Keywords:
Machine Learning; Landmark Detection; Augmented Reality

Who we are:
Strollhunt is an early stage startup developing a mobile app for locals to explore their city and visitors to explore the city they visit, by playing a fun, social and educational adventure. Our mobile app turns cities into playgrounds, and is designed to make users more present in the real world. We tested a minimum viable product of our app with 136 users and we are now developing the V1.0. We are a team of 3, across product, engineering and design, supported by advisors operating at category-leading European startups.

Who we are looking for:
A driven Computer Vision Engineer Intern (Remote) excited about applying his/her computer vision skills to craft novel city-scale augmented reality experiences.

Responsibilities:
- Lead development of an ‘Automatic Landmark Detection’ feature to work on a smartphone camera
- Lead development of a ‘Marker-Based Augmented Reality’ feature to work on a smartphone camera
- Integrate the features into the iOS and Android applications
- Support or lead engineering on additional tasks, where needed
- Collaborate with product, engineering and design on additional tasks, where needed

Qualifications:
- Capable of leading a computer vision project (Cloud Vision API, ML Kit) without technical guidance
- Experience with JavaScript (iOS and Android applications will be developed in React Native)
- Experience with mobile application development (iOS or Android)

Internship deliverables:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop a functioning Automatic Landmark Detection feature in a cross-platform programming language running on a mobile phone</td>
<td>The feature should be able to consistently detect a set of pre-selected landmarks</td>
<td>Develop a functioning Marker-Based AR feature in a cross-platform programming language running on a mobile phone</td>
</tr>
<tr>
<td>The feature must demonstrate that a photo taken from the mobile phone camera can detect a landmark and return a correct or incorrect answer</td>
<td>The feature should be flexible, scalable and documented, to make it possible to add new landmarks later on</td>
<td>The feature must demonstrate that a virtual object (i.e. an illustration of the landmark detected) can be overlaid on top of a real-world object (i.e. the landmark itself) through the mobile phone camera</td>
</tr>
<tr>
<td>A documentation of the feature must be provided for other software engineers to be able to use the code and build upon it</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information about this internship opportunity:
Lucas Braunschvig
lucas@strollhunt.com
+44 (0) 7 902 826 840