Proof nets and mainstream graph theory

Nguyễn Lê Thành Dũng (a.k.a. Tito) — nltd@nguyentito.eu
partially based on joint work with Lutz Straßburger
ANR LambdaComb kickoff meeting, April 11th, 2022

Proof nets in Multiplicative Linear Logic

Proofs-as-programs: Intuitionistic Multiplicative Linear Logic \simeq linear λ-calculus Here, we work with classical MLL: $A \rightarrow B=A^{\perp} \vee B$ (or rather $A \multimap B=A^{\perp}>B$)

Proof nets in Multiplicative Linear Logic

Proofs-as-programs: Intuitionistic Multiplicative Linear Logic \simeq linear λ-calculus Here, we work with classical MLL: $A \rightarrow B=A^{\perp} \vee B$ (or rather $A \multimap B=A^{\perp} \gamma B$) A proof net is a sort of graph made of ax, \vee and \wedge nodes which represents a proof

- i.e. translated from a sequent calculus proof
- Equivalently, set of proof nets inductively generated

$$
\frac{\overline{\vdash A, A^{\perp}} \mathrm{ax} \frac{{ }_{\vdash B, B^{\perp}}^{\vdash}}{} \mathrm{ax}}{\frac{\vdash A \wedge B, A^{\perp}, B^{\perp}}{\vdash A \wedge B, A^{\perp} \vee B^{\perp}} \vee} \wedge
$$

Proof nets in Multiplicative Linear Logic

Proofs-as-programs: Intuitionistic Multiplicative Linear Logic \simeq linear λ-calculus Here, we work with classical MLL: $A \rightarrow B=A^{\perp} \vee B$ (or rather $A \multimap B=A^{\perp} \gamma B$) A proof net is a sort of graph made of ax, \vee and \wedge nodes which represents a proof

- i.e. translated from a sequent calculus proof
- Equivalently, set of proof nets inductively generated

$$
\frac{\overline{\vdash A, A^{\perp}} \mathrm{ax} \overline{\vdash B, B^{\perp}}}{\frac{\vdash A \wedge B, A^{\perp}, B^{\perp}}{\vdash}} \wedge
$$

Proof nets vs proof structures

- Proof structures: graphs made of ax-nodes, \wedge-nodes and \vee-nodes
- Not all proof structures are proof nets!

Some are not images of any sequent calculus proof

Problem (Correctness)

Given a proof structure, decide whether it is a proof net.
Related to correctness criteria:
non-inductive combinatorial characterizations of proof nets among proof structures

The Danos-Regnier correctness criterion for MLL

Delete 1 of the 2 premises of each \vee-node; do you always get an (undirected) tree? If so, then you've got an MLL proof net

The Danos-Regnier correctness criterion for MLL

Delete 1 of the 2 premises of each \vee-node; do you always get an (undirected) tree? If so, then you've got an MLL proof net

The Danos-Regnier correctness criterion for MLL

Delete 1 of the 2 premises of each \vee-node; do you always get an (undirected) tree? If so, then you've got an MLL proof net

The Danos-Regnier correctness criterion for MLL

Delete 1 of the 2 premises of each \vee-node; do you always get an (undirected) tree? If so, then you've got an MLL proof net

The Danos-Regnier correctness criterion for MLL+Mix

Delete 1 of the 2 premises of each \vee-node; do you always get a tree (resp. forest)? If so, then you've got an MLL (resp. MLL+Mix) proof net

Mix rule: $\frac{\vdash \Gamma \vdash \Delta}{\vdash \Gamma, \Delta}$

A graph-theoretic viewpoint

- Forest = acyclic graph
- MLL+Mix correct $=$ no cycle crossing both premises of a \vee-node
- So this is a constrained path-finding / cycle-finding problem
- Several such problems have been studied in graph theory
- Next: an example

Perfect matchings (1)

- A classical topic in graph theory and combinatorial optimisation
- A perfect matching is a set of edges in an undirected graph such that each vertex is incident to exactly one edge in the matching
- Example below: blue edges form a perfect matching

Perfect matchings (2)

- An alternating path is a path without vertex repetitions, which alternates between edges inside and outside the matching
- Analogous notion of alternating cycle
- Berge's lemma: \exists alternating cycle \Longleftrightarrow the perfect matching is not unique

Perfect matchings (2)

- An alternating path is a path without vertex repetitions, which alternates between edges inside and outside the matching
- Analogous notion of alternating cycle
- Berge's lemma: \exists alternating cycle \Longleftrightarrow the perfect matching is not unique

Proof net correctness vs perfect matching uniqueness

- Alternating paths / cycles in perfect matchings are "equivalent" to many kinds of constrained paths / cycles in graph theory
- See e.g. Szeider, On theorems equivalent with Kotzig's result [...], 2004
- or my own arXiv note Constrained path-finding and structure from acyclicity
- Is it also the case for MLL+Mix correctness?

