
Towards a Theory of Proofs

of Classical Logic

Habilitation à diriger des recherches

Université Denis Diderot – Paris 7

Lutz Straßburger

Jury : Richard Blute (rapporteur)
Pierre-Louis Curien (rapporteur)
Gilles Dowek
Martin Hyland (rapporteur)
Delia Kesner
Christian Retoré
Alex Simpson (rapporteur)

Soutenance : 7 janvier 2011

Table of Contents

Table of Contents iii

0 Vers une théorie des preuves pour la logique classique v

0.1 Catégories des preuves . vi

0.2 Notations syntaxique pour les preuves . xv

0.3 Taille des preuves . xx

1 Introduction 1

1.1 Categories of Proofs . 1

1.2 Syntactic Denotations for Proofs . 3

1.3 Size of Proofs . 5

2 On the Algebra of Proofs in Classical Logic 7

2.1 What is a Boolean Category ? . 7

2.2 Star-Autonomous Categories . 9

2.3 Some remarks on mix . 12

2.4 ∨-Monoids and ∧-comonoids . 16

2.5 Order enrichment . 27

2.6 The medial map and the nullary medial map 29

2.7 Beyond medial . 45

3 Some Combinatorial Invariants of Proofs in Classical Logic 51

3.1 Cut free nets for classical propositional logic 51

3.2 Sequentialization . 54

3.3 Nets with cuts . 57

3.4 Cut Reduction . 59

3.5 From Deep Inference Derivations to Prenets 63

3.6 Proof Invariants Through Restricted Cut Elimination 67

3.7 Prenets as Coherence Graphs . 70

3.8 Atomic Flows . 71

3.9 From Formal Deductions to Atomic Flows 76

3.10 Normalizing Derivations via Atomic Flows 78

4 Towards a Combinatorial Characterization of Proofs in Classical Logic 85

4.1 Rewriting with medial . 85

4.2 Relation webs . 86

4.3 The Characterization of Medial . 88

iii

iv Table of Contents

4.4 The Characterization of Switch . 93
4.5 A Combinatorial Proof of a Decomposition Theorem 94

5 Comparing Mechanisms of Compressing Proofs in Classical Logic 99

5.1 Deep Inference and Frege Systems . 99
5.2 Extension . 101
5.3 Substitution . 104
5.4 Pigeonhole Principle and Balanced Tautologies 108

6 Open Problems 113

6.1 Full Coherence for Boolean Categories . 113
6.2 Correctness Criteria for Proof Nets for Classical Logic 114
6.3 The Relative Efficiency of Propositional Proof Systems 114

Bibliography 117

0
Vers une théorie des preuves pour la

logique classique

Die Mathematiker sind eine Art Franzosen: Redet man zu ihnen, so übersetzen
sie es in ihre Sprache, und dann ist es alsbald etwas anderes.

Johann Wolfgang von Goethe, Maximen und Reflexionen

Les questions “Qu’est-ce qu’une preuve ?” et “Quand deux preuves sont-elles identiques ?”
sont fondamentales pour la théorie de la preuve. Mais pour la logique classique proposi-
tionnelle — la logique la plus répandue — nous n’avons pas encore de réponse satisfaisante.

C’est embarrassant non seulement pour la théorie de la preuve, mais aussi pour l’infor-
matique, où la logique classique joue un rôle majeur dans le raisonnement automatique et
dans la programmation logique. De même, l’architecture des processeurs est fondée sur la
logique classique. Tous les domaines dans lesquels la recherche de preuve est employée peu-
vent bénéficier d’une meilleure compréhension de la notion de preuve en logique classique,
et le célèbre problème NP-vs-coNP peut être réduit à la question de savoir s’il existe une
preuve courte (c’est-à-dire, de taille polynomiale) pour chaque tautologie booléenne [CR79].

Normalement, les preuves sont étudiées comme des objets syntaxiques au sein de sys-
tèmes déductifs (par exemple, les tableaux, le calcul des séquents, la résolution, . . .). Ici,
nous prenons le point de vue que ces objets syntaxiques (également connus sous le nom
d’arbres de preuve) doivent être considérés comme des représentations concrètes des objets
abstraits que sont les preuves, et qu’un tel objet abstrait peut être représenté par un arbre
en résolution ou dans le calcul des séquents.

Le thème principal de ce travail est d’améliorer notre compréhension des objets abstraits
que sont les preuves, et cela se fera sous trois angles différents, étudiés dans les trois parties
de ce mémoire : l’algèbre abstraite (chapitre 2), la combinatoire (chapitres 3 et 4), et la
complexité (chapitre 5).

v

vi 0. Vers une théorie des preuves pour la logique classique

0.1 Catégories des preuves

Lambek [Lam68, Lam69] déjà observait qu’un traitement algébrique des preuves peut être
fourni par la théorie des catégories. Pour cela, il est nécessaire d’accepter les postulats
suivants sur les preuves :

• pour chaque preuve f de conclusion B et de prémisse A (notée f : A → B) et pour
chaque preuve g de conclusion C et de prémisse B (notée g : B → C) il existe une
unique preuve g ◦ f de conclusion C et de prémisse A (notée g ◦ f : A→ C),

• cette composition des preuves est associative,

• pour chaque formule A il existe une preuve identité 1A : A → A telle que pour tout
f : A→ B on a f ◦ 1A = f = 1B ◦ f .

Sous ces hypothèses, les preuves sont les flèches d’une catégorie dont les objets sont les
formules de la logique. Il ne reste alors plus qu’à fournir les axiomes adéquats pour la
“catégorie des preuves”.

Il semble que de tels axiomes soient particulièrement difficiles à trouver dans le cas de la
logique classique [Hyl02, Hyl04, BHRU06]. Pour la logique intuitionniste, Prawitz [Pra71]
a proposé la notion de normalisation des preuves pour l’identification des preuves. On a
vite découvert que cette notion d’identité cöıncidait avec la notion d’identité determinée
par les axiomes d’une catégorie cartésienne fermée (voir par exemple [LS86]). En fait,
on peut dire que les preuves de la logique intuitionniste sont les flèches de la catégorie
(bi-)cartésienne fermée libre générée par l’ensemble des variables propositionnelles. Une
autre manière de représenter les flèches de cette catégorie est d’utiliser les termes du λ-
calcul simplement typé : la composition des flèches est la normalisation des termes. Cette
observation est bien connue, sous le nom de correspondance de Curry-Howard [How80] (voir
aussi [Sta82, Sim95]).

Dans le cas de la logique linéaire, on a une telle relation entre les preuves et les flèches
des catégories étoile-autonomes [Bar79, Laf88, See89]. Dans le calcul des séquents pour
la logique linéaire, deux preuves sont alors identifiées lorsque l’on peut transformer l’une
en l’autre par des permutations triviales de règles [Laf95b]. Pour la logique linéaire mul-
tiplicative, cela cöıncide avec les identifications induites par les axiomes d’une catégorie
étoile-autonome [Blu93, SL04]. Par conséquent, nous pouvons dire qu’une preuve en logique
linéaire multiplicative est une flèche de la catégorie étoile-autonome libre générée par les
variables propositionnelles [BCST96, LS06, Hug05].

Mais pour la logique classique, il n’existe pas une telle catégorie des preuves qui soit
bien acceptée. La raison principale en est que si nous partons d’une catégorie cartésienne
fermée et que nous ajoutons une négation involutive (soit un isomorphisme naturel entre A
et la double négation de A), nous obtenons l’effondrement dans une algèbre de Boole, c’est-
à-dire que toutes les preuves f, g : A→ B sont identifiées. Pour chaque formule il y aurait
donc au plus une preuve (voir par exemple [LS86, p.67] ou l’appendice de [Gir91] pour
plus de détails). De la même manière, partant d’une catégorie étoile-autonome, ajouter
des transformations naturelles A → A ∧ A et A → t, c’est-à-dire les preuves des règles
d’affaiblissement et de contraction, induit l’effondrement.

Il existe plusieurs possibilités pour gérer ce problème. De toute évidence, nous de-
vons abandonner certaines des équations que nous aimerions utiliser sur les preuves de la

0.1. Catégories des preuves vii

logique classique. Mais lesquelles faire disparâıtre ? Il y a essentiellement trois approches
différentes, chacune ayant ses avantages et ses inconvénients.

(i) La première dit que les axiomes de la catégorie cartésienne fermée sont indispensables,
et sacrifie au lieu de cela la dualité entre ∧ et ∨. La motivation de cette approche est
que le système de preuve pour la logique classique peut maintenant être considéré
comme une extension du λ-calcul, et que la notion de normalisation ne change pas.
On obtient alors un calcul sur les termes de preuve, nommément le λµ-calcul de Parigot
[Par92] et ses variantes (par exemple, [CH00]) ainsi qu’une sémantique dénotationnelle
[Gir91]. Il y a dans ce cadre une théorie des catégories [Sel01] et des réseaux de preuve
[Lau99, Lau03], fondée sur celle des réseaux pour la logique linéaire multiplicative
exponentielle (MELL).

(ii) La deuxième approche considère la symétrie parfaite entre ∧ et ∨ comme un aspect
essentiel de la logique booléenne, qui ne peut pas être supprimé. Par conséquent,
les axiomes des catégories cartésiennes fermées et la relation étroite avec le λ-calcul
doivent être sacrifiés. Plus précisément, la conjonction ∧ n’est plus un produit cartésien,
mais un simple produit tensoriel. Ainsi, la structure cartésienne fermée est remplacée
par une structure étoile-autonome. Toutefois, l’axiomatisation précise est beaucoup
moins claire que dans la première approche (voir [FP04c, LS05a, McK05a, Str07b,
Lam07]).

(iii) La troisième approche maintient la symétrie parfaite entre ∧ et ∨, ainsi que les pro-
priétés du produit cartésien pour ∧. Ce qui doit être abandonné est alors la propriété
de clôture, c’est-à-dire qu’il n’y a plus de bijection entre les des preuves de

A ⊢ B ⇒ C et A ∧B ⊢ C ,

Cette approche est étudiée dans [DP04, CS09].

Dans ce mémoire, nous nous concentrons sur l’approche (ii), qui sera développée en
détail dans le chapitre 2 avec une attention particulière pour la flèche médial

mA,B,C,D : (A ∧B) ∨ (C ∧D)→ (A ∨ C) ∧ (B ∨D) (1)

qui est inspirée par l’inférence profonde (le système SKS [BT01]) pour la logique classique.
Certains des résultats de ce chapitre sont maintenant présentés.

Définition 0.1.1. Une B1-catégorie est une catégorie étoile-autonome dans laquelle chaque
objet A possède un ∨-monöıde commutatif et un ∧-comonöıde cocommutatif, c’est-à-dire
qu’il y a des flèches ∇A : A ∨A→ A, ∐A : f → A, ∆A : A→ A ∧A et ΠA : A→ t telles que

A ∨ [A ∨A]

α̌A,A,A

A ∨A
A∨∇A

A

∇A

[A ∨A] ∨A
∇A∨A

A ∨A
∇A

A ∨A

σ̌A,A A

∇A

A ∨A
∇A

A ∨ f

A∨∐A A

ˇ̺A

A ∨A
∇A

(2)

viii 0. Vers une théorie des preuves pour la logique classique

et

A ∧A
∆A∧A

(A ∧A) ∧A

α̂−1
A,A,AA

∆A

A ∧A
∆A

A ∧ (A ∧A)
A∧∆A

A ∧A

σ̂−1
A,AA

∆A

A ∧A
∆A

A ∧A

A∧ΠAA

∆A

A ∧ t
ˆ̺−1
A

(3)

commute.

Définition 0.1.2. Une B1-catégorie est dite uniquement mixée si Πf = ∐t.

Dans une B1-catégorie uniquement mixée il y a une unique flèche canonique mixA,B : A∧

B → A ∨B telle que

A ∧B
mixA,B

A ∨B

σ̌A,B

B ∧A

σ̂A,B

B ∨A
mixB,A

(mix-σ̂)

et

A ∧ (B ∧ C)
A∧mixB,C

A ∧ [B ∨ C]
mixA,B∨C

sA,B,C

A ∨ [B ∨ C]

α̌A,B,C

(A ∧B) ∧ C

α̂A,B,C

(A ∧B) ∨ C
mixA∧B,C

[A ∨B] ∨ C
mixA,B∨C

(mix-α̂)

commute.
La naturalité du mix, c’est-à-dire la commutativité de

A ∧B
mixA,B

A ∨B

f∨g

C ∧D

f∧g

C ∨D
mixC,D

(4)

pour toutes flèches f : A → C et g : B → D, détermine une flèche f ∨∧ g : A ∧ B → C ∨D.
Ensuite, pour chaque f, g : A→ B on peut définir

f + g = ∇B ◦ (f ∨∧ g) ◦∆A : A→ B .

Il résulte de la (co)-associativité et de la (co)-commutativité de ∆ et ∇, avec la naturalité
de mix, que l’opération + sur les flèches est associative et commutative. Cela nous donne
pour Hom(A,B) une structure de semi-groupe commutatif.

Notez que généralement (f + g)h n’est pas égal à fh+ gh.

Définition 0.1.3. Soit C une B1-catégorie uniquement mixée. Alors C est dite idempotente
si pour tout A et B, le semi-groupe sur Hom(A,B) est idempotent, c’est-à-dire que pour
chaque f : A→ B nous avons f + f = f .

Dans une B1-catégorie idempotente le semi-groupe sur Hom(A,B) est en fait un semi-
treillis, défini tel que f ≤ g si et seulement si f + g = g.

0.1. Catégories des preuves ix

Définition 0.1.4. Une B2-catégorie est une B1-catégorie qui vérifie les équations

Πt = 1t : t→ t (B2a)

et
A ∧B

∆A∧∆B

A ∧A ∧B ∧B
A∧σ̂A,B∧B

A ∧B ∧A ∧B

∆A∧B

(B2c)

pour tous les objets A et B.

Le théorème suivant résume les propriétés des B2-catégories.

Théorème 0.1.1. Dans une B2-catégorie, les flèches α̂A,B,C , σ̂A,B, ˆ̺A, λ̂A, ∆A, ΠA, ΠB
A8,

et ΠA
8B, sont toutes des morphismes de ∧-comonöıdes, et les morphismes de ∧-comonöıdes

sont stables par ∧. Dualement, les flèches α̌A,B,C , σ̌A,B, ˇ̺A, λ̌A, ∇A, ∐
A, ∐B

A8, et ∐
A
8B,

sont toutes des morphismes de ∨-monöıdes, et les morphismes de ∨-monöıdes sont stables
par ∨.

Définition 0.1.5. On dit qu’une B2-catégorie C est médialisée si pour tous les objets A,
B, C, et D il existe une flèche médial mA,B,C,D : (A ∧B) ∨ (C ∧D)→ [A ∨C] ∧ [B ∨D] avec
les propriétés suivantes :

• elle est naturelle en A, B, C et D,

• elle est auto-duale, c’est-à-dire que

[A ∨ C] ∧ [B ∨D]
mA,B,C,D

(A ∧B) ∨ (C ∧D)

∼=

(D̄ ∧ B̄) ∨ (C̄ ∧ Ā)

∼=

[D̄ ∨ C̄] ∧ [B̄ ∨ Ā]mD̄,B̄,C̄,Ā

(5)

commute, où les flèches verticales sont les isomorphismes canoniques induits par la
définition des catégories étoile-autonomes,

• et elle vérifie l’équation

A ∨B
∆A∨∆B

(A ∧A) ∨ (B ∧B)
mA,A,B,B

[A ∨B] ∧ [A ∨B]

∆A∨B

(B3c)

pour tous les objets A et B.

L’équation suivante est une conséquence de (B3c) et de l’auto-dualité du médial.

(A ∧B) ∨ (A ∧B)
mA,B,A,B

[A ∨A] ∧ [B ∨B]

∇A∧∇B

A ∧B

∇A∧B

(B3c′)

x 0. Vers une théorie des preuves pour la logique classique

Théorème 0.1.2. Soit C une B2-catégorie médialisée. Alors

(i) Les flèches qui préservent la ∧-comultiplication sont stables par ∨, et dualement, les
flèches qui préservent la ∨-multiplication sont stables par ∧.

(ii) Pour tous les flèches A
f
→ C, A

g
→ D, B

h
→ C, et B

k
→ D, on a

[〈f, g〉, 〈h, k〉] = 〈[f, h], [g, k]〉 : A ∨B → C ∧D .

(iii) Pour tous les objets A, B, C, et D,

mA,B,C,D =
[〈
∐C

A8 ◦ΠB
A8,∐

D
B8 ◦ΠA

8B

〉
,
〈
∐A

8C ◦ΠD
C8,∐

B
8D ◦ΠC

8D

〉]

=
〈 [
∐C

A8 ◦ΠB
A8,∐

A
8C ◦ΠD

C8

]
,
[
∐D

B8 ◦ΠA
8B,∐

B
8D ◦ΠC

8D

] 〉

(iv) Pour tous les objets A, B, C, et D, le diagramme suivant commute :

[(A ∧B) ∨ (C ∧D)] ∧ [(A ∧B) ∨ (C ∧D)]

[ΠB
A8

∨ΠD
C8

]∧[ΠA
8B

∨ΠC
8D

]

(A ∧B) ∨ (C ∧D)

∆(A∧B)∨(C∧D)

[A ∨ C] ∧ [B ∨D]

∇[A∨C]∧[B∨D]

([A ∨ C] ∧ [B ∨D]) ∨ ([A ∨ C] ∧ [B ∨D])

(∐C
A8

∧∐D
B8

)∨(∐A
8C

∧∐B
8D

)

(6)

(v) La diagonale horizontale de (6) est égale à mA,B,C,D.

