Géométrie des clusters de spins dans les triangulations munies d’un modèle d’Ising

Marie Albenque (CNRS, LIX, École Polytechnique)
joint works with Laurent Ménard (Univ. Paris Nanterre – NYU Shanghai)
and Gilles Schaeffer (CNRS, LIX – École Polytechnique)

Séminaire Flajolet, Février 2022
Maps – Definition(s)

A **planar map** is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).
Maps – Definition(s)

A **planar map** is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

Planar map = planar graph + cyclic order of edges around each vertex.
Maps – Definition(s)

A **planar map** is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

Planar map = planar graph + cyclic order of edges around each vertex.

To avoid dealing with symmetries: maps are **rooted** (an edge is marked and oriented).

\[\mathcal{M} = \text{set of rooted planar maps} \]
Maps – Definition(s)

A planar map is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

Planar map = planar graph + cyclic order of edges around each vertex.

To avoid dealing with symmetries: maps are rooted (an edge is marked and oriented).

A map M defines a discrete metric space:

- points: set of vertices of $M = V(M)$.
- distance: graph distance $= d_{gr}$.
A **triangulation** is a planar map in which all faces have degree 3.

Triangulation of size n has $3n$ edges

(or equivalently $n + 2$ vertices, $2n$ faces).
Triangulations

A **triangulation** is a planar map in which all faces have degree 3.

Triangulation of size n has $3n$ edges
(or equivalently $n + 2$ vertices, $2n$ faces).

A **triangulation with a boundary** is a planar map in which all faces have degree 3, except possibly the root face.

Triangulation with a boundary of length 4.
Triangulations

A triangulation is a planar map in which all faces have degree 3.

Triangulation of size n has $3n$ edges
(or equivalently $n + 2$ vertices, $2n$ faces).

What does a random triangulation of size n look like (as n tends to ∞)?
Triangulations

A **triangulation** is a planar map in which all faces have degree 3.

Triangulation of size n has $3n$ edges
(or equivalently $n + 2$ vertices, $2n$ faces).

What does a **random triangulation** of size n look like (as n tends to ∞)?

Simulation by I.Kortchemski

Today: local limit point of view

Scaling limit point of view
Local topology (\sim Benjamini–Schramm convergence)

For m a rooted planar map and $R \in \mathbb{N}^*$,

$$B_R(m) = \text{ball of radius } R \text{ around the root vertex of } m$$

Definition:
The local topology on \mathcal{G} is induced by the distance:

$$d_{loc}(m, m') := \frac{1}{1 + \max\{R \geq 0 : B_R(m) = B_R(m')\}}$$

For all fixed R, there exists n_0 s.t.:

$$B_R(m_n) = B_R(m) \quad \text{for } n \geq n_0$$

First examples:

```
\begin{tikzpicture}
  \node[vertex] (0) at (0,0) {0};
  \node[vertex] (1) at (1,0) {1};
  \node[vertex] (2) at (2,0) {2};
  \node[vertex] (n) at (3,0) {n};
  \draw (0) -- (1); \draw (1) -- (2); \draw (2) -- (n);
\end{tikzpicture}
```

Root = 0
Local topology (~ Benjamini–Schramm convergence)

For \(m \) a rooted planar map and \(R \in \mathbb{N}^* \),

\[
B_R(m) = \text{ball of radius } R \text{ around the root vertex of } m
\]

Definition:
The local topology on \(\mathcal{G} \) is induced by the distance:

\[
d_{loc}(m, m') := \frac{1}{1 + \max\{R \geq 0 : B_R(m) = B_R(m')\}}
\]

First examples:

\[
\bullet \bullet \bullet \rightarrow (\mathbb{Z}_+, 0)
\]

Root = 0

\(m_n \rightarrow m \) for the local topology

\(\iff \)

For all fixed \(R \), there exists \(n_0 \) s.t.:

\[
B_R(m_n) = B_R(m) \quad \text{for } n \geq n_0
\]
Local topology (∼ Benjamini–Schramm convergence)

For \(m \) a rooted planar map and \(R \in \mathbb{N}^* \),

\[B_R(m) = \text{ball of radius } R \text{ around the root vertex of } m \]

Definition:
The local topology on \(G \) is induced by the distance:

\[
d_{loc}(m, m') := \frac{1}{1 + \max\{R \geq 0 : B_R(m) = B_R(m')\}}
\]

First examples:

\[\begin{align*}
0 & \quad 1 & \quad 2 & \quad n \\
\end{align*} \quad \rightarrow (\mathbb{Z}_+, 0) \]

Root = 0

\[\begin{align*}
0 & \quad 1 & \quad 2 & \quad n \\
\end{align*} \]

Uniformly chosen root

\[\begin{align*}
m_n & \rightarrow m \quad \text{for the local topology} \\
\iff \\
\text{For all fixed } R, \text{ there exists } n_0 \text{ s.t.}: \\
B_R(m_n) = B_R(m) \quad \text{for } n \geq n_0
\]
Local topology (∼ Benjamini–Schramm convergence)

For m a rooted planar map and $R \in \mathbb{N}^*$,
\[B_R(m) = \text{ball of radius } R \text{ around the root vertex of } m \]

Definition:
The local topology on G is induced by the distance:
\[d_{loc}(m, m') := \frac{1}{1 + \max\{R \geq 0 : B_R(m) = B_R(m')\}} \]

First examples:

Root = 0

\[
\begin{array}{cccc}
0 & 1 & 2 & n \\
\end{array} \quad \rightarrow \quad (\mathbb{Z}_+, 0)
\]

Uniformly chosen root

\[
\begin{array}{cccc}
0 & 1 & 2 & n \\
\end{array} \quad \rightarrow \quad (\mathbb{Z}, 0)
\]

\[m_n \rightarrow m \quad \text{for the local topology} \quad \iff \quad \text{for all fixed } R, \text{ there exists } n_0 \text{ s.t.: } B_R(m_n) = B_R(m) \quad \text{for } n \geq n_0 \]
Local topology (∼ Benjamini–Schramm convergence)

