� R ∨ f� S (3.1)
g�(R ∧ S) ≡ g� R ∧ g� S (3.2)

whenever the corresponding refinements exist.

Exercise 3.2.38. On the other hand, pushforwards need not preserve intersec-
tions and pullbacks need not preserve unions, in the sense that in general the
following subtyping judgments are only derivable in the left-to-right direction:

f�(R ∧ S) =⇒ f� R ∧ f� S (3.3)
g� R ∨ g� S =⇒ g�(R ∨ S) (3.4)

Give explicit counterexamples to each of the right-to-left versions of (3.3) and
(3.4) in some concrete bifibration with intersections and unions. (Hint: is it
possible to find counterexamples to both converses in Subset→ Set?)

Exercise 3.2.39. When do the trivial refinement systems ! : C → 1 and id : C → C
have finite intersections and unions?

3.2.6 Morphisms and adjunctions of refinement systems

Since we’ve already considered a variety of examples of different refinement
systems, it might be time to put on our category theory hats and think a bit
about what it means to have a morphism between refinement systems.

3.2. MODELLING TYPE REFINEMENT SYSTEMS AS FUNCTORS 63

Definition 3.2.40 (Morphisms of refinement systems). For any pair of refine-
ment systems r : D → T and p : E → B, a morphism of refinement systems
from r to p consists of a pair F = (FD,FT) of functors FD : D→ E and FT : T → B
such p ◦ FD = FT ◦ r, i.e., such that the square

D
FD //

r
��

E

p
��

T
FT
// B

commutes strictly.

If we keep up with our notational conventions, then this definition can be
unraveled as saying that a morphism of refinement systems F = (FD,FT) : r→ p
consists of a refinement formation rule

R @ A
F(R) @ F(A)

transporting r-refinements to p-refinements, as well as a typing rule

R =⇒
f

S

F(R) =⇒
F(f)

F(S) F

transporting derivations of r-judgments to derivations of p-judgments, satisfy-
ing the functorial axioms:

R =⇒
idA

R id

F(R) =⇒
F(idA)

F(R) F
= F(R) =⇒

idF(A)

F(R) id

R
α

=⇒
f

S S
β

=⇒
g

T

R =⇒
f ;g

T
;

F(R) =⇒
F(f ;g)

F(T) F
=

R
α

=⇒
f

S

F(R) =⇒
F(f)

F(S) F
S
β

=⇒
g

T

F(S) =⇒
F(g)

F(T) F

F(R) =⇒
F(f);F(g)

F(T)
;

It’s worth emphasizing that in the general definition of a morphism of refine-
ment systems we do not ask that F preserves all of the additional structure that
r may happen to have (such as, say, pullbacks or intersections), although there
are special situations where it will.

One situation when F must preserve some logical structure is when it has a
left or right adjoint. By an adjunction of refinement systems, we simply mean

64 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

a picture like this

D

FD
''

GD

gg ⊥

r

��

E

p

��
T

FT
''

GT

gg ⊥ B

where we have a pair of morphisms of refinement systems F = (FD,FT) : r→ p
and G = (GD,GT) : p → r, together with a pair of adjunctions of categories
FD a GD and FT a GT , such that the unit and counit of the adjunction FD a GD
are mapped by r and p onto the unit and counit of FT a GT . A generalization
of the famous “RAPL” principle for adjunctions of categories (right adjoints
preserve limits) also holds for adjunctions of refinement systems.

Proposition 3.2.41 (Cf. [14, 28]). If F a G : p → r is an adjunction of refinement
systems, then F preserves pushforwards and finite unions, while G preserves pullbacks
and finite intersections.