Définition 0.1.6. Une B2-catégorie C est nullairement médialisée s’il existe une flèche
ňm : t ∨ t→ t (appelée médial nullaire) telle que pour tous les objets A, B :

A ∨B
ΠA∨ΠB

t ∨ t
ňm

t

ΠA∨B

(B3b)

Définition 0.1.7. Une B4-catégorie est une B2-catégorie médialisée et nullairement média-
lisée, telle que

Πt∨t = ňm = ∇t : t ∨ t→ t (B3a)

et

(A ∧B) ∨ (C ∧D)

mA,B,C,D

(B ∧A) ∨ (D ∧ C)
σ̂A,B∨σ̂C,D

[A ∨ C] ∧ [B ∨D]
σ̂A∨C,B∨D

[B ∨D] ∧ [A ∨ C]

mB,A,D,C (m-σ̂)

(A ∧ (B ∧ C)) ∨ (D ∧ (E ∧ F))

mA,B∧C,D,E∧F

((A ∧B) ∧ C) ∨ ((D ∧ E) ∧ F)
α̂A,B,C∨α̂D,E,F

[A ∨D] ∧ [(B ∧ C) ∨ (E ∧ F)]

[A∨D]∧mB,C,E,F

[(A ∧B) ∨ (D ∧ E)] ∧ [C ∨ F]

mA∧B,C,D∧E,F

[A ∨D] ∧ ([B ∨ E] ∧ [C ∨ F])
α̂A∨D,B∨E,C∨F

([A ∨D] ∧ [B ∨ E]) ∧ [C ∨ F]

mA,B,D,E∧[C∨F]

(m-α̂)

0.1. Catégories des preuves xi

[(A ∧B) ∨ (C ∧D)] ∧ E

mA,B,C,D∧E

(A ∧B) ∨ (C ∧D ∧ E)
sA∧B,C∧D,E

[A ∨ C] ∧ [B ∨D] ∧ E
[A∨C]∧sB,D,E

[A ∨ C] ∧ [B ∨ (D ∧ E)]

mA,B,C,D∧E (m-s)

commutent.

Théorème 0.1.3. Toute B4-catégorie est uniquement mixée, et dans toute B4-catégorie
les morphismes de ∨-monöıdes ainsi que les morphismes de ∧-comonöıdes cocommutatifs
sont stables par ∨ et ∧. En outre, les flèches mA,B,C,D et ňm et n̂m, ainsi que les flèches

α̂A,B,C , σ̂A,B, ˆ̺A, λ̂A et α̌A,B,C , σ̌A,B, ˇ̺A, λ̌A, ainsi que sA,B,C et mixA,B sont toutes des
morphismes de ∨-monöıdes et de ∧-comonöıdes.

Corollaire 0.1.8. Dans une B4-catégorie, le diagramme

A ∧B ∧ C ∧D
A∧σ̂B,C∧D

A ∧ C ∧B ∧D

mixA,C∧mixB,D

(A ∧B) ∨ (C ∧D)

mixA∧B,C∧D

[A ∨ C] ∧ [B ∨D]
mA,B,C,D

(m-mix)

commute.

Évidemment, il est possible de se donner de nouveaux diagrammes, tels que (m-mix),
et de se demander s’ils commutent, comme par exemple le suivant, proposé par [McK05b] :

(A ∧ f) ∨ (B ∧ C)
mA,f ,B,C

[A ∨B] ∧ [f ∨ C]

[A∨B]∧λ̌C

(A ∧ t) ∨ (B ∧ C)

(A∧Πf)∨(B∧C)

[A ∨B] ∧ C

sA,B,C

A ∨ (B ∧ C)

ˆ̺A∨(B∧C)

(7)

On peut montrer que (7) est équivalent à :

(A ∧B) ∨ (C ∧D)

mA,B,C,D A ∨B ∨ (C ∧D)

mixA,B∨(C∧D)

[A ∨ C] ∧ [B ∨D]
t̂A,C,B,D

(mix-m-̂t)

xii 0. Vers une théorie des preuves pour la logique classique

Voici deux autres exemples qui ne contiennent pas les unités :

[(A ∧B) ∨ (C ∧D)] ∧ [E ∨ F]

sA∧B,C∧D,E∧F

[A ∨ C] ∧ [B ∨D] ∧ [E ∨ F]
mA,B,C,D∧(E∨F)

(A ∧B) ∨ (C ∧D ∧ [E ∨ F])

(A∧B)∨ťC,D,E,F

([A ∨ C] ∧ F) ∨ (E ∧ [B ∨D])

ťA∨C,B∨D,E,F

(A ∧B) ∨ (C ∧ F) ∨ (E ∧D)
m̌2

A,B,C,F,E,D

[A ∨ C ∨ E] ∧ [F ∨B ∨D]

mA∨C,F,E,B∨D

(m -̌t-s)

[A′ ∨A] ∧ [B′ ∨B] ∧ [C ′ ∨ C] ∧ [D′ ∨D]

p

([A′ ∨B′] ∧ [C ′ ∨D′]) ∨ (D ∧ C) ∨ (B ∧A)

m̌2
A′∨B′,C′∨D′,D,C,B,A

([A′ ∨A] ∧ [B′ ∨ C]) ∨ (B ∧D′) ∨ (D ∨ C ′)

q

[A′ ∨B′ ∨B ∨D] ∧ [D′ ∨ C ′ ∨ C ∨A]

t̂A′∨B′,B∨D,D′∨C′,C∨A

[A′ ∨A ∨B ∨D] ∧ [D′ ∨ C ′ ∨B′ ∨ C]

m̌2
A′∨A,B′∨C,B,D′,D,C′

A′ ∨B′ ∨ ([B ∨D] ∧ [D′ ∨ C ′]) ∨ C ∨A

t̂A′∨A,B∨D,D′∨C′,B′∨C

(m̌2-s-m̌2)

où p et q sont les flèches canoniques déterminées par la structure des catégories étoile-
autonomes. On peut facilement démontrer la proposition suivante.

Proposition 0.1.9. Dans toute B4-catégorie l’équation (7) est vraie si et seulement si
l’équation (mix-m-̂t) est vraie.

Définition 0.1.10. Une B5-catégorie est une B4-catégorie qui vérifie les équations (mix-m-̂t),
(m-̌t-s), et (m̌2-s-m̌2) pour tous les objets.

Lemme 0.1.11. Dans une B5-catégorie l’équation suivante est vraie pour tous les objets

0.1. Catégories des preuves xiii

A, A′, B, B′, C, C ′, D, et D′ :

[A′ ∨A] ∧ [B′ ∨B] ∧ [C ′ ∨ C] ∧ [D′ ∨D]

t̂A′,A,B′,B
∧t̂C′,C,D′,D

[A′ ∨A] ∧ [B′ ∨ (B ∧ C ′) ∨ C] ∧ [D′ ∨D]

(A′
∨A)∧t̂B′,B,C′,C

∧(D′
∨D)

[A′ ∨B′ ∨ (A ∧B)] ∧ [C ′ ∨D′ ∨ (C ∧D)]

t̂A′∨B′,A∧B,C′∨D′,C∧D

[A′ ∨B′ ∨ (B ∧ C ′) ∨ C ∨A] ∧ [D′ ∨D]

mixA′∨A,B′∨(B∧C′)∨C
∧[D′

∨D]

([A′ ∨B′] ∧ [C ′ ∨D′]) ∨ (D ∧ C) ∨ (B ∧A)

([A′
∨B′]∧[C′

∨D′])∨mD,C,B,A

A′ ∨B′ ∨ (B ∧ [D′ ∨D] ∧ C ′) ∨ C ∨A

sA′∨B′∨C∨A,B∧C′,D′∨D

([A′ ∨B′] ∧ [C ′ ∨D′]) ∨ ([D ∨B] ∧ [C ∨A])

mA′∨B′,C′∨D′,D∨B,C∨A

A′ ∨B′ ∨ (B ∧D′) ∨ (D ∧ C ′) ∨ C ∨A

A′
∨B′

∨ťB,D′,D,C′∨C∨A

[A′ ∨B′ ∨B ∨D] ∧ [D′ ∨ C ′ ∨ C ∨A]

t̂A′∨B′,B∨D,D′∨C′,C∨A

A′ ∨B′ ∨ ([B ∨D] ∧ [D′ ∨ C ′]) ∨ C ∨A

A′
∨B′

∨mB,D′,D,C′∨C∨A

Définition 0.1.12. On dit qu’une B1-catégorie est plate si pour tout objet A, les flèches
ΠA, ∐A, ∆A et ∇A sont toutes des morphismes de ∨-monöıdes et de ∧-comonöıdes.

Définition 0.1.13. Une B1-catégorie est contractile si le diagramme suivant commute pour
tous les objets A.

t
ı̌A

Ā ∨A

∆Ā∨A

(Ā ∨A) ∧ (Ā ∨A)

t̂

Ā ∨A

ı̌A

Ā ∨ (A ∧ Ā) ∨A
Ā∨̂ıA∨A

(8)

Théorème 0.1.4. Dans une B5-catégorie plate et contractile, on a

1A + 1A = 1A

pour tous les objets A.

xiv 0. Vers une théorie des preuves pour la logique classique

La démonstration utilise la commutativité des deux diagrammes suivants

t
ı̌A∧̌ıA∧̌ıA∧̌ıA

ı̌A∧̌ıA∧̌ıA

ı̌A∧̌ıA

[Ā ∨A] ∧ [Ā ∨A] ∧ [Ā ∨A] ∧ [Ā ∨A]

t̂Ā,A,Ā,A

[Ā ∨A] ∧ [Ā ∨A] ∧ [Ā ∨A]

t̂Ā,A,Ā,A

ı̌A

[Ā ∨A] ∧ [Ā ∨ (A ∧ Ā) ∨A] ∧ [Ā ∨A]

mixĀ∨A,Ā∨(A∧Ā)∨A

[Ā ∨A] ∧ [Ā ∨ (A ∧ Ā) ∨A]

mix

ı̌A

ı̂A

[Ā ∨ Ā ∨ (A ∧ Ā) ∨A ∨A] ∧ [Ā ∨A]

sĀ∨Ā∨A∨A,A∧Ā,Ā∨A

[Ā ∨A] ∧ [Ā ∨A]

mixĀ∨A,Ā∨A

Ā ∨ Ā ∨ (A ∧ Ā) ∨A ∨A
ı̌A

ı̌A

ı̂A

Ā ∨ Ā ∨ (A ∧ [Ā ∨A] ∧ Ā) ∨A ∨A

ťA,Ā,A,Ā

Ā ∨ Ā ∨A ∨A

∇Ā∨∇A

Ā ∨ Ā ∨ (A ∧ Ā) ∨A ∨A

∇Ā∨∇A

ı̂A
Ā ∨ Ā ∨ (A ∧ Ā) ∨ (A ∧ Ā) ∨A ∨A

mA,Ā,A,Ā

∇A∧Ā

Ā ∨A Ā ∨ (A ∧ Ā) ∨A
ı̂A

Ā ∨ Ā ∨ ([A ∨A] ∧ [Ā ∨ Ā]) ∨A ∨A
∇Ā∨(∇A∧∇Ā)∨∇A

∇A∧∇Ā

et

t
ı̌A∧̌ıA∧̌ıA∧̌ıA

ı̌A

ı̌(A∧A)∨(A∧A)

[Ā ∨A] ∧ [Ā ∨A] ∧ [Ā ∨A] ∧ [Ā ∨A]

t̂Ā,A,Ā,A∧t̂Ā,A,Ā,A

[Ā ∨ Ā ∨ (A ∧A)] ∧ [Ā ∨ Ā ∨ (A ∧A)]

t̂Ā∨Ā,A∧A,Ā∨Ā,A∧A

Ā ∨A

∆Ā∨∆A

([Ā ∨ Ā] ∧ [Ā ∨ Ā]) ∨ (A ∧A) ∨ (A ∧A)

mA,A,A,A
(∇Ā∧∇Ā)∨∇A∧A

(Ā ∧ Ā) ∨ (A ∧A)

mĀ,Ā,A,A

([Ā ∨ Ā] ∧ [Ā ∨ Ā]) ∨ ([A ∨A] ∧ [A ∨A])

mĀ∧Ā,Ā∨Ā,A∨A,A∨A

(∇Ā∧∇Ā)∨(∇A∧∇A)

[Ā ∨A] ∧ [Ā ∨A]

t̂Ā,A,Ā,A

[Ā ∨ Ā ∨A ∨A] ∧ [Ā ∨ Ā ∨A ∨A]

t̂Ā∧Ā,A∨A,Ā∨Ā,A∨A

[∇Ā∨∇A]∧[∇Ā∨∇A]

Ā ∨A

ı̌A

Ā ∨ (A ∧ Ā) ∨A
ı̂A

Ā ∨ Ā ∨ ([A ∨A] ∧ [Ā ∨ Ā]) ∨A ∨A
∇Ā∨(∇A∧∇Ā)∨∇A

ainsi que le Lemme 0.1.11. L’idée de cette preuve est illustrée dans la figure 1.

Corollaire 0.1.14. Soit A un ensemble de variables propositionnelles et C la B5-catégorie
plate et contractile libre générée par A . Alors C est idempotente.

0.2. Notations syntaxique pour les preuves xv

Ā ∨ A
=

• • • •

• •

Ā ∨ A

=

• • • • • •

• • • •

• •

Ā ∨ A

=

• • • • • • • •

• • • • • • • •

• • • •

Ā ∨ A

‖

Ā ∨ A
=

• •

• • • •

• • • •

Ā ∨ A

= • • • •

• • • •

Ā ∨ A

=

• • • • • • • •

• • • • • • • •

• • • •

Ā ∨ A

Figure 1: Idée de la démonstration du théorème 0.1.4

0.2 Notations syntaxique pour les preuves

Voyons maintenant ce qui arrive lorsque l’on aborde le problème de l’identité des preuves
par l’autre bout, celui de la syntaxe. Pour expliquer le problème nous utilisons ici le calcul
des séquents, mais ce qui suit s’applique aussi bien à la déduction naturelle. Il est bien
connu que les problèmes commencent lorsqu’une preuve contient des coupures et doit donc
être normalisée. On représente cette situation de la manière suivante :

π1

⊢ Γ, A

π2

⊢ Ā,∆
cut −−−−−−−−−−−−−−−−−−−−−−−−

⊢ Γ,∆

On emploie ici la notation monolatère pour les séquents, où une expression comme A
pourrait être une formule annotée par des informations de polarité, au lieu d’une simple
formule. Les noms π1 et π2 représentent les preuves qui ont conduit à ces séquents : ils
pourraient être des arbres de preuve du calcul des séquents, des termes de preuve ou encore
des réseaux de preuve. De même, l’expression Ā est la négation formelle de A; cette
notation pourrait être utilisée par exemple dans un contexte de déduction naturelle comme
le λµ-calcul [Par92], où la “coupure” ci-dessus ne serait qu’une substitution d’un terme dans

xvi 0. Vers une théorie des preuves pour la logique classique

un autre. La négation Ā indique qu’il s’agit d’une entrée, d’une λ-variable. En tout cas, les
propositions suivantes devraient être considérées comme des caractéristiques souhaitables :

1. Ā est la négation logique de A,

2. ¯̄A est structurellement équivalente (isomorphe) à A.

Ces symétries permettraient par exemple d’obtenir la dualité structurelle de De Morgan. Le
deuxième point n’est pas valide, par exemple, lorsque la négation est un symbole introduit,
comme dans le cas du calcul des séquents bilatère ou le λµ-calcul (pour lequel le premier
point n’est pas valide non plus).

Le problème de l’élimination des coupures (ou normalisation) est contenu dans deux
cas, appelés affaiblissement-affaiblissement et contraction-contraction dans [Gir91], qui ici
sera nommé weak-weak et cont-cont :

π1

⊢ Γ
weak −−−−−−−−−

⊢ Γ, A

π2

⊢ ∆
weak −−−−−−−−−

⊢ Ā,∆
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−− and

⊢ Γ,∆

π1

Γ, A,A
cont −−−−−−−−−

⊢ Γ, A

π2

⊢ Ā, Ā,∆
cont −−−−−−−−−−−−

⊢ Ā,∆
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

⊢ Γ,∆

Il est bien connu [GLT89, Gir91] que les deux réductions ne peuvent être atteintes sans
choisir entre les deux côtés, et que le résultat est très dépendant de ce choix.

