
Play Ms. Pac-Man using an advanced
reinforcement learning agent

Nikolaos Tziortziotis, Konstantinos Tziortziotis, and Konstantinos Blekas

Department of Computer Science & Engineering, University of Ioannina
P.O.Box 1186, Ioannina 45110 - Greece

{ntziorzi,cs091771,kblekas}@cs.uoi.gr

Abstract. Reinforcement Learning (RL) algorithms have been promis-
ing methods for designing intelligent agents in games. Although their
capability of learning in real time has been already proved, the high
dimensionality of state spaces in most game domains can be seen as a
significant barrier. This paper studies the popular arcade video game
Ms. Pac-Man and outlines an approach to deal with its large dynami-
cal environment. Our motivation is to demonstrate that an abstract but
informative state space description plays a key role in the design of effi-
cient RL agents. Thus, we can speed up the learning process without the
necessity of Q-function approximation. Several experiments were made
using the multiagent MASON platform where we measured the ability
of the approach to reach optimum generic policies which enhances its
generalization abilities.

Keywords: Intelligent Agents, Reinforcement Learning, Ms. Pac-Man

1 Introduction

During the last two decades there is a significant research interest within the AI
community on constructing intelligent agents for digital games that can adapt
to the behavior of players and to dynamically changed environments [1]. Rein-
forcement learning (RL) covers the capability of learning from experience [2–4],
and thus offers a very attractive and powerful platform for learning to control an
agent in unknown environments with limited prior knowledge. In general, games
are ideal test environments for the RL paradigm, since they are goal-oriented se-
quential decision problems, where each decision can have long-term effect. They
also hold other interesting properties, such as random events, unknown environ-
ments, hidden information and enormous decision spaces, that make RL to be
well suited to complex and uncertain game environments.

In the literature there is a variety of computer games domains that have been
studied by using reinforcement learning strategies, such as chess, backgammon
and tetris (see [5] for a survey). Among them, the arcade video game Ms. Pac-
Man constitutes a very interested test environment. Ms. Pac-Man was released
in early 80’s and since then it has become one of the most popular video games
of all time. That makes Ms. Pac-Man very attractive is its simplicity of playing

in combination with the complex strategies that are required to obtain a good
performance [6].

The game of Ms. Pac-Man meets all the criteria of a reinforcement learn-
ing task. The environment is difficult to predict, because the ghost behaviour
is stochastic and their paths are unpredictable. The reward function can be
easily defined covering particular game events and score requirements. Further-
more, there is a small action space consisting of the four directions in which Ms.
Pac-Man can move (up, down, right, left) at each time step. However, a diffi-
culty is encountered when designing the state space for the particular domain.
Specifically, a large amount of features are required for describing a single game
snapshot. In many cases this does not allow reaching optimal solutions and may
limit the efficiency of the learning agent. Besides, a significant issue is whether
the state description can fit into the memory, and whether optimization can be
solved in reasonable time or not. In general, the size of the problem may grow
exponentially with the number of variables. Therefore working efficiently in a
reinforcement learning framework means reducing the problem size and estab-
lishing a reasonable state representation.

To tackle these disadvantages several approximations, simplifications and/or
feature extraction techniques have been proposed. In [6] for example, a rule-
based methodology was applied where the rules were designed by the human and
their values were learned by reinforcement learning. On the other hand, neural
networks have been also employed for value function approximation with either
a single or multiple outputs [7,8]. Further search techniques have been applied to
developing agents for Ms. Pac-Man, including genetic programming [9], Monte-
Carlo tree search [10,11] and teaching advising techniques [12].

In this study we investigate the Ms. Pac-Man game since it offers a real time
dynamic environment and it involves sequential decision making. Our study is
focused on the designing of an appropriate state space for building an efficient
RL agent to the MS. Pac-Man game domain. The proposed state representation
is informative by incorporating all the necessary knowledge about any game
snapshot. At the same time it presents an abstract description so as to reduce
computational cost and to accelerate learning procedure without compromising
the decision quality. We demonstrate here that providing a proper feature set
as input to the learner is of outmost importance for simple reinforcement learn-
ing algorithms, such as SARSA. The last constitutes the main contribution of
our study and it suggests the need of careful modeling of the domain aiming at
addressing adequately the problem. Several experiments have been conducted
where we measured the learning capabilities of the proposed methodology and
its efficiency in discovering optimal policy in unknown mazes. It should be em-
phasized that, although different Pac-Man simulators have been applied within
the literature and a direct head-to-head comparison of the performance is not
practical, we believe that our method yields very promising results with consid-
erable improved performance.