Proof net correctness vs perfect matching uniqueness

- Alternating paths / cycles in perfect matchings are "equivalent" to many kinds of constrained paths / cycles in graph theory
- See e.g. Szeider, On theorems equivalent with Kotzig's result [...], 2004
- or my own arXiv note Constrained path-finding and structure from acyclicity
- Is it also the case for MLL+Mix correctness? YES
- A connection was found by Christian Retoré in the 1990s REB-graphs: \{proof structures\} \rightarrow \{graphs equipped with perfect matchings\}

Theorem (Retore's correctness criterion)

A proof structure is a MLL+Mix proof net iff the perfect matching of its $R \mathcal{E} B$-graph is unique (i.e. has no alternating cycle).

On sequentialization theorems

- Sequentialization theorem: correct proof structures are proof nets, i.e. come from sequent calculus proofs
- A remark by Retoré: this can be reproved from the theorem below

Theorem (Kotzig 1959)

Every unique perfect matching contains a bridge.

On sequentialization theorems

- Sequentialization theorem: correct proof structures are proof nets, i.e. come from sequent calculus proofs
- A remark by Retoré: this can be reproved from the theorem below

Theorem (Kotzig 1959)

Every unique perfect matching contains a bridge.
A slight mismatch: no bijection between sequentializations, i.e.

- sequent calculus proofs that map to a proof net
- ways to build up inductively a graph with unique PM by adding bridges

We fix this with another reduction \{proof structures $\} \rightarrow\{$ graphs w/PMs $\}$: graphification

Graphification of proof structures (1)

Matching edges correspond to nodes; bridges correspond to splitting terminal nodes

Graphification of proof structures (1)

Matching edges correspond to nodes; bridges correspond to splitting terminal nodes

Graphification of proof structures (1)

Matching edges correspond to nodes; bridges correspond to splitting terminal nodes

Graphification of proof structures (1)

Matching edges correspond to nodes; bridges correspond to splitting terminal nodes

Graphification of proof structures (1)

Matching edges correspond to nodes; bridges correspond to splitting terminal nodes

Graphification of proof structures (1)

Matching edges correspond to nodes; bridges correspond to splitting terminal nodes

- Correctness criterion is still uniqueness of PM i.e. no alternating cycle

Graphifications of proof nets (2)

Theorem

The sequentializations of a proof structure are in bijection with those of its graphification.
In particular if one set is $\neq \varnothing$ so is the other, therefore:
Corollary (Sequentialization theorem for MLL+Mix)
Danos-Regnier acyclic \Longleftrightarrow MLL+Mix sequentializable.

Graphifications of proof nets (2)

Theorem

The sequentializations of a proof structure are in bijection with those of its graphification.
In particular if one set is $\neq \varnothing$ so is the other, therefore:

Corollary (Sequentialization theorem for MLL+Mix)

Danos-Regnier acyclic \Longleftrightarrow MLL+Mix sequentializable.
Bonus: quasi-linear time algorithm to compute a sequentialization, relying on recent graph algorithms developments

Holm, Rotenberg \& Thorup, Dynamic bridge-finding in $\tilde{O}\left(\log ^{2} n\right)$ amortized time, 2018

Graphifications of proof nets (2)

Theorem

The sequentializations of a proof structure are in bijection with those of its graphification.

In particular if one set is $\neq \varnothing$ so is the other, therefore:

Corollary (Sequentialization theorem for MLL+Mix)

Danos-Regnier acyclic \Longleftrightarrow MLL+Mix sequentializable.

Bonus: quasi-linear time algorithm to compute a sequentialization, relying on recent graph algorithms developments

Holm, Rotenberg \& Thorup, Dynamic bridge-finding in $\tilde{O}\left(\log ^{2} n\right)$ amortized time, 2018 Next: some structural combinatorics, then more complexity

Blossoms in matching theory

A key concept in combinatorial matching algorithms, e.g. testing PM uniqueness Edmonds, Paths, trees and flowers, Canadian J. Math., 1965

Definition

A blossom is a cycle with exactly one vertex matched outside the cycle.