La façon la plus standard de résoudre ce dilemme consiste à introduire une asymétrie
dans le système (si elle n’est pas déjà là), à l’aide d’informations de polarité sur les formules,
et en les utilisant lors du choix. Historiquement, les premières approches par polarisation
ont été étroitement liées à la dualité prémisse-conclusion dont nous avons parlé. Une rai-
son pour cela est qu’elles sont issues de traductions par double négation de la logique
classique dans la logique intuitionniste. Si une preuve classique peut être transformée en
une preuve intuitionniste, alors il y aura dans chaque séquent de cette preuve une formule
spéciale : la conclusion du séquent intuitionniste correspondant. Cette approche corre-
spond au point (i) mentionné ci-dessus, comme cela se fait, par exemple, dans le λµ-calcul.
L’asymétrie gauche-droite est également le fondement de la sémantique des jeux de Co-
quand [Coq95], où elle se traduit par la présence de deux joueurs. Dans [Gir91] Girard
présente le système LC, où les séquents ont au plus une formule spéciale. Non seulement y
a-t-il autant de formules positives que négatives — en nombre arbitraire — mais en plus
il y a un bénitier, qui est vide ou contient une seule formule, qui doit être positive. Puis,
lorsqu’un choix doit être fait pendant la normalisation, la présence ou l’absence de formule
positive dans le bénitier est utilisée en complément de l’information de polarité.

Cette direction de recherche a été extrêmement fructueuse. Elle a engendré une ana-
lyse systématique des traductions de la logique classique dans la logique linéaire [DJS97].
En outre, l’approche de LC aux polarités a été étendu à la formulation de la logique po-
larisée LLP [Lau02]. Celle-ci a l’avantage d’offrir une théorie des réseaux plus simple (par
exemple, en ce qui concerne les bôıtes) et de produire des traductions particulièrement
claires de logiques plus traditionnelles. Cette nouvelle syntaxe de réseaux de preuve a été
utilisée pour représenter les preuves de LC [Lau02] et le λµ-calcul [Lau03].

0.2. Notations syntaxique pour les preuves xvii

id −−−−−−−−−−−−−−−−

{ a
⌢
ā } ⊲ a, ā

t −−−−−−−−−−−−

{ t
⌢
t } ⊲ t

P ⊲ A,B,Γ
∨ −−−−−−−−−−−−−−−
P ⊲ A ∨B,Γ

P ⊲ Γ, A Q ⊲ B,∆
∧ −−−−−−−−−−−−−−−−−−−−−−−−−
P ⊕Q ⊲ Γ, A ∧B,∆

P ⊲ Γ
weak −−−−−−−−−−

P ⊲ A,Γ

P ⊲ A,A,Γ
cont −−−−−−−−−−−−−−

P ′ ⊲ A,Γ

P ⊲ Γ, A,B,∆
exch −−−−−−−−−−−−−−−−−

P ⊲ Γ, B,A,∆

P ⊲ Γ Q ⊲ ∆
mix −−−−−−−−−−−−−−−−−−

P ⊕Q ⊲ Γ,∆

Figure 2: Traduction du calcul des séquents dans les réseaux

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, a, a

id −−−−−−−−
⊢ ā, a

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a, a ∧ ā, a ∧ ā, ā, a

exch5 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, ā, a ∧ ā, a ∧ ā, a, a

cont3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, a

→

id −−−−−−−−
⊢ ¯,

weak −−−−−−−−−−
⊢ ¯, ,

id −−−−−−−−
⊢ ¯,

id −−−−−−−−
⊢ ¯,

weak −−−−−−−−−−
⊢ ¯, ¯,

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ∧ ¯, ¯,

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, , ∧ ¯, ∧ ¯, ¯,

exch5 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ¯, ∧ ¯, ∧ ¯, ,

cont3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ∧ ¯,

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, a, a

id −−−−−−−−
⊢ ā, a

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a, a ∧ ā, a ∧ ā, ā, a

exch5 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, ā, a ∧ ā, a ∧ ā, a, a

cont3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, a

↓

ā a ā a

∧

←

id −−−−−−−−
⊢ ¯,

weak −−−−−−−−−−
⊢ ¯, ,

id −−−−−−−−
⊢ ¯,

id −−−−−−−−
⊢ ¯,

weak −−−−−−−−−−
⊢ ¯, ¯,

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ∧ ¯, ¯,

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, , ∧ ¯, ∧ ¯, ¯,

exch5 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ¯, ∧ ¯, ∧ ¯, ,

cont3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ∧ ¯,

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, a, a

id −−−−−−−−
⊢ ā, a

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a, a ∧ ā, a ∧ ā, ā, a

exch5 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, ā, a ∧ ā, a ∧ ā, a, a

cont3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, a

Figure 3: Du calcul des séquents aux N-réseaux

Revenons maintenant aux problèmes weak-weak et cont-cont. Il est bien connu qu’une
manière de résoudre weak-weak est d’ajouter une règle mix dans le système :

⊢ Γ ⊢ ∆
mix −−−−−−−−−−−−−− .

⊢ Γ,∆

En ce qui concerne le problème cont-cont, le formalisme du calcul des structures [GS01,
BT01] a permis l’émergence d’une nouvelle solution : grâce à l’utilisation de l’inférence
profonde, une preuve peut toujours être transformée en une autre dont les contractions
sont uniquement appliquées à des formules atomiques. Ceci est obtenu par l’utilisation de
la règle de médial, qui est une règle d’inférence profonde réalisant la flèche médial (1) :

K{(A ∧B) ∨ (C ∧D)}
m −−−−−−−−−−−−−−−−−−−−−−−−−−
K{[A ∨ C] ∧ [B ∨D]}

(9)

Dans le chapitre 3 nous exploitons ces deux idées pour construire plusieurs systèmes
d’invariants de preuve pour la logique classique, qui sont à la frontière entre la syntaxe

xviii 0. Vers une théorie des preuves pour la logique classique

i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b̄ ∧ b̄) ∨ ([b ∨ b] ∧ [b ∨ b])

m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([b̄ ∨ b̄] ∧ [b̄ ∨ b̄]) ∨ ([b ∨ b] ∧ [b ∨ b])

c↓4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b ∧ b)

i↓2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ [a ∨ ā] ∧ b̄) ∨ (b ∧ [a ∨ ā] ∧ b)

s4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ a) ∨ (ā ∧ b̄) ∨ (b ∧ a) ∨ (ā ∧ b)

→

i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧) ∨ ([∨] ∧ [∨])

m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([∨] ∧ [∨]) ∨ ([∨] ∧ [∨])

c↓4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧)

i↓2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧ [∨] ∧) ∨ (∧ [∨] ∧)

s4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧) ∨ (∧) ∨ (∧)

i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b̄ ∧ b̄) ∨ ([b ∨ b] ∧ [b ∨ b])

m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([b̄ ∨ b̄] ∧ [b̄ ∨ b̄]) ∨ ([b ∨ b] ∧ [b ∨ b])

c↓4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b ∧ b)

i↓2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ [a ∨ ā] ∧ b̄) ∨ (b ∧ [a ∨ ā] ∧ b)

s4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ a) ∨ (ā ∧ b̄) ∨ (b ∧ a) ∨ (ā ∧ b)

↓

b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

←

i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧) ∨ ([∨] ∧ [∨])

m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([∨] ∧ [∨]) ∨ ([∨] ∧ [∨])

c↓4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧)

i↓2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧ [∨] ∧) ∨ (∧ [∨] ∧)

s4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧) ∨ (∧) ∨ (∧)

i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b̄ ∧ b̄) ∨ ([b ∨ b] ∧ [b ∨ b])

m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([b̄ ∨ b̄] ∧ [b̄ ∨ b̄]) ∨ ([b ∨ b] ∧ [b ∨ b])

c↓4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b ∧ b)

i↓2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ [a ∨ ā] ∧ b̄) ∨ (b ∧ [a ∨ ā] ∧ b)

s4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ a) ∨ (ā ∧ b̄) ∨ (b ∧ a) ∨ (ā ∧ b)

Figure 4: Du calcul des structures aux N-réseaux

K{t}
ai↓ −−−−−−−−−−

K{a ∨ ā}

K{A ∧ [B ∨ C]}
s −−−−−−−−−−−−−−−−−−−
K{(A ∧B) ∨ C}

K{a ∧ ā}
ai↑ −−−−−−−−−−

K{f}

K{f}
aw↓ −−−−−−

K{a}

K{(A ∧B) ∨ (C ∧D)}
m −−−−−−−−−−−−−−−−−−−−−−−−−−
K{[A ∨ C] ∧ [B ∨D]}

K{a}
aw↑ −−−−−−

K{t}

K{a ∨ a}
ac↓ −−−−−−−−−−

K{a}

K{f}
nm↓ −−−−−−−−−−

K{f ∧ f}

K{t ∨ t}
nm↑ −−−−−−−−−

K{t}

K{a}
ac↑ −−−−−−−−−−

K{a ∧ a}

K{A ∨ [B ∨ C]}
α↓ −−−−−−−−−−−−−−−−−−

K{[A ∨B] ∨ C}

K{A ∨B}
σ↓ −−−−−−−−−−−−

K{B ∨A}

K{A ∧B}
σ↑ −−−−−−−−−−−−

K{B ∧A}

K{A ∧ (B ∧ C)}
α↑ −−−−−−−−−−−−−−−−−−−

K{(A ∧B) ∧ C}

K{A}
f↓ −−−−−−−−−−−
K{A ∨ f}

K{A ∨ f}
t↑ −−−−−−−−−−−

K{A}

K{t ∧A}
f↑ −−−−−−−−−−−

K{A}

K{A}
t↓ −−−−−−−−−−−
K{t ∧A}

Figure 5: Les règles d’inférence du système SKS

et la sémantique, et qui possèdent à la fois les caractéristiques souhaitables mentionnées
ci-dessus et quelques-unes des caractéristiques principales des réseaux de preuve. L’idée de
base est illustrée dans les figures 3 et 4. Formellement, la traduction du calcul des séquents
dans les réseaux de preuve est faite comme indiqué dans la figure 2.

Les dérivations dans le système d’inférence profonde SKS, présenté en figure 5, sont
traduites en réseaux avec coupures en attribuant à chaque règle d’inférence un réseau de

0.2. Notations syntaxique pour les preuves xix

A

Ā

. .
···

···

C

B̄

. .

···

···. .
···

···

B

C̄

D

D̄

. .
···

···

∧∧

∨∨

∧∧

∨∨

∨∨

∧∧

K

K̄

. .
···

··· . .
···

···

A

Ā

. .
···

···

B

B̄

. .
···

···

C

C̄

. .
···

···

∧∧

∨∨

∨∨

∧∧

K

K̄

. .
···

··· . .
···

···

Figure 6: La forme des m-réseaux et des s-réseaux

A

Ā

. .
···

···

B

B̄

. .
···

···

C

C̄

. .
···

···

∨

∨

∨

∨

K

K̄

. .
···

··· . .
···

···

A

B̄

. .

···

···. .
···

···

B

Ā

∨

∨

K

K̄

. .
···

··· . .
···

···

Figure 7: La forme des α↓-réseaux et des σ↓-réseaux

règle :

A
r −−−
B

;

B

Ā

..

Les figures 6–10 montrent les réseaux de règle pour les règles du système SKS (voir figure 5).
Nous pouvons utiliser les coupures pour connecter ces réseaux afin d’obtenir un réseau de
dérivation, comme indiqué dans la figure 11.

xx 0. Vers une théorie des preuves pour la logique classique

Ā

A
f

∨

K

K̄

. .
···

···. .
···

··· . .
···

···

Ā

A
t

∧

K

K̄

. .
···

···. .
···

··· . .
···

···
..........
..........
......................................

Figure 8: La forme des f↓-réseaux et des t↓-réseaux

a

t

K

K̄

. .
···

··· . .
···

···

..
.........
....

ā

t

K

K̄

. .
···

··· . .
···

···
..........
..........
.......................................

a ā

f

∨∨

K

K̄

. .
···

··· . .
···

···
...........
............................

ā a

f

∧∧

K

K̄

. .
···

··· . .
···

···

...................................
....

Figure 9: La forme des réseaux pour aw↓, aw↑, ai↓, et ai↑

ā ā

a

∨

K

K̄

. .
···

··· . .
···

···

...

...

f f

t

∨

K

K̄

. .
···

··· . .
···

···
..........
..........
.......................................

a a

ā

∧

K

K̄

. .
···

··· . .
···

···
.........
.........
.........
.........
.....

.........
.........
.........
.........
.....

f f

t

∧

K

K̄

. .
···

··· . .
···

···

..
.........
....

Figure 10: La forme des réseaux pour ac↓, ac↑, nm↓, et nm↑

0.3 Taille des preuves

Comme précédemment dit, la règle de coupure joue un rôle central en théorie de la preuve.
En fait, on peut distinguer deux sortes de preuves : les preuves avec coupures et les preuves
sans coupure. Dans un système de preuve bien conçu, il est toujours possible de convertir
une preuve avec coupures en une preuve sans coupure. En logique classique propositionnelle,
cela se fait au prix d’une augmentation exponentielle de la taille de la preuve (voir par
exemple [TS00]). Les coupures sont généralement comprises comme “l’utilisation de lemmes
auxiliaires à l’intérieur de la preuve”, et l’outil principal pour étudier la règle de coupure

0.3. Taille des preuves xxi

A
ρ0 −−−
C1

ρ1 −−−
C2

ρ2 −−−
...

−−−
Cn

ρn −−−
B

;

B
..

C̄n

♦

Cn

..

...

..

C̄2

♦

C2

..

C̄1

♦

C1

..

Ā

Figure 11: Des dérivations aux réseaux de dérivation

et son élimination est le calcul de séquents de Gentzen [Gen34].

Toutefois, pour l’étude de la complexité des preuves (en logique classique proposition-
nelle) on fait la distinction entre deux autres types de systèmes de preuve : les systèmes de
Frege et les systèmes de Frege augmentés [CR79]. Sans entrer dans le détail, un système de
Frege est constitué d’un ensemble d’axiomes et du modus ponens, et dans une système de
Frege augmenté on peut en outre utiliser des “abréviations”, c’est-à-dire des variables propo-
sitionnelles frâıches abrégant des formules arbitraires figurant dans la preuve. Évidemment,
toute preuve dans un système de Frege augmenté peut être converti en une preuve sans aug-
mentation, en remplaçant systématiquement toutes les abréviations par la formule qu’elles
représentent, au prix d’une augmentation exponentielle de la taille de la preuve.

Les deux classifications des systèmes de preuve ne sont généralement pas étudiés en-
semble. En réalité, tout système de Frege contient des coupures en raison de la présence du
modus ponens. Par conséquent, il n’existe pas de “système de Frege sans coupure”, ou de
“système de Frege augmenté sans coupure”. De même, il n’y a pas de “système de Gentzen
augmenté”, parce qu’il n’y a pas de sens à parler des abréviations dans le calcul de séquents
sans coupure, où les formules sont décomposées par leur connecteur principal lors de la
recherche de preuve.1 Cela peut se résumer par la classification des systèmes de preuve

1L’augmentation discutée ici ne doit pas être confondue avec la notion de “définition” du calcul des

xxii 0. Vers une théorie des preuves pour la logique classique

calcul de séquents
sans coupure

⊆
calcul de séquents
avec coupures

=
systèmes
de Frege

⊆
systèmes de Frege
augmentés

Figure 12: Classification des systèmes de preuve

systèmes avec coupures
(sans augmentation)

⊆
systèmes avec coupures
et augmentation

∪pp ∪pp

systèmes sans coupure
(sans augmentation)

⊆
systèmes sans coupure

avec augmentation

Figure 13: Classification affinée des systèmes de preuve

donnée en figure 12, où S1 ⊆ S2 signifie que S2 contient S1, et donc que S2 p-simule2 S1.
Nous écrivons également S1 = S2 pour signifier que S1 et S2 se p-simulent mutuellement,
c’est-à-dire sont p-équivalents.

Dans le chapitre 5 nous présentons un système déductif dans lequel l’augmentation est
indépendante de la coupure, c’est-à-dire que nous pouvons maintenant étudier des systèmes
sans coupure mais avec l’augmentation. La figure 13 montre l’affinage de la classification
des systèmes de preuve. Pour y parvenir, nous utilisons un système d’inférence profonde,
ce qui permet de réunir les avantages des systèmes de Frege et des systèmes de Gentzen.

En plus des systèmes de Frege augmentés, on étudie les systèmes de Frege avec substi-
tution. Dans [CR79] Cook et Reckhow ont montré que les systèmes de Frege avec substitu-
tion peuvent p-simuler les systèmes de Frege augmentés, et Kraj́ıcek et Pudlák [KP89] ont
montré que les systèmes de Frege augmentés peuvent p-simuler les systèmes de Frege avec
substitution. Dans [BG09] Bruscoli et Guglielmi étudient l’augmentation et la substitution
dans le cadre de l’inférence profonde et montrent leur p-équivalence. Toutefois, dans cet
article, la substitution en inférence profonde est plus faible que la substitution dans les
systèmes de Frege, et la preuve de p-équivalence dans [BG09] s’appuie sur le résultat de
Kraj́ıcek et Pudlák [KP89].

Dans le chapitre 5, je vais proposer une autre définition de l’augmentation et de la
substitution dans le cadre de l’inférence profonde, et montrer leur p-équivalence ainsi que
la p-équivalence de l’augmentation et de la substitution dans les systèmes de Frege, don-
nant ainsi une autre preuve des résultats de Cook et Reckhow [CR79] et de Kraj́ıcek et
Pudlák [KP89].

séquents LKDe [BHL+06], dans lequel l’abréviation peut se produire dans le séquent conclusion de la preuve.
2Un système de preuve S2 p-simule un système de preuve S1 s’il y a une fonction PTIME f telle que

pour chaque preuve π dans S1, f(π) est une preuve de S2 de même conclusion que π.