For m a rooted planar map and $R \in \mathbb{N}^*$,

$$B_R(m) = \text{ball of radius } R \text{ around the root vertex of } m$$

Definition:

The local topology on \mathcal{G} is induced by the distance:

$$d_{\text{loc}}(m, m') := \frac{1}{1 + \max\{R \geq 0 : B_R(m) = B_R(m')\}}$$

$$m_n \to m \quad \text{for the local topology}$$

$$\iff$$

For all fixed R, there exists n_0 s.t.:

$$B_R(m_n) = B_R(m) \quad \text{for } n \geq n_0$$

First examples:

- Root = 0
 - $m \to (\mathbb{Z}_+, 0)$

- Uniformly chosen root
 - $m \to (\mathbb{Z}, 0)$

- Root does not matter
 - $m \to (\mathbb{Z}, 0)$
Local convergence: more complicated examples

$$\mu_n = \text{uniform measure on plane trees with } n \text{ vertices:}$$

$$\mu_4 = \frac{1}{5}$$

1/5 1/5 1/5 1/5 1/5
Local convergence: more complicated examples

\(\mu_n = \) uniform measure on plane trees with \(n \) vertices:

\[\mu_4 = \]

\[\begin{array}{cccc}
1/5 & 1/5 & 1/5 & 1/5 \\
\end{array} \]

\[n = 500 \]

\[n = 1000 \]
Local convergence: more complicated examples

\(\mu_n \) = uniform measure on plane trees with \(n \) vertices:

\(\mu_4 = \)

1/5 1/5 1/5 1/5 1/5

The limit is a probability distribution on infinite trees with one infinite branch [Kesten].

n = 500

n = 1000
Theorem [Angel – Schramm, ’03]

Let $\mathbb{P}_n = \text{uniform distribution on triangulations of size } n$.

$\mathbb{P}_n \xrightarrow{(d)} \text{UIPT, for the local topology}$

$\text{UIPT} = \text{Uniform Infinite Planar Triangulation}$

$= \text{measure supported on infinite planar triangulations.}$
Local limit of large uniformly random triangulations

Theorem [Angel – Schramm, ’03]

Let \mathbb{P}_n = uniform distribution on triangulations of size n.

$$\mathbb{P}_n \xrightarrow{(d)} \text{UIPT}, \quad \text{for the local topology}$$

UIPT = Uniform Infinite Planar Triangulation
= measure supported on infinite planar triangulations.

Some properties of the UIPT:

- The UIPT has almost surely one end [Angel – Schramm, 03]
- Volume (nb. of vertices) and perimeters of balls known to some extent.
 $$\mathbb{E} [|B_R(T_\infty)|] \sim \frac{2}{7} R^4$$ [Angel 04, Curien – Le Gall 12]
- The simple random walk is recurrent [Gurel-Gurevich + Nachmias, 13]

Universality: we expect the same behavior for other “reasonable” models of maps.

In particular, we expect the volume growth to be 4.

(proved for quadrangulations [Krikun 05], simple triangulations [Angel 04])
Intermezzo: why should we care about local limits?

Suppose that a sequence of random graphs G_n admits a local weak limit G_∞, then,

\[f(G_n) \overset{\text{proba}}{\longrightarrow} f(G_\infty) \quad \text{for any } f \text{ which is continuous for } d_{loc}. \]

E.g.: \[f = |B_R(.)| \]
Intermezzo: why should we care about local limits?

Suppose that a sequence of random graphs G_n admits a local weak limit G_∞,

Then, $f(G_n) \overset{\text{proba}}{\longrightarrow} f(G_\infty)$ for any f which is continuous for d_{loc}.

E.g.: $f = |B_R(.)|$

Main idea: The limiting object is often “nicer”.

Hence, it is easier to compute $f(G_\infty)$, from which we can deduce the behavior of $f(G_n)$.
Intermezzo: why should we care about local limits?

Suppose that a sequence of random graphs G_n admits a local weak limit G_∞.

Then, $f(G_n) \xrightarrow{prob} f(G_\infty)$ for any f which is continuous for d_{loc}.

E.g.: $f = |B_R(.)|

Main idea: The limiting object is often “nicer”.

Hence, it is easier to compute $f(G_\infty)$, from which we can deduce the behavior of $f(G_n)$.

For graphs, it has been formalized as the objective method [Aldous-Steele 94].
Intermezzo: why should we care about local limits?

Suppose that a sequence of random graphs G_n admits a local weak limit G_∞,

Then, $f(G_n) \xrightarrow{\text{proba}} f(G_\infty)$ for any f which is continuous for d_{loc}.

e.g.: $f = |B_R(.)|$

Main idea: The limiting object is often “nicer”.

Hence, it is easier to compute $f(G_\infty)$, from which we can deduce the behavior of $f(G_n)$.

For graphs, it has been formalized as the **objective method** [Aldous-Steele 94].

Two example for maps:

- one-endedness in the UIPT:
 Allows to give an explicit description of what can happen when the map gets disconnected.

- spatial Markov property

Simulation by T.Budd
II - Local limits of Ising-weighted triangulations
Escaping universality: adding matter

First, **Ising model** on a finite deterministic planar triangulation T:

Spin configuration on T:

$$\sigma : V(T) \rightarrow \{-1, +1\} = \{\circ, +\}.$$

Ising model on T: take a random spin configuration with probability:

$$P(\sigma) \propto e^{\beta J \sum_{v \sim v'} 1 \{\sigma(v) = \sigma(v')\}}$$

$\beta > 0$: inverse temperature.
$J = \pm 1$: coupling constant.
$h = 0$: no magnetic field.
Escaping universality: adding matter

First, **Ising model** on a finite deterministic planar triangulation \(T \):

Spin configuration on \(T \):

\[
\sigma : V(T) \rightarrow \{-1, +1\} = \{\oplus, \ominus\}.
\]

Ising model on \(T \): take a random spin configuration with probability:

\[
P(\sigma) \propto e^{\beta J \sum_{v \sim v'} 1\{\sigma(v) = \sigma(v')\}}
\]

\(\beta > 0 \): inverse temperature.