Blossoms vs. dependencies

Blossoms of graphification \rightsquigarrow subformulae and dependencies

Blossoms vs. dependencies

Blossoms of graphification \rightsquigarrow subformulae and dependencies

Blossoms vs. dependencies

Blossoms of graphification \rightsquigarrow subformulae and dependencies

Blossoms vs. dependencies

Blossoms of graphification \rightsquigarrow subformulae and dependencies

Blossoms vs. dependencies

Blossoms of graphification \rightsquigarrow subformulae and dependencies

Definition: A \vee-node l depends upon a node l^{\prime} if there is a Danos-Regnier path between the premises of l going through l^{\prime}.

Blossoms vs. dependencies

Blossoms of graphification \rightsquigarrow subformulae and dependencies

Definition: A \vee-node l depends upon a node l^{\prime} if there is a Danos-Regnier path between the premises of l going through l^{\prime}.

Kingdom ordering of proof nets and unique PMs

Let π be an MLL+Mix proof net.

Definition (Kingdom ordering of a proof net)

We define $l<_{\pi} l$ iff every sequentialization of π introduces l above l^{\prime}.

```
Theorem (Bellin 1997 (rediscovered by Bagnol, Doumane & Saurin 2015))
<<<
```


Kingdom ordering of proof nets and unique PMs

Let π be an MLL+Mix proof net.

Definition (Kingdom ordering of a proof net)

We define $l<_{\pi} l$ iff every sequentialization of π introduces l above l^{\prime}.

Theorem (Bellin 1997 (rediscovered by Bagnol, Doumane \& Saurin 2015))

$<_{\pi}=$ transitive closure of (subformula relation) \cup (dependency relation)
The kingdom ordering can be defined for unique perfect matchings
(Natural concept, similar things studied in combinatorics e.g. perfect elimination orderings of chordal graphs)

Theorem (Equivalent graph-theoretic version)

Kingdom ordering $=$ "blossom reachability"
\rightsquigarrow A non-artificial graph-theoretic result coming from linear logic!
The statement is even simplified by moving from proofs to graphs

Complexity of correctness

Uniqueness of a perfect matching can be tested in linear time (Gabow, Kaplan \& Tarjan 1999) so using graphification - or Retoré's R\&B-graphs from the 1990s - we have:

Corollary (first stated in my FSCD'18 paper?)
$M L L+M i x$ correctness is decidable in linear time.
Previously in the literature: very sophisticated approaches for MLL without Mix (Guerrini 1999, Murawski \& Ong 2000)

Complexity of correctness

Uniqueness of a perfect matching can be tested in linear time (Gabow, Kaplan \& Tarjan 1999) so using graphification - or Retoré's R\&B-graphs from the 1990s - we have:

Corollary (first stated in my FSCD'18 paper?)
$M L L+M i x$ correctness is decidable in linear time.
Previously in the literature: very sophisticated approaches for MLL without Mix (Guerrini 1999, Murawski \& Ong 2000)

A polynomial-time algorithm for PM uniqueness is already non-trivial (essentially the blossoms paper Edmonds 1965 - note: [GKT99] also use blossoms) and breaks down in directed graphs \rightarrow final topic of this talk

R\&B-graphs and pomset logic (from Retorés PhD thesis)

Pomset logic proof nets are best explained through Retore's R\&B-graphs:

R\&B-graphs and pomset logic (from Retoré's PhD thesis)

Pomset logic proof nets are best explained through Retoré's R\&B-graphs:

Add directed edges to handle a non-commutative connective \triangleleft

$$
A \wedge B \Longrightarrow A \triangleleft B \Longrightarrow A \vee B
$$

R\&B-graphs and pomset logic (from Retoré's PhD thesis)

Pomset logic proof nets are best explained through Retoré's R\&B-graphs:

Add directed edges to handle a non-commutative connective \triangleleft

$$
A \wedge B \Longrightarrow A \triangleleft B \Longrightarrow A \vee B
$$

Complexity of pomset logic

So we have a reduction \{pomset proof structures $\} \rightarrow\{$ directed graphs w/ PMs $\}$.
There's also a converse reduction, so:

Theorem

Pomset logic proof net correctness is coNP-complete.

Proof.

