
An Online Kernel-Based Clustering Approach

for Value Function Approximation

Nikolaos Tziortziotis and Konstantinos Blekas

Department of Computer Science, University of Ioannina
P.O. Box 1186, Ioannina 45110 - Greece

{ntziorzi,kblekas}@cs.uoi.gr

Abstract. Value function approximation is a critical task in solving
Markov decision processes and accurately modeling reinforcement learn-
ing agents. A significant issue is how to construct efficient feature spaces
from samples collected by the environment in order to obtain an optimal
policy. The particular study addresses this challenge by proposing an
on-line kernel-based clustering approach for building appropriate basis
functions during the learning process. The method uses a kernel function
capable of handling pairs of state-action as sequentially generated by the
agent. At each time step, the procedure either adds a new cluster, or ad-
justs the winning cluster’s parameters. By considering the value function
as a linear combination of the constructed basis functions, the weights
are optimized in a temporal-difference framework in order to minimize
the Bellman approximation error. The proposed method is evaluated in
numerous known simulated environments.

1 Introduction

The objective of Reinforcement Learning (RL) [1,2] is to control an autonomous
agent in usually unknown environments. The agent interacts with the environ-
ment which is typically modelled as a Markov Decision Process (MDP), and at
each time step receives a scalar reward signal that evaluates the quality of the
selected transitions. The decision making procedure is designed so as to choose
actions with the optimum expected returns. The quality of a policy is quanti-
fied by the so-called value function which associates to every state the expected
discounted return which is received starting from the particular state and all de-
cisions are made following this policy. However, in cases with large or continuous
state spaces the value function cannot be calculated explicitly. In such domains
a common strategy is to employ function approximation, by representing the
value function as a linear combination of some predefined set of basis functions.

The Temporal Difference (TD) family of algorithms [3] provide a nice frame-
work for policy evaluation. The parameters of the value function are usually
learned from data, as in the case of typical TD and the Least-Squares TD (LSTD)
methods [4, 5]. Also, kernelized reinforcement learning methods have been paid
a lot of attention by employing kernel techniques to standard RL methods [6]
and Gaussian Processes for approximating the value function [7, 8, 9].

I. Maglogiannis, V. Plagianakos, and I. Vlahavas (Eds.): SETN 2012, LNAI 7297, pp. 182–189, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Online Kernel-Based Clustering Approach 183

However, in most cases the basis functions used for estimating the value func-
tion remain fixed during the learning process, as for example in [10] where a
predefined number of fixed Fourier basis functions are used for value approxi-
mation. Alternatively, a steady number of basis functions are tuned in a batch
manner, as in the cases presented in [11, 12] that build a graph over the state
space after selecting a large number of input data and then generates the k eigen-
vectors of the graph Laplacian matrix. In another work [13], a set of k RBF basis
function are adjusted directly over the Bellman’s equation of the value function.
Finally, in [14] the probability density function and the reward model, which are
assumed to be known, are used for creating basis function from Krylov space
vectors (powers of the transition matrix used to systems of linear equations).

In this paper, a novel framework for value function approximation is proposed
which addresses the issue of the on-line construction of basis functions. An on-
line kernel-based clustering approach is used for separating the input space that
contains pairs of state-action by appropriate considered a kernel function that
encapsulates both kind of information. The clustering procedure selects itera-
tively a winning prototype and applies a learning procedure for the adaptation
of its parameters based on the stochastic gradient descent. Additionally, it pro-
vides a mechanism for automatically adding clusters. The parameters of the
clusters can be further used for building a dictionary of basis function which can
be employed on the policy evaluation procedure for the adaptation of weights
of the value function linear model. These two stages act simultaneously during
the learning process aiming at the estimation of an optimal policy. The pro-
posed method has been tested to several known simulated environments where
we have made comparisons with a recent value function approximation approach
that uses a fixed number of predefined Fourier basis functions.

