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Abstract

A popular approach in combinatorial optimization is to model problems as integer lin-
ear programs. Ideally, the relaxed linear program would have only integer solutions, which
happens for instance when the constraint matrix is totally unimodular. Still, sometimes
it is possible to build an integer solution with same cost from the fractional solution. Ex-
amples are two scheduling problems [3, 4] and the single disk prefetching/caching problem
[2]. We show that problems such as the three previously mentioned can be separated into
two subproblems: (1) finding an optimal feasible set of slots, and (2) assigning the jobs
or pages to the slots. It is straigthforward to show that the latter can be solved greedily.
We are able to solve the first with a totally unimodular linear program, which provides
simpler (and sometimes combinatorial) algorithms with better worst case running times.

1 Introduction

We used our specific approach to give rather simple solutions to three different optimization
problems. The first two are scheduling problems : the Tall-Small Jobs Problem [3] and
the Equal Length Jobs Problem [4]. The last one is about Offline prefetching and
caching to minimize stall time[2] . In the Tall-Small Jobs Problem, we have m
machines, n unit length jobs, some of which need to execute on all the machines at the same
time. In the Equal Length Jobs Problem, jobs have a given equal length p ≥ 1 and
each job executes on a single machine. In both problems jobs have given release times and
deadlines in between which they need to execute. The goal is to find a feasible schedule,
and moreover, for the equal length jobs problem, a feasible schedule that minimizes total
completion time of the jobs. The third optimization problem, Offline prefetching and
caching to minimize stall time belongs to a different field: we are given a sequence of
n page requests and a cache of size k. We can evict a page from the cache and fetch a new
page to replace it. This operation cannot be done in parallel and costs F time units. When
a page request is served it costs 1 time unit, unless the page is not yet in the cache, then a
stall time is generated until the corresponding fetch completes. The goal is to decide when
to evict and fetch pages so as to minimize the total stall time.

Though quite different, those three problems were solved in a similar manner. Unlike
previous works where the authors transform the solution of a relaxed integer linear program
into an integer one, we used a new technique which simplifies the linear programs, and allows
us to get directly optimal integer solutions: our approach is based on the notice that only
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the structure of the solution matters in the objective function, jobs and pages don’t appear
namely. Therefore, we completely dissociate the resolution process into two phases. First a
simplified linear program can be used to find an optimal skeleton for the solution, and it is
only later that we need to worry about assigning jobs or pages to this skeleton: for scheduling
problems, the skeleton is a sequence of slots, and the assignment maps jobs to slots; for the the
cache problem, the skeleton is a sequence of intervals and the assignment associates to every
interval a page to evict at the beginning and a page to fetch at the end. Our skeletons are such
that the assignment phase just comes down do running a greedy algorithm. Our contribution
is that this strategy, where you don’t compute the assignment in the linear program, leads to
linear programs with very simple constraint matrices, which not only are totally unimodular,
but are (the transpose of ) directed vertex adjacency matrices. This allowed us to transform
our scheduling problems into the search of shortest path in directed graphs. After comparison
with the former way of doing, it is interesting to notice, and we will show in details how at
first presenting our method, that our linear programs are not completely novel: they are in
fact relaxations of the former ones.

Our important results are in that in two cases we could solve the optimization problems
with a shortest path algorithm. As a result we beat in worst case complexity the best known
algorithm for the tall/small job scheduling problem :O(n3) instead of O(n10). On the other
problems, our linear programs are more simple, which, using linear program theory, gives us
a O(n10) worst case complexity ( instead of O∗(n18) )for the prefetch/caching problem. All
our algorithm are simple and implementations are available in the authors home-pages.