A different situation where a morphism of refinement systems F : r → p
typically should preserve some of the logical structure is when we view F as
building a “model” of r in p. As an example of this situation, if we let r : D→ T
be a member of the class of Hoare logic refinement systems (Examples 3.2.12
and 3.2.19), then a morphism of refinement systems into Subset→ Set

D
~−� //

r
��

Subset

��
T

~−�
// Set

gives a deterministic, set-theoretic semantics, where the functor ~−� : T → Set
sends the unique object W to some fixed set of states ~W� and commands c to
different endofunctions on ~W�, while the functor ~−� : D → Subset sends
predicates P @W to different subsets of ~W�. Similarly, a morphism from r into
Rel• → Rel gives a potentially non-deterministic semantics, where commands
are interpreted as different relations on ~W�. In both of these situations, if r has
intersections and unions, then it is reasonable to ask that ~−� preserves them,
in other words that it interprets them by set-theoretic intersection and union:

~P ∧Q� = ~P� ∩ ~Q� ~P ∨Q� = ~P� ∪ ~Q�

3.3 Monoidal closed refinement systems

We began this chapter by modelling type refinement systems as functors r :
D→ T between arbitrary categoriesD andT . We recovered additional logical

3.3. MONOIDAL CLOSED REFINEMENT SYSTEMS 65

structure on D by asking whether the functor r : D → T happens to satisfy
some additional properties (such as the property of being a bifibration, or of
having finite unions and intersections), but we did not ask for any additional
logical structure on the base category T itself. On the other hand, we opened
Chapter 2 by considering a very primitive type refinement system λ�→ where
the logical structure of refinement types perfectly mirrored the logical structure
of the underlying types, with the only additional information coming from the
atoms. One way of describing that situation in very abstract terms is that we
had a pair of categoriesD and T carrying some additional algebraic structure,
together with a homomorphic erasure functor r : D → T , that is, one which
strictly preserves the algebraic structure.

In this section we look at monoidal closed refinement systems, defined as
strict monoidal closed functors between monoidal closed categories. Our main
reason for starting from monoidal closed categories rather than cartesian closed
categories is that this captures many additional models, including refinement
systems such as Rel• → Rel which include aspects of linearity and side-effects.
Moreover, it turns out that the combination of the connectives of a monoidal
closed refinement system (⊗, (, and () with the connectives of a bifibration
(f� and f �) already leads to some very rich logical interactions. At the end of the
chapter we’ll consider a few applications, including a logical decomposition of
the connectives of separation logic, as well as some perspective on realizability
semantics and type refinement systems built over “uni-typed” languages like
the pure lambda calculus.

3.3.1 Monoidal, symmetric monoidal, and cartesian closed re-
finement systems

Recall (and see Mac Lane [25] or Wikipedia or the nLab for details) that a
category is monoidal if it is equipped with a tensor product and unit operation

⊗ : C × C → C I : 1→ C

which are associative and unital up to coherent isomorphism. A monoidal
category is symmetric when the monoidal product is commutative in the strong
sense that there are a coherent family of isomorphisms

γX,Y : X ⊗ Y ∼
→ Y ⊗ X

satisfying the identity (γX,Y;γY,X) = idX⊗Y, and it is cartesian when the monoidal
product coincides with the categorical product, this being equivalent to the
existence of a family of duplication and erasure maps,

δX : X→ X ⊗ X !X : X→ I

satisfying a pair of reasonable identities which say that duplication followed
by erasure is the identity.

66 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

A monoidal category is said to be closed when it is additionally equipped
with left and right residuation operations (also called left/right implication)

(: C op
× C → C (: C × C op

→ C

which are right adjoint to tensor product in each component:

C(Y,X(Z) � C(X ⊗ Y,Z) � C(X,Z (Y)

In the case that the tensor product is symmetric the two residuals coincide
X(Y � Y (X, and in the case that it is cartesian both residuals coincide with
exponential objects X(Y � Y (X � YX.

Definition 3.3.1 (Monoidal refinement systems). A refinement system r : D→
T is said to be (symmetric/cartesian) monoidal (closed) ifD and T are (sym-
metric/cartesian) monoidal (closed) categories, and the functor r strictly pre-
serves the (symmetric/cartesian) monoidal (closed) structure.