The remaining of this paper is organized as follows. In Section 2, we briefly
present some preliminaries and review the basic TD scheme for value function
approximation. Section 3 contains the main contribution of this paper where we
describe an efficient on-line kernel-based clustering algorithm for constructing
basis functions and how it can be embedded to the basic TD learning scheme.
In Section 4, experimental results are provided to illustrate the effectiveness of
the proposed method. Finally, in Section 5 we give conclusions and suggestions
for future research.

2 Background and Preliminaries

A Markov Decision Process (MDP) is a tuple (S,A, P,R, γ), where S is the state
space; A is the action space; P : S × A × S → [0, 1] is a Markovian transition
model that specifies the probability P (s, a, s′) of transition to a state s′ when
taken an action a in state s; R : S → R is the reward function; and γ ∈ (0, 1)
is the discount factor for future rewards. A stationary policy π : S → A for a
MDP is a mapping from states to actions and denotes a mechanism for choosing
actions. An episode is a sequence of state transitions: < s1, a1, r1, s2, . . . , >. An
agent repeatedly chooses actions until the current episode terminates, and then
a new episode starts over again.

184 N. Tziortziotis and K. Blekas

The notion of value function is of central interest in reinforcement learning
tasks. Given a policy π, the value V π(s) of a state s is defined as the expected
discounted return obtained when starting from this state and all decisions are
made according to policy π until the current episode terminates:

V π(s) = Eπ

[∞∑
t=0

γtR(st)|s0 = s

]
. (1)

As it is well-known the value function satisfy the following recursive equation:

V π(s) = Eπ [R(st) + γV π(st+1)|st = s] . (2)

which expresses a relationship between the values of successive states in the same
episode and is known as Bellman’s equation. In the same way, the state-action
value function (Q-function) Q(s, a) denotes the expected cumulative reward as
received by taking action a in state s, and thereafter following the policy π:

Qπ(s, a) = Eπ

[∞∑
t=0

γtR(st)|s0 = s, a0 = a

]
. (3)

In this study we will mainly focus on Q functions dealing with state-action pairs.
The objective of RL problems is to estimate an optimal policy π∗ which is

equivalent to finding the optimal state-action value function Q∗:

π∗(s) = argmax
a

Q∗(s, a). (4)

A common choice for representing the value function is through a linear function
approximation using a set of k basis functions {φj(s, a)}kj=1:

Q(s, a;w) = φ(s, a)�w =

k∑
j=1

φj(s, a)wj , (5)

where w = (w1, . . . , wk) is a vector of weights which are unknown and must be
estimated so as to minimize the approximation error. The selection of the basis
functions is very important and must be chosen in such a way so as to encode
properties of the state and action relevant to the proper determination of the
Q values. As we will see later, our method provides an adaptive incremental
procedure for discovering appropriate basis functions through on-line clustering.

One of the most popular on-policy TD algorithms is the SARSA [1] which
is based on a bootstrapping technique. Assuming that an action at is taken and
the agent moves from belief state st to a new state st+1 receiving a reward rt, a
new action at+1 is chosen according to the current policy. Then, the predicted Q
value of this new state-action pair and the received reward are used to calculate
an improved estimate for the Q value of the previous state-action pair:

δt = rt+γQ(st+1, at+1)−Q(st, at) = rt+γ(φ(st+1, at+1)−φ(st, at))
�wt , (6)

An Online Kernel-Based Clustering Approach 185

which is the one-step temporal-difference (TD) error. This is used for adjusting
the weights of the policy by performing a stochastic gradient descent scheme:

wt+1 = wt + αtδt∇wQ(st, at) , (7)

where αt is the learning rate which set to some small value (e.g. 0.05) and can be
decreased over time. Additionally, is useful to combine SARSA with the eligibility
traces, SARSA(λ), allowing the update rule to propagate the TD error backward
over the current trajectory of states. This is achieved by modifying the above
equation (Eq. 7) as wt+1 = wt + αtδtet, where et = γλet−1 +∇wQ(st, at) is a
vector of eligibility traces and λ ∈ [0, 1] is the trace-decay parameter.