2 Scheduling equal length jobs

We will first introduce our method on a basic scheduling problem. We have n jobs, each of
the same length p. Every job j ∈ [1, n] comes with an interval [rj , Dj ] consisting of a release
time and a strict deadline. The goal is to find a schedule on m parallel machines, such that
each job is assigned to an execution slot consisting of a particular machine and a time interval
[sj , sj + p) ⊆ [rj , Dj ]. In addition, all execution slots assigned to a particular machine must
be disjoint. One possible application could be frequency allocation. A network operator has
a link with m optical fiber strings. Users ask for allocations of a frequency band of fixed
size, inside the large frequency band that the particular user devices can handle. The goal
is to find an assignment which satisfies all users. In addition we want to find the solution
(if it exists) that minimizes the total completion time of the jobs. In the standard Graham
notation, this problem is called P |rj ; pj = p;Dj |

∑
Cj .

Simons [8] give a complicated greedy-backtrack algorithm running in time O(n3 log log n),
and later improved to O(mn2) [9]. Recently Brucker and Kravchenko [4] gave another algo-
rithm for it, using a completely different approach. While their algorithm has worse com-
plexity it is interesting because of a generalization which permits to solve an open problem,
namely minimizing the weighted total completion time, where jobs are given priority weights.

Variants of this problem have been studied extensively. If we allow job lengths 1 or p,
then the problem becomes NP-complete [9]. If however the release times are multiple of p,
the problem can be solved in time O(n log n) [6], and if there are no deadlines, the greedy
algorithm solves the problem. For a single machine, the problem can be solved in time
O(n log n) by a tricky algorithm of Garey, Simons, and Tarjan [7].

A generalization of the feasibility problem is to find a maximal set of jobs, which can all
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be scheduled between their release times and deadlines. This problem is still open. Even
the more general problem, when jobs come with a weight, and the goal is to find a maximal
weighted feasible job set, is not known to be NP-hard.

2.1 Previous work

First we observe that without loss of generality we can restrict ourselves to schedules where
each execution slot starts at some release time plus a multiple of p, simply by shifting each
slot as much to the beginning as possible. Let T = {ri + (a − 1)p : 1 ≤ i, a ≤ n} be this set
of time points. And finally for a fixed schedule, if we number the execution slots from left to
right, we can always reassign the j-th slot to the machine (j mod m) + 1. This way we don’t
need to take care of which machines the slots are assigned to, as long as there are at most
m slots starting in every time interval of size p, which ensures that slots don’t overlap on a
particular machine. The linear program of [4] has a variable xjt for each job j and time t ∈ T ,
with the meaning that xjt = 1 if job j is executed in the slot [t, t + p). Then the program is
to minimize

∑
jt(t + p)xjt subject to

∀j ∈ [1, n] :
∑
t∈T

xjt = 1 (every job completes) (1)

∀j ∈ [1, n],∀t ∈ T \[rj , Dj − p] : xjt = 0 (allowed interval) (2)

∀s ∈ T :
∑

s≤t<s+p

∑
j∈[1,n]

xjt ≤ m (no overlapping) (3)

It is quite clear that there is an integer solution to this linear program if and only if there
is a feasible schedule. While this linear program is not totally unimodular, the authors of [4]
were still able to round the fractional solution into an integer solution of the same cost.

2.2 Relaxing the linear program

The linear program above computes not only the time slots of the schedule, but also the
assignment of jobs to slots. However once we are given the skeleton of a schedule, meaning
a set of time slots, it is always possible to assign the jobs greedily in EDD fashion: assign
to every slot the job with smallest deadline among the available jobs. We release the linear
program from the job assignment, in order to obtain a simpler linear program which only
computes a feasible skeleton.

We proceed in several steps. First we weaken equation (??) into the inequality
∑

t∈T xjt ≥
1. Then combining this new constraint with (??) leads to

∀j ∈ [1, n] :
∑

t∈[rj ,Dj−p]

: xjt ≥ 1. (4)

Now for every pair s, t ∈ T , s ≤ t we sum (4) over all jobs j that have [rj , Dj − p] ⊆ [s, t],
upper-bounding the left hand side we obtain

∀s, t ∈ T , s ≤ t :
∑

s′∈[s,t]

∑
j

xjs′ ≥ |{i : [ri, Di − p] ⊆ [s, t]}|. (5)

The constraints are clearly necessary, and we will show later they are also sufficient to get
the optimal solutions. We then group