Again, we can try to unpack this definition using the conventions of Section 3.2.
In the case of a symmetric monoidal closed refinement system, the definition
implies that there are refinement and typing rules for the tensor product and
unit,

R1 @ A1 R2 @ A2

R1 ⊗ R2 @ A1 ⊗ A2 I @ I

R1 =⇒
f1

S1 R2 =⇒
f2

S2

R1 ⊗ R2 =⇒
f1⊗ f2

S1 ⊗ S2
⊗

I =⇒
I

I I

as well as refinement and typing rules for the implication,

R @ A T @ C
R(T @ A(C R ⊗ (R(T) =⇒

eval
T eval

R ⊗ S =⇒
m

T

S =⇒
curry(m)

R(T
curry

as well as typing rules for the symmetry,

R ⊗ S =⇒
γA,B

S ⊗ R
γ

and such that all of these collectively satisfy a host of equations on typing
derivations, corresponding to the axioms of a symmetric monoidal closed cat-
egory.

Example 3.3.2. The refinement system Subset → Set is cartesian closed, as is
Downset → Poset. The usual cartesian closed structure on Set defines the
tensor product A1 ⊗A2 of sets A1 and A2 as their cartesian product A1 ×A2, the
unit as the singleton set 1 = { ∗ }, and the residual A(B of B by A as the set BA

of functions from A to B. This extends to a cartesian closed structure on Subset
by taking

(A1,R1) ⊗ (A2,R2) def
= (A1 × A2,R1 × R2)

I def
= (1, 1)

(A,R)((B,S) def
= (BA,R→ S)

3.3. MONOIDAL CLOSED REFINEMENT SYSTEMS 67

where the subsets R1 × R2 ⊆ A1 × A2, 1 ⊂ 1, and R→ S ⊆ BA are defined by

(a1, a2) ∈ R1 × R2 ⇔ a1 ∈ R1 ∧ a2 ∈ R2

∗ ∈ 1⇔ true
f ∈ R→ S⇔ ∀a. a ∈ R⇒ f (a) ∈ S

With these definitions, the projection functor (A,R) 7→ A manifestly preserves
the cartesian closed structure. Moreover, essentially the same definitions work
for Downset→ Poset, except that now BA denotes the set of order-preserving
functions from A to B, with the pointwise ordering. �

Example 3.3.3. The refinement system Psh → Cat is also cartesian closed,
with the cc structure on Cat given by forming product categories and functor
categories, and the cc structure on Psh defined as follows:

φ1 × φ2 : A1 ×A2 → Set

φ1 × φ2
def
= (a1, a2) 7→ φ1(a1) × φ2(a2)

1 : 1→ Set

1 def
= ∗ 7→ 1

ψφ : BA → Set

ψφ
def
= F 7→

∫
a
φ(a)→ ψ(Fa)

(Here the integral sign denotes an end. Equivalently, the formula for ψφ(F)
just computes the set of natural transformations from φ to ψ ◦ F.) Again,
the projection functor (A, φ) 7→ A manifestly preserves the cartesian closed
structure. �

Example3.3.4. The refinement system Rel• → Rel introduced in Example 3.2.29
is a non-cartesian symmetric monoidal closed refinement system. On objects,
the tensor product in Rel is defined as for Set by taking the cartesian product
of sets, but when we consider the morphisms of Rel we can observe that this
does not give a cartesian monoidal structure. (For example, the singleton set 1
is not a terminal object in Rel, since there are as many morphisms A→ 1 in Rel
as there are subsets of A.) Curiously, the residual A(B is also defined by the
cartesian product of sets A(B = A × B, with the evaluation map

eval : A ⊗ (A(B)→ B

defined by the relation

((a1, (a2, b1)), b2) ∈ eval ⇔ a1 = a2 ∧ b1 = b2.