3 The Proposed Method

The proposed methodology is based on a policy evaluation scheme that incre-
mentally builds a dictionary of basis functions for modelling the value function.
This is accomplished by using an on-line clustering scheme that decomposes
appropriately an efficient kernel space of the inputs so as to achieve optimal ex-
ploration of the value function. To what follows and for simplicity we will assume
that the input samples that are generated by the agent are state-action pairs,
denoted as xi = (si, ai). We will also consider that the action space is discrete
of size M .

Assuming a given data set of N samples {x1, x2, . . . , xN} the task of clus-
tering aims at partitioning the input set into k disjoint clusters, c1, c2, . . . , ck
containing samples with common properties. The kernel k-means [15,16], which
is an extension of the standard k-means algorithm, is based on transforming
data to a feature space through appropriate kernel functions and minimizing the
clustering error in this space. In particular, the objective function is given by

Jk =

N∑
i

k

min
j=1

{−K(xi,mj)} (8)

where mj are some representatives for each cluster. In our study we have con-
sidered that every cluster cj is characterized by the following features:

– µj : its centroid in state space S,
– Σj : diagonal covariance matrix over the state space,
– pj = (pj1, . . . , pjM): the density function over the M discrete actions, giving

the probabilities of each action (
∑M

m=1 pjm = 1).

These features constitute the representative vectormj = (µj , Σj ,pj) of a cluster.
The kernel function K(xi,mj) for an arbitrary sample, xi = (si, ai), with the

cj cluster is derived as a product of two kernels, one for each space:

K(xi,mj) = Ks(si,µj , Σj)Ka(ai,pj) . (9)

186 N. Tziortziotis and K. Blekas

For the state space a Gaussian kernel have been used:

Ks(si,µj , Σj) = exp(−1

2
(si − µj)

�Σ−1
j (si − µj)) , (10)

while for the action space the kernel function is derived from the probability for
this action of the cluster action distribution, i.e.

Ka(ai,pj) = pj,ai . (11)

Note that in fact the action kernel is the cosine similarity between the probability
vector for actions and an indicator vector of the input action ai with zeros in all
positions except in the position of ai where has one.

In our case, the samples are non-stationary and are generated sequentially (i.e.
time-varying). On-line clustering provides a framework for constructing recursive
learning rules taking into account model evolutions over time. The proposed on-
line kernel-based clustering method is performed iteratively as follows: For a
random taken data point xi = (si, ai), the method first selects the winning
cluster j∗ according to the current kernel values, i.e.

j∗ = arg
k

max
j=1

K(xi,mj) . (12)

If the maximum kernel value is less than a predefined threshold Kmin, then a
new cluster is created (k = k + 1) by initializing it properly. This is done by
setting the state si as the cluster centroid, µk = si, while for the action density
probability pk we give a large value for the action probability of action ai (e.g.
pk,ai = 0.8) and normalize the others so as to hold the constraint,

∑
m pkm = 1.

The next step is the adaptation phase where the prototype mj∗ of the winning
cluster must be adjusted. This is accomplished by using the next update rules:

µ
(new)
j∗ = µj∗ + ηK(xi,mj)(si − µj∗) , (13)

Σ
(new)
j∗ = Σj∗ + ηK(xi,mj)diag((si − µ

(new)
j∗)(si − µ

(new)
j∗)�) , (14)

n
(new)
jm =

{
njm + 1, if m = ai

njm, otherwise
, (15)

where the term η is the learning rate taking a small value (e.g. 0.05), which
can be reduced over time. It must be noted that the density of actions, pjm, is
guided by the frequency distribution njm and thus it is more convenient to keep
records of frequencies. Then, the probabilities pjm are calculated by the relative
frequencies. From the above rule, it is easily to show that the probability of
action ai will be increased by (νj − njm)/(νj(νj + 1)), while the probability of

the other M − 1 actions will be decreased by njm/(νj(νj +1)) (νj =
∑M

m=1 njm

is the total frequency of cluster cj).
The method starts with a single cluster k = 1, where it is initialized as de-

scribed previously by the first data point collected by the agent x1 = (s1, a1).
At every time step the policy evaluation stage uses the k basis functions as