The remaining of this paper is organized as follows: In section 2 we give a
brief description of the Ms. Pac-Man game environment. Section 3 describes the

background of the reinforcement learning schemes and presents some prelimi-
naries about the general temporal-difference (TD) scheme used for training the
proposed Ms. Pac-Man agent. The proposed state space structure is presented at
section 4 while the details of our experiments together with some initial results
are illustrated in section 5. Finally, section 6 draws conclusions and discusses
some issues for future study.

2 The game of Pac-Man

Fig. 1. A screenshot of the Pac-Man game in a typical maze (Pink maze)

Pac-Man is an 1980s arcade video-game that reached immense success. It
is considered to be one of the most popular video games to date. The player
maneuvers Ms. Pac-Man in a maze that consists of a number of dots (or pills).
The goal is to eat all of the dots. Figure 1 illustrates a typical such maze. It
contains 220 dots with each of them to worth 10 points. A level is finished when
all the dots are eaten (‘win’). There are also four ghosts in the maze who try to
catch Ms. Pac-Man, and if they succeed, Pac-Man loses a life.

Four power-up items are found in the corners of the maze, called power pills,
which are worth 40 points each. When Ms. Pac-Man consumes a power-pill all
ghosts become edible, i.e. the ghosts turn blue for a short period (15 seconds),
they slow down and try to escape from Ms. Pac-Man. During this time, Ms.
Pac-Man is able to eat them, which is worth 200, 400, 800 and 1600 points,
consecutively. The point values are reset to 200 each time another power pill is
eaten, so the player would want to eat all four ghosts per power dot. If a ghost

is eaten, it remains hurry back to the center of the maze where the ghost is
reborn. Our investigations are restricted to learning an optimal policy for the
maze presented at Fig. 1, so the maximum achievable score is 220 × 10 + 4 ×
40 + 4× (200 + 400 + 800 + 1600) = 14360. 1

In the original version of Pac-Man, ghosts move on a complex but determin-
istic route, so it is possible to learn a deterministic action sequence that does not
require any observations. In the case of Ms. Pac-Man, randomness was added to
the movement of the ghosts. Therefore there is no single optimal action sequence
and observations are necessary for optimal decision making. In our case ghosts
moved randomly in 20% of the time and straight towards Ms. Pac-Man in the
remaining 80%, but ghosts may not turn back. Ms. Pac-Man starts playing the
game with three lives. An additional life is given at 10000 points.

It must be noted that, although the domain is discrete it has a very large
state space. There are 1293 distinct locations in the maze, and a complete state
consists of the locations of Pac-Man, the ghosts, the power pills, along with each
ghosts previous move and whether or not it is edible.

3 Reinforcement learning

In the reinforcement learning (RL) framework an agent is trained to perform
a task by interacting with an unknown environment. While taking actions, the
agent receives feedback from the environment in the form of rewards. The notion
of RL framework is focused on gradually improving the agent’s behavior and
estimating its policy by maximizing the total long-term expected reward. An
excellent way for describing a RL task is through the use of Markov Decision
Processes.

A Markov Decision Process (MDP) [13] can be supposed as a tuple (S, A,
P , R, γ), where S is a set of states; A a set of actions; P : S × A × S → [0, 1]
is a Markovian transition model that specifies the probability, P (s, a, s′), of
transition to a state s′ when taken an action a in state s; R : S × A → R is
the reward function for a state-action pair; and γ ∈ (0, 1) is the discount factor
for future rewards. A stationary policy, π : S → A, for a MDP is a mapping
from states to actions and denotes a mechanism for choosing actions. An episode
can be supposed as a sequence of state transitions: < s1, s2, . . . , sT >. An agent
repeatedly chooses actions until the current episode terminates, followed by a
reset to a starting state.

The notion of value function is of central interest in reinforcement learning
tasks. Given a policy π, the value V π(s) of a state s is defined as the expected dis-
counted returns obtained when starting from this state until the current episode
terminates following policy π:

V π(s) = E

[∞∑
t=0

γtR(st)|s0 = s, π

]
. (1)

1 In the original version of the game, a fruit appears near the center of the maze and
remains there for a while. Eating this fruit is worth 100 points.