1
Introduction

The questions “What is a proof?” and “When are two proofs the same?” are fundamental
for proof theory. But for the most prominent logic, Boolean (or classical) propositional
logic, we still have no satisfactory answers.

This is embarrassing not only for proof theory itself, but also for computer science,
where classical propositional logic plays a major role in automated reasoning and logic
programming. Also the design and verification of hardware is based on classical Boolean
logic. Every area in which proof search is employed can benefit from a better understanding
of the concept of proof in classical logic, and the famous NP-versus-coNP problem can be
reduced to the question whether there is a short (i.e., polynomial size) proof for every
Boolean tautology [CR79].

Usually proofs are studied as syntactic objects within some deductive system (e.g.,
tableaux, sequent calculus, resolution, . . .). Here we take the point of view that these syn-
tactic objects (also known as proof trees) should be considered as concrete representations
of certain abstract proof objects, and that such an abstract proof object can be represented
by a resolution proof tree as well as by a sequent calculus proof tree, or even by several
different sequent calculus proof trees.

The main theme of this work is to get a grasp on these abstract proof objects, and this
will be done from three different perspectives, studied in the three parts of this thesis: ab-
stract algebra (Chapter 2), combinatorics (Chapters 3 and 4), and complexity (Chapter 5).

1.1 Categories of Proofs

Already Lambek [Lam68, Lam69] observed that an algebraic treatment of proofs can be
provided by category theory. For this, it is necessary to accept the following postulates
about proofs:

• for every proof f of conclusion B from hypothesis A (denoted by f : A → B) and
every proof g of conclusion C from hypothesis B (denoted by g : B → C) there is a
uniquely defined composite proof g ◦ f of conclusion C from hypothesis A (denoted
by g ◦ f : A→ C),

• this composition of proofs is associative,

1

2 1. Introduction

• for each formula A there is an identity proof 1A : A→ A such that for f : A→ B we
have f ◦ 1A = f = 1B ◦ f .

Under these assumptions the proofs are the arrows in a category whose objects are the
formulas of the logic. What remains is to provide the right axioms for the “category of
proofs”.

It seems that finding these axioms is particularly difficult for the case of classical
logic [Hyl02, Hyl04, BHRU06]. For intuitionistic logic, Prawitz [Pra71] proposed the notion
of proof normalization for identifying proofs. It was soon discovered that this notion of iden-
tity coincides with the notion of identity that results from the axioms of a Cartesian closed
category (see, e.g., [LS86]). In fact, one can say that the proofs of intuitionistic logic are
the arrows in the free (bi-)Cartesian closed category generated by the set of propositional
variables. An alternative way of representing the arrows in that category is via terms in the
simply-typed λ-calculus: arrow composition is normalization of terms. This observation is
well-known as the Curry-Howard-correspondence [How80] (see also [Sta82, Sim95]).

In the case of linear logic, the relation to *-autonomous categories [Bar79] was noticed
immediately after its discovery [Laf88, See89]. In the sequent calculus, linear logic proofs
are identified when they can be transformed into each other via “trivial” rule permutations
[Laf95b]. For multiplicative linear logic this coincides with the proof identifications induced
by the axioms of a *-autonomous category [Blu93, SL04]. Therefore, we can safely say that
a proof in multiplicative linear logic is an arrow in the free *-autonomous category generated
by the propositional variables [BCST96, LS06, Hug05].

But for classical logic no such well-accepted category of proofs exists. The main reason
is that if we start from a Cartesian closed category and add an involutive negation (i.e., a
natural isomorphism between A and the double-negation of A), we get the collapse into a
Boolean algebra, i.e., any two proofs f, g : A → B are identified. For every formula there
would be at most one proof (see, e.g., [LS86, p.67] or the appendix of [Gir91] for details).
Alternatively, starting from a *-autonomous category and adding natural transformations
A → A ∧ A and A → t, i.e., the proofs for weakening and contraction, yields the same
collapse.

There are several possibilities to cope with this problem. Clearly, we have to drop some
of the equations that we would like to hold between proofs in classical logic. But which
ones should go? There are now essentially three different approaches, and all three have
their advantages and disadvantages.

(i) The first says that the axioms of Cartesian closed categories are essential and cannot be
dispensed with. Instead, one sacrifices the duality between ∧ and ∨. The motivation
for this approach is that a proof system for classical logic can now be seen as an
extension of the λ-calculus and the notion of normalization does not change. One has
term calculi for proofs, namely Parigot’s λµ-calculus [Par92] and its many variants
(e.g., [CH00]) as well as a denotational semantics [Gir91]. An important aspect is
the computational meaning in terms of continuations [Thi97, SR98]. There is a well
explored category theoretical axiomatization [Sel01], and, of course, a theory of proof
nets [Lau99, Lau03], which is based on the proof nets for multiplicative exponential
linear logic (MELL).

(ii) The second approach considers the perfect symmetry between ∧ and ∨ to be an es-
sential facet of Boolean logic, that cannot be dispensed with. Consequently, the

1.2. Syntactic Denotations for Proofs 3

axioms of Cartesian closed categories and the close relation to the λ-calculus have
to be sacrificed. More precisely, the conjunction ∧ is no longer a Cartesian prod-
uct, but merely a tensor-product. Thus, the Cartesian closed structure is replaced
by a star-autonomous structure, as it it known from linear logic. However, the pre-
cise category theoretical axiomatization is much less clear than in the first approach
(see [FP04c, LS05a, McK05a, Str07b, Lam07]).

(iii) The third approach keeps the perfect symmetry between ∧ and ∨, as well as the
Cartesian product property for ∧. What has to be dropped is the property of being
closed, i.e., there is no longer a bijection between the proofs of

A ⊢ B ⇒ C and A ∧B ⊢ C ,

which means we lose currying. This approach is studied in [DP04, CS09].

In this thesis, we focus on approach (ii), which will be developed in detail in Chapter 2,
with special focus on the so-called medial map

mA,B,C,D : (A ∧B) ∨ (C ∧D)→ (A ∨ C) ∧ (B ∨D) (1.1)

which is inspired by the deep inference system SKS [BT01] for classical logic.

1.2 Syntactic Denotations for Proofs

Let us now see what happens when the problem of proof identity is approached from the
other end, that of syntax. For explaining the problem we use here the sequent calculus,
but what follows applies also to natural deduction. It is well known that problems begin
when a proof contains cuts and has to be normalized. Let us represent this situation in the
following manner

π1

⊢ Γ, A

π2

⊢ Ā,∆
cut −−−−−−−−−−−−−−−−−−−−−−−−

⊢ Γ,∆

For the sake of generality, let us here use the one-sided notation for sequents, where an
expression like A could be a formula with some polarity information added, instead of just
a formula. The π1 and π2 represent the proofs that led to the sequents: they could be
sequent calculus trees, proof terms or proof nets. Similarly, the expression Ā is a formal
negation for A; this notation could be used for instance in a natural deduction context like
the λµ-calculus [Par92], where the “cut” inference above would just be a substitution of a
term into another, the negated Ā meaning that it is on the side of the input/premises/λ-
variables. But in any case, the following should be considered as desirable features:

1. Ā is the logical negation of A,

2. ¯̄A is structurally equivalent (isomorphic) to A.

4 1. Introduction

These symmetries would allow things like structural De Morgan duals. The second feature
will not happen, for example, when negation is an introduced symbol, as in the case for
two-sided sequent calculi or the λµ-calculus (for which the first feature does not hold either).

The problem of cut-elimination (or normalization) is encapsulated in two cases, called
weakening-weakening and contraction-contraction in [Gir91], which hereafters will be writ-
ten as weak-weak and cont-cont:

π1

⊢ Γ
weak −−−−−−−−−

⊢ Γ, A

π2

⊢ ∆
weak −−−−−−−−−

⊢ Ā,∆
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−− and

⊢ Γ,∆

π1

Γ, A,A
cont −−−−−−−−−

⊢ Γ, A

π2

⊢ Ā, Ā,∆
cont −−−−−−−−−−−−

⊢ Ā,∆
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

⊢ Γ,∆

(1.2)

It is well known [GLT89, Gir91] that both reductions cannot be achieved without choosing
a side, and that the outcome is very much dependent on that choice.

The most standard way to resolve these dilemmas is to introduce asymmetry in the
system (if it is not already there), by the means of polarity information on the formulas,
and using this to dictate the choices. Historically, the first approaches to polarization
were closely aligned on the premise/conclusion duality we have mentioned. One reason for
this is that they were derived from double-negation style translations of classical logic into
intuitionistic logic. If a classical proof can be turned into an intuitionistic one, then in
every sequent in the history of that proof there will be a special formula: the conclusion
of the corresponding intuitionistic sequent. This corresponds to approach (i) mentioned
above, as done, for example, in the λµ-calculus. The left-right asymmetry is also at the
bottom of Coquand’s game semantics [Coq95], where it translates as the two players. In
[Gir91] Girard presented System LC, where the sequents have at most one special formula.
Not only are there both positive and negative formulas—this time an arbitrary number
of each—but in addition there is a stoup, which is either empty or contains one formula,
which has to be positive. Then when a choice has to be made at normalization time, the
presence or absence of the positive formula in the stoup is used in addition to the polarity
information.

This direction of research has been extremely fruitful. It has given a systematic anal-
ysis of translations of classical logic into linear logic [DJS97]. Moreover LC’s approach to
polarities was extended to the formulation of polarized logic LLP [Lau02]. It has the ad-
vantage of a much simpler theory of proof nets (e.g., for boxes) and produces particularly
perspicuous translations of more traditional logics. This new proof net syntax has been
used to represent proofs in LC [Lau02] and the λµ-calculus [Lau03].

Let us come back to the weak-weak and cont-cont problems. It is well-known that one
way of solving weak-weak is to permit the system to have a mix rule:

⊢ Γ ⊢ ∆
mix −−−−−−−−−−−−−− .

⊢ Γ,∆

As for the cont-cont problem, the proof formalism of the calculus of structures [GS01, BT01]
has permitted the emergence of a novel solution: through the use of deep inference a proof

1.3. Size of Proofs 5

cut-free
sequent systems

⊆
sequent systems
with cut

=
Frege
systems

⊆
extended
Frege systems

Figure 1.1: Classification of proof systems

can always be transformed into one whose only contractions are made on atomic formulas.
This is achieved by the use of the medial rule, which is a deep inference rule incorporating
the medial map (1.1):

K{(A ∧B) ∨ (C ∧D)}
m −−−−−−−−−−−−−−−−−−−−−−−−−−
K{[A ∨ C] ∧ [B ∨D]}

(1.3)

In Chapter 3 we exploit these two ideas to construct several systems of proof invariants
for classical logic, which are at the border of syntax and semantics, and which possess both
desirable features mentioned above, as well as some of the main features of proof nets. But
they lack one important feature that one expects from proof nets: a correctness criterion.
Very roughly speaking, a correctness criterion provides a polynomial algorithm deciding
if a given invariant does indeed correspond to a correct proof. Chapter 4 of this thesis
contains some preliminary results that hopefully will eventually lead to such a criterion for
the invariants presented in Chapter 3.

1.3 Size of Proofs

A said before, the cut-rule plays a central role in proof theory. In fact, one distinguishes
between two kinds of proofs: those with cut and those without cut. In a well-designed proof
system, it is always possible to convert a proof with cuts into a cut-free proof. In classical
propositional logic this comes at the cost of an exponential increase of the size of the proof
(see, e.g., [TS00]). The cuts are usually understood as “the use of auxiliary lemmas inside
the proof”, and the main tool for investigating the cut and its elimination from a proof is
Gentzen’s sequent calculus [Gen34].

However, for studying proof complexity (for classical propositional logic) one essentially
distinguish between two other kinds of proof systems: Frege systems and extended Frege
systems [CR79]. Roughly speaking, a Frege-system consists of a set of axioms and modus
ponens, and in an extended Frege-system one can additionally use “abbreviations”, i.e., fresh
propositional variables abbreviating arbitrary formulas appearing in the proof. Clearly, any
extended Frege-proof can be converted into a Frege-proof by systematically replacing the
abbreviations by the formulas they abbreviate, at the cost of an exponential increase of the
size of the proof.

The two proof classifications are usually not studied together. In fact, every Frege-
system contains cut because of the presence of modus ponens. Hence, there is no such thing
as a “cut-free Frege system”, or a “cut-free extended Frege-system”. Similarly, there are no
“extended Gentzen systems”, because it does not make sense to speak of abbreviations in
the cut-free sequent calculus, where formulas are decomposed along their main connectives
during proof search.3 This can be summarized by the classification of proof systems shown

3The extension discussed here should not be confused with the notion of “definition” in the sequent
calculus LKDe [BHL+06], in which the abbreviation may occur in the endsequent of the proof.

6 1. Introduction

systems with cut (without extension) ⊆ systems with cut and extension

∪pp ∪pp

cut-free systems (without extension) ⊆ cut-free systems with extension

Figure 1.2: Refined classification of proof systems

in Figure 1.1, where S1 ⊆ S2 means that S2 includes S1, and therefore S2 p-simulates4 S1.
In Chapter 5 we provide a deductive system in which extension is independent from the

cut, i.e., we can now study cut-free systems with extension. Figure 1.2 shows the refined
classification of proof systems. For achieving this, we use a deep inference system, which
allows to bring together the advantages of both, Frege systems and Gentzen systems.

Besides extended Frege systems, one also studies Frege systems with substitution. Cook
and Reckhow have shown in [CR79] that Frege systems with substitution p-simulate ex-
tended Frege systems, and Kraj́ıcek and Pudlák [KP89] have shown that extended Frege
systems p-simulate Frege systems with substitution. In [BG09], Bruscoli and Guglielmi
study extension and substitution inside deep inference and show their p-equivalence. How-
ever, in that paper, substitution in deep inference is weaker than substitution in Frege
systems, and the proof of p-equivalence in [BG09] relies on the result of Kraj́ıcek and
Pudlák [KP89].

In Chapter 5, I will propose an alternative way of incorporating extension and substitu-
tion inside deep inference, show their p-equivalence, as well as the p-equivalence to extension
and substitution in Frege systems, and thus give an alternative proof of the results by Cook
and Reckhow [CR79] and Kraj́ıcek and Pudlák [KP89].

Acknowledgments

I would like to thank François Lamarche, Tom Gundersen, and Alessio Guglielmi, who were
my coauthors for the results presented in Chapter 3 and who also provided inspiration for
the work presented in the other chapters. I am also thankful to all my other coauthors. I
am very grateful to the referees (Rick Blute, Pierre-Louis Curien, Martin Hyland, and Alex
Simpson) and the other members of the jury (Gilles Dowek, Delia Kesner, and Christian
Retoré) who agreed to spare some of their precious time. I am much obliged to Nicolas
Guenot for helping me with the French part of this work. The research for this work has
been carried out while I was working in the Calligramme team at the LORIA in Nancy, the
Programming Systems group at the Saarland University in Saarbrücken, and in the Parsifal
team at INRIA Saclay–Île-de-France and LIX, École Polytechnique. I thank all the people
in these research groups for providing excellent conditions for doing research. I also thank
everyone who is reading these acknowledgments in the hope to find their name.

4A proof system S2 p-simulates a proof system S1 if there is a PTIME-function f such that for every
proof π in S1 we have that f(π) is a proof in S2 that has the same conclusion as π.

2
On the Algebra of Proofs in Classical

Logic

There have already been several accounts for a proof theory for classical logic based on the
axioms of Cartesian closed categories. The first were probably Parigot’s λµ-calculus [Par92]
and Girard’s LC [Gir91]. The work on polarized proof nets by Laurent [Lau99, Lau03]
shows that there is in fact not much difference between the two. Later, the category-
theoretic axiomatisations underlying this proof theory has been investigated and the close
relationship to continuations [Thi97, SR98] has been established, culminating in Selinger’s
control categories [Sel01]. However, by sticking to the axioms of Cartesian closed categories,
one has to sacrifice the perfect symmetry of Boolean logic.

In this thesis, I will go the opposite way. In the attempt of going from a Boolean algebra
to a Boolean category I insist on keeping the symmetry between ∧ and ∨. By doing so,
we have to leave the realm of Cartesian closed categories. That this is very well possible
has recently been shown by several authors [DP04, FP04c, LS05a], where the first falls into
approach (iii) mentioned in Section 1.1, and the other two fall into approach (ii) mentioned
in Section 1.1. However, the fact that all these proposals considerably differ from each
other suggests that there might be no canonical way of giving a categorical axiomatisation
for proofs in classical logic.

In order to understand this situation, I will in this chapter propose a series (with increas-
ing strength) of possible axiomatisations for Boolean categories. They all have in common
that they are built on the structure of star-autonomous categories in which every object is
equipped with a monoid and an comonoid structure. While introducing axioms, I will also
show their consequences.

The results of this chapter have already been published in [Str06, Str07b], and are
partially based on [LS05a].

2.1 What is a Boolean Category ?

A Boolean category should be for categories, what a Boolean algebra is for posets. This
leads to the following definition:

7

8 2. On the Algebra of Proofs in Classical Logic

Definition 2.1.1. We say a category C is a B0-category if there is a Boolean algebra B

and a mapping F : C → B from objects of C to elements of B, such that for all objects A
and B in C , we have F (A) ≤ F (B) in B if and only if there is an arrow f : A→ B in C .