(Note this actually gives Rel the structure of a compact closed category, which
is a special type of symmetric monoidal closed category.) To get a symmetric

68 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

monoidal closed structure on Rel•, we further define

(A1,R1) ⊗ (A2,R2) def
= (A1 × A2,R1 ⊗ R2)

I def
= (1, I)

(A,R)((B,S) def
= (A × B,R(S)

where the subsets R1 ⊗ R2 ⊆ A1 × A2, I ⊆ 1, and R(S ⊆ A × B are defined by

(a1, a2) ∈ R1 ⊗ R2 ⇔ a1 ∈ R1 ∧ a2 ∈ R2

∗ ∈ I⇔ true
(a, b) ∈ R(S⇔ a ∈ R⇒ b ∈ S

�

3.3.2 Refining the simply typed lambda calculus, revisited

The basic idea of a (cartesian) monoidal closed refinement system gives us
a means for understanding some of what we saw in Chapter 2 from a more
conceptual and elementary perspective. To a first approximation, the primitive
type refinement system λ�→ can be modelled by the forgetful functor

free-ccc(P)

free-ccc(!P)
��

free-ccc(1)

whereP can be an arbitrary category (in Section 2.2.1 we took it to be a preorder),
and where free-ccc(C) denotes the free cartesian closed category over C.3 One
application of this analysis is that we can derive the set-theoretic semantics of
Section 2.2.3 “for free”. Recall that we parameterized that semantics by a set
D interpreting the unique atomic type ι of λ→, as well as an order-preserving
function i[−] : P → 2D mapping atomic refinements to subsets of D. Note that
this is exactly the data of a morphism of refinement systems from the trivial
refinement system !P : P → 1 to Subset→ Set:

P
i[−] //

!P
��

Subset

��
1

D
// Set

3I say “to a first approximation”, because for various well-known reasons, there is a bit of slack
in the connection between λ→ and free-ccc(1). For example, the interpretation of terms of λ→ as
morphisms of free-ccc(1) requires the presence of pairing (i.e., it also models λ→×), and it does not
distinguish between terms which are βη-equivalent. There are different approaches to smoothing
over these differences, though, such as passing to multicategories (for the first problem), or to
2-categories (for the second).

3.3. MONOIDAL CLOSED REFINEMENT SYSTEMS 69

But since Subset and Set are cartesian closed, the universal property of free
cartesian closed categories guarantees that we can lift this to a morphism of
refinement systems

free-ccc(P)
~−� //

free-ccc(!P)
��

Subset

��
free-ccc(1)

~−�
// Set

and if you unravel the definitions you can verify that this gives precisely the
set-theoretic semantics of Section 2.2.3. The same trick works identically for
Downset→ Poset and Psh→ Cat, since these are also cartesian closed refine-
ment systems. This won’t work with Rel• → Rel since it is only a symmetric
monoidal closed refinement system, but on the other hand, we can use the same
trick to obtain a model for the linear version of λ�→:

free-smc(P)
~−� //

free-smc(!P)
��

Rel•

��
free-smc(1)

~−�
// Rel

3.3.3 Playing with tensor, implies, and, or, push, pull

Things really start to get interesting once we start mixing the connectives ⊗,(,
and (of a monoidal closed refinement system with the operations f� and f �

of a bifibration. For example, in any monoidal closed refinement system the
following distributivity principles hold (as strong equivalences, whenever the
corresponding pushforward and pullback refinements exist):

(f ⊗ g)�(R ⊗ S) ≡ f� R ⊗ g� S (3.5)
f� R(g� U ≡ (f (g)�(R(U) (3.6)

Similar distributivity principles also hold for tensor and implication interacting
with unions and intersections:

(R1 ⊗ S) ∨ (R2 ⊗ S) ≡ (R1 ∨ R2) ⊗ S (3.7)
(R(U1) ∧ (R(U2) ≡ R((U1 ∧U2) (3.8)
(R1(U) ∧ (R2(U) ≡ (R1 ∨ R2)(U (3.9)

Exercise 3.3.5. Prove equations (3.5)–(3.9) using Prop. 3.2.41, and other facts
about pushforward and pullback refinements we have already established.
But that’s only the beginning of the story – I’ll conclude by describing a few ap-
plications of monoidal closed refinement systems, which use these connectives
in the spirit of a “logical framework” for decomposing the structure of formal
systems.