\(J = \pm 1 \): coupling constant.

\(h = 0 \): no magnetic field.

Combinatorial formulation: \(P(\sigma) \propto \nu^{m(\sigma)} \)

with \(m(\sigma) = \) number of monochromatic edges \((\nu = e^{\beta J}) \).
Escaping universality: adding matter

First, **Ising model** on a finite deterministic planar triangulation T:

Spin configuration on T:

$$\sigma : V(T) \rightarrow \{-1, +1\} = \{\oplus, \odot\}.$$

Ising model on T: take a random spin configuration with probability:

$$P(\sigma) \propto e^{\beta J \sum_{v \sim v'} 1_{\{\sigma(v) = \sigma(v')\}}}$$
with $\beta > 0$: inverse temperature.
with $J = \pm 1$: coupling constant.
with $h = 0$: no magnetic field.

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$
with $m(\sigma) = \text{number of monochromatic edges}$ ($\nu = e^{\beta J}$).

Next step: Sample a triangulation of size n **together** with a spin configuration, with probability $\propto \nu^{m(T,\sigma)}$.

$$\mathbb{P}_n^{\nu} \left(\{(T, \sigma)\} \right) = \frac{\nu^{m(T,\sigma)} \delta_{|e(T)|=3n}}{\mathcal{Z}_n}.$$

$\mathcal{Z}_n = \text{normalizing constant}$.

$$m(\sigma) = 5$$
Escaping universality: adding matter

First, Ising model on a finite deterministic planar triangulation T:

Spin configuration on T:

$$\sigma : V(T) \to \{-1, +1\} = \{\oplus, \ominus\}.$$

Ising model on T: take a random spin configuration with probability:

$$P(\sigma) \propto e^{\beta J \sum_{v \sim v'} 1\{\sigma(v) = \sigma(v')\}}$$

with σ: $V(T) \to \{-1, +1\} = \{\oplus, \ominus\}$.

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$

with $m(\sigma) = \text{number of monochromatic edges} \ (\nu = e^{\beta J})$.

Next step: Sample a triangulation of size n together with a spin configuration, with probability $\propto \nu^{m(T, \sigma)}$.

Remark: This is a probability distribution on triangulations with spins. But, forgetting the spins gives a probability a distribution on triangulations without spins different from the uniform distribution.
Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:

number of (undecorated) maps of size $n \sim \kappa \rho^{-n} n^{-5/2}$

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)

where κ and ρ depend on the combinatorics of the model.
Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:

number of (undecorated) maps of size \(n \sim \kappa \rho^{-n} n^{-5/2} \)
(e.g.: triangulations, quadrangulations, general maps, simple maps,...)

where \(\kappa \) and \(\rho \) depend on the combinatorics of the model.

Generating series of Ising-weighted triangulations:

\[
Z(\nu, t) = \sum_{T \text{ triangulation}} \sum_{\sigma:V(T) \to \{-1,+1\}} \nu^{m(T,\sigma)} t^{e(T)}.
\]

Theorem [Bernardi – Bousquet-Mélou 11]

For every \(\nu > 0 \), \(Z(\nu, t) \) is algebraic and satisfies

\[
[t^3n]Z(\nu, t) \sim \begin{cases}
\kappa \rho_{\nu_c}^{-n} n^{-7/3} & \text{if } \nu = \nu_c = 1 + \frac{1}{\sqrt{7}}, \\
\kappa \rho_{\nu}^{-n} n^{-5/2} & \text{if } \nu \neq \nu_c.
\end{cases}
\]

See also [Boulatov – Kazakov 1987], [Bousquet-Melou – Schaeffer 03] and [Bouttier – Di Francesco – Guitter 04].

This suggests a **different behavior** of the underlying maps for \(\nu = \nu_c \).
Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

Let \(\mathbb{P}_n^\nu \) = \(\nu \)-Ising weighted probability distribution for triangulations of size \(n \):

\[
\mathbb{P}_n^\nu \overset{(d)}{\longrightarrow} \nu\text{-IIPT}, \quad \text{for the local topology with spins}
\]

\(\nu\text{-IIPT} = \nu\text{-Ising Infinite Planar Triangulation} \)
Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

Let $\mathbb{P}^\nu_n = \nu$–Ising weighted probability distribution for triangulations of size n:

$$\mathbb{P}^\nu_n \xrightarrow{(d)} \nu$-$\text{IIPT}$, \quad \text{for the local topology with spins}

ν-$\text{IIPT} = \nu$-Ising Infinite Planar Triangulation

Related result by [Chen, Turunen, 20] for a slightly different model.
Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]
Let $\mathbb{P}^\nu_n = \nu$–Ising weighted probability distribution for triangulations of size n:

$$\mathbb{P}^\nu_n \xrightarrow{(d)} \nu$$_{IPT}, \quad \text{for the local topology with spins}

ν-IPT = ν-Ising Infinite Planar Triangulation

Related result by [Chen, Turunen, 20] for a slightly different model.

Some properties of the ν-IPT:
- One-ended a.s.
- Simple random walk is recurrent.
- Geometry of the clusters ?
- Volume (nb. of vertices) and perimeters of balls ??
Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

Let \(P^{\nu}_n \) = \(\nu \)-Ising weighted probability distribution for triangulations of size \(n \):

\[
P^{\nu}_n \xrightarrow{(d)} \nu\text{-IIPT}, \quad \text{for the local topology with spins}
\]

\(\nu\text{-IIPT} = \nu\text{-Ising Infinite Planar Triangulation} \)

Related result by [Chen, Turunen, 20] for a slightly different model.