∑
j xjt into a single variable: we set yt :=

∑
s≤t

∑
j xjt.
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Now yt represents the total number of slots up to time t. To simplify notations we introduce
an additional time point t0 < min T , and set T ′ = T ∪ {t0}. For any time t > t0, we define
the functions round(t) := max{s ∈ T ′ : s ≤ t} and prec(t) := max{s ∈ T ′ : s < t}.

minimize
∑

t∈T (t + p)(yt − yprec(t))
subject to

yt0 = 0
ymaxT − yt0 ≤ n

∀t ∈ T , s = prec(t) : ys − yt ≤ 0 (order)

∀s ∈ T , t = round(s + p) : yt − ys ≤ m (load)

∀i, j ∈ [1, n], s = prec(ri), t = round(Dj − p), s ≤ t : yt − ys ≥ cij , (inclusion)

where cij := |{k : [rk, Dk] ⊆ [ri, Dj ]}| is the number of jobs which have to be
executed in the interval [ri, Dj ].

The two first inequalities give the conditions on y at origin time and ending time, it could
be shown that they are not in fact necessary, but their presence simplify demonstrations.
The order inequalities ensure that (yt) is a non decreasing increasing sequence. The load
inequalities verify that there are never more than m slots overlapping, and the inclusion
inequalities, we will see it, are here to ensure that there is a feasible mapping from jobs
to slots. The linear program has in every constraint exactly two variables, and with the
respective coefficients +1 and −1. So the dual of the constraint matrix is the incidence matrix
of a directed graph, which means the constraint matrix is totally unimodular. Therefore our
linear program’s constraints are in the from Ay ≤ b with A totally unimodular and b integer.
This means its solutions are all integer.

Let (yt) be an optimal integer solution to this linear program. It indeed defines the
skeletons of a solution: at each time t ∈ T ther will be yt−yprec(t) slots available for scheduling.
Assigning greedily jobs to these slots means scheduling at each time on each existing slot the
job with the smallest deadline among the available jobs, meaning jobs which are not yet
scheduled and which release time, deadline intervals permits to be scheduled in that slot.

Lemma 1 The greedy assignment produces a valid schedule.

Proof: We can notice that according to the second condition and the inclusion condition on
[t0,maxT ], ymaxT = n. We define V to be the multiset of time slots, such that slot [t, t + p]
is contained yt − yprec(t) times. Therefore |V | = n. As mentioned in the previous section, by
the load inequality, the slots can be assigned to machines without overlapping. So, it only
remains to show that, first, there exist assignments of jobs to slots, which respect release
times and deadlines, and then that the greedy assignment is one of them.

Let U be the set of n jobs, and G(U, V,E) a bipartite graph where E contains all edges
between a job j and a slot [t, t+ p] if [t, t+ p] ∈ [rj , Dj ]. We have to show that this graph has
an injection from U to V , and will use Hall’s theorem for this.

For a set of jobs S, we denote the neighboring slots ∂S, as the set of all slots t such that
there is a job j ∈ S with (j, t) ∈ E. We need to show that for every set S, |S| ≤ |∂S|,
which by Hall’s theorem, characterizes the existence of an injection. Let S be a set of jobs.
Suppose S can be partitioned into S1 ∪ S2 such that for any jobs i ∈ S1 and j ∈ S2 the
intervals [ri, Di − p] and [rj , Dj − p] are disjoint. Then clearly ∂S is the disjoint union of ∂S1
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and ∂S2. Therefore we can without loss of generality assume that
⋃

j∈S [rj , Dj ] is a unique
interval [ri, Dj ], for i = argmini∈Sri and j = argmaxj∈SDj . Then |S| ≤ cij . Also the number
of slots in the interval [ri, Dj) is exactly yt − ys for s = prec(ri), t = round(Dj − p). From the
inclusion inequality we get the required inequality and we conclude that there exist a valid
assignment. Now since |V | = |U | = n, the injection is in fact a bijection, and there exists at
least one perfect matching from jobs to slots with respect to release times and deadlines.