An Online Kernel-Based Clustering Approach 187

(currently) taken by the clustering procedure. Therefore, the on-line clustering
approach provides not only the shape, but also the proper number of basis func-
tions for estimating the value function. At a second level, the linear weights
are re-estimated following the temporal difference (TD) learning process, as de-
scribed previously. The above procedure is repeated until convergence, or the
number of episodes reaches a prespecified value. The overall scheme of the pro-
posed methodology is given in Algorithm 1.

Algorithm 1. The proposed method for value function approximation

1: Start with k = 1 and use first point xi = (s1, a1) for initializing it. Set a random
value to weight w1. t = 0.

2: while convergence or maximum number of episodes not found do
3: Suppose previous input xi = (si, ai). Observe new state si+1.
4: Select action according to the current policy ai+1 = argmaxM

l=1 Q(si+1, l).
5: Find the winning cluster j∗ = argmaxk

j=1 K(xi+1, mj).
6: if K(xi+1,mj∗) < Kmin then
7: Create a new cluster (k = k + 1) and initialize its prototype mk with xi+1.
8: Create a new weight wk of linear model initialized randomly. wt = wt ∪ wk.
9: else
10: Update the prototype mj∗ of the winning cluster using Eqs. 13-15.
11: end if
12: Obtain the new k basis functions as: φj(s, a) = K((s, a),mj) ∀ j = 1, . . . , k.
13: Update the weights wt of Q function according to Eqs. 6, 7.
14: t = t+ 1
15: end while

4 Experimental Results

A number of experiments have been conducted using three well-known continu-
ous benchmarks in order to assess the performance of the proposed methodology.
These environments can be found on the RL-Glue software which are freely avail-
able at http://glue.rl-community.org/. Comparison has been made with a recent
method presented in [10] that uses fixed Fourier basis functions of order 3, de-
noted as ‘O(3)Fourier’ 1. In all experiments we have set the discount factor γ
equal to 1, the parameter λ equal to 0.9, and the threshold for adding a new
cluster as Kmin = 0.5.

The first benchmark is the famous cart pole where the objective is to keep
the pole balanced and the cart within its limits by applying a fixed magnitude
force either to the left, or to the right (two actions). There are four continuous
variables: the horizontal position and the velocity of the cart, as well as the angle
and the angular velocity of the pole, while the reward received is +1.

1 Open source code for this method can be found in the RL-Glue library.

188 N. Tziortziotis and K. Blekas

The second environment is the mountain car, where the objective is to drive
an under-powered car up a steep mountain road from a valley to the right tophill
using three actions. The state consists of two continuous variables: the position
and the current velocity of the car, while at each time step a negative reward
r = −1 is received.

In the last domain the agent controls a simulated acrobot attached by the
hands to a fixed location. The goal is to apply torque to the hips of the robot
and swing the feet above a pre-specified threshold. Each state characterized by
four continuous variables: the angle and the angular velocity of the two joints.
The agent can select between three actions: positive torque, negative torque and
zero torque on the second joint. A negative reward (r = −1) is received at each
time step except for the case where the goal is reached (r = 0). An episode is
terminated only when the goal is reached.

0 50 100 150 200

0

200

400

600

800

1000

Episode

S
te

ps

Cart Pole

Our Method

O(3)Fourier

0 20 40 60 80 100

100

500

1,000

1,500

Episodes

S
te

ps

Mountain Car

O(3) Fourier

Our Method

0 20 40 60 80 100
0

500

1000

1500

Episodes

S
te

ps

Acrobot

Our Method
O(3) Fourier

Fig. 1. Comparative results in three simulated environments

The depicted results on these three benchmarks are illustrated in Fig. 1, where
each curve gives the number of steps that the agent makes per episode. Note
these are the mean curves obtained by 10 runs per problem. As it is obvious our
method has the tendency to converge to the optimum solution faster than the
‘O(3)Fourier’ method that employs (256) fixed Fourier basis function. It is inter-
esting to note that in the case of the ‘mountain car’ and ‘acrobot’ environments
the proposed method managed to discover better policies.