Some properties of the \(\nu\text{-IIPT} \):
- One-ended a.s.
- Simple random walk is recurrent.
- Geometry of the clusters ?
- Volume (nb. of vertices) and perimeters of balls ???

Non-universality: we expect a **different** behavior for \(\nu = \nu_c \)

In particular, we expect the volume growth to be different from 4.

Watabiki’s conjecture: \(\frac{7 + \sqrt{97}}{4} \sim 4.21\ldots \)
III - Clusters in the ν-IIPT
Ferromagnetic Ising model on \mathbb{Z}^2: clusters

Simulations by R.Cerf:

$\nu < \nu_c$

$\nu = \nu_c$

$\nu > \nu_c$

One infinite cluster
Ferromagnetic Ising model on \mathbb{Z}^2: clusters

Simulations by R. Cerf:

$\nu < \nu_c$

$\nu = \nu_c$

$\nu > \nu_c$

CLE$_3$

One infinite cluster

[Chelkak+Smirnov 2012]
Ferromagnetic Ising model on \mathbb{Z}^2: clusters

Simulations by R. Cerf:

$\nu < \nu_c$

$\nu = \nu_c$

$\nu > \nu_c$

Same universality class as critical percolation.
CLE$_6$??

CLE$_3$

One infinite cluster

[Smirnov 2001]
for critical percolation

[Chelkak+Smirnov 2012]
Theorem [A. – Ménard, 22+]

Under P_{ν}^{∞}, the cluster of the root vertex is:

- finite almost surely for $\nu \leq \nu_c$
- infinite with ("explicit"!) positive probability for $\nu > \nu_c$.
Clusters in the ν-IIPT: phase transition

Theorem [A. – Ménard, 22+]

Under \mathbb{P}_ν, the cluster of the root vertex is:
- finite almost surely for $\nu \leq \nu_c$
- infinite with ("explicit"!) positive probability for $\nu > \nu_c$.

\[
\mathbb{P}_\nu(\lvert \mathcal{C} \rvert = \infty) \sim \kappa (\nu - \nu_c)^{1/4}
\]

Percolation critical exponent:

On \mathbb{Z}^2, exponent $= 1/8$ [Onsager 1944], [Yang 1952].
Clusters in the ν-IIPT: cluster size exponents

Theorem [A. – Ménard, 22+]

Denote by \mathcal{C} the spin cluster of the root vertex.

<table>
<thead>
<tr>
<th></th>
<th>for $\nu < \nu_c$</th>
<th>for $\nu = \nu_c$</th>
<th>for $\nu > \nu_c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{P}_\infty^\nu (</td>
<td>\mathcal{C}</td>
<td>\geq n)$</td>
<td>$\propto n^{-1/7}$</td>
</tr>
<tr>
<td>$\mathbb{P}_\infty^\nu (</td>
<td>\partial \mathcal{C}</td>
<td>= p)$</td>
<td>$\propto p^{-2}$</td>
</tr>
</tbody>
</table>

Denote by \mathcal{C} the spin cluster of the root vertex.

\mathcal{C} and $\partial \mathcal{C}$ are shown in the diagrams.
The special case $\nu = 1$: UIPT with critical percolation

Recall that for a triangulation T with spin configuration σ, $\mathbb{P}_n^{\nu}\left(\{(T, \sigma)\}\right) = \frac{\nu^m(T, \sigma) \delta_{|e(T)|=3n}}{Z_n}$.

For $\nu = 1$, all configurations (= trig. + spins) have the same probability
\[\Leftrightarrow \text{uniform triangulation of size } n \text{ where spins are independent and } +/\text{ with probability } 1/2. \]
\[\Leftrightarrow \text{uniform triangulation of size } n \text{ with a percolation of parameter } 1/2 \text{ on its vertices.} \]
The special case \(\nu = 1 \): UIPT with critical percolation

Recall that for a triangulation \(T \) with spin configuration \(\sigma \),
\[
P_\nu^n \left(\{(T, \sigma)\} \right) = \frac{\nu^m(T, \sigma) \delta_{|e(T)|=3n}}{Z_n}.
\]

For \(\nu = 1 \), all configurations (= trig. + spins) have the same probability:

\(\Leftrightarrow \) uniform triangulation of size \(n \) where spins are independent and +/- with probability 1/2.

\(\Leftrightarrow \) uniform triangulation of size \(n \) with a percolation of parameter 1/2 on its vertices.

Percolation on the UIPT much studied:

\(p_c = 1/2 + \text{no infinite cluster at } p_c \) [Angel 04]

\(\mathbb{P}_\infty^1 = \text{UIPT with critical percolation} \)

Percolation of the UIPT via its clusters in [Bernardi, Curien, Miermont, 17].
The special case $\nu = 1$: UIPT with critical percolation

Recall that for a triangulation T with spin configuration σ, $\mathbb{P}^\nu_n\left(\{(T, \sigma)\}\right) = \frac{\nu^m(T, \sigma) \delta_{|e(T)|=3n}}{Z_n}$.

For $\nu = 1$, all configurations (= trig. + spins) have the same probability
⇔ uniform triangulation of size n where spins are independent and +/- with probability 1/2.
⇔ uniform triangulation of size n with a percolation of parameter 1/2 on its vertices.

Percolation on the UIPT much studied:
$p_c = 1/2 + \text{no infinite cluster at } p_c$ [Angel 04]
$\mathbb{P}_\infty^1 = \text{UIPT with critical percolation}$

Percolation of the UIPT via its clusters in [Bernardi, Curien, Miermont, 17].