Proving that you can permute jobs in any of these matching to get the greedy matching is
a quite standard scheduling procedure: let be two jobs i, j with Di < Dj , and i is scheduled
at some time t, while j is scheduled at some time s with ri ≤ s < t. Then it is possible to
exchange the jobs i, j in their execution slots [s, s+ p) and [t, t+ p). By the use of a potential
function, decreasing at each exchange, it is possible to transform our schedule in a so called
earliest due date schedule. We conclude since there exists at least a valid assignment, the
greedy assignment is valid as well. �

This means that an optimal integer solution can be found with a standard linear program
solver. But what is interesting, is we could provide a direct combinatorial algorithm for this
task. Note first that we can modify our objective function so as to transform our minimization
problem in a maximization problem where all variables have non-negative coefficients since∑

t∈T
(t + p)(yt − yprec(t)) = (maxT + p)ymaxT −

∑
t∈T \t0

(t− prec(t))yprec(t), (6)

where (maxT + p)ymaxT is a constant since ymaxT = n .
We now show how to find the optimal solution with a standard method.

Lemma 2 (based on [11, p.558]) Let be a linear program on variables u0, u1, . . . , uN−1 ≥
0 where u0 = 0 and the coefficient in the objective function is positive for the other variables.
Also all the constraints are of the form ui − uj ≤ a for some variables ui, uj and integer a.
Then the optimal solution can be found in time O(NM), where N is the number of variables
and M the number of constraints.

Proof: We define a directed graph G(V,E) where the vertices are the variables, and every
inequality ui − uj ≤ a introduces an arc from uj to ui with weight a (if there are several
inequalities with the same left hand part, we keep only the strongest one). Now a directed
path from ui to uj of total weight b, corresponds to the inequality ui − uj ≤ b, which is the
result of summing all the inequalities associated to the edges along the path. Let di,j be the
shortest path from ui to uj and di = d0,i.

Therefore if the graph G has a negative cycle, the linear program is not feasible, since it
implies the inequality ui − ui ≤ a for some variable ui on the cycle and the negative cycle
length a.

If there is a vertex ui which is not reachable from u0, then the linear program is unbounded.
Let C be the strongly connected component containing ui, that is the ? of vertices uj such
that uj is reachable from ui and vice-versa. Indeed for any integer d we can set ui = d, for all
uj in C, uj = d + di,j , and ui = di for all variables outside of C, which results in a solution to
the linear program (the demonstration that no constraint is then violated is the same than
in next paragraph) of arbitrary high objective value.

Now suppose that G has no negative cycle, and that every vertex ui is reachable from u0.
Setting ui = di will be a solution to the linear program, since if some constraint ui − uj ≤ a
was violated, it would mean that di > dj + a, which can not be the shortest path since there
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is a directed edge of weight a from uj to ui. Also the solution is optimal since the shortest
path from u0 to ui implies the inequality ui ≤ di and in the objective function all coefficients
are non-negative, so this solution is an upper bound on optimal solution. Therefore it is the
optimal solution.

The distances can be computed with the standard Bellman-Ford shortest path algorithm
in time O(|V | · |E|), where |V | is the number of vertices and |E| the number of arcs. This
algorithm also detects negative cycles and vertices which are not reachable from the source
u0. �

Now we summarize the previous lemmata.

Theorem 1 Our algorithm solves P |rj ; pj = p;Dj |
∑

Cj in worst case time O(n4).

Proof: Given the instance m, p, r1, . . . , rn, D1, . . . , Dn, we construct the set T of O(n2) time
points. Then we compute for every pair of jobs i, j the number of jobs cij which need to
be scheduled in [ri, Dj ]. A naive algorithm does it in time O(n3), which would be enough
for us. However it can be solved in time O(n2) using the following recursive formula. We
assume jobs are indexed in order of release times. For convenience we set cn+1,j = 0. Then
ci,j = ci+1,j + 1 if Di ≤ Dj and ci,j = ci+1,j if Di > Dj .