As it is well-known, the value function must obey the Bellman’s equation:

V π(s) = Eπ [R(st) + γV π(st+1)|st = s] , (2)

which expresses a relationship between the values of successive states in the same
episode. In the same way, the state-action value function (Q-function), Q(s, a),
denotes the expected cumulative reward as received by taking action a in state
s and then following the policy π,

Qπ(s, a) = Eπ

[∞∑
t=0

γtR(st)|s0 = s, a0 = a

]
. (3)

In this study, we will focus on the Q functions dealing with state-action pairs
(s, a).

The objective of RL problems is to estimate an optimal policy π∗ by choosing
actions that yields the optimal action-state value function Q∗:

π∗(s) = arg max
a

Q∗(s, a). (4)

Learning a policy therefore means updating the Q-function to make it more
accurate. To account for potential inaccuracies in theQ-function, it must perform
occasional exploratory actions. A common strategy is the ε-greedy exploration,
where with a small probability ε, the agent chooses a random action. In an
environment with a capable (reasonably small) number of states, the Q-function
can simply be represented with a table of values, one entry for each state-action
pair. Thus, basic algorithmic RL schemes make updates to individual Q-value
entries in this table.

One of the most popular TD algorithms used in on-policy RL is the SARSA
[4] which is a bootstrapping technique. Assuming that an action at is taken and
the agent moves from belief state st to a new state st+1 while receiving a re-
ward rt, a new action at+1 is chosen (ε-greedy) according to the current policy.
Then, the predicted Q value of this new state-action pair is used to calculate an
improved estimate for the Q value of the previous state-action pair:

Q(st, at)← Q(st, at) + αδt, (5)

where
δt = (rt + γQ(st+1, at+1)−Q(st, at)) (6)

is known as the one step temporal-difference (TD) error. The term α is the learn-
ing rate which set to some small value (e.g. α = 0.01) and can be occasionally
decreased during the learning process.

An additional mechanism that can be employed is that of eligibility traces.
This allows rewards to backpropagate to recently visited states, allocating them
some proportion of the current reward. Every state-action pair in the Q table
is given its own eligibility value (e) and when the agent visits that pairing its
eligibility value set equal to 1 (replacing traces, [14]). After every transition all

eligibility values are decayed by a factor of γλ, where λ ∈ [0, 1] is the trace decay
parameter. The TD error forward proportional in all recently visited state-action
pairs as signalised by their nonzero traces according to the following update rule:

Qt+1(s, a)← Qt(s, a) + αδtet(s, a) for all s, a (7)

where

et+1(s, a) =

1 if s = st and a = at

0 if s = st and a 6= at

γλet(s, a) otherwise

(8)

is a matrix of eligibility traces. The purpose of eligibility traces is to propagate
TD-error to the state-action values faster so as to accelerate the exporation of
the optimal strategy. The specific version, known as SARSA(λ) [4], has been
adopted for the learning of the Ms. Pac-Man agent.

4 The proposed state space representation

The game of Ms. Pac-Man constitutes a challenging domain for building and
testing intelligent agents. The state space representation is of central interest for
an agent, since it plays a significant role in system modeling, identification, and
adaptive control. At each time step, the agent has to make decisions according
to its observations. The state space model should describe the physical dynamic
system and the states must represent the internal behaviour of system by model-
ing an efficient relationship from inputs to actions. In particular, the description
of the state space in the Ms. Pac-Man domain should incorporate useful infor-
mation about his position, the food (dots, scared ghosts) as well as the ghosts.
An ideal state space representation for Ms. Pac-Man could incorporate all these
information that included in a game snapshot, such as:

– the relative position of Ms. Pac-Man in the maze,
– the situation about the food (dots, power pills) around the agent,
– the condition of nearest ghosts.

Although the state space representation constitutes an integral part of the
agent, only little effort has been paid in seeking a reasonable and informative
state structure. As indicated in [6], a full description of the state would include
(a) whether the dots have been eaten, (b) the position and direction of Ms. Pac-
Man, (c) the position and direction of the four ghosts, (d) whether the ghosts
are edible (blue), and if so, for how long they remain in this situation. Despite
its benefits, the adoption of such a detailed state space representation can bring
several undesirable effects (e.g. high computational complexity, low convergence
rate, resource demanding, e.t.c), that makes modeling of them to be a difficult
task.