Alternatively, we could say that a B0-category is a category whose image under the
forgetful functor from the category of categories to the category of posets is a Boolean
algebra. From the proof-theoretic point of view one should have that there is a proof from
A to B if and only if A ⇒ B is a valid implication. However, from the algebraic point of
view there are many models, including the category Rel of sets and relations, as well as
the models constructed in [Lam07], which have a map between any two objects A and B.
Note that these models are not ruled out by Definition 2.1.1 because there is the trivial
one-element Boolean algebra. In any case, we can make the following (trivial) observation.

Observation 2.1.2. In a B0-category, we can for any pair of objects A and B, provide
objects A ∧B and A ∨B and Ā, and there are objects t and f , such that there are maps

α̂A,B,C : A ∧ (B ∧ C)→ (A ∧B) ∧ C α̌A,B,C : A ∨ [B ∨ C]→ [A ∨B] ∨ C

σ̂A,B : A ∧B → B ∧A σ̌A,B : A ∨B → B ∨A

ˆ̺A : A ∧ t→ A ˇ̺A : A ∨ f → A

λ̂A : t ∧A→ A λ̌A : f ∨A→ A

ı̂A : A ∧ Ā→ f ı̌A : t→ Ā ∨A

sA,B,C : [A ∨B] ∧ C → A ∨ (B ∧ C)

mA,B,C,D : (A ∧B) ∨ (C ∧D)→ [A ∨ C] ∧ [B ∨D]

∆A : A→ A ∧A ∇A : A ∨A→ A

ΠA : A→ t ∐A : f → A

(2.1)

for all objects A, B, C, and D. This can easily be shown by verifying that all of them
correspond to valid implications in Boolean logic. Conversely, a category in which every
arrow can be given as a composite of the ones given above by using only the operations
of ∧, ∨, and the usual arrow composition, is a B0-category. This is a consequence of the
completeness of system SKS [BT01], which is a deep inference deductive system for Boolean
logic incorporating the maps in (2.1) as inference rules.

Notation 2.1.3. Throughout this thesis, we will use the following convention: The symbols
∧ and ∨ denote classical and and or, respectively. I use parentheses (. . .) around expressions
whose main connective is ∧, and [. . .] around expressions whose main connective is ∨. This
is notational redundancy, but makes large expressions with many ∧ and ∨ easier to read.
The symbol ⇒ will denote classical implication, and ⇔ classical equivalence.

Note that Definition 2.1.1 is neither enlightening nor useful. It is necessary to add some
additional structure in order to obtain a “nicely behaved” theory of Boolean categories.
However, as already mentioned in the introduction, the naive approach of adding structure,
namely adding the structure of a bi-Cartesian closed category (also called Heyting category)

2.2. Star-Autonomous Categories 9

with an involutive negation leads to collapse: Every Boolean category in that strong sense is
a Boolean algebra. The hom-sets are either singletons or empty. This observation has first
been made by André Joyal, and the proof can be found, for example, in [LS86], page 67.
For the sake of completeness, we repeat the argument here: First, recall that in a Cartesian
closed category, we have, among other properties, (i) binary products, that we (following
Notation 2.1.3) denote by ∧, (ii) a terminal object t with the property that t∧A ∼= A for all
objects A, and (iii) a natural bijection between the maps f : A∧B → C and f∗ : A→ B⇒C,
where B ⇒ C denotes the exponential of B and C. Going from f to f∗ is also known as
currying. Adding an involutive negation means adding a contravariant endofunctor (−)
such that there is a natural bijection between maps f : A → B and f̄ : B̄ → Ā. It also
means that there is an initial object f = t̄. Hence, we have in particular for all objects A
and B, that

Hom(A,B) ∼= Hom(t ∧A,B) ∼= Hom(t, A⇒B) ∼= Hom(A⇒B, f) . (2.2)

Now observe that whenever we have an object X such that the two projections

π1, π2 : X ∧X → X

are equal, then for all objects Y , any two maps f, g : Y → X are equal, because

f = π1 ◦ 〈f, g〉 = π2 ◦ 〈f, g〉 = g . (2.3)

Now note that since f is initial, there is exactly one map f → f ⇒ f , hence, by uncurrying
there is exactly one map f ∧ f → f . Therefore, for every Y , there is at most one map Y → f .
Thus, from (2.2) we get that for all A, B, the set Hom(A,B) is either singleton or empty.

Recapitulating the situation, we have here two extremes of Boolean categories: no
structure and too much structure. Neither of them is very interesting, neither for proof
theory nor for category theory. But there is a whole universe between the two, which we
will start to investigate now. On our path, we will stick to (2.2) and carefully avoid to have
(2.3). This is what makes our approach different from control categories [Sel01], in which
the equation f = π1 ◦ 〈f, g〉 holds, but the rightmost bijection in (2.2) is absent.

2.2 Star-Autonomous Categories

Let us stress the fact that in a plain B0-category there is no relation between the maps
listed in (2.1). In particular, there is no functoriality of ∨ and ∧, no naturality of α̂, σ̂, . . . ,
and no de Morgan duality. Adding this structure means exactly adding the structure of a
star-autonomous category [Bar79].

Since we are working in classical logic, we will here use the symbols ∧, ∨, t, f for the
usual �,O, 1,⊥.

Definition 2.2.1. A B0-category C is symmetric ∧-monoidal if the operation − ∧− : C ×
C → C is a bifunctor and the maps α̂A,B,C , σ̂A,B, ˆ̺A, λ̂A in (2.1) are natural isomorphisms

10 2. On the Algebra of Proofs in Classical Logic

that obey the following equations:

A ∧ (B ∧ (C ∧D))
A∧α̂B,C,D

A ∧ ((B ∧ C) ∧D)

α̂A,B∧C,D

(A ∧B) ∧ (C ∧D)

α̂A,B,C∧D

(A ∧ (B ∧ C)) ∧D

α̂A,B,C∧D

((A ∧B) ∧ C) ∧D

α̂A∧B,C,D

A ∧ (B ∧ C)

α̂A,B,C

A ∧ (C ∧B)
A∧σ̂B,C

(A ∧B) ∧ C

σ̂A∧B,C

(A ∧ C) ∧B

α̂A,C,B

C ∧ (A ∧B)
α̂C,A,B

(C ∧A) ∧B

σ̂A,C∧B

A ∧ (t ∧B)
α̂A,t,B

(A ∧ t) ∧B

ˆ̺A∧B

A ∧B

A∧λ̂B

A ∧B
σ̂A,B

B ∧A

σ̂B,A

A ∧B

1A∧B

The notion of symmetric ∨-monoidal is defined in a similar way.

An important property of symmetric monoidal categories is the coherence theorem
[Mac63], which says that every diagram containing only natural isomorphisms built out
of α̂, σ̂, ˆ̺, λ̂, and the identity 1 via ∧ and ◦ must commute (for details, see [Mac71]
and [Kel64]).5

As a consequence of the coherence theorem, we can omit certain parentheses to ease
the reading. For example, we will write A ∧ B ∧ C ∧ D for (A ∧ B) ∧ (C ∧ D) as well as
for A ∧ ((B ∧ C) ∧ D). This can be done because there is a uniquely defined “coherence
isomorphism” between any two of these objects.

Let us now turn our attention to a very important feature of Boolean logic: the duality
between ∧ and ∨. We can safely say that it is reasonable to ask for this duality also in a
Boolean category. That means, we are asking for ¯̄A ∼= A and A ∧B ∼= Ā ∨ B̄. At the same
time we ask for the possibility of transposition (or currying): The proofs of A ∧B → C are
in one-to-one correspondence with the proofs of A→ B̄ ∨ C. This is exactly what makes a
monoidal category star-autonomous.

Definition 2.2.2. A B0-category C is star-autonomous if it is symmetric ∧-monoidal and

is equipped with a contravariant functor (−) : C → C , such that (−) : C → C is a natural

5In [Kel64], Kelly provides some simplifications to MacLane’s conditions in [Mac63]. For example, the
equations ˆ̺t = λ̂t : t ∧ t → t and ˆ̺A ◦ σ̂t,A = λ̂A : t ∧ A → A follow from the ones in Definition 2.2.1.

2.2. Star-Autonomous Categories 11

isomorphism and such that for any three objects A, B, C there is a natural bijection

HomC (A ∧B,C) ∼= HomC (A, B̄ ∨ C) . (⋆)

where the bifunctor − ∨− is defined via A ∨B = B̄ ∧ Ā.6 We also define f = t̄.

Clearly, if a B0-category C is star-autonomous, then it is also ∨-monoidal with α̌A,B,C =

α̂C̄,B̄,Ā and σ̌A,B = σ̂B̄,Ā and ˇ̺A = λ̂Ā and λ̌A = ˆ̺Ā.

Note that this definition for star-autonomous categories is not the original one, but it
is not difficult to show the equivalence, and this was already done in [Bar79]. For further
information, see also [BW99, Bar91, Hug05, LS06].

Let us continue with stating some well-known facts about star-autonomous categories
(for proofs of these facts, see e.g. [LS06]). Via the bijection (⋆) we can assign to every map
f : A ∧ B → C a map g : A → B̄ ∨ C, and vice versa. We say that f and g are transposes
of each other if they determine each other via (⋆). We will use the term “transpose” in a
very general sense: given objects A, B, C, D, E such that D ∼= A ∧B and E ∼= B̄ ∨C, then
any f : D → C uniquely determines a g : A→ E, and vice versa. Also in that general case
we will say that f and g are transposes of each other. For example, λ̂A : t ∧ A → A and
ˇ̺A : A → A ∨ f are transposes of each other, and another way of transposing them yields
the maps

ı̌A : t→ Ā ∨A and ı̂A : A ∧ Ā→ f .

If we have f : A ∧B → C and b : B′ → B, then

A ∧B′ A∧b
A ∧B

f
C is transpose of A

g
B̄ ∨ C

b̄∨C
B′ ∨ C (2.4)

where g is transpose of f .

Let us now transpose the identity 1B∨C : B ∨ C → B ∨ C. This yields the evaluation
map evalB,C : [B ∨C] ∧ C̄ → B. Taking the ∧ of this with 1A : A→ A and transposing back
determines a map sA,B,C : A ∧ [B ∨C]→ (A ∧B) ∨C that is natural in all three arguments,
and that we call the switch map [Gug07, BT01].7 In a similar fashion we obtain maps
[A ∨ B] ∧ C → A ∨ (B ∧ C) and A ∧ [B ∨ C] → B ∨ (A ∧ C) and [A ∨ B] ∧ C → (A ∧ C) ∨ B.
Alternatively these maps can be obtained from s by composing with σ̂ and σ̌. For this
reason we will use the term “switch” for all of them, and denote them by sA,B,C if it is clear
from context which one is meant, as for example in the two diagrams

[A ∨B] ∧ [C ∨D]
sA,B,C∨D

A ∨ (B ∧ [C ∨D])

A∨sB,C,D

([A ∨B] ∧ C) ∨D

sA∨B,C,D

A ∨ (B ∧ C) ∨D
sA,B,C∨D

(2.5)

6Although we live in the commutative world, we invert the order of the arguments when taking the
negation.

7To category theorists it is probably better known under the names weak distributivity [HdP93, CS97b]
or linear distributivity. However, strictly speaking, it is not a form of distributivity. An alternative is the
name dissociativity [DP04].

12 2. On the Algebra of Proofs in Classical Logic

and

A ∧ [B ∨ C] ∧D
A∧sB,C,D

A ∧ [B ∨ (C ∧D)]

sA,B,C∧D

[(A ∧B) ∨ C] ∧D

sA,B,C∧D

(A ∧B) ∨ (C ∧D)
sA∧B,C,D

(2.6)

which commute in any star-autonomous category. Sometimes we will denote the map
defined by the diagonal of (2.5) by t̂A,B,C,D : [A ∨B] ∧ [C ∨D] → A ∨ (B ∧ C) ∨D, called
the tensor map8 and the one of (2.6) by ťA,B,C,D : A ∧ [B ∨ C] ∧D → (A ∧B) ∨ (C ∧D),
called the cotensor map.

Note that the switch map is self-dual, while the two maps t̂ and ť are dual to each other,
i.e.,

(A ∧B) ∨ C
sA,B,C

A ∧ [B ∨ C]

∼=

C̄ ∧ [B̄ ∨ Ā]

∼=

(C̄ ∧ B̄) ∨ ĀsC̄,B̄,Ā

(2.7)

and

(A ∧B) ∨ (C ∧D)
ťA,B,C,D

A ∧ [B ∨ C] ∧D

∼=

[D̄ ∨ C̄] ∧ [B̄ ∨ Ā]

∼=

D̄ ∨ (C̄ ∧ B̄) ∨ Ā
t̂D̄,C̄,B̄,Ā

(2.8)

where the vertical maps are the canonical isomorphisms determined by the star-autonomous
structure. Another property of switch that we will use later is the commutativity of the
following diagrams:

[A ∨B] ∧ t

sA,B,t A ∨B

ˆ̺A∨B

A ∨ (B ∧ t)
A∨ ˆ̺B

[f ∨A] ∧B

sf ,A,BA ∧B

λ̌−1
A

∧B

f ∨ (A ∧B)
λ̌−1
A∨B

(2.9)

2.3 Some remarks on mix

In this section we will recall what it means for a star-autonomous category to have mix.
Although most of the material of this section can also be found in [CS97a], [FP04a], [DP04],
and [Lam07], we give here a complete survey since the main result, Corollary 2.3.3, is rather
crucial for the following sections. This corollary essentially says that the mix-rule in the
sequent calculus

⊢ Γ ⊢ ∆
mix −−−−−−−−−−−−−−

⊢ Γ,∆

8This map describes precisely the tensor rule in the sequent system for linear logic.

2.3. Some remarks on mix 13

is a consequence of the fact that false implies true. Although this is not a very deep result,
it might be surprising for logicians that a property of sequents (if two sequents can be
proved independently, then they can be proved together) which does not involve any units
comes out of an algebraic property concerning only the units.

Theorem 2.3.1. Let C be a star-autonomous category and e : f → t be a map in C . Then

f ∧ f
e∧f

t ∧ f

λ̂f

f ∧ t

f∧e

f
ˆ̺f

(2.10)

if and only if

t
λ̌−1
t

f ∨ t

e∨t

t ∨ f

ˇ̺−1
t

t ∨ t
t∨e

(2.11)

if and only if

A ∧B
A∧λ̌−1

B
A ∧ [f ∨B]

sA,f ,B
(A ∧ f) ∨B

(A∧e)∨B

[A ∨ f] ∧B

ˇ̺−1
A

∧B

(A ∧ t) ∨B

ˆ̺A∨B

A ∨ (f ∧B)

sA,f ,B

A ∨ (t ∧B)
A∨(e∧B)

A ∨B
A∨λ̂B

(2.12)

for all objects A and B.

14 2. On the Algebra of Proofs in Classical Logic

Proof. First we show that (2.10) implies (2.12). For this, chase

A ∧B
λ̌
−1
B

ˇ̺−1
A

[A ∨ f] ∧B

s λ̌
−1
B

A ∧ [f ∨B]

ˇ̺−1
A s

A ∨ (f ∧B)

e λ̌
−1
B

[A ∨ f] ∧ [f ∨B]

s s

(A ∧ f) ∨B

ˇ̺−1
A e

A ∨ (t ∧B)

λ̌
−1
B

A ∨ (f ∧ [f ∨B])

e s

([A ∨ f] ∧ f) ∨B

s e

(A ∧ t) ∨B

ˇ̺−1
A

A ∨ (t ∧ [f ∨B])

s

A ∨ (f ∧ f) ∨B

e e

([A ∨ f] ∧ t) ∨B

s

A ∨ (t ∧ f) ∨B

λ̂f

A ∨ (f ∧ t) ∨B

ˆ̺f

A ∨ f ∨B

λ̂f∨B

λ̌B

A ∨ f ∨B

ˆ̺A∨f

ˇ̺A

A ∨B

λ̂B

λ̌
−1
B

A ∨B A ∨B

ˆ̺A

ˇ̺−1
A

(2.13)

The big triangle at the center is an application of (2.10). The two little triangles next to it
are (variations of) (2.9), and the triangles at the bottom are trivial. The topmost square is
functoriality of ∧, the square in the center is (2.5), and all other squares commute because
of naturality of s, λ̂, ˆ̺, λ̌, and ˇ̺. Now observe that (2.12) commutes if and only if

A ∧B
A∧λ̌−1

B
A ∧ [f ∨B]

A∧[e∨B]
A ∧ [t ∨B]

sA,t,B

[A ∨ f] ∧B

ˇ̺−1
A

∧B

(A ∧ t) ∨B

ˆ̺A∨B

[A ∨ t] ∧B

[A∨e]∧B

A ∨ (t ∧B)
sA,t,B

A ∨B
A∨λ̂B

(2.14)

commutes (because of naturality of switch), and that the diagonals of (2.12) and (2.14) are
the same map mixA,B : A ∧B → A ∨B. Note that by the dual of (2.13) we get that (2.11)
implies (2.14). Therefore we also get that (2.11) implies (2.12). Now we show that (2.14)

2.3. Some remarks on mix 15

implies (2.11). We will do this by showing that

t
ˇ̺−1
t

ˆ̺−1
t

=λ̂−1
t

λ̌−1
t

t ∨ f

t∨e

t ∧ t

mixt,t

f ∨ t

e∨t

t ∨ t

(2.15)

commutes. For this, consider

t ˆ̺−1
t

t ∧ t

ˆ̺t
ˇ̺−1
t

∧tt

[t ∨ f] ∧ t

ˆ̺t∨f
[t∨e]∧tt ∨ f

ˇ̺−1
t

[t ∨ t] ∧ t

ˆ̺t∨t
st,t,tt ∨ t

t∨e

t ∨ (t ∧ t)

t∨λ̂t

t∨ ˆ̺t

t ∨ t

(2.16)

which says that the left triangle in (2.15) commutes because the right down path in (2.16)
is exactly the lower left path in (2.14). Similarly we obtain the commutativity of the right
triangle in (2.15). In the same way we show that (2.12) implies (2.10), which completes the
proof.