This permits to construct the graph G and find in time O(n4) the optimal solution to
the linear program, if there is one. Finally we do an earliest due date assignment of the jobs
to the slots defined by the solution to the linear program in time O(n log n) using a priority
queue. �

Note that in this section we don’t beat the best known algorithm for P |rj ; pj = p;Dj |
∑

Cj

which is O(mn2) [9]. However, it allows us to introduce our technique that will be used later
on. What is more, the transformation of the problem into a shortest path problem is we think
interesting, and we still have hope that another shortest path algorithm, better fitted for our
specific type of graph could lower our complexity.

3 Scheduling tall and small jobs

In a parallel machine environment, sometimes maintenance tasks
are to be done which involve all machines at the same time. Think
of business meetings or inventory. Formally we are given n jobs of
unit length p = 1, each job j comes with an integer release time
and a deadline interval [rj , Dj ] in which it must be scheduled. We
distinguish two kind of jobs. The first n1 jobs are small jobs, in the
sense that they must be scheduled on one of the m parallel machines,
it does not matter which one. The n2 = n − n1 remaining jobs are
tall jobs, in the sense that they must be scheduled on all the m
machines at the same time.
A time slot is an interval [t, t + 1[ for an integer boundary t. The
goal is to find a feasible schedule, where each tall job is assigned to
a different time slot, and each small job is assigned to a different
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Figure 1: Example for 3
machines.

(machine, time slot) pair for the remaining time slots. In addition the time slot to which
some job j is assigned must be included in [rj , Dj ].
This problem has been solved by Baptiste and Schieber [3], with a linear program using O(n2)
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variables and O(n2) constraints. The linear program is not totally unimodular, however they
manage to show that for the particular objective function it always has an integer solution.
We provide a linear program using only O(n) variables but still O(n2) constraints, but whose
constraint matrix is the incidence matrix of a directed graph, and can be solved in time O(n3)
with a shortest path algorithm.
Baptiste and Schieber showed that we can assume that the time interval ranges only from 1
to n, otherwise the problem could easily be divided into two disjoint subproblems.

In a similar way than before, we will denote by xt the total number of time slots assigned
to tall jobs in [1, t + 1]. For convenience we set x0 = 0. The number of small jobs that must
be scheduled in [s, t] is ks,t = |{j : j ≤ n1, [rj , Dj ] ⊆ [s, t]}| and the same for tall jobs is
`s,t = |{j : j > n1, [rj , Dj ] ⊆ [s, t]}|. Let be the following linear program, which does not have
an objective value.

(xt) is a non decreasing sequence

∀t ∈ [1, n] : xt−1 ≤ xt (7)

Only one tall job can be scheduled by unit-length interval

∀t ∈ [1, n] : xt − xt−1 ≤ 1 (8)

There are enough slots for the tall jobs

∀s, t ∈ [1, n], s ≤ t : xt−1 − xs−1 ≥ `s,t (9)

There are enough remaining slots for the small jobs

∀s, t ∈ [1, n], s ≤ t : xt−1 − xs−1 ≤ t− s− dks,t/me. (10)

Once again, the transpose of the constraint matrix is the adjacency matrix of an oriented
graph, and the constant vector b is integer. As previously, it has only integer solutions.

Theorem 2 Fix an instance of the tall/small scheduling problem. There is an integer solution
to this linear program if and only if there is a feasible schedule.

Proof: It is quite obvious that fixing (xt) according to any feasible schedule will satisfy the
constraints.