Our results reinforce the idea that:
Ising model in high-temperature (i.e. $\nu < \nu_c$) \sim Critical percolation
Idea of the proof I: Gasket decomposition
Idea of the proof I: Gasket decomposition

Idea of the proof I: Gasket decomposition

Idea of the proof I: Gasket decomposition

Idea of the proof I: Gasket decomposition

Idea of the proof I: Gasket decomposition

Weight of a triangulation with spins $t := \nu^m(t) t|E(t)|$
Idea of the proof I: Gasket decomposition

Weight of a triangulation with spins \(t := \nu^m(t) |E(t)| \)

Total weight of triangulations with spin cluster \(\mathcal{C} \):

\[
\equiv \prod_{f \in \text{Faces}(\mathcal{C})} (\nu t)^{\deg(f)/2} \sum_l \text{Neck}(\deg(f), l) Q_l(\nu, t)
\]
Idea of the proof I: Gasket decomposition

Weight of a triangulation with spins $t := \nu^m(t) \, t|E(t)|$

Total weight of triangulations with spin cluster \mathcal{C}:

$$\equiv \prod_{f \in \text{Faces}(\mathcal{C})} (\nu \, t)^{\deg(f)/2} \sum_{l} \text{Neck}(\deg(f), l) \, Q_l(\nu, t)$$
Idea of the proof I: Gasket decomposition

Weight of a triangulation with spins \(t := \nu^{m(t)} \cdot t|E(t)| \)

Total weight of triangulations with spin cluster \(C \):

\[
\prod_{f \in \text{Faces}(C)} (\nu t)^{\deg(f)/2} \sum_{l} \text{Neck}(\deg(f), l) Q_l(\nu, t)
\]

Triangulations with boundary length \(l \) and \textbf{monochromatic} boundary conditions
Idea of the proof I: Gasket decomposition

Weight of a triangulation with spins $t := \nu^m(t) t |E(t)|$

Total weight of triangulations with spin cluster C:

$$\equiv \prod_{f \in \text{Faces}(C)} (\nu t)^{\deg(f)/2} \sum_l \text{Neck}(\deg(f), l) Q_l(\nu, t)$$

$$\left(\frac{\deg(f) + l - 1}{l}\right) t^{\deg(f)+l}$$
Idea of the proof I: Gasket decomposition

Weight of a triangulation with spins $t := \nu^m(t) t|E(t)|$

Total weight of triangulations with spin cluster \mathcal{C}:

$$\equiv \prod_{f \in \text{Faces}(\mathcal{C})} (\nu t)^{\deg(f)/2} \sum_l \text{Neck}(\deg(f), l) Q_l(\nu, t)$$

$$\equiv \prod_{f \in \text{Faces}(\mathcal{C})} q^{\deg(f)}(\nu, t)$$

\[A\]

\[B\]
Idea of the proof I: Gasket decomposition

Weight of a triangulation with spins \(t := \nu^m(t) \, t|E(t)| \)

Total weight of triangulations with spin cluster \(C \):

\[
\equiv \prod_{f \in \text{Faces}(C)} (\nu \, t)^{\text{deg}(f)/2} \sum_l \text{Neck}(\text{deg}(f), l) \, Q_l(\nu, t)
\]

\[
\equiv \prod_{f \in \text{Faces}(C)} q_{\text{deg}(f)}(\nu, t), \text{ where } q_k(\nu, t) = (\nu \, t)^{k/2} \, 1_{\{k=3\}} + (\nu \, t^3)^{k/2} \cdot \sum_{l \geq 0} \binom{k+l-1}{k-1} \, t^l \, Q_l^+(\nu, t)
\]
Idea of the proof II: Boltzmann maps

Boltzmann map associated to \((q_k) = \)
Probability distribution on the set of rooted planar maps such that:

\[P_{\text{bol}}(m) \propto \prod_{f \in F(m)} q^{\deg(f)} \text{ for any rooted planar map } m \]

\(P_{\text{bol}} \) is admissible if
\[\sum_{m \in \mathcal{M}} \prod_{f \in F(m)} q^{\deg(f)} < \infty \]
Idea of the proof II: Boltzmann maps

Boltzmann map associated to (q_k) =

Probability distribution on the set of rooted planar maps such that:

$$P^{bol}(m) \propto \prod_{f \in F(m)} q_{\deg(f)}$$

for any rooted planar map m

P^{bol} is admissible if $\sum_{m \in M} \prod_{f \in F(m)} q_{\deg(f)} < \infty$

Properties of the random map depends on the properties of (q_k).

[Marckert-Miermont, Miermont-Le Gall, Borot-Bouttier-Guitter, Budd, Bernardi-Curien-Miermont, Marzouk]
Idea of the proof II: Boltzmann maps

Boltzmann map associated to \((q_k) =\)

Probability distribution on the set of rooted planar maps such that:

\[
P_{\text{bol}}(m) \propto \prod_{f \in F(m)} q^{\deg(f)} \quad \text{for any rooted planar map } m
\]

\(P_{\text{bol}}\) is admissible if \(\sum_{m \in \mathcal{M}} \prod_{f \in F(m)} q^{\deg(f)} < \infty\)

Properties of the random map depends on the properties of \((q_k)\).
[Marckert-Miermont, Miermont-Le Gall, Borot-Bouttier-Guitter, Budd, Bernardi-Curien-Miermont, Marzouk]

The Bouttier – Di Francesco – Guitter bijection (a.k.a the BDG bijection).
Idea of the proof II: Boltzmann maps

Boltzmann map associated to (q_k) =

Probability distribution on the set of rooted planar maps such that:

$$\mathbb{P}^{bol}(m) \propto \prod_{f \in F(m)} q_{\deg(f)}$$ for any rooted planar map m

\mathbb{P}^{bol} is admissible if $\sum_{m \in M} \prod_{f \in F(m)} q_{\deg(f)} < \infty$

Properties of the random map depends on the properties of (q_k).
[Marckert-Miermont, Miermont-Le Gall, Borot-Bouttier-Guitter, Budd, Bernardi-Curien-Miermont, Marzouk]

\mathbb{P}^{bol} is critical if $\mathbb{E}^{bol}(|m|) < \infty$ and $\mathbb{E}^{bol}(|m|^2) = \infty$.
Idea of the proof II: Boltzmann maps

Boltzmann map associated to \((q_k) = \)

Probability distribution on the set of rooted planar maps such that:

\[
P^{\text{bol}}(m) \propto \prod_{f \in F(m)} q_{\deg(f)} \quad \text{for any rooted planar map } m
\]

\(P^{\text{bol}}\) is admissible if \(\sum_{m \in \mathcal{M}} \prod_{f \in F(m)} q_{\deg(f)} < \infty\)

Properties of the random map depends on the properties of \((q_k)\).