Therefore, in a star-autonomous category every map e : f → t obeying (2.10) uniquely
determines a map mixA,B : A ∧ B → A ∨ B which is natural in A and B. It can be shown
that this mix map goes well with the twist, associativity, and switch maps:

Proposition 2.3.2. The map mixA,B : A ∧ B → A ∨ B obtained from (2.12) is natural in
both arguments and obeys the equations

A ∧B
mixA,B

A ∨B

σ̌A,B

B ∧A

σ̂A,B

B ∨A
mixB,A

(mix-σ̂)

16 2. On the Algebra of Proofs in Classical Logic

and

A ∧ (B ∧ C)
A∧mixB,C

A ∧ [B ∨ C]
mixA,B∨C

sA,B,C

A ∨ [B ∨ C]

α̌A,B,C

(A ∧B) ∧ C

α̂A,B,C

(A ∧B) ∨ C
mixA∧B,C

[A ∨B] ∨ C
mixA,B∨C

(mix-α̂)

Proof. Naturality of mix follows immediately from the naturality of switch. Equation
(mix-σ̂) follows immediately from the definition of switch, and (mix-α̂) can be shown with
a similar diagram as (2.13).

Corollary 2.3.3. In a star-autonomous category there is a one-to-one correspondence be-
tween the maps e : f → t obeying (2.10) and the natural transformations mixA,B : A ∧ B →
A ∨B obeying (mix-σ̂) and (mix-α̂).

Proof. Whenever we have a map mixA,B : A ∧B → A ∨B for all A and B, we can form the
map

e : f
ˆ̺−1
f

f ∧ t
mixf ,t

f ∨ t
λ̌t

t (2.17)

One can now easily show that naturality of mix, as well as (mix-σ̂) and (mix-α̂) are exactly
what is needed to let the map e : f → t defined in (2.17) obey equation (2.10). We leave
the details to the reader. Hint: Show that both maps of (2.10) are equal to

f ∧ f
mixf ,f

f ∨ f
λ̌f=ˇ̺f

f .

It remains to show that plugging the map of (2.17) into (2.12) gives back the same natural
transformation mixA,B : A ∧B → A ∨B we started from. Similarly, plugging in the the mix
defined via (2.12) into (2.17) gives back the same map e : f → t that has been plugged into
(2.12). Again, we leave the details to the reader.

Note that a star-autonomous category can have many different maps e : f → t with the
property of Theorem 2.3.1, each of them defining its own natural mix obeying (mix-σ̂) and
(mix-α̂).

2.4 ∨-Monoids and ∧-comonoids

The structure investigated so far is exactly the same as for proofs in linear logic (with
or without mix). For classical logic, we need to provide algebraic structure for the maps
∇A : A ∨ A → A and ∐A : f → A, as well as ∆A : A → A ∧ A and ΠA : A → t, which are
listed in (2.1). This is done via monoids and comonoids.

2.4. ∨-Monoids and ∧-comonoids 17

Definition 2.4.1. A B0-category has commutative ∨-monoids if it is symmetric ∨-monoidal
and for every object A, the maps ∇A and ∐A obey the equations

A ∨ [A ∨A]

α̌A,A,A

A ∨A
A∨∇A

A

∇A

[A ∨A] ∨A
∇A∨A

A ∨A
∇A

A ∨A

σ̌A,A A

∇A

A ∨A
∇A

A ∨ f

A∨∐A A

ˇ̺A

A ∨A
∇A

(2.18)

Dually, we say that a B0-category has cocommutative ∧-comonoids if it is symmetric ∧-
monoidal and for every object A, the maps ∆A and ΠA obey the equations

A ∧A
∆A∧A

(A ∧A) ∧A

α̂−1
A,A,AA

∆A

A ∧A
∆A

A ∧ (A ∧A)
A∧∆A

A ∧A

σ̂−1
A,AA

∆A

A ∧A
∆A

A ∧A

A∧ΠAA

∆A

A ∧ t
ˆ̺−1
A

(2.19)

Remark 2.4.2. The (co)associativity of the maps ∆A and ∇A allows us to use the notation
∆2

A : A→ A ∧A ∧A and ∇2
A : A ∨A ∨A→ A.

Proposition 2.4.3. Let C be a category with commutative ∨-monoids, and let

A ∨ f

A∨f A

ˇ̺A

A ∨A
∇A

commute for some f : f → A. Then f = ∐A.

Proof. This is a well-known fact from algebra: in a monoid the unit is uniquely defined.
Written as diagram, the standard proof looks as follows:

f

λ̌−1
f

=ˇ̺−1
f

f f ∨ f
λ̌f

ˇ̺f
f∨f ∐A∨f

f

f ∨A
∐A∨A

λ̌A

A ∨A

∇A

A ∨ f
A∨f

ˇ̺A

f
f

A f
∐A

Note that in the same way it follows that the counit in a comonoid is uniquely defined.

18 2. On the Algebra of Proofs in Classical Logic

Although the operations ∧ and ∨ are not the product and coproduct in the category-
theoretic sense, we use the notation:

〈f, g〉 = (f ∧ g) ◦∆A : A→ C ∧D and [f, h] = ∇C ◦ [f ∨ h] : A ∨B → C (2.20)

where f : A→ C and g : A→ D and h : B → C are arbitrary maps.
Another helpful notation (see [LS05a]) is the following:

ΠB
A8 = ˆ̺A ◦ (A ∧ ΠB) : A ∧B → A ΠA

8B = λ̂B ◦ (ΠA ∧B) : A ∧B → B

∐B
A8 = [A ∨∐B] ◦ ˇ̺−1

A : A→ A ∨B ∐A
8B = [∐A ∨B] ◦ λ̌−1

B : B → A ∨B
(2.21)

Note that

∇A ◦ ∐
A
8A = 1A = ∇A ◦ ∐

A
A8 and ΠA

8A ◦∆A = 1A = ΠA
A8 ◦∆A (2.22)

Definition 2.4.4. Let f : A→ B be a map in a B0-category with commutative ∨-monoids
and cocommutative ∧-comonoids. Consider the following four diagrams:

A ∨A
f∨f

B ∨B

∇B

A

∇A

B
f

f

∐A

A
f

B

∐B

A
f

B

ΠB

t

ΠA

A
f

B

∆B

A ∧A

∆A

B ∧B
f∧f

We say that

• f preserves the ∨-multiplication if the left square commutes,

• f preserves the ∨-unit if the left triangle commutes,

• f preserves the ∧-counit if the right triangle commutes,

• f preserves the ∧-comultiplication if the right square commutes,

• f is an ∨-monoid morphism if the two left diagrams commute,

• f is an ∧-comonoid morphism if the two right diagrams commute,

• f is a quasientropy if both triangles commute,

• f is clonable if both squares commute,

• f is strong if all four diagrams commute.

Definition 2.4.5. A B1-category is a B0-category that is star-autonomous and has cocom-
mutative ∧-comonoids.

Clearly, a B1-category also has commutative ∨-monoids with ∇ dual to ∆, and ∐ dual
to Π.

Remark 2.4.6. Definition 2.4.5 exhibits a “creative tension” between algebra and proof
theory. From the algebraic point of view one should add the phrase “and all isomorphisms
preserve the ∧-comonoid structure” because in a semantics of proofs this will probably be
inevitable. But here we do not assume it from the beginning, but systematically give con-
ditions that will ensure it in the end (cf. Theorem 2.6.19 and Remark 2.6.20). From the

2.4. ∨-Monoids and ∧-comonoids 19

proof-theoretic view point this is more interesting because when seen syntactically, these
conditions are more primitive. The reason is that in syntax the morphisms (i.e., proofs)
come after the objects (i.e., formulas), and the formulas can always be decomposed into sub-
formulas, whereas in semantics we have no access to the outermost connective. Furthermore,
forcing all isomorphisms to preserve the ∧-comonoid structure can cause identifications of
proofs that might not necessarily be wanted by every proof theorist.

Remark 2.4.7. For each object A in a B1-category C , the identity map 1A : A → A is
strong, and all kinds of maps defined in Definition 2.4.4 are closed under composition.
Therefore, each kind defines a wide subcategory (i.e., a subcategory that has all objects)
of C , e.g., the wide subcategory of quasientropies, or the wide subcategory of ∨-monoid
morphisms.

In a B1-category we have two canonical maps f → t, namely Πf and ∐t. Because of the
∧-comonoid structure on f and the ∨-monoid structure on t, we have

f ∨ t
∐t∨t

t ∨ t

∇t

t ∨ f
t∨∐t

t
λ̌t

ˇ̺t

and

t ∧ f
Πf∧f

f ∧ f

∆f

f ∧ t
f∧Πf

f
λ̂−1
f

ˆ̺−1
f

(which even hold if the (co)monoids are not (co)commutative.) Since λ̌t, ˇ̺t, λ̂f , and ˆ̺f
are isomorphisms, we immediately can conclude that the following two diagrams commute
(cf. [FP04a]):

t
λ̌−1
t

f ∨ t

∐t∨t

t ∨ f

ˇ̺−1
t

t ∨ t
t∨∐t

and

f ∧ f
f∧Πf

f ∧ t

ˆ̺f

t ∧ f

Πf∧f

f
λ̂f

By Section 2.3, this gives us two different mix maps A ∧ B → A ∨ B, and motivates the
following definition:

Definition 2.4.8. A B1-category is called single-mixed if Πf = ∐t.

In a single-mixed B1-category we have, as the name says, a single canonical mix map
mixA,B : A ∧ B → A ∨ B obeying (mix-σ̂) and (mix-α̂). The naturality of mix, i.e., the
commutativity of

A ∧B
mixA,B

A ∨B

f∨g

C ∧D

f∧g

C ∨D
mixC,D

(2.23)

for all maps f : A→ C and g : B → D, uniquely determines a map f ∨∧ g : A ∧B → C ∨D.
Then, for every f, g : A→ B we can define

f + g = ∇B ◦ (f ∨∧ g) ◦∆A : A→ B .

20 2. On the Algebra of Proofs in Classical Logic

It follows from (co)-associativity and (co)-commutativity of ∆ and ∇, along with naturality
of mix, that the operation + on maps is associative and commutative. This gives us for
Hom(A,B) a commutative semigroup structure.

Note that in general the semigroup structure on the Hom-sets is not an enrichment,
e.g., (f + g)h is in general not the same as fh+ gh.

Definition 2.4.9. Let C be a single-mixed B1-category. Then C is called idempotent if
for every A and B, the semigroup on Hom(A,B) is idempotent, i.e., for every f : A → B
we have f + f = f .

In an idempotent B1-category the semigroup structure on Hom(A,B) is in fact a sup-
semilattice structure, given by f ≤ g iff f + g = g.

One can argue that the structure of B1-categories is in some sense the minimum of al-
gebraic structure that a Boolean category should have: star-autonomous categories provide
the right structure for linear logic proofs, and the ∨-monoids and ∧-comonoids seem to be
exactly what is needed to “model contraction and weakening” in classical logic. There are
certainly reasons to argue against that, since it is by no means God-given that the proofs
in classical logic obey the bijection (⋆) nor that “contraction is associative”. But let us, for
the time being, assume that proofs in classical logic form a B1-category. Then it is desirable
that there is some more structure. This can be, for example, an agreement between the
∧-monoidal structure (Definition 2.2.1) and the ∧-comonoid structure (Definition 2.4.1), or,
a more sophisticated condition like the commutativity of the diagram

[(A ∧B) ∨ (A ∧B)] ∧ [A ∨B]
∇A∧B∧[A∨B]

A ∧B ∧ [A ∨B]

∼=

(A ∧B) ∨ (A ∧B ∧ [A ∨B])

sA∧B,A∧B,A∨B

A ∧ [B ∨A] ∧B

ťA,B,A,B

(A ∧B) ∨ (A ∧ [B ∨A] ∧B)

∼=

(A ∧B) ∨ (A ∧B)

∇A∧B

(A ∧B) ∨ (A ∧B) ∨ (A ∧B)

(A∧B)∨ťA,B,A,B

A ∧B
∇2

A∧B

(2.24)

for all objects A and B. We now start to add the axioms for this.

Proposition 2.4.10. Let C be a B1-category in which the equation

Πt = 1t : t→ t (B2a)

holds. Then we have that

(i) ∆t = ˆ̺−1
t

: t→ t ∧ t

(ii) For all objects A, the map ΠA is a ∧-comonoid morphism.

2.4. ∨-Monoids and ∧-comonoids 21

Proof. The equation ∆t = ˆ̺−1
t

follows immediately from Πt = 1t and the definition
of ∧-comonoids. That ΠA preserves the ∧-counit is trivial and that it preserves the ∧-
comultiplication follows from

A
ΠA

t

∆t=ˆ̺−1
tA ∧ t

ˆ̺−1
A

A∧ΠA ΠA∧t

A ∧A

∆A

t ∧ t
ΠA∧ΠA

where the left triangle is the definition of ∧-comonoids, the lower triangle is functoriality of
∧ and the big “triangle” is naturality of ˆ̺.

Lemma 2.4.11. If a B1-category is single-mixed and obeys (B2a), then

1t + 1t = 1t and 1f + 1f = 1f (2.25)

Proof. First, we show that

Πf
8f

= ∇f ◦mixf ,f : f ∧ f → f (2.26)

This is done by chasing the diagram

f ∧ f
λ̌−1
f

∧f

[f ∨ f] ∧ f

[f∨Πf]∧f

t ∧ f

Πf∧f

λ̌−1
t∧f

[f ∨ t] ∧ f
λ̌−1
t

∧f

sf ,t,f

f ∨ (t ∧ f)

f∨λ̂f

t ∧ f

λ̌t∧f

f ∨ f

∇f

f

λ̂f

λ̌f

f

(2.27)

The right-down path is ∇f ◦ mixf ,f and the left down path is Πf
8f

. The two squares com-
mute because of naturality of λ̌, the upper triangle holds because (2.9), the big triangle
in the center is trivial, and that the lower triangle commutes follows from (the dual of)
Proposition 2.4.10 (i). Now we can proceed:

1f = Πf
8f
◦∆f = ∇f ◦mixf ,f ◦∆f = 1f + 1f

The equation 1t = 1t + 1t follows by duality.

22 2. On the Algebra of Proofs in Classical Logic

Remark 2.4.12. The proof nets and categorical axioms presented in [LS05b, LS05a] do
not have proper units, but only “weak units” (see [LS05b, LS05a] for details). In that
setting, Lemma 2.4.11 (which is a consequence of having proper units) does not hold.

Proposition 2.4.13. In a B1-category that is single-mixed and obeys (B2a), we have

f + ΠA = f (2.28)

for all maps f : A→ t. Dually, we have

g +∐B = g (2.29)

for all maps g : f → B.

Proof. Chase the diagram

A
∆A

A ∧A

A∧ΠA

A A ∧ t
ˆ̺A

f∧t

t

f

t ∧ t
ˆ̺t

t ∧ t

∆t

mixt,t

t t ∨ t
∇t

(2.30)

The first square is the comonoid equation, the second one is naturality of ˆ̺, the triangle
commutes because of Proposition 2.4.10 (i), and the lower quadrangle is (2.25).

Proposition 2.4.14. In a B1-category obeying (B2a), the equation

A ∧B

ΠA∧ΠB

t ∧ t
ˆ̺t

t

ΠA∧B

(B2b)

holds if and only if

(i) Πt∧t = ˆ̺t : t ∧ t→ t and

(ii) the maps that preserve the ∧-counit are closed under ∧.

2.4. ∨-Monoids and ∧-comonoids 23

Proof. We see that (i) follows from (B2a) and (B2b) by plugging in t for A and B in (B2b).
That (ii) holds follows from

A ∧B
f∧g

C ∧D

ΠC∧D

t ∧ t

ˆ̺t

ΠA∧ΠB ΠC∧ΠD

t

ΠA∧B

(2.31)

where f : A→ B and g : C → D are maps that preserve the ∧-counit. Conversely, it follows
from (ii) and Proposition 2.4.10 that ΠA ∧ ΠB preserves the ∧-counit. With (i) this yields
(B2b).

Proposition 2.4.15. In a B1-category obeying (B2a) and (B2b) the maps α̂A,B,C , σ̂A,B,

ˆ̺A, λ̂A, ΠA, ΠA
B8, and ΠA

8B all preserve the ∧-counit. And dually, the maps α̌A,B,C , σ̌A,B,
ˇ̺A, λ̌A, ∐

A, ∐A
B8, and ∐

A
8B all preserve the ∨-unit.