For the hard direction, let (xt) be a solution to the linear program, we know it is integer.
Then xt−xt−1 — which can be 0 or 1 — is the number of slots for tall jobs at time t. We will
again use Hall’s theorem to show that there is a valid assignment of the n2 tall jobs to these
slots. Inequality (9) for [s, t] = [1, n] forces xn ≥ n2. Now let be G(U, V,E) the bipartite
graph, where U are the n2 tall jobs, and V the xn slots. There is an edge between job j
and time slot [t, t + 1] if it is included in [rj , Dj ]. We have to show that for every subset
S ⊆ U , the number of neighboring slots in V is at least |S|. Let s be the smallest release time
among S and t be the largest deadline among S. Again it is sufficient to show this claim for
connected sets S in the sense that ∪j∈S [rj , Dj ] = [s, t]. Now |S| ≤ `s,t ≤ xt−1 − xs−1, where
the last expression is the number of slots in [s, t]. This completes the claim that there is a
valid assignment from tall jobs to the slots.
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For the small jobs, note that as,t := (t − s) − (xt−1 − xs−1) is the number of remaining
slots in [s, t] which are not assigned to tall jobs, and as,t ·m small jobs can fit in that interval.
Again inequality (10) implies ks,t ≤ m · as,t, and Hall’s theorem shows that there is a valid
assignment of small jobs to the remaining slots. �

In the original paper [3] the author gave a O(n4) combinatorial algorithm. Using the
transformation into shortest path allows us to improve this complexity.

Corollary 1 The tall/small scheduling problem can be solved in time O(n3).

Proof: As in the second section, we have a linear program with O(n) variables and O(n2)
constraints which can be produced in time O(n2). We just take an arbitrary objective function
in which all the variable coefficients are positive, and build the associated graph as in the
previous section. Then we compute the all shortest paths from the source x0, in time O(n3).
If this computation detects a negative cycle, then the problem has no solution. Otherwise,
we get the skeleton of a solution to the problem that minimize the total completion time of
the tall jobs. Finally if there is a solution, the standard earliest due date assignment, first of
tall jobs, then of small ones, produces a valid schedule in time O(n log n). �

Here again, a direction that we are still exploring is to find another shortest path algorithm,
better fitted for these specific graphes, that could improve this complexity.

4 Prefetching

Caches are used to improve the memory access times. In this context the memory unit is
called a page, and is stored on a slow disk. The cache can store up to k pages. Now if a page
request arrives, and the page is already in the cache, it can be served immediately, otherwise
it must first be fetched from the disk, and that introduces a stall time of F units. In the latter
case the new page replaces some other page currently in the cache. The time F represents
the time to read the new page in the case of a read only memory or additionally to write the
old page on the disk in the case of a read/write memory. The idea of prefetching is to fetch
a page even before it is requested, so as to reduce the stall time: During a fetch which evicts
some page y replacing it by some page z, other requests can be served for pages currently in
the cache and different from y or z. In the single disk model we consider here, only a single
fetch can occur at the same time. The goal is, knowing in advance the all request sequence,
to come up with a prefetch schedule, which minimizes total stall time.

cache
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Figure 2: An optimal prefetching for a cache of size k = 3, and a fetch duration F = 4.

While the real life problem is on-line, and has been extensively studied by Cao et al. [5],
the offline problem has first been solved in 1998 [2], by the use of a linear program, for which it

8



was shown that it always has an optimal integer solution, while not being totally unimodular.
Later in 2000 [1], a polynomial time algorithm was given modeling the problem as a multi
commodity flow with some postprocessing. Formally the problem can be defined as follows.

The Offline Prefetching problem

The input is a page request sequence x1, . . . , xn, an initial cache set C1, and a
fetch duration F . Let k = |C1| be the cache size. A fetch is a tuple (s, y, e, z),
where y, z are pages and s, t ∈ [1, n] are time points with s ≤ e ≤ s + F . The
meaning is that at time s, the page y leaves the cache and at time e the page z
enters the cache. Its cost, the induced stall time, is F − (e − s). The goal is to
come up with a sequence of fetches minimizing the total stall time, such that two
fetches intersect in at most one time point, and such that every request can be
served, i.e. ∀t ∈ [1, n] : xt ∈ Ct, where Ct is the cache at time t obtained from
Ct−1 by evicting/fetching all the pages that had to be evicted fetched at time
t. To simplify notation we assume that the request sequence contains at least k
distinct pages, that C1 consists of the first k distinct requests, and that at time
1, no page has left/entered the cache yet.