[Marckert-Miermont, Miermont-Le Gall, Borot-Bouttier-Guitter, Budd, Bernardi-Curien-Miermont, Marzouk]

\(P^{\text{bol}}\) is critical if \(\mathbb{E}^{\text{bol}}(|m|) < \infty\) and \(\mathbb{E}^{\text{bol}}(|m|^2) = \infty\).

- \(P^{\text{bol}}\) is regular critical if \(P^{\text{bol}}(\text{degree of a typical face } > k)\) decreases exponentially.

- \(P^{\text{bol}}\) is non-regular critical if \(P^{\text{bol}}(\text{degree of a typical face } > k)\) decreases polynomially.
Idea of the proof II: Boltzmann maps

Boltzmann map associated to \((q_k) =\) Probability distribution on the set of rooted planar maps such that:

\[P_{\text{bol}}(m) \propto \prod_{f \in F(m)} q_{\text{deg}(f)} \quad \text{for any rooted planar map } m \]

\(P_{\text{bol}} \) is admissible if \(\sum_{m \in M} \prod_{f \in F(m)} q_{\text{deg}(f)} < \infty \)

Properties of the random map depends on the properties of \((q_k)\).
[Marckert-Miermont, Miermont-Le Gall, Borot-Bouttier-Guitter, Budd, Bernardi-Curien-Miermont, Marzouk]

\(P_{\text{bol}} \) is critical if \(E_{\text{bol}}(|m|) < \infty \) and \(E_{\text{bol}}(|m|^2) = \infty \).

- \(P_{\text{bol}} \) is regular critical if \(P_{\text{bol}}(\text{degree of a typical face} > k) \) decreases exponentially.
- \(P_{\text{bol}} \) is non-regular critical if \(P_{\text{bol}}(\text{degree of a typical face} > k) \) decreases polynomially.
Idea of the proof II: Boltzmann maps

Boltzmann map associated to \((q_k) =\)

Probability distribution on the set of rooted planar maps such that:

\[
P^{\text{bol}}(m) \propto \prod_{f \in F(m)} q_{\deg(f)}
\]
for any rooted planar map \(m\)

\(P^{\text{bol}}\) is admissible if \(\sum_{m \in M} \prod_{f \in F(m)} q_{\deg(f)} < \infty\)

Properties of the random map depends on the properties of \((q_k)\).

[Marckert-Miermont, Miermont-Le Gall, Borot-Bouttier-Guitter, Budd, Bernardi-Curien-Miermont, Marzouk]

\(P^{\text{bol}}\) is critical if \(E^{\text{bol}}(|m|) < \infty\) and \(E^{\text{bol}}(|m|^2) = \infty\).

\[
\nu > \nu_c
\]

- \(P^{\text{bol}}\) is regular critical if \(P^{\text{bol}}(\text{degree of a typical face} > k)\) decreases exponentially.

\[
\nu \leq \nu_c
\]

- \(P^{\text{bol}}\) is non-regular critical if \(P^{\text{bol}}(\text{degree of a typical face} > k)\) decreases polynomially.
Idea of the proof III: singularity analysis via rational parametrization

\[Q^+(\nu, t, y) := \sum_{l \geq 0} Q^+_l (\nu, t) y^l, \quad \text{where} \quad Q^+_l := \sum_{(T, \sigma) = l} t^{|T|} \nu^m(T, \sigma) \]

Theorem [A. – Ménard, 22+]

Study of the singular developments of \(Q^+ \) in \(t \) and in \(y \).
Idea of the proof III:
singularity analysis via rational parametrization

\[Q^+(\nu, t, y) := \sum_{l \geq 0} Q^+_l (\nu, t) y^l, \]

where \(Q^+_l := \sum_{(T, \sigma)} t^{|T|} \nu^m(T, \sigma) \)

Theorem [A. – Ménard, 22+]
Study of the singular developments of \(Q^+ \) in \(t \) and in \(y \).

Sketch of the proof:

- Obtained in [AMS 21] an algebraic equation for \(Q^+ \), by Tutte’s invariants method [Bernardi, Bousquet-Mélou].
- We use the rational parametrization (for \(t \)) given in [Bernardi, Bousquet-Mélou] for \(Q_1 \).
- With Maple, we compute a rational parametrization (for \(y \)) for different values of \(\nu \).
- We interpolate the coefficients given in the different parametrizations.
- With the rational parametrizations (and Maple), can compute the asymptotics.