5 Conclusions and Future Directions

In this study we have presented a novel framework for learning representation
of reinforcement learning agents and control in Markov decision processes. An
on-line kernel-based clustering approach is used as a mechanism for creating
and adjusting clusters over the input state-action pairs generated by the agent.
At each step, the current cluster parameters are used for building an efficient
kernel space that provides with the appropriate basis functions to the temporal-
difference learning framework. Thus, the linear weights used for value function
approximation are sequentially adjusted in a more optimal way. The initial re-
sults of our method obtained from the comparative study are very promising
and promote directions for further research. Since the proposed scheme of con-
structing basis functions is general, it allows the possibility to study its impact

An Online Kernel-Based Clustering Approach 189

to other temporal difference algorithms for learning the weights of the value
function, such as the Least-Squares Temporal Difference (LSTD) or Gaussian
Process Temporal Difference (GPTD). Also, alternative schemes of on-line clus-
tering can be examined, as well as to make an extensive comparison with other
value function approximation approaches.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

2. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey.
Journal of Artificial Inteligence Research 4, 237–285 (1996)

3. Sutton, R.: Learning to predict by the method of temporal differences. Machine
Learning 3(1), 9–44 (1988)

4. Boyan, J.A.: Technical update: Least-squares temporal difference learning. Machine
Learning, 233–246 (2002)

5. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine
Learning Research 4, 1107–1149 (2003)

6. Xu, X., Hu, D., Lu, X.: Kernel-based least squares policy iteration for reinforcement
learning. IEEE Transactions on Neural Networks 18(4), 973–992 (2007)

7. Rasmussen, C.E., Kuss, M.: Gaussian processes in reinforcement learning. In: Ad-
vances in Neural Information Processing Systems 16, pp. 751–759 (2004)

8. Engel, Y., Mannor, S., Meir, R.: Reinforcement learning with gaussian process. In:
International Conference on Machine Learning, pp. 201–208 (2005)

9. Farahmand, A.M., Ghavamzadeh, M., Szepesvári, C., Mannor, S.: Regularized pol-
icy iteration. In: NIPS, pp. 441–448 (2008)

10. Konidaris, G.D., Osentoski, S., Thomas, P.S.: Value function approximation in
reinforcement learning using the fourier basis. In: AAAI Conf. on Artificial Intel-
ligence, pp. 380–385 (2011)

11. Mahadevan, S.: Samuel meets amarel: Automating value function approximation
using global state space analysis. In: AAAI (2005)

12. Mahadevan, S., Maggione, M.: Proto-value Functions: A Laplacian Framework for
Learning Repersentation and Control in Markov Decision Porocesses. Journal of
Machine Learning Research 8, 2169–2231 (2007)

13. Menache, I., Mannor, S., Shimkin, N.: Basis Function Adaptation in Temporal
Difference Reinforcement Learning. Annals of Operations Research 134, 215–238
(2005)

14. Petrik, M.: An analysis of laplacian methods for value function approximation in
mdps. In: International Joint Conference on Artificial Intelligence, pp. 2574–2579
(2007)

15. Scholkopf, B., Smola, A.J., Muller, K.-R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)

16. Tzortzis, G., Likas, A.: The Global Kernel k-Means Clustering Algorithm. IEEE
Trans. on Neural Networks 20(7), 1181–1194 (2009)

	An Online Kernel-Based Clustering Approachfor Value Function Approximation
	Introduction
	Background and Preliminaries
	The Proposed Method
	Experimental Results
	Conclusions and Future Directions
	References