70 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

Encoding products and sums using intersections and unions, and vice versa

In programming we’re familiar with the idea of representing datatypes by
tagged unions. One way of talking about this encoding more abstractly is to
observe that a coproduct refinement

R + S @ A + B

can be decomposed as a union of pushforwards,

R + S ≡ inl� R ∨ inr� S (3.10)

where

inl : A→ A + B
inr : B→ A + B

are the injections into the underlying coproduct A + B. (Recall that we had
a preview of this decomposition in Section 2.4.3 when talking about datasort
refinements.) Dually, product refinements

R × S @ A × B

can be decomposed as an intersection of pullbacks,

R × S ≡ fst� R ∧ snd� S (3.11)

where

fst : A × B→ A
snd : A × B→ B

are the projections from the underlying product A × B. (Note that this kind of
decomposition was used in Reynolds’ Forsythe language [38].)
Exercise 3.3.6. Prove that the strong equivalences (3.10) and (3.10) hold in any
monoidal refinement system where the monoidal structures are, respectively,
cocartesian or cartesian.
Conversely, intersections and unions can be recovered from products and sums
by pulling back or pushing forward,

R ∧ S ≡ δ�A(R × S) (3.12)
R ∨ S ≡ %�(R + S) (3.13)

where

δA : A→ A × A
%A : A + A→ A

are the duplication and “coduplication” maps.
Exercise 3.3.7. Prove (3.12) and (3.13).

3.3. MONOIDAL CLOSED REFINEMENT SYSTEMS 71

Separation logic

We’ve already talked a few times about viewing Hoare logic as a type refinement
system (Examples 3.2.12 and 3.2.19). We can also try to talk about the more
sophisticated situation of separation logic [40], but now, rather than taking the
base categoryT to be a one-object category, we should take it to be a symmetric
monoidal closed category containing a monoid object, i.e., an object W equipped
with operations

m : W ⊗W →W
e : I→W

satisfying the monoid axioms. Intuitively, W represents the type of “heaps”,
with m representing the operation of combining disjoint heaps and e the empty
heap.

Consider “separating conjunction” P ∗Q and “magic wand” P −∗Q, which
build predicates on the heap from a pair of predicates on the heap:

P @W Q @W
P ∗Q @W

P @W Q @W
P −∗Q @W

Well, the idea is that we can decompose these “internal” tensor and implication
P ∗ Q and P −∗ Q in terms of the “external” tensor and implication P ⊗ Q and
P(Q, by pushing along m or pulling along the currying of m:

P ∗Q def
= m�(P ⊗Q)

P −∗Q def
= curry(m)�(P(Q)

Here is how to see the construction of P ∗Q @W and P −∗Q @W step-by-step:

P @W Q @W
P ⊗Q @W ⊗W m : W ⊗W →W

m�(P ⊗Q) @W

curry(m) : W →W(W
P @W Q @W

P(Q @W(W
curry(m)�(P(Q) @W

Similarly, we can define the unit of the separating conjunction emp @ W by
pushing the external tensor unit along the unit operation of the monoid:

emp def
= e� I

These decompositions give us an abstract characterization of the separation
logic connectives, which we can instantiate in particular symmetric monoidal
closed bifibrations to obtain different interpretations of separation logic. No-
tably, we can interpret the signature in Rel• → Rel, and use the fact that

72 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

any partial commutative monoid can be represented as a monoid object (W,M :
W ⊗W →W,E : I→W) in Rel:

(h1, h2) M h⇔ h = h1] h2

∗E h⇔ h = ∅

Unwinding the definitions of tensor, implies, push, and pull in the refinement
system Rel• → Rel (see Example 3.2.29 and Example 3.3.4), we recover the
standard semantics of separation logic:

h ∈ P ∗Q⇔ ∃h1, h2. h = h1] h2 ∧ h1 ∈ P ∧ h2 ∈ Q
h ∈ emp⇔ h = ∅

h ∈ P −∗Q⇔ ∀h′, h′′. h′′ = h′] h⇒ h′ ∈ P⇒ h′′ ∈ Q

Biorthogonality

A similar trick works for decomposing the concept of biorthogonal closure. In
any monoidal closed refinement system r : D → T , suppose that T contains
some binary operation

plug : A ⊗ B→ C

on arbitrary types A, B, and C, and that we’ve fixed a refinement

Obs @ C

as some “observation” on C. We can then define a pair of dualization operators as
follows, by pulling back the (left or right) implications along the (left or right)
currying of the plug operation:

R⊥ def
= lcurry(plug)∗ (R(Obs) (R @ A)

⊥S def
= rcurry(plug)∗ (Obs (S) (S @ B)

In this very general situation, we automatically obtain a contravariant adjunc-
tion between the subcategories of refinements of A and B,

DA

(−)⊥

''
⊥ D

op
B

⊥(−)

gg

as witnessed by the following equivalences of typing and subtyping judgments:

R ⊗ S =⇒
plug

Obs

R =⇒
rcurry(plug)

Obs (S

R =⇒
A
⊥S

R ⊗ S =⇒
plug

Obs

S =⇒
lcurry(plug)

R(Obs

S =⇒
B

R⊥

3.3. MONOIDAL CLOSED REFINEMENT SYSTEMS 73

In particular, this means that we have subtyping inclusions from any R @ A
and S @ B to their biorthogonal closures:

R =⇒
A

(⊥R)⊥ S =⇒
B
⊥(S⊥)

Refining the “uni-typed” lambda calculus à la Scott

In Chapter 2 we studied various idealized type refinement systems constructed
over the simply typed lambda calculus. Many of the refinement systems that
one sees “in the wild” have a much more complicated structure, however, where
the underlying language has dynamically-typed aspects. Still, the powerful
logical tools of monoidal closed bifibrations give us an edge even in these more
subtle situations.

An illustrative example of this is pure lambda calculus itself. Scott showed
how to model the pure lambda calculus as a reflexive object [41] in a cartesian
closed category, meaning an object D equipped with operations

D
@ // DD

λ
oo

such that @ ◦ λ = idDD . More generally, we can relax the requirement that
@ ◦ λ = idDD in various ways (such as by asking for an adjunction @ a λ,
cf. [42]), and we can also consider the linear version of this signature in a
symmetric monoidal closed category (cf. [47]):

@ : D→ (D(D)
λ : (D(D)→ D

In any case, we can then proceed to refine the reflexive object D. In particular,
by pulling along @ or pushing along λ, we can define two different logical
connectives on the refinements of D:

R
−

(S def
= @�(R(S)

R
+
(S def

= λ�(R(S)

Note that in general these two connectives will have slightly different interpre-
tations, although they might coincide in certain situations (such as when we
have both the β-axiom @◦λ = id and the η-axiom id = λ◦@). Intuitively, this ap-
proach should give us as an abstract way of doing “untyped” realizability-style
semantics, but guided, notably, by the presence of types and type refinements.

74 CHAPTER 3. A CATEGORICAL PERSPECTIVE ON TYPE REFINEMENT

Bibliography

[1] Franco Barbanera, Mariongala Dezani-Ciancaglini, and Ugo de’Liguoro.
Intersection and Union Types: Syntax and Semantics. Information and Com-
putation 119(2):202–230, 1995.

[2] Barendregt, H. P., Coppo, M., and Dezani-Ciancaglini, M.: A Filter Lambda
Model and the Completeness of Type Assignment. Journal of Symbolic Logic,
48:931–940, 1983.