According to the above discussion, in our study we have chosen carefully
an abstract space description that simultaneously incorporate all the necessary

information for the construction of a competitive agent. More specifically, in our
approach the state space is structured as a 10-dimensional feature vector, s =
(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10) with discrete values. Its detailed description is
given below:

– The first four (4) features (s1, . . . , s4) are binary and used to indicate the
existence (1) or not (0) of the wall in the Ms. Pac-Man’s four wind directions
(north, west, south, east), respectively. Some characteristic examples are
illustrated in Fig. 2; state vector (s1 = 0, s2 = 1, s3 = 0, s4 = 1) indicates
that the Pac-Man is found in a corridor with horizontal walls (Fig. 2(a)),
while state values (s1 = 1, s2 = 0, s3 = 1, s4 = 0) means that Ms. Pac-Man
is located between a west and east wall (Fig. 2(b)).

– The fifth feature s5 suggests the direction of the nearest target where it is
preferable for the Ms. Pac-Man to move. It takes four (4) values (from 0 to
3) that correspond to north, west, south or east direction, respectively. The
desired target depends on the Ms. Pac-Man’s position in terms of the four
ghosts. In particular, when the Ms. Pac-Man is going to be trapped by the
ghosts (i.e. at least one ghost with distance less than eight (8) steps is moving
against Ms. Pac-Man), then the direction to the closest safer exit (escape
direction) must be chosen (Fig.2(d)). In all other cases this feature takes the
direction to the closest dot or frightened ghost. Roughly speaking, priority
is given to neighborhood food: If a edible (blue-colored) ghost exists within
a maximum distance of five (5) steps, then the ghost’s direction is selected
(Fig.2(a)). On the other hand, this feature takes the direction that leads
to the nearest dot (Fig.2(c,f)). Note here that for calculating the distance
as well as the direction between Ms. Pac-Man and target, we have used the
known A∗ search algorithm [15] for finding the shortest path.

– The next four features (s6, . . . , s9) are binary and specify the situation of any
direction (north, west, south, east) in terms of a direct ghost threat. When
a ghost with distance less that eight steps (8) is moving towards pac-man
from a specific direction, then the corresponding direction takes the value
of 1. An example given in Fig.2(d) where the Ms. Pac-Man is approached
threateningly by two ghosts. More specifically, the first ghost approaches the
agent from the east (s7 = 1) and the other from the south direction (s8 = 1).

– The last feature specifies if the pac-man is trapped (1) or not (0). We assume
that the Ms. Pac-Man is trapped if there doesn’t exist any possible escape
direction (Fig.2(e)). In all other cases the Ms. Pac-Man is considered to be
free (Fig.2(a, b, c, d, f)). This specific feature is very important since it
informs the agent whether or not it can (temporarily) move in the maze
freely.

Table 1 summarizes the proposed state space. Obviously, its size is quite
small containing only 4 ∗ 29 = 2048 states. This fact allows the construction
of a computationally efficient RL agent without the need of any approximation
scheme. Last but not least, the adopted reasonable state space combined with
the small action space speed up the learning process and enables the agent to
discover optimal policy solutions with sufficient generalization capabilities.

(a) s = (0, 1, 0, 1, 0, 0, 0, 0, 0, 0) (b) s = (1, 0, 1, 0, 1, 0, 0, 0, 1, 0)

(c) s = (0, 1, 0, 1, 2, 0, 0, 0, 0, 0) (d) s = (1, 0, 0, 0, 3, 0, 1, 1, 0, 0)

(e) s = (1, 0, 1, 0, 3, 0, 1, 0, 1, 1) (f) s = (1, 0, 1, 0, 1, 0, 0, 0, 0, 0)

Fig. 2. Representative game situations along with their state description

Feature Range Source

[s1 s2 s3 s4] {0, 1} Ms. Pac-Man view

s5 {0, 1, 2, 3} target direction

[s6 s7 s8 s9] {0, 1} ghost threat direction

s10 {0, 1} trapped situation

Table 1. A summary of the proposed state space

5 Experimental results

A number of experiments has been made in order to evaluate the performance
of the proposed methodology in the Ms. Pac-Man domain. All experiments were
conducted by using the MASON multiagent simulation package [16] which pro-
vides a faithful version of the original game. Due to the low complexity of the
proposed methodology and its limited requirements on memory and computa-
tional resources, the experiments took place on a conventional PC (Intel Core 2
Quad (2.66GHz) CPU with 2GiB RAM).