Proof. We show the case for σ̂A,B:

A ∧B
σ̂A,B

B ∧A

ΠB∧A

t ∧ t

ˆ̺t

σ̂t,t

ΠA∧ΠB

t ∧ t

ˆ̺t

ΠB∧ΠA

t

ΠA∧B

The quadrangle in naturality of σ̂ and the commutativity of triangle in the center is a
consequence of the coherence theorem for monoidal categories. The two slim triangles are
just (B2b). The cases for α̂A,B,C , ˆ̺A, λ̂A are similar. For ΠA, it follows directly from (B2a)
and for ΠA

B8 and ΠA
8B from Proposition 2.4.14 (ii) and from (2.21).

Proposition 2.4.16. If a B1-category obeys (B2a) and the equation

A ∧B
∆A∧∆B

A ∧A ∧B ∧B
A∧σ̂A,B∧B

A ∧B ∧A ∧B

∆A∧B

(B2c)

then

(i) also the equation (B2b) holds,

(ii) for every A, the map ∆A is a ∧-comonoid morphism, and

(iii) the maps that preserve the ∧-comultiplication are closed under ∧.

24 2. On the Algebra of Proofs in Classical Logic

Proof. (i) For showing that (B2b) holds, consider the diagram

A ∧B A ∧B

ˆ̺−1
A∧BA ∧A ∧B ∧B

A∧ΠA∧B∧ΠB
∆A∧∆B

A∧σ̂A,B∧B

A ∧ t ∧B ∧ t

A∧σ̂t,B∧t

ˆ̺−1
A

∧ ˆ̺−1
B

A ∧B ∧A ∧B

∆A∧B

A ∧B ∧ t ∧ t
A∧B∧ΠA∧ΠB

A ∧B ∧ t
A∧B∧ ˆ̺t

The triangle on the left is (B2c), the upper quadrangle is the comonoid equation, the lower
quadrangle is naturality of σ̂ and the quadrangle on the right commutes because of the
coherence in monoidal categories. The outer square says that ˆ̺t ◦ (ΠA ∧ ΠB) is ∧-counit
for ∆A∧B. By Proposition 2.4.3 (uniqueness of units) it must therefore be equal to ΠA∧B.
(ii) That ∆A preserves the ∧-comultiplication follows from

A
∆A

A ∧A

∆A∧AA ∧A ∧A ∧A
A∧σ̂A,A∧A

∆A∧∆A

A ∧A

∆A

A ∧A ∧A ∧A
∆A∧∆A

(2.32)

where the pentagon commutes because of the coassociativity and cocommutativity of ∆A : A→
A ∧A. For showing that ∆A preserves the ∧-counit, consider the diagram

A
∆A

A ∧A

ΠA∧At ∧ t

ΠA∧ΠA

∆t ˆ̺t

t

ΠA

t

The big and the lower triangle commute by Proposition 2.4.10, and the left triangle is (B2b)
which has been shown before. For (iii) chase

A ∧B
f∧g

C ∧D

∆C∧DA ∧A ∧B ∧B
f∧f∧g∧g

∆A∧∆B

A∧σ̂A,B∧B

C ∧ C ∧D ∧D

C∧σ̂C,D∧D

∆C∧∆D

A ∧B ∧A ∧B

∆A∧B

C ∧D ∧ C ∧D
f∧g∧f∧g

where f : A→ B and g : C → D are maps preserving the ∧-comultiplication.

2.4. ∨-Monoids and ∧-comonoids 25

Proposition 2.4.17. In a B1-category obeying (B2a) and (B2c) the maps α̂A,B,C , σ̂A,B,

ˆ̺A, λ̂A, ΠA, ΠB
A8, and ΠA

8B all preserve the ∧-comultiplication. Dually, the maps α̌A,B,C ,
σ̌A,B, ˇ̺A, λ̌A, ∐

A, ∐B
A8, and ∐

A
8B all preserve the ∨-multiplication.

Proof. Again, we show the case only for σ̂:

A ∧B
σ̂A,B

B ∧A

∆B∧AA ∧A ∧B ∧B
σ̂A∧A,B∧B

∆A∧∆B

A∧σ̂A,B∧B

B ∧B ∧A ∧A

B∧σ̂B,A∧A

∆B∧∆A

A ∧B ∧A ∧B

∆A∧B

B ∧A ∧B ∧A
σ̂A,B∧σ̂A,B

The two triangles are (B2c), the upper square is naturality of σ̂ and the lower square
commutes because of coherence in monoidal categories. For α̂, ˆ̺, and λ̂ the situation is
similar. For ΠA it has been shown already in Proposition 2.4.10, and for ΠB

A8, and ΠA
8B it

follows from Proposition 2.4.16.

Propositions 2.4.10–2.4.16 give rise to the following definition:

Definition 2.4.18. A B2-category is a B1-category which obeys equations (B2a) and (B2c)
for all objects A and B.

The following theorem summarizes the properties of B2-categories.

Theorem 2.4.19. In a B2-category, the maps α̂A,B,C , σ̂A,B, ˆ̺A, λ̂A, ∆A, ΠA, ΠB
A8, and

ΠA
8B, all are ∧-comonoid morphisms, and the ∧-comonoid morphisms are closed under ∧.

Dually, the maps α̌A,B,C , σ̌A,B, ˇ̺A, λ̌A, ∇A, ∐
A, ∐B

A8, and ∐
A
8B, all are ∨-monoid mor-

phisms, and the ∨-monoid morphisms are closed under ∨.

Proof. Propositions 2.4.10, 2.4.14, 2.4.15, 2.4.16, and 2.4.17.

Proposition 2.4.20. Let f : A → C and g : A → D and h : B → C and a : A′ → A and
b : B′ → B and c : C → C ′ and d : D → D′ be maps for some objects A, B, C, D, A′, B′,
C ′, D′ in a B2-category. Diagrammatically:

A′ a
A

f
C C ′c

B′ b
B

g

D

h

D′d

Then we have:

(i) (c ∧ d) ◦ 〈f, g〉 = 〈c ◦ f, d ◦ g〉.

(ii) If a preserves the comultiplication, then 〈f, g〉 ◦ a = 〈f ◦ a, g ◦ a〉.

(iii) If g preserves the counit, then ΠC
8D ◦ 〈f, g〉 = f.

If f preserves the counit, then ΠD
C8 ◦ 〈f, g〉 = g.

26 2. On the Algebra of Proofs in Classical Logic

(iv) 〈ΠD
C8,Π

C
8D〉 = 1C∧D.

Dually, we also have:

(i) [f, h] ◦ (a ∨ b) = [f ◦ a, h ◦ b].

(ii) If c preserves the multiplication, then c ◦ [f, h] = [c ◦ f, c ◦ h].

(iii) If h preserves the unit, then [f, h] ◦ ∐B
A8 = f.

If f preserves the unit, then [f, h] ◦ ∐A
8B = h.

(iv) [∐B
A8,∐

A
8B] = 1A∨B.

Proof. Straightforward calculation. Note that (i)–(iii) hold already in a B1-category, only
for (iv) is the equation (B2c) needed.

As observed before, if a B1-category is single-mixed then Hom(A,B) carries a semigroup
structure. If we additionally have the structure of a B2-category, then the bijection (⋆) of
Definition 2.2.2 preserves this semigroup structure:

Proposition 2.4.21. In a single-mixed B2-category the bijection (⋆) is a semigroup iso-
morphism.

Proof. Let f, g : A ∧B → C be two maps for some objects A, B, and C, and let f ′, g′ : A→
B̄ ∨ C be their transposes. We have to show that f ′ + g′ is the transpose of f + g. First
note, that in any star-autonomous category the map

A ∧A ∧B ∧B
A∧σ̂A,B∧B

A ∧B ∧A ∧B
f∧g

C ∧ C

is a transpose of

A ∧A
f ′∧g′

[B̄ ∨ C] ∧ [B̄ ∨ C]
t̂

B̄ ∨ B̄ ∨ (C ∧ C)

where t̂ is the canonical map obtained from two switches, cf. (2.5). Now, by definition,
f + g is the map

A ∧B
∆A∧B

∆A∧∆B

A ∧B ∧A ∧B
f∧g

C ∧ C
mixC,C

C ∨ C
∇C

C

A ∧A ∧B ∧B

A∧σ̂A,B∧B

By (2.4) and what has been said above, the transpose of the lower path is the outermost
path of the following:

A
∆A

A ∧A
f ′∧g′

[B̄ ∨ C] ∧ [B̄ ∨ C]
t̂

mixB̄∨C,B̄∨C

B̄ ∨ B̄ ∨ (C ∧ C)

B̄∨B̄∨mixC,C

B̄ ∨ C ∨ B̄ ∨ C
B̄∨σ̂C,B̄∨C

B̄ ∨ B̄ ∨ C ∨ C

∇B̄∨∇C

B̄ ∨ C

∇B̄∨C

2.5. Order enrichment 27

The innermost path is by definition f ′ + g′. The square commutes because of (mix-σ̂) and
(mix-α̂), and the triangle is the dual of (B2c).

2.5 Order enrichment

In [FP04c], Führman and Pym equipped B2-categories with an order enrichment, such that
the proof identifications induced by the axioms are exactly the same as the proof identifica-
tions made by Gentzen’s sequent calculus LK [Gen34], modulo “trivial rule permutations”
(see [Laf95b, Rob03]), and such that f 4 g if g is obtained from f via cut elimination
(which is not confluent in LK).

Definition 2.5.1. A B2-category is called an LK-category if for every A, B, the set
Hom(A,B) is equipped with a partial order structure 4 such that

(i) the arrow composition ◦, as well as the bifunctors ∧ and ∨ are monotone in both
arguments,

(ii) for every map f : A→ B we have

ΠB ◦ f 4 ΠA (LK-Π)

∆B ◦ f 4 (f ∧ f) ◦∆A (LK-∆)

(iii) and the bijection (⋆) of Definition 2.2.2 is an order isomorphism for 4.

Although in [FP04c, FP04b] Führmann and Pym use the term “classical category”,
we use here the term LK-categories because—as worked out in detail in [FP04c]—they
provide a category-theoretic axiomatisation of sequent calculus proofs in Gentzen’s system
LK [Gen34]. However, it should be clear that LK-categories are only one particular example
of a wide range of possible category-theoretic axiomatisations of proofs in classical logic.

Remark 2.5.2. Note that in [FP04c] Führmann and Pym give a different definition for
LK-categories. Since they start from a weakly distributive category [CS97b] instead of a
star-autonomous one, they do not have immediate access to transposition. For this reason,
they have to give a larger set of inequalities, defining the order 4:

∆B ◦ f 4 (f ∧ f) ◦∆A f ◦ ∇A 4 ∇B ◦ [f ∨ f]

ΠB ◦ f 4 ΠA f ◦ ∐A 4 ∐B

A ∨ ∆B 4 [∇A ∨ (B ∧B)] ◦ t̂ ◦∆A∨B A ∧∇B 4 ∆A∧B ◦ ť ◦ (∆A ∧ [B ∨B])

A ∨ ΠB 4 [∐A ∨ t] ◦ λ̌−1
t
◦ΠA∨B A ∧∐B 4 ∐A∧B ◦ λ̂f ◦ (ΠA ∧ f)

(FP)

where f : A → B is an arbitrary map and t̂ : [A ∨ B] ∧ [A ∨ B] → A ∨ A ∨ (B ∧ B) and
ť : A ∧A ∧ [B ∨B]→ (A ∧B) ∨ (A ∧B) are the tensor and cotensor map, cf. (2.5) and (2.6).
One can now easily show that both definitions are equivalent: Clearly the inequations on
the right in (FP) are just transposes of the ones on the left. The two top ones on the left
are just (LK-Π) and (LK-∆), and the two bottom ones follow as follows. If we transpose

A ∨B
A∨∆B

A ∨ (B ∧B) we get the map

Ā ∧ [A ∨B]
eval

B
∆B

B ∧B

28 2. On the Algebra of Proofs in Classical Logic

By (LK-∆), this is smaller or equal to

Ā ∧ [A ∨B]
∆Ā∧[A∨B]

Ā ∧ [A ∨B] ∧ Ā ∧ [A ∨B]
eval∧eval

B ∧B

By (B2c) this is the same map as

Ā ∧ [A ∨B]
∆Ā∧∆A∨B

Ā ∧ Ā ∧ [A ∨B] ∧ [A ∨B]
∼=
Ā ∧ [A ∨B] ∧ Ā ∧ [A ∨B]

eval∧eval
B ∧B

Transposing back yields

A ∨B
∆A∨B

[A ∨B] ∧ [A ∨B]
t̂
A ∨A ∨ (B ∧B)

∇A
A ∨ (B ∧B)

This shows the third inequation on the left in (FP). For the last one, we proceed similarly:

Transposing A ∨B
A∨ΠB

A ∨ t yields

Ā ∧ [A ∨B]
eval

B
ΠB

t

which is by (LK-Π) smaller or equal to

Ā ∧ [A ∨B]
ΠĀ∧[A∨B]

t

which is by (B2b) and (2.21) the same as

Ā ∧ [A ∨B]
ΠĀ

8A∨B
A ∨B

ΠA∨B

t

If transpose back, we get

A ∨B
ΠA∨B

t
∐A

8t
A ∨ t

as desired. We do not show here the other direction because it is rather tedious: It is
almost literally the same as the proof for showing that any weakly distributive category
with negation is a star-autonomous category (see [CS97b, BCST96]).

The following theorem states the main properties of LK-categories. It has first been
observed and proved by Führmann and Pym in [FP04a].

Theorem 2.5.3. Every LK-category is single-mixed and idempotent. Furthermore, for all
maps f, g : A→ B, we have f ≤ g iff g 4 f .

Proof. Because of (B2a) and (LK-Π) we have that ∐t = 1t ◦∐
t = Πt ◦∐t 4 Πf . By duality,

we also get Πf 4 ∐t. Therefore Πf = ∐t, i.e., the category is single-mixed. Next, we show
that f + g 4 f for all maps f, g : A→ B. For this, note that

A ∧B
mixA,B

A ∨B 4 A ∧B
ΠA

8B
B

∐A
8B

A ∨B

because these are the transposes of

A ∧ Ā
ı̂A

f
Πf

t
ı̌B

B ∨ B̄ 4 A ∧ Ā
ΠA∧Ā

t
ı̌B

B ∨ B̄

2.6. The medial map and the nullary medial map 29

Now we can proceed as follows:

f + g = ∇B ◦ [f ∨ g] ◦mixA,A ◦∆A

4 ∇B ◦ [f ∨ g] ◦ ∐A
8A ◦ΠA

8A ◦∆A

= ∇B ◦ [f ∨ g] ◦ ∐A
8A ◦ 1A

= ∇B ◦ [f ∨B] ◦ [A ∨ g] ◦ [A ∨∐A] ◦ ˇ̺A

= ∇B ◦ [f ∨B] ◦ [A ∨ g ◦ ∐A] ◦ ˇ̺A

4 ∇B ◦ [f ∨B] ◦ [A ∨∐B] ◦ ˇ̺A

= ∇B ◦ ∐
B
8B ◦ f

= f

Similarly, we get f + g 4 g. Now we show that f 4 f + f for f : A→ B. Let f̂ : A ∧ B̄ → f

be the transpose of f . Then we have

f̂ = 1f ◦ f̂

= (1f + 1f) ◦ f̂

= ∇f ◦mixf ,f ◦∆f ◦ f̂

4 ∇f ◦mixf ,f ◦ (f̂ ∧ f̂) ◦∆A∧B̄

= f̂ + f̂

= f̂ + f

The second equation is Lemma 2.4.11, the third one is the definition of +, the fourth one
is (LK-∆), the fifth again the definition of +, and the last equation uses Proposition 2.4.21.
By transposing back, we get f 4 f + f . From this together with f + f 4 f we get
idempotency. For showing that f ≤ g iff g 4 f , we need to show that g 4 f iff f + g = g.
Since f + g 4 f , we have that f + g = g implies g 4 f . Now suppose g 4 f . Then we have
g = g + g 4 f + g. This finishes the proof since f + g 4 g has been shown already.

Note that the converse is not necessarily true. Not every single-mixed idempotent
B2-category is an LK-category. Nonetheless, because of Proposition 2.4.13, in every single-
mixed idempotent B2-category we have for every f : A → B that ΠB ◦ f + ΠA = ΠB ◦ f ,
and hence ΠA ≤ ΠB ◦ f which is exactly (LK-Π). However, the inequality (LK-∆) does not
follow from idempotency. One can easily construct countermodels along the lines of [Str05]
(see also Section 3.6).

2.6 The medial map and the nullary medial map

That LK-categories are idempotent means that they are already at the degenerate end of
the spectrum of Boolean categories (cf. also the discussion at the end of Section 3.6). On
the other hand, B2-categories have (apart from Theorem 2.4.19) very little structure. The
question that arises now is therefore: how can we add additional structure to B2-categories
without getting too much collapse? In particular, can we extend the structure such that
all the maps mentioned in Theorem 2.4.19 become ∨-monoid morphisms and ∧-comonoid
morphisms? This is where medial enters the scene.