[3] Francis Borceux. Handbook of Categorical Algebra 2: Categories and Structures.
Cambridge University Press, 1994.

[4] Luca Cardelli. A semantics of multiple inheritance. Information and Compu-
tation 76:138–164, 1988.

[5] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic 5:56–68, 1940.

[6] Coppo, M. and Dezani-Ciancaglini, M. : An Extension of the Basic Function-
ality Theory for the λ-Calculus. Notre Dame Journal of Formal Logic 21(4):139-
156, 1980.

[7] Rowan Davies. A practical refinement-type checker for Standard ML. In
Algebraic Methodology and Software Tech. (AMAST’97), pages 565–566.
Springer LNCS 1349, 1997.

[8] Rowan Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie Mel-
lon University (CMU-CS-05-110), May 2005.

[9] Rowan Davies and Frank Pfenning. Intersection Types and Computational
Effects. In Proceedings of the Fifth International Conference on Functional Pro-
gramming, 2000.

[10] Joshua Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie
Mellon University (CMU-CS-07-129), August 2007.

[11] Joshua Dunfield. Elaborating Intersection and Union Types. In Proceedings
of the 17th International Conference on Functional Programming, 2012.

75

76 BIBLIOGRAPHY

[12] Joshua Dunfield and Frank Pfenning. Tridirectional typechecking. In Pro-
ceedings of the 31st Annual Symposium on Principles of Programming Languages,
2004.

[13] Tim Freeman and Frank Pfenning. Refinement Types for ML. In Proceedings
of the ACM SIGPLAN ’91 Conference on Programming Language Design and
Implementation, 1991, 268–277.

[14] Claudio Hermida. Fibrations, Logical predicates and indeterminates, Ph.D.
thesis, University of Edinburgh, November 1993.

[15] R. Hindley. The principal type-scheme of an object in combinatory logic
Trans. Amer. Math. Soc. 146:29–60, 1969.

[16] J. Roger Hindley. Coppo-Dezani types do not correspond to propositional
logic. Theoretical Computer Science, 28:235–236, 1984.

[17] J. Roger Hindley. Types with intersection. Formal Aspects of Computing
4:470–486, 1992.

[18] Bart Jacobs. Categorical Logic and Type Theory. Studies in Logic and the
Foundations of Mathematics 141. North Holland, 1999.

[19] Max Kelly. Basic concepts in enriched category theory. Cambridge University
Press, 1982.

[20] Joachim Lambek. From lambda calculus to Cartesian closed categories,
in To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, eds. J. P. Seldin and J. Hindley, Academic Press, 1980, pp. 376-
402.

[21] Joachim Lambek and Philip Scott. Introduction to Higher-Order Cate-
gorical Logic. Cambridge Studies in Advanced Mathematics. Cambridge
University Press 1986.

[22] Daniel Leivant. Polymorphic type inference. In Proceedings of the Tenth
Annual ACM Symposium on Principles of Programming Languages, 1983.

[23] William Lovas. Refinement types for logical frameworks. PhD thesis, Carnegie
Mellon University, September 2010.

[24] William Lovas and Frank Pfenning. Refinement types for logical frame-
works and their interpretation as proof irrelevance. LMCS. 2010.

[25] Saunders Mac Lane. Categories for the Working Mathematician. Springer,
1971.

[26] Harry Mairson. A simple proof of a theorem of Statman. Theoretical Com-
puter Science 103(2):387–394, 1992.

BIBLIOGRAPHY 77

[27] Paul-André Melliès and Noam Zeilberger. Functors are Type Refinement
Systems. In Proceedings of the 42nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming, Mumbai, 2015.

[28] Paul-André Melliès and Noam Zeilberger. An Isbell Duality Theorem for
Type Refinement Systems. July 31, 2015. arXiv:1501.05115

[29] Paul-André Melliès and Noam Zeilberger. A bifibrational reconstruction
of Lawvere’s presheaf hyperdoctrine. In Proceedings of the 31st Annual IEEE
Conference on Logic in Computer Science, New York City, USA, July 2016.