Reduction 3SAT \rightarrow directed alternating cycle \rightarrow pomset proof net incorrectness.
Main inspiration: literature on edge-colored graphs, closely related to matchings (here: Gourvès et al., Complexity of trails, paths and circuits in arc-colored digraphs, 2013)

Complexity of pomset logic

So we have a reduction \{pomset proof structures $\} \rightarrow\{$ directed graphs w/ PMs $\}$.
There's also a converse reduction, so:

Theorem

Pomset logic proof net correctness is coNP-complete.

Proof.

Reduction 3SAT \rightarrow directed alternating cycle \rightarrow pomset proof net incorrectness.
Main inspiration: literature on edge-colored graphs, closely related to matchings (here: Gourvès et al., Complexity of trails, paths and circuits in arc-colored digraphs, 2013)

And with a bit more work:

Theorem (N. \& Straßburger, upcoming journal paper)

Deciding the provability of a pomset logic formula is Σ_{2}^{p}-complete.

Pomset Logic vs system BV

Guglielmi's system $B V$ is a logic over the same language of formulas as pomset logic (PL), historically important as the origin of the deep inference paradigm in proof theory

A two-decades-old conjecture

These logics are equivalent, i.e. prove the same formulas.
It was known that $(\mathrm{BV} \vdash A) \Longrightarrow(\mathrm{PL} \vdash A)$.

Pomset Logic vs system BV

Guglielmi's system $B V$ is a logic over the same language of formulas as pomset logic (PL), historically important as the origin of the deep inference paradigm in proof theory

A two-decades-old conjecture

These logics are equivalent, i.e. prove the same formulas.
It was known that $(\mathrm{BV} \vdash A) \Longrightarrow(\mathrm{PL} \vdash A)$.
But BV provability is NP-complete: strictly easier than for PL unless NP $=$ coNP!

Pomset Logic vs system BV

Guglielmi's system BV is a logic over the same language of formulas as pomset logic (PL), historically important as the origin of the deep inference paradigm in proof theory

A two-decades-old conjecture

These logics are equivalent, i.e. prove the same formulas.
It was known that $(\mathrm{BV} \vdash A) \Longrightarrow(\mathrm{PL} \vdash A)$.
But BV provability is NP-complete: strictly easier than for PL unless NP $=$ coNP!
Unconditional refutation of the conjecture (N. \& Straßburger, CSL'22)
There is some formula A such that $\mathrm{BV} \vdash \mathrm{A}$ but $\mathrm{PL} \vdash A$.
$A=((a \triangleleft b) \wedge(c \triangleleft d)) \vee((e \triangleleft f) \wedge(g \triangleleft h)) \vee\left(a^{\perp} \triangleleft h^{\perp}\right) \vee\left(e^{\perp} \triangleleft b^{\perp}\right) \vee\left(g^{\perp} \triangleleft d^{\perp}\right) \vee\left(c^{\perp} \triangleleft f^{\perp}\right)$

Conclusion

$M L L(+M i x)$ proof nets: a graphical syntax for proofs
(not literally) "linear λ-terms without a distinguished spanning tree"
The question of distinguishing correct proof nets leads to rich combinatorics, closely related to classical topics (perfect matchings, blossoms)

Conclusion

$M L L(+M i x)$ proof nets: a graphical syntax for proofs (not literally) "linear λ-terms without a distinguished spanning tree"
The question of distinguishing correct proof nets leads to rich combinatorics, closely related to classical topics (perfect matchings, blossoms)
We turned an obscure result on proof nets into a nice theorem on graphs
Conversely, by leveraging the literature on graphs, we got a few surprises

- including a refutation of a conjecture in proof theory
- another thing: if MLL+Mix correctness were as easy as for MLL (NL-complete) then it would solve a conjecture on matchings by Lovász from the 1990s

Conclusion

$M L L(+M i x)$ proof nets: a graphical syntax for proofs (not literally) "linear λ-terms without a distinguished spanning tree"
The question of distinguishing correct proof nets leads to rich combinatorics, closely related to classical topics (perfect matchings, blossoms)
We turned an obscure result on proof nets into a nice theorem on graphs
Conversely, by leveraging the literature on graphs, we got a few surprises

- including a refutation of a conjecture in proof theory
- another thing: if MLL+Mix correctness were as easy as for MLL (NL-complete) then it would solve a conjecture on matchings by Lovász from the 1990s

Thanks for your attention!

