Admissible tools in the kitchen of intuitionistic logic

Matteo Manighetti ¹
Andrea Condoluci ²

Classical Logic and Computation, July 7, 2018

¹INRIA Saclay & LIX, École Polytechnique
²DISI, Università di Bologna
Intro: Admissibility in propositional intuitionistic logic
Definition (Admissible and derivable rules)
A rule φ/ψ is admissible if whenever $\vdash \varphi$ is provable, then $\vdash \psi$ is provable. It is derivable if $\vdash \varphi \rightarrow \psi$ is provable.

Definition (Structural completeness)
A logic is structurally complete if all admissible rules are derivable.

Note!
Classical logic is structurally complete.

Different from cut/weakening admissibility!
Definition (Admissible and derivable rules)
A rule φ/ψ is admissible if whenever $\vdash \varphi$ is provable, then $\vdash \psi$ is provable. It is derivable if $\vdash \varphi \rightarrow \psi$ is provable.

Definition (Structural completeness)
A logic is structurally complete if all admissible rules are derivable.

Theorem (Harrop 1960)
Intuitionistic propositional logic is not structurally complete.

Proof.
Counterexample: $\neg \alpha \rightarrow (\gamma_1 \lor \gamma_2)/(\neg \alpha \rightarrow \gamma_1) \lor (\neg \alpha \rightarrow \gamma_2)$ is admissible but not derivable.

We are interested in: admissible but non-derivable “principles”
A bit of history

- Friedman (1975) posed the question of whether the admissible rules of IPC are countable
- Rybakov (1984) answered positively; De Jongh and Visser conjectured a *basis* for them
- Iemhoff 2001 finally proved the conjecture with semantic methods
- Less known: Rozière 1993 independently obtained the same result with proof theoretic techniques
Visser’s basis

Theorem (Rozière 1993, Iemhoff 2001)

All admissible and non derivable rules are obtained by the usual intuitionistic rules and the following rules

\[
V_n : \quad (\alpha_i \rightarrow \beta_i)_{i=1...n} \rightarrow \gamma \lor \delta /
\]

\[
\bigvee_{j=1}^{n} ((\alpha_i \rightarrow \beta_i)_{i=1...n} \rightarrow \alpha_j) \\
\lor \\
((\alpha_i \rightarrow \beta_i)_{i=1...n} \rightarrow \gamma) \\
\lor \\
((\alpha_i \rightarrow \beta_i)_{i=1...n} \rightarrow \delta)
\]
Visser’s basis is important not only for IPC:

Theorem (Ilemhoff 2005)

If the rules of Visser’s basis are admissible in a logic, they form a basis for the admissible rules of that logic

This has been applied to modal logics: Gödel Logic, Gödel-Dummet Logic...
A Curry-Howard system for admissible rules
Idea: explain Visser’s basis with Natural Deduction + Curry-Howard

Advantages:

- Axioms can be translated to rules right away
- Simple way to assign lambda terms
- Focus on reduction rules

The rule should have the shape of a disjunction elimination
Natural deduction rules for V_n

Add to a Natural Deduction system a rule for each of the V_n:

\[
\begin{align*}
 &\emptyset, (\alpha_i \to \beta_i)i \vdash \gamma_1 \lor \gamma_2 \\
 &\Gamma, (\alpha_i \to \beta_i)i \vdash \gamma_1 \lor \gamma_2 \\
 &\quad \quad [\Gamma, (\alpha_i \to \beta_i)i \to \alpha_j \vdash \psi]_{j=1\ldots n} \\
 &\Gamma \vdash \psi
\end{align*}
\]

Idea: a disjunction elimination, parametrized over n implications

Note The context of the main premise is empty. Otherwise we would be able to prove V_n!
Usual terms for **IPC**, plus the new one for the V-rules

\[
t, u, v ::= x \mid u \, v \mid \lambda x. \, t \mid \text{efq} \, t
\mid \langle u, v \rangle \mid \text{proj}_i \, t \mid \text{inj}_i \, t
\mid \text{case}[t \parallel y. \, u \mid y. \, v]
\mid \nu_n[\vec{x}. \, t \parallel y. \, u_1 \mid y. \, u_2 \parallel z. \, \vec{v}] \text{ (Visser)}
\]

\[
\begin{align*}
\Gamma, y : (\alpha_i \rightarrow \beta_i)^i & \rightarrow \gamma_1 \vdash u_1 : \psi \\
\Gamma, y : (\alpha_i \rightarrow \beta_i)^i & \rightarrow \gamma_2 \vdash u_2 : \psi \\
\vec{x} : (\alpha_i \rightarrow \beta_i)^i & \vdash t : \gamma_1 \lor \gamma_2 \\
[\Gamma, z : (\alpha_i \rightarrow \beta_i)^i \rightarrow \alpha_j \vdash v_j : \psi]^{j=1 \ldots n} & \\
\nu_n[\vec{x}. \, t \parallel y. \, u_1 \mid y. \, u_2 \parallel z. \, \vec{v}] : \psi
\end{align*}
\]
Reduction rules

Evaluation contexts for \textbf{IPC}:

\[
W ::= \langle \cdot \rangle | W \ t | t \ W | \text{efq} \ W \\
| \ \text{proj}_i \ W | \text{case}[W \ | \ - | \ -]
\]

Evaluation contexts for V_n: structural closure of the reduction rules

The usual rules for \textbf{IPC}, plus:

- \textit{Visser-inj}: $V_n[\vec{x} \cdot \text{inj}, t \ || \ y \cdot u_1 \ | \ y \cdot u_2 \ || \ z \cdot \vec{v}] \ \mapsto \ u_i\{\lambda \vec{x} \cdot t/y\} \ (i = 1, 2)$
- \textit{Visser-app}: $V_n[\vec{x} \cdot W[x_j t] \ || \ y \cdot u_1 \ | \ y \cdot u_2 \ || \ z \cdot \vec{v}] \ \mapsto \ v_j\{\lambda \vec{x} \cdot t/z\} \ (j = 1 \ldots n)$
The reduction rules tell us:

- One of the disjuncts is proved directly, or
- A proof for an α_j was provided, to be used on a V-hypothesis

This provides a succinct explanation of what admissible rules can do.