Same strategy used in a slightly different context by [Chen, Turunen]
Idea of the proof III:
singularity analysis via rational parametrization

\[Q^+(\nu, t, y) := \sum_{l \geq 0} Q_l^+ (\nu, t)y^l, \quad \text{where } Q_l^+ := \sum t^{|T|} \nu^m(T, \sigma) \]

\[t^3 = U \frac{(1 + \nu)U - 2}{32\nu^3(1 - 2U)^2} \]

\[y = \frac{8\nu(1 - 2U)}{U((1 + \nu) \cdot U - 2)} \cdot \frac{V(V + 1)}{V^3 + \frac{9(1 + \nu) \cdot U^2 - 2(3 + 10\nu)U + 8\nu}{U((1 + \nu) \cdot U - 2)} \cdot \frac{V^2 - \frac{9(1 + \nu) \cdot U - 2(2\nu + 3)}{U((1 + \nu) \cdot U - 2)} \cdot V - 1}{}} \]

\[\hat{Q}^+(\nu, U, V) = U \cdot \frac{(1 + \nu) \cdot U - 2)(1 - \nu)}{(V + 1)^3 \cdot P(\nu, U)} \]

\[\times \left(\frac{V^3 + \frac{9(1 + \nu) \cdot U^2 - 2(3 + 10\nu) \cdot U + 8\nu}{U \cdot (1 + \nu) \cdot U - 2)} \cdot \frac{V^2 - \frac{9(1 + \nu) \cdot U - 2(2\nu + 3)}{U \cdot ((1 + \nu) \cdot U - 2)} \cdot V - 1}{}} \right) \]

\[\times \left(\frac{V^2 + \frac{5(1 + \nu) \cdot U^2 - 2(3\nu + 2) \cdot U + 2\nu}{U \cdot (1 + \nu) \cdot U - 2)} \cdot 2V - \frac{P(\nu, U)}{U \cdot ((1 + \nu) \cdot U - 2)(1 - \nu))} \right) \]
Idea of the proof IV: Computations + Maple = 💚
We compute explicitely:

$$P_\infty (|\text{cluster}| < \infty) = \sum_{c \in M} P_\infty (\text{cluster} = c)$$
Idea of the proof IV: Computations + Maple = ❤️

We compute explicitly:

\[P_\nu^\infty (|\text{cluster}| < \infty) = \sum_{c \in \mathcal{M}} P_\nu^\infty (\text{cluster} = c) = 1 \quad \text{for } \nu \leq \nu_c. \]
Idea of the proof IV: Computations + Maple = ⋆

We compute explicitely:

\[
\mathbb{P}_\infty^{\nu} (|\text{cluster}| < \infty) = \sum_{c \in \mathcal{M}} \mathbb{P}_\infty^{\nu} (\text{cluster} = c) = 1 \quad \text{for} \quad \nu \leq \nu_c.
\]

For \(\nu > \nu_c \), we obtain an expression with an integral.
Additional results:

We obtain similar tail estimates for the size of the clusters for related models:

- **Ising-weighted Boltzmann triangulations**

 We recover in particular the results obtained in [Bernardi, Curien, Miermont]. Connections with some results obtained in [Borot, Bouttier, Guitter] and [Borot, Bouttier, Duplantier].

- Expected size of the cluster for Ising-weighted triangulations of size \(n \).

\[
\mathbb{E}_n^\nu (|\text{cluster}|) \sim \begin{cases}
 c(\nu) n^{3/4} & \text{for } \nu < \nu_c \\
 c(\nu_c) n^{5/6} & \text{for } \nu = \nu_c \\
 c(\nu) n & \text{for } \nu > \nu_c
\end{cases}
\]

- Geometry of cluster interfaces, via looptrees [Curien, Kortchemski 15].
IV - Link with Liouville Quantum Gravity and KPZ relation
Motivations from statistical physics

Originally the Ising model was studied on regular lattices such as \mathbb{Z}^2 [Ising, Onsager].
Motivations from statistical physics

Originally the Ising model was studied on regular lattices such as \mathbb{Z}^2 [Ising, Onsager].

Why do we study it on random metric spaces?
Motivations from statistical physics

Originally the Ising model was studied on regular lattices such as \mathbb{Z}^2 [Ising, Onsager].

Why do we study it on random metric spaces?

In general relativity, the underlying space is not Euclidian anymore but is a Riemannian space, whose curvature describes the gravity.

One of the main challenge of modern physics is to make two theories consistent:

- quantum mechanics (which governs microscopic scales)
- general relativity (which governs macroscopic scales)
Motivations from statistical physics

Originally the Ising model was studied on regular lattices such as \mathbb{Z}^2 [Ising, Onsager].

Why do we study it on random metric spaces?

In general relativity, the underlying space is not Euclidean anymore but is a Riemannian space, whose curvature describes the gravity.

One of the main challenge of modern physics is to make two theories consistent:

- quantum mechanics (which governs microscopic scales)
- general relativity (which governs macroscopic scales)

One attempt to reconcile these two theories, is the Liouville Quantum gravity which replaces the deterministic Riemannian space by a random metric space.
Liouville Quantum Gravity

For $\gamma \in (0, 2)$, γ-Liouville Quantum Gravity (or γ-LQG) = measure on a surface defined as the “exponential of the Gaussian Free Field” [Polyakov, 1981], [Duplantier, Sheffield 2011].
Liouville Quantum Gravity

For \(\gamma \in (0, 2) \), \(\gamma \)-Liouville Quantum Gravity (or \(\gamma \)-LQG) = measure on a surface defined as the “exponential of the Gaussian Free Field” [Polyakov, 1981], [Duplantier, Sheffield 2011].

Maps without matter converge to \(\sqrt{\frac{8}{3}} \)-LQG [Miermont 13, Le Gall 13, Miller-Sheffield 16+16+17, Holden-Sun 20].

Simulation of the Brownian map by T.Budd

Simulation of a large simple triangulation embedded in the sphere by circle packing. Software CirclePack by K.Stephenson.

Simulation of \(\sqrt{\frac{8}{3}} \)-LQG by T.Budd
Liouville Quantum Gravity

For $\gamma \in (0, 2)$, γ-Liouville Quantum Gravity (or γ-LQG) = measure on a surface defined as the “exponential of the Gaussian Free Field” [Polyakov, 1981], [Duplantier, Sheffield 2011].

Maps without matter converge to $\sqrt{8/3}$-LQG [Miermont 13, Le Gall 13, Miller-Sheffield 16+16+17, Holden-Sun 20].