Albers, Garg and Leonardi defined a linear program with a characteristic variable for
every fetch interval [s, e], and two additional characteristic variables for every couple ( y,
[s, e]) indicating whether page y enters (resp leaves) the cache at the beginning (resp the end)
of the fetch [s, e]. Finally they show that the linear program has always an integer solution
for the considered objective function.

As observed in [2] without loss of generality the page to be evicted at time t from the cache
Ct−1 is the page, who’s next request is furthest in the future or which is never requested again.
Also without loss of generality the page to be fetched at time t is the page who’s next request
starting from t is nearest in the future. Therefore all the information about the fetches is in
the time intervals, and we will write a linear program which produces only the time intervals
in which evictions/fetches occur. The actual pages have to be assigned in a post processing,
in greedy manner just mentionned. Rather to have single variable for every interval and every
page, we only count how many pages entered and how many left the cache in total since the
beginning, which leaves us with O(n) instead of O(n2F ) variables. We denote by It (resp. Ot

) the total number of pages which entered (resp. left) the cache up to time t included. Our
linear program becomes:

minimize FOn −
∑n

t=1(Ot − It),
subject to
At time 1, no page leaves yet

O1 = 0 (11)

(Ot) and (It) are non decreasing sequences

∀t ∈ [2, n] : Ot−1 ≤ Ot and It−1 ≤ It (12)

The cache cannot overflow

∀t ∈ [1, n] : Ot ≥ It (13)

Two fetches don’t overlap in time

∀t ∈ [1, n] : Ot ≤ It + 1 (14)
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A fetch length is at most F

∀t ∈ [1, n] : Imin{t+F,n} ≥ Ot (15)

There are enough fetches to serve all requests

∀1 ≤ s ≤ t ≤ n : It −Os ≥ |{xs, xs+1, . . . , xt}| − k (16)

The optimal solution of this linear program is always integer, since it is totally unimodular
(for the same reason as in previous section: its constraint matrix the transposed incidence
matrix of a directed graph.)

Theorem 3 Let (It, Ot) be an optimal integer solution to the linear program. Then there is
valid fetch sequence of the same cost, which can be built by greedy assignment.

Proof: First we observe that the cost function makes sure that On = In, which ensures that
all interval are eventually closed. The solution defines m = On intervals as follows. For every
j = 1 . . .m, let sj be the smallest time such that Osj ≥ j and ej the smallest time such that
Iej ≥ j. Then by (13) and (15) we have sj ≤ ej ≤ sj + F . Which means that all intervals
are well defined and of length smaller or equal than F . Now by (14), ej ≤ sj+1 (otherwise,
we’d have Iej + 1 ≥ Oej > Osj+1 but Iej = j and Osj+1 = j + 1 by definition.), and this for
all j < m, so the intervals do not overlap (but the ending point of one might be the starting
point of another). Moreover the objective value of (It, Ot), equals the total stall time of these
intervals, for at each time t, the difference Ot - It is equal to 1 if an interval is currently opened
and to 0 none is. It remains to prove that the greedy assignement of pages to evict/fetch to
each interval is such that all requests are served, i.e. that the conditions type 16 are sufficient.
We denote by Cs the cache obtained at time s, after all entrances and evictions that occur
at time s. We will show that the following invariant holds in a solution of our linear program
for every time s ∈ [1, n],

∀t ∈ [s, n] : It − Is ≥ |{xs, . . . , xt}\Cs|. (17)

It means that if the number of pages requested in [s, t] but not in the cache at time s is a,
then at least a pages must enter the cache somewhere in [s + 1, t]. In particular it means for
t = s, that the page requested at time s will be the in the cache at that moment. The proof
is by induction on s.

Basis case s = 1 Let t0 be the greatest request time such that xt0 is not in C1. Then by
the assumption that initially the cache contains the first k distinct requests, we have that for
t < t0, {x1, . . . , xt} ⊆ C1, so the right hand side of (17) is 0 and (17)holds by (12). For t ≥ t0,
since the intersection of {x1, . . . , xt} and C1 is exactly k, the invariant holds by (16) (since
O1 = I1 = 0).