We used three mazes of the original Ms. Pac-Man game illustrated in Figs.
1 and 3. The first maze (Fig. 1) was used during the learning phase for training
the RL agent, while the other two mazes (Fig. 3) were applied for testing. In all
experiments we have set the discount factor (γ) equal to 0.99 and the learning
rate (α) equal to 0.01. The selected reward function is given at Table.2. It must
be noted that our method did not show any significant sensitivity to the above

Light blue maze Orange maze

(a) (b)

Fig. 3. Two mazes used for evaluating the proposed RL agent

reward values; however a careful selection is necessary to meet the requirements
of the physical problem. In addition, we assume that an episode is completed
either when all the dots are collected (win) or the Ms. Pac-Man is collided
with a non-scared ghost. Finally, the performance of the proposed approach was
evaluated in terms of four distinct metrics:

– Average percentage of successfully level completion
– Average number of wins
– Average number of steps per episode
– Average score attained per episode

The learning process follows a two-stage strategy. At the first phase, the agent
is trained without the presence of ghosts. In this case the agent’s goal is to eat
all the dots and terminates the level with the minimum number of steps. During
the second phase the agent is initialized with the policy discovered previously
and the ghosts are entered into the same maze. Likewise, the agent’s target is to
eat all the dots, but now with the challenge of the ‘non-scared ghosts avoidance’.

Figure 4 illustrates the depicted learning curve during the first phase, i.e.
mean number of steps (after 20 different runs) that the agent needs to finish
the episode by eating all the dots of the maze (Fig. 1). In order to study the
effectiveness of the eligibility trace (Eqs. 7, 8) to the RL agent, a series of ini-
tial experiments were made with three different values (0, 0.2, 0.8) of the decay

Event Reward Description

Step −0.5 Ms. Pac-Man performed a move in the empty space

Lose −35 Ms. Pac-Man was eaten by a non-scared ghost

Wall −100 Ms. Pac-Man hit the wall

Ghost +1.2 Ms. Pac-Man ate a scared ghost

Pill +1.2 Ms. Pac-Man ate a pill

Table 2. The reward function for different game events

100 101 102

300

350

400

Episodes

#
S
te

p
s

λ = 0

λ = 0.2

λ = 0.8

Fig. 4. Learning progress of the agent at the pink maze without ghosts

parameter λ. According to the results, the value of λ = 0.8 had shown the best
performance, since it allows reaching optimal policy solution very quickly (260
steps in less than 100 episodes). We have adopted this value in the rest exper-
iments. Note here that in all three cases the discovered policy was almost the
same. Another useful remark is that the received policy is perfect, i.e. eating all
220 dots of the maze in only 260 steps (only 15% moves in positions with no
dots).

The learning performance of the second phase is illustrated in Fig. 5 in
terms of the (a) percentage of level completion and (b) number of wins (suc-
cessful completion) in the last 100 episodes. As shown the method converges
quite rapidly at an optimal policy after only 800 episodes. The Ms. Pac-Man
agent manages to handle trapped situations and completes successfully the level
at a high-percentage. We believe that the 40% of the level completion suggests
a satisfactory playing of the pacman game.

In order to measure the generalization capability of the proposed mechanism,
we have tested the policy that was discovered during the learning phase into two
unknown mazes (Fig. 3). Table 3 lists the performance of the fixed policy in
three mazes, where the statistics (mean value and std) of the evaluation metrics

0 500 1,000 1,500 2,000
0.2

0.4

0.6

0.8

1

Episodes

%
o
f

L
ev

el
C

o
m

p
le

ti
o
n

0 500 1,000 1,500 2,000
0

0.2

0.4

Episodes

%
o
f

‘w
in

s’

(a) (b)

Fig. 5. Learning progress of the agent at the pink maze with ghosts

Maze Level completion Wins # Steps Score

Pink maze (Fig. 1) 80% (±24) 40% 348.7 (±153) 2292.3 (±977)

Light blue maze (Fig. 3(a)) 70% (±24) 33% 319.4 (±143) 2538.4 (±1045)

Orange maze (Fig. 3(b) 80% (±20) 25% 360.8 (±155) 2515.7 (±1011)