Other statistical models on random maps are believed to converge towards γ-LQG:
For critical Ising model on maps, $\gamma = \sqrt{3}$ (for non-critical Ising, $\gamma = \sqrt{8/3}$).
Decorated γ-LQG

Statistical models on random maps are believed to converge towards γ-LQG:

- Established for maps without matter, $\gamma = \sqrt{8/3}$.
- Conjectured for critical Ising model on maps, $\gamma = \sqrt{3}$
- Conjectured for non-critical Ising model on maps, $\gamma = \sqrt{8/3}$
Decorated γ-LQG

Statistical models on random maps are believed to converge towards γ-LQG:

- Established for maps without matter, $\gamma = \sqrt{8/3}$.
- Conjectured for critical Ising model on maps, $\gamma = \sqrt{3}$
- Conjectured for non-critical Ising model on maps, $\gamma = \sqrt{8/3}$

What about the clusters? And their boundary?

Recall the behaviour in the Euclidean case:

\[\nu < \nu_c \]

Critical Ising model

CLE$_6$?

CLE$_3$
Decorated γ-LQG

Statistical models on random maps are believed to converge towards γ-LQG:

- Established for maps without matter, $\gamma = \sqrt{8/3}$.
- Conjectured for critical Ising model on maps, $\gamma = \sqrt{3}$
- Conjectured for non-critical Ising model on maps, $\gamma = \sqrt{8/3}$

What about the clusters? And their boundary?

Recall the behaviour in the Euclidean case:

We expect the same behaviour but on the corresponding γ-LQG.

For **critical percolation on uniform triangulations**, proved by [Holden-Sun 20], building on earlier works [Bernardi-Holden-Sun 18] and [Gwynne-Holden-Sun 21].
Decorated γ-LQG and KPZ

The KPZ relation [Knizhnik, Polyakov, Zamolodchikov, 1988], [Duplantier, Sheffield 2011]:

\[
x = \frac{\gamma^2}{4} \Delta^2 + \left(1 - \frac{\gamma^2}{4}\right) \Delta.
\]

links the Eucliden conformal weight x of a fractal to its quantum counterpart Δ.

i.e. We could “transfer” volume and perimeter exponents from **deterministic** to **random** geometry and vice versa.

Decorated γ-LQG and KPZ

The KPZ relation [Knizhnik, Polyakov, Zamolodchikov, 1988], [Duplantier, Sheffield 2011]:

$$x = \frac{\gamma^2}{4} \Delta^2 + \left(1 - \frac{\gamma^2}{4}\right) \Delta.$$

links the Eucliden conformal weight x of a fractal to its quantum counterpart Δ.

i.e. We could “transfer” volume and perimeter exponents from deterministic to random geometry and vice versa.

Exponents for the perimeter $|\partial \mathcal{C}|$:

For $\nu < \nu_c$
KPZ, $\gamma = \sqrt{8/3}$
Dimension of SLE$_6$

For $\nu = \nu_c$
KPZ, $\gamma = \sqrt{3}$
Dimension of SLE$_3$

Exponents for the volume $|\mathcal{C}|$:

For $\nu < \nu_c$
KPZ, $\gamma = \sqrt{8/3}$
Dimension of the gasket of CLE$_6$

For $\nu = \nu_c$
KPZ, $\gamma = \sqrt{3}$
Dimension of the gasket of CLE$_3$
Decorated γ-LQG and KPZ

The KPZ relation [Knizhnik, Polyakov, Zamolodchikov, 1988], [Duplantier, Sheffield 2011]:

$$x = \gamma^2 \Delta^2 + \left(1 - \frac{\gamma^2}{4}\right) \Delta.$$

links the Euclidean conformal weight x of a fractal to its quantum counterpart Δ.

i.e. We could “transfer” volume and perimeter exponents from deterministic to random geometry and vice versa.

Exponents for the perimeter $|\partial \mathcal{C}|$:

- For $\nu < \nu_c$ \textbf{KPZ}, $\gamma = \sqrt{8/3}$ \textbf{Dimension of SLE}_6 \cite{Beffara 08}
- For $\nu = \nu_c$ \textbf{KPZ}, $\gamma = \sqrt{3}$ \textbf{Dimension of SLE}_3

\textbf{All exponents match!}

Exponents for the volume $|\mathcal{C}|$:

- For $\nu < \nu_c$ \textbf{KPZ}, $\gamma = \sqrt{8/3}$ \textbf{Dimension of the gasket of CLE}_6 \cite{Miller, N.Sun, Watson 14}
- For $\nu = \nu_c$ \textbf{KPZ}, $\gamma = \sqrt{3}$ \textbf{Dimension of the gasket of CLE}_3
Perspectives

- Singularity with respect to the UIPT for $\nu \neq 1$.
- Geometry of the map via its clusters (especially for $\nu > \nu_c$).
- Convergence to the Brownian map for $\nu \neq \nu_c$.
Perspectives

- Singularity with respect to the UIPT for $\nu \neq 1$.
- Geometry of the map via its clusters (especially for $\nu > \nu_c$).
- Convergence to the Brownian map for $\nu \neq \nu_c$.
- Volume growth exponent > 4 for $\nu = \nu_c$.
- Find a bijection!
 Bijections with walks in the 1/4-plane for a “mating of trees” approach?
 And extend results in [Gwynne, Holden, Sun, 20]?
Perspectives

• Singularity with respect to the UIPT for $\nu \neq 1$.
• Geometry of the map via its clusters (especially for $\nu > \nu_c$).
• Convergence to the Brownian map for $\nu \neq \nu_c$.
• Volume growth exponent > 4 for $\nu = \nu_c$.

• Find a bijection!
 Bijections with walks in the 1/4-plane for a “mating of trees” approach?
 And extend results in [Gwynne, Holden, Sun, 20]?

Thank you for your attention!