[30] Robin Milner. A Theory of Type Polymorphism in Programming. Journal
of Computer and System Sciences 17:348–375, 1978.

[31] John C. Mitchell. Type Inference with Simple Subtypes. Journal of Functional
Programming 1(3):245–285, 1991.

[32] Frank Pfenning. Refinement Types for Logical Frameworks. Workshop on
Types for Proofs and Programs, May 1993.

[33] Frank Pfenning. Church and Curry: Combining Intrinsic and Extrinsic
Typing. Studies in Logic 17:303–338, 2008.

[34] Benjamin C. Pierce. Programming with Intersection Types and Bounded Poly-
morphism. PhD thesis, Carnegie Mellon University (CMU-CS-91-205), 1991.

[35] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[36] John C. Reynolds. Preliminary Design of the Programming Language
Forsythe. Report, no. CMU CS 88 159, Carnegie Mellon University, Com-
puter Science Department, June 21, 1988.

[37] John C. Reynolds. Even normal forms can be hard to type. Unpublished,
Carnegie Mellon University, December 1, 1989.

[38] John C. Reynolds. Design of the Programming Language Forsythe. Re-
port, no. CMU CS 96 146, Carnegie Mellon University, Computer Science
Department, June 1996.

[39] John C. Reynolds. The Meaning of Types: from Intrinsic to Extrinsic Se-
mantics. BRICS Report RS-00-32, Aarhus University, December 2000.

[40] John C. Reynolds. Separation logic: A Logic for Shared Mutable Data
Structures. LICS 2002.

[41] Dana S. Scott. Relating theories of theλ-calculus. In To H.B. Curry: Essays on
Combinatory Logic, Lambda-Calculus and Formalism (eds. Hindley and Seldin),
Academic Press, 403–450, 1980.

[42] R. A. G. Seely. Modelling Computations: A 2-Categorical Framework. In
Proceedings of the Second Annual IEEE Symposium on Logic in Computer Science,
65–71, Ithaca, NY, USA, 1987.

78 BIBLIOGRAPHY

[43] Morten Heine Sørensen and Pawel Urzyczyn, Lectures on the Curry-Howard
Isomorphism. Elsevier Science, 2006.

[44] Richard Statman. The typed λ-calculus is not elementary recursive. Theo-
retical Computer Science 9:73–81, 1979.

[45] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University, 1998.

[46] Hongwei Xi and Frank Pfenning. Eliminating Array Bound Checking
Through Dependent Types. In Proceedings of the Conference on Programming
Language Design and Implementation, 1998.

[47] Noam Zeilberger. Linear lambda terms as invariants of rooted trivalent
maps. December 21, 2015. arXiv:1512.06751

	Introduction
	What is a type refinement system?

	Refining the simply typed lambda calculus
	Preliminaries on
	Refinement, subtyping, and typing in
	Introducing
	Subtyping and -expansion
	The subset interpretation
	Principal types, type schemes, and bidirectional typing

	Intersection types
	The intersection type refinement system
	Extending the subset interpretation
	A further analysis of subtyping
	Subject expansion and the complexity of type inference
	Bidirectional typing for intersection types
	PSPACE-completeness of bidirectional typing

	Refining ML-like languages
	Refining datatypes: datasorts and index refinements
	The value restriction
	Union types and ``tridirectional'' typechecking

	Notes

	A categorical perspective on type refinement
	Introduction: type theory as an axiomatic theory
	Modelling type refinement systems as functors
	Type refinement systems are not just categories
	Reading a functor as a type refinement system
	Some examples of type refinement systems
	Pulling back and pushing forward
	Intersection and union types
	Morphisms and adjunctions of refinement systems

	Monoidal closed refinement systems
	Monoidal, symmetric monoidal, and cartesian closed refinement systems
	Refining the simply typed lambda calculus, revisited
	Playing with tensor, implies, and, or, push, pull