Table 3. Testing performance

Mazes Average Scores Max Score

Pink maze (Fig. 1) 9665 20860

Light blue maze (Fig. 3(a)) 12753 38840

Orange maze (Fig. 3(b) 11587 27620

Table 4. Ms. Pac-Man game score

were calculated after running 100 episodes. That is interested to note here is that
the agent had shown a remarkable behavior stability to both unknown mazes
providing clearly significant generalization abilities. Finally, the obtained policy
was tested by playing 50 consecutive games (starting with 3 lives and adding
a live at every 10000 points). Table 4 summarizes the depicted results where
we have calculated the mean score together with the maximum score found in
all three tested mazes. These particular results verify our previous observations
on the generalization ability of the proposed agent that is managed to build a
generic optimal policy allowing Ms. Pac-Man to navigate satisfactory at every
maze.

6 Conclusions and future directions

In this work we have presented a reinforcement learning agent that learns to
play the famous arcade game Ms. Pac-Man. An abstract but informative state
space representation has been introduced that allows flexible operation definition
possibilities through the reinforcement learning framework. Initial experiments
demonstrate the ability and the robustness of the agent to reach optimal solu-
tions in an efficient and rapid way.

There are many potential directions for future work. For example, in our ap-
proach the power-bills are not included in the state structure. Intuitively think-
ing, moving towards the power-bills can be seen gainful since it can increase the
pacman’s life as well as the score. However, there is a trade-off between search-
ing (greedily for food) and defensive (avoiding the ghosts) abilities that must be
taken into account. Another alternative is to investigate bootstrapping mecha-
nisms, by restarting the learning process with previously learned policies, as well
as to combine different policies that are trained simultaneously so as to achieve
improved performance, especially in critical situations of the domain. Finally,
we hope that this study will provide a foundation for additional research work
in other similar game domains like Ms. Pac-Man.

References

1. L. Galway, D. Charles, and M. Black. Machine learning in digital games: A survey.
Artificial Intelligence Review, 29:123–161, 2008.

2. R. Sutton. Learning to predict by the method of temporal differences. Machine
Learning, 3(1):9–44, 1988.

3. L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning: A survey.
Journal of Artificial Inteligence Research, 4:237–285, 1996.

4. R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press
Cambridge, USA, 1998.

5. I. Szita. Reinforcement learning in games. In Reinforcement Learning, pages 539–
577, 2012.

6. I. Szita and A. Lorincz. Learning to play using low-complexity rule-based policies:
Illustrations through ms. pac-man. Journal of Artificial Intelligence Research,
30:659–684, 2007.

7. S. M. Lucas. Evolving a neural network location evaluator to play ms. pac-man.
In Proc. of IEEE Symposium on Computational Intelligence and Games (CIG05),
pages 203–210, 2005.

8. L. Bom, R. Henken, and M.A. Wiering. Reinforcement learning to train ms. pac-
man using higher-order action-relative inputs. In Proc. of IEEE Intern. Symposium
on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pages
156–163, 2013.

9. A. M. Alhejali and S. M. Lucas. Evolving diverse ms. pac-man playing agents using
genetic programming. In Proc. of IEEE Symposium on Computational Intelligence
and Games (CIG10), pages 53–60, 2010.

10. S. Samothrakis, D. Robles, and S. Lucas. Fast approximate max-n monte-carlo
tree search for ms. pac-man. IEEE Trans. on Computational Intelligence and AI
in Games, 3(2):142–154, 2011.

11. K. Q. Nguyen and R. Thawonmas. Monte carlo tree search for collaboration control
of ghosts in ms. pac-man. IEEE Trans. on Computational Intelligence and AI in
Games, 5(1):57–68, 2013.

12. L. Torrey and M. Taylor. Teaching on a budget: Agents advising agents in rein-
forcement learning. In Intern. Conferecene on Autonomous Agents and Multi-agent
Systems (AAMAS), pages 1053–1060, 2013.

13. M. L. Puterman. Markov Decision Processes : Discrete Stochastic Dynamic Pro-
gramming. Wiley, 2005.

14. S. Singh, R. S. Sutton, and P. Kaelbling. Reinforcement learning with replacing
eligibility traces. pages 123–158, 1996.

15. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems, Science, and
Cybernetics, SSC-4(2):100–107, 1968.

16. Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan.
Mason: A multiagent simulation environment. Simulation, 81(7):517–527, 2005.