30 2. On the Algebra of Proofs in Classical Logic

Definition 2.6.1. We say, a B2-category C has medial if for all objects A, B, C, and D
there is a map mA,B,C,D : (A∧B)∨ (C ∧D)→ [A∨C]∧ [B ∨D] with the following properties:

• it is natural in A, B, C and D,

• it is self-dual, i.e.,

[A ∨ C] ∧ [B ∨D]
mA,B,C,D

(A ∧B) ∨ (C ∧D)

∼=

(D̄ ∧ B̄) ∨ (C̄ ∧ Ā)

∼=

[D̄ ∨ C̄] ∧ [B̄ ∨ Ā]mD̄,B̄,C̄,Ā

(2.33)

commutes, where the vertical maps are the canonical isomorphisms induced by Defi-
nition 2.2.2,

• and it obeys the equation

A ∨B
∆A∨∆B

(A ∧A) ∨ (B ∧B)
mA,A,B,B

[A ∨B] ∧ [A ∨B]

∆A∨B

(B3c)

for all objects A and B.

The following equation is a consequence of (B3c) and the self-duality of medial.

(A ∧B) ∨ (A ∧B)
mA,B,A,B

[A ∨A] ∧ [B ∨B]

∇A∧∇B

A ∧B

∇A∧B

(B3c′)

Theorem 2.6.2. Let C be a B2-category that has medial. Then

(i) The maps that preserve the ∧-comultiplication are closed under ∨, and dually, the maps
that preserve the ∨-multiplication are closed under ∧.

(ii) For all maps A
f
→ C, A

g
→ D, B

h
→ C, and B

k
→ D, we have that

[〈f, g〉, 〈h, k〉] = 〈[f, h], [g, k]〉 : A ∨B → C ∧D .

(iii) For all objects A, B, C, and D,

mA,B,C,D =
[〈
∐C

A8 ◦ΠB
A8,∐

D
B8 ◦ΠA

8B

〉
,
〈
∐A

8C ◦ΠD
C8,∐

B
8D ◦ΠC

8D

〉]

=
〈 [
∐C

A8 ◦ΠB
A8,∐

A
8C ◦ΠD

C8

]
,
[
∐D

B8 ◦ΠA
8B,∐

B
8D ◦ΠC

8D

] 〉

2.6. The medial map and the nullary medial map 31

(iv) For all objects A, B, C, and D, the following diagram commutes:

[(A ∧B) ∨ (C ∧D)] ∧ [(A ∧B) ∨ (C ∧D)]

[ΠB
A8

∨ΠD
C8

]∧[ΠA
8B

∨ΠC
8D

]

(A ∧B) ∨ (C ∧D)

∆(A∧B)∨(C∧D)

[A ∨ C] ∧ [B ∨D]

∇[A∨C]∧[B∨D]

([A ∨ C] ∧ [B ∨D]) ∨ ([A ∨ C] ∧ [B ∨D])

(∐C
A8

∧∐D
B8

)∨(∐A
8C

∧∐B
8D

)

(2.34)

(v) The horizontal diagonal of (2.34) is equal to mA,B,C,D.

Proof. For (i), chase the following (compare with the proof of Proposition 2.4.16 (iii))

A ∨B
f∨g

C ∨D

∆C∨D(A ∧A) ∨ (B ∧B)
(f∧f)∨(g∧g)

∆A∨∆B

mA,A,B,B

(C ∧ C) ∨ (D ∧D)

mC,C,D,D

∆C∨∆D

[A ∨B] ∧ [A ∨B]

∆A∨B

[C ∨D] ∧ [C ∨D]
[f∨g]∧[f∨g]

For (ii) chase the diagram

A ∨B
[〈f,g〉,〈h,k〉]

〈f,g〉∨〈h,k〉

C ∧D

(A ∧A) ∨ (B ∧B)
(f∧g)∨(h∧k)

mA,A,B,B

(C ∧D) ∨ (C ∧D)
∇C∧D

mC,D,C,DA ∨B

∆A∨∆B

∆A∨B

C ∧D

[A ∨B] ∧ [A ∨B]
[f∨h]∧[g∨k]

[C ∨ C] ∧ [D ∨D]
∇C∧∇D

A ∨B
〈[f,h],[g,k]〉

C ∧D

[f,h]∧[g,k]

where the square in the center is naturality of medial, the two small triangles are (B3c)
and (B3c′). The big triangles are just (2.20). Note the importance of naturality of medial

32 2. On the Algebra of Proofs in Classical Logic

in the two diagrams above. Let us now continue with (iv) and (v), which are proved by

(A ∧B) ∨ (C ∧D)
∆(A∧B)∨(C∧D)

∆A∧B∨∆C∧D

(∆A∧∆B)∨(∆C∧∆D)

[(A ∧B) ∨ (C ∧D)] ∧ [(A ∧B) ∨ (C ∧D)]

[ΠB

A8
∨ΠD

C8]∧[Π
A
8B

∨ΠC
8D

](A ∧B ∧A ∧B) ∨ (C ∧D ∧ C ∧D)

m

(ΠB

A8
∧ΠA

8B
)∨(ΠD

C8
∧ΠC

8D
)

(A ∧A ∧B ∧B) ∨ (C ∧ C ∧D ∧D)

∼=

(ΠA

A8
∧ΠB

8B
)∨(ΠC

C8
∧ΠD

8D
)

[A ∨ C] ∧ [B ∨D]

(A ∧B) ∨ (C ∧D)

m

and (2.22) and the self-duality of medial. It remains to show (iii). For this consider

(A ∧B) ∨ (C ∧D)

mA,B,C,D

[(A ∧B) ∨ (C ∧D)] ∧ [(A ∧B) ∨ (C ∧D)]
∆(A∧B)∨(C∧D)

[A ∨ C] ∧ [B ∨D]

[∐A
8A

∨∐C

C8]∧[∐
B
8B

∨∐D

D8]

[ΠB

A8
∨ΠD

C8]∧[Π
A
8B

∨ΠC
8D

]

[∐C

A8
∨∐A

8C
]∧[∐D

B8
∨∐B

8D
]
[A ∨ C ∨A ∨ C] ∧ [B ∨D ∨B ∨D]

(∐C

A8◦Π
B

A8
∨∐A

8C
◦ΠD

C8)∧

(∐D

B8◦Π
A
8B

∨∐B
8D

◦ΠC
8D

)

[A ∨A ∨ C ∨ C] ∧ [B ∨B ∨D ∨D]
[∇A∨∇C]∧[∇B∨∇D]

[A∨σ̌A,C∨C]∧[B∨σ̌B,D∨D]

[A ∨ C] ∧ [B ∨D]

∇A∨C∧∇B∨D

The topmost triangle is (v), the two middle ones are trivial, and the bottommost triangle
is (B2c) twice. Note that the first-right-then-down path is

〈 [
∐C

A8 ◦ΠB
A8,∐

A
8C ◦ΠD

C8

]
,
[
∐D

B8 ◦ΠA
8B,∐

B
8D ◦ΠC

8D

] 〉

by definition, and the first-down-then-right path is mA,B,C,D because of (2.22). We get (iii)
by self-duality of medial.

Remark 2.6.3. Because of (iii) and (v) in Theorem 2.6.2, we could obtain a weak medial
map by adding (iv) or (ii) as axiom to a B2-category. This weak medial map would be
self-dual. By also adding Theorem 2.6.2 (i) as axiom, we could even recover equations
(B3c) and (B3c′), as the following diagram shows:

A ∨B
∆A∨B

[A ∨B] ∧ [A ∨B]

[∆A∨∆B]∧[∆A∨∆B]

[A ∨B] ∧ [A ∨B]

[ΠA
A8

∨ΠB
B8

]∧[ΠA
8A

∨ΠB
8B

]

(A ∧A) ∨ (B ∧B)

∆A∨∆B

[(A ∧A) ∨ (B ∧B)] ∧ [(A ∧A) ∨ (B ∧B)]
∆(A∧A)∨(B∧B)

2.6. The medial map and the nullary medial map 33

where the left square says that ∆A ∨ ∆B preserves the ∧-comultiplication. However, by
doing this, we would not get naturality of medial, which is crucial for algebraic as well as
for proof-theoretic reasons.

Definition 2.6.4. A B2-category C has nullary medial if there is a map ňm : t ∨ t → t

(called the nullary medial map) such that for all objects A, B, the following holds:

A ∨B

ΠA∨ΠB

t ∨ t
ňm

t

ΠA∨B

(B3b)

Clearly, if a a B2-category has nullary medial, then ňm = Πt∨t. This can be seen by
plugging in t for A and B in (B3b). By duality ∐f∧f = n̂m : f → f ∧ f (the nullary comedial
map) obeys the dual of (B3b).

Proposition 2.6.5. In a B2-category C that has nullary medial, we have that

(i) The maps that preserve the ∧-counit are closed under ∨, and dually, the maps that
preserve the ∨-unit are closed under ∧.

(ii) For all objects A,B,C, the map sA,B,C is a quasientropy.

Proof. For showing the first statement, replace in (2.31) every ∧ by an ∨, and ˆ̺t by ňm.
The second statement is shown by

[A ∨B] ∧ C
sA,B,C

[ΠA∨ΠB]∧ΠC

A ∨ (B ∧ C)

ΠA∨(ΠB∧ΠC)

[t ∨ t] ∧ t
st,t,t

ňm∧t
ˆ̺t∨t

t ∨ (t ∧ t)

t∨ ˆ̺t

t ∧ t

ˆ̺t

t ∨ t

ňm

t

where the left down-path is Π[A∨B]∧C and the right down-path is ΠA∨(B∧C) (because of
(B2b) and (B3b)). The two squares are naturality of s and ˆ̺, and the triangle at the center
is just (2.9). Hence, switch preserves the ∧-counit, and by duality also the ∨-unit.

Proposition 2.6.6. Let C be a B2-category with medial and nullary medial. Then C obeys
the equation

(A ∧ t) ∨ (B ∧ t)
mA,t,B,t

[A ∨B] ∧ [t ∨ t]

[A∨B]∧ňm

A ∨B

ˆ̺A∨ ˆ̺B

[A ∨B] ∧ t
ˆ̺−1
A∨B

(m- ˆ̺)

34 2. On the Algebra of Proofs in Classical Logic

Proof. Chase

(A ∧ t) ∨ (B ∧ t)
mA,t,B,t

∆(A∧t)∨(B∧t)

[A ∨B] ∧ [t ∨ t]

[A∨B]∧ňm

[(A ∧ t) ∨ (B ∧ t)] ∧ [(A ∧ t) ∨ (B ∧ t)]

[ˆ̺A∨ ˆ̺B]∧[ˆ̺A∨ ˆ̺B]

[Πt

A8
∨Πt

B8]∧[Π
A
8t

∨ΠB
8t

]

[A ∨B] ∧ [A ∨B]

∆A∨B

[A∨B]∧[ΠA
∨ΠB]

[A∨B]∧ΠA∨B

A ∨B

ˆ̺A∨ ˆ̺B

[A ∨B] ∧ t
ˆ̺−1
A∨B

The upper triangle is Theorem 2.6.2 (v), the lower triangle is the comonoid equation, the left
square says that ˆ̺A∨ ˆ̺B preserves the ∧-comultiplication (Theorems 2.4.19 and 2.6.2 (i)), the
triangle on the right is (B3b), and the triangle in the middle commutes because Πt

A8 = ˆ̺A
and ΠA

8t
= ΠA◦ ˆ̺A, where the latter equation holds because of (2.21) and naturality of ˆ̺.

Proposition 2.6.7. In a B2-category with medial and nullary medial the following are
equivalent:

(i) We have

Πt∨t = ňm = ∇t : t ∨ t→ t (B3a)

(ii) For all objects A, the map ˆ̺A preserves the ∨-multiplication.

Proof. Chasing the diagram

(A ∧ t) ∨ (A ∧ t)
ˆ̺A∨ ˆ̺A

mA,t,B,t

A ∨A

∇A

[A ∨A] ∧ [t ∨ t]
[A∨A]∧ňm

∇A∧[t∨t]

∇A∧∇t

[A ∨A] ∧ t

ˆ̺A∨A

∇A∧t

A ∧ [t ∨ t]
A∧ňm

A∧∇t

A ∧ t

ˆ̺A

A ∧ t

∇A∧t

A
ˆ̺A

shows that in the presence of medial, nullary medial, and (B3a) the map ˆ̺A preserves the ∨-
multiplication. Note that in that diagram the uppermost square is (m- ˆ̺) from the previous
proposition. The lowermost square commutes because of (B3a), and the big left triangle is

2.6. The medial map and the nullary medial map 35

(B3c′). Conversely, consider the diagram

t ∨ t
∆t∨t

∆t∨∆t=ˆ̺−1
t

∨ ˆ̺−1
t

∐t

t8
∨∐t

8t

[t ∨ t] ∧ [t ∨ t]

1t∨t∧∇t

(t ∧ t) ∨ (t ∧ t)
p

mt,t,t,t

(∐t

t8
∧t)∨(∐t

8t
∧t)

([t ∨ t] ∧ [t ∨ t]) ∨ ([t ∨ t] ∧ [t ∨ t])

∇[t∨t]∧[t∨t]

(1t∨t∧∇t)∨(1t∨t∧∇t)

t ∨ t ∨ t ∨ t

∇t∨t

ˆ̺−1
t∨t

∨ ˆ̺−1
t∨t

([t ∨ t] ∧ t) ∨ ([t ∨ t] ∧ t)

∇[t∨t]∧t

t ∨ t [t ∨ t] ∧ t
ˆ̺−1
t∨t

where p = [∐t

t8
∨∐t

t8]∧ [∐t
8t

∨∐t
8t

]. The upper two triangles are (B3c) and Theorem 2.6.2 (v).
The left triangle commutes because of Proposition 2.4.20 (iv), and the triangle at the center
is the monoid equation. The triangle-shaped square is the naturality of ˆ̺, and the rightmost
square commutes because 1t∨t ∧∇t preserves the ∨-multiplication, which follows from (the
dual of) Proposition 2.4.16 (ii) and Theorem 2.6.2 (i). Finally, the lower square commutes
because we assumed that ˆ̺A preserved the ∨-multiplication. Note that the commutativity
of the outer square says that ∇t is unit for ∆t∨t. Therefore, by Proposition 2.4.3, we can
conclude that ňm = Πt∨t = ∇t.

Definition 2.6.8. A B3-category is a B2-category that obeys (B3a) and has medial and
nullary medial.

Corollary 2.6.9. In a B3-category, the maps ˆ̺A, λ̂A, ˇ̺A, and λ̌A are clonable for all
objects A, i.e, they preserve both the ∨-multiplication and the ∧-comultiplication.

Proof. Theorem 2.4.19 and Proposition 2.6.7 suffice to show that ˆ̺A is clonable. For λ̂A it
is similar, and for ˇ̺A and λ̌A it follows by duality.

It has first been observed by Lamarche [Lam07] that the presence of a natural and self-
dual map mA,B,C,D : (A ∧ B) ∨ (C ∧D) → [A ∨ C] ∧ [B ∨D] in a star-autonomous category
induces two canonical maps e1, e2 : f → t, namely

e1 : f
λ̌−1
f

f ∨ f
ˆ̺−1
f

∨λ̂−1
f

(f ∧ t) ∨ (t ∧ f)
mf ,t,t,f

[f ∨ t] ∧ [t ∨ f]
λ̌t∧ ˇ̺t

t ∧ t
ˆ̺t

t

and

e2 : f
λ̌−1
f

f ∨ f
λ̂−1
f

∨ ˆ̺−1
f

(t ∧ f) ∨ (f ∧ t)
mt,f ,f ,t

[t ∨ f] ∧ [f ∨ t]
ˇ̺t∧λ̌t

t ∧ t
ˆ̺t

t

which are both self-dual (while Πf and ∐t are dual to each other). By adding sufficient
structure one can enforce that e1 = e2 and that this map has the properties of Theo-
rem 2.3.1. In [Lam07], Lamarche shows how this can be done without the ∧-comonoid
and ∨-monoid structure for every object by using equation (m-σ̂) that we will introduce in

36 2. On the Algebra of Proofs in Classical Logic

Proposition 2.6.13. In our case the structure of a B2-category is sufficient to obtain that
e1 = e2. But for letting this map have the properties of Theorem 2.3.1, as it is the case
with Πf and ∐t, we need all the structure of a B3-category. Then we have the following:

Theorem 2.6.10. In a B3-category we have Πf = e1 = e2 = ∐t, i.e., every B3-category is
single-mixed.

Proof. We will first show that Πf = e1. For this, note that

(λ̌t ∧ ˇ̺t) ◦mf ,t,t,f ◦ [ˆ̺−1
f

∨ λ̂−1
f

]

= (λ̌t ∧ ˇ̺t) ◦
〈 [
∐t

f8 ◦Πt

f8,∐
f
8t
◦Πf

t8

]
,
[
∐f

t8 ◦Πf
8t
,∐t

8f
◦Πt

8f

] 〉
◦ [ˆ̺−1

f
∨ λ̂−1

f
]

=
〈 [

λ̌t ◦ ∐
t

f8 ◦Πt

f8 ◦ ˆ̺−1
f
, λ̌t ◦ ∐

f
8t
◦Πf

t8 ◦ λ̂
−1
f

]

,
[

ˇ̺t ◦ ∐
f

t8 ◦Πf
8t
◦ ˆ