Induction case Assume the invariant holds for some s. Let’s show that it also holds for
s+1. Several things can happen at time s+1, pages can leave the cache and pages can enter
the cache. We will do these operations step by step, transform slowly Is into Is+1 and Cs

into Cs+1, and show that each step preserves the invariant (17).
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By induction hypothesis we have xs ∈ Cs, so {xs, . . . , xt}\Cs = {xs+1, . . . , xt}\Cs. There-
fore, if nothing happens and no page enter or leave the cache, then Cs+1 = Cs, Is = Is+1 and
the invariant is preserved for s + 1.

Now we deal with the case when there is some page movement at time s + 1, that is
Is+1 > Is or Os+1 > Os or both. We artificially decompose this page movement in as many
times as needed, so that at each time there is only one operation happening: a fetch or an
eviction. The page movements at those intermediary times are set so as to alternatively evict
and enter pages, among the Os+1 − Os pages to evict and the Is+1 − Is pages to enter. Of
course if a fetch is pending at time s, that is |Cs| = k − 1, then we start with entering a new
page and otherwise if the cache is full, i.e. |Cs| = k, we start with evicting a page. Since the
number of entrances and evictions can differ by at most one, it is possible to do so. Therefore,
we need to do the induction case only in the case when a page is entering the cache or when
one is leaving the cache but not both.

When page is entering the cache, we have Is+1 = Is + 1. Let z be the page entering the
cache, and let t0 ≥ s + 1 be the next request time of z. Then if t < t0, by the choice of z, all
requests of xs+1, . . . , xt must be in Cs+1, so the right hand side of (17) at time s + 1 is 0, and
the inequality holds by (12). Now if t ≥ t0, since z ∈ Cs+1 but z /∈ Cs, the left hand side of
(17) at time s+1 has decreased by 1 compared to time s, but at the same time Is+1 = Is +1,
so both sides of the invariant decrease by 1 and by induction the inequality is preserved at
time s + 1.

Now consider the case when a page leaves the cache. Let y be the page leaving. Then
Is = Is+1 and Os+1 = Os + 1. Let t0 be the next request time of y or let t0 = n + 1 if y is
never requested again. Then if t < t0, removing y from Cs+1 does not change the right hand
side of (17) when replacing s by s + 1. The left hand side does not change either since no
page enters the cache, and the inequality is preserved. For t ≥ t0 however by the choice of
the evicted page y, we have that Cs+1 ⊆ {xs+1, . . . , xt}. So the left hand side of (17) at time
s + 1 is |{xs+1, . . . , xt}| − (k − 1), and Is+1 = Os+1 − 1 since we have just evicted a page.
Therefore, (17) holds by (16). �

It is to be noticed that the shortest path algorithm does not apply here, given that we
find coefficients of both signs in the objective function.

Applying the algorithm from [10], which has worst case running time O(max{n, m}5) for
totally unimodular linear programs with n variables and m constraints, we get the announced
running time.

Corollary 2 The offline prefetch problem can be solved in time O(n10).

5 Conclusion

We demonstrated on three different optimization problems how to transform some linear pro-
grams into simpler totally unimodular linear programs, thanks to a dissociation technique
where we do not compute the assignment inside the linear program. We obtained linear pro-
grams with very simple constraint structure, and algorithm easy to implement. In doing so,
we also revealed very simple graph structures underlying on those optimizations problems.
Further work would include trying and find other problem where our technique apply, and
maybe extract from it a general framework. We are also interested in improving the combi-
natorial algorithms that arose from the graph structures in the scheduling problems: indeed
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those graphs have, among others, this property that if you draw vertices as points on a line,
the arcs from left to right have positive weights and the ones from right to left negative.
One idea for instance is to try and extract from Simons and Warmuth’s algorithm a shortest
path algorithm suitable for our class of graphs. At last, it would be interesting to derive a
combinatorial algorithm from the graph structure for the prefetching problem, even though
shortest path does not work there.

We wish to thank Arthur Chargueraud, Philippe Baptiste and Miki Hermann for helpful
comments.
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