The context is empty, so all the hypotheses are Visser-hypotheses, and we can move the terms around.

Subject reduction and termination are easy results!
Logics characterized by admissible principles
By lifting the restriction on the context, we can prove the axioms inside the logic.

We obtain Curry-Howard systems for the intermediate logics characterized by admissible principles.
Harrop’s rule and the Kreisel-Putnam logic

The most famous admissible principle of IPC: Harrop’s rule

\[(\neg \alpha \rightarrow (\gamma_1 \lor \gamma_2)) \rightarrow (\neg \alpha \rightarrow \gamma_1) \lor (\neg \alpha \rightarrow \gamma_2) \]

By adding it to IPC we obtain the Kreisel-Putnam logic KP (trivia: the first non-intuitionistic logic to be shown to have the disjunction property)

This is just a particular case of the rule V1, with \(\bot \) for \(\beta \):

\[\Gamma, (\alpha \rightarrow \bot) \rightarrow \gamma_1 \vdash \psi \]
\[\Gamma, (\alpha \rightarrow \bot) \rightarrow \gamma_2 \vdash \psi \]
\[\Gamma, \alpha \rightarrow \bot \vdash \gamma_1 \lor \gamma_2 \]
\[\Gamma, (\alpha \rightarrow \bot) \rightarrow \alpha \vdash \psi \]

\[\psi \]
The terms for Harrop’s rule are a simplified version of V_1:

\[
\Gamma, x : \neg \alpha \vdash t : \gamma_1 \lor \gamma_2 \\
\Gamma, y : \neg \alpha \rightarrow \gamma_1 \vdash u_1 : \psi \\
\Gamma, y : \neg \alpha \rightarrow \gamma_2 \vdash u_2 : \psi
\]

\[
\Gamma \vdash \text{hop} [x \cdot t \parallel y \cdot u_1 \mid y \cdot u_2] : \psi
\]

In particular, we omit the third disjunct (it is trivial)
Harrop’s rule and the Kreisel-Putnam logic

Similarly, the reduction rules become

- \textit{Harrop-inj}: \textsf{hop}[(x.\text{inj} ; t \parallel y.u_1 \mid y.u_2)] \mapsto u_i\{\lambda \vec{x}. t/y\}
- \textit{Harrop-app}: \textsf{hop}[(x.H[x t] \parallel y.u_1 \mid y.u_2)] \mapsto u_i\{(\lambda x.\text{efq} x t)/y\}

\textbf{Note} The app case looks different: there is no \(v \) term, but we know that any use of Harrop hypotheses must lead to a contradiction; thus conclude on either of \(u_i \).
Lemma (Classification)

Let $\Gamma \vdash t : \tau$ for t in n.f. and t not an exfalso:

- If $\tau = \varphi \rightarrow \psi$, then t is an abstraction or a variable in Γ;
- If $\tau = \varphi \lor \psi$, then t is an injection;
- If $\tau = \varphi \land \psi$, then t is a pair;
- If $\tau = \bot$, then $t = x \, v$ for some v and some $x \in \Gamma$.

Theorem (Disjunction property)

If $\vdash t : \varphi \lor \psi$, then there is t' such that either $\vdash t' : \varphi$ or $\vdash t' : \psi$.
What if we try to add the full V_1 principle?

Theorem (Rozière 1993)
In the logic characterized by the axiom V_1, all V_i are derivable and all admissible rules are derivable

Rozière called this logic AD and showed that it isn’t classical logic. However:

Theorem (Iemhoff 2001)
The only logic with the disjunction property where all V_n are admissible is IPC
Rozière’s logic AD

We can as before provide a term assignment for AD:

\[
\begin{align*}
\Gamma, y : (\alpha \rightarrow \beta) \rightarrow \gamma_1 & \vdash u_1 : \psi \\
\Gamma, y : (\alpha \rightarrow \beta) \rightarrow \gamma_2 & \vdash u_2 : \psi \\
\Gamma, x : \alpha \rightarrow \beta & \vdash t : \gamma_1 \lor \gamma_2 \\
\Gamma, z : (\alpha \rightarrow \beta) \rightarrow \alpha & \vdash v : \psi \\
\Gamma & \vdash V_1 [x.t \parallel y.u_1 \parallel y.u_2 \parallel z.v] : \psi
\end{align*}
\]

Although it doesn’t have the disjunction property, AD seems an interesting and not well studied logic.

Rozière posed the problem of finding a functional interpretation for it; we go in this direction by providing a term assignment to proofs.
Future work
Future work

The logic based on admissible principles way:

- More in-depth study of AD

The admissibility way:

- Port the system for Visser’s rules to other (modal) logics
- Study admissible principles of intuitionistic arithmetic (HA)
- ... and admissible principles of first-order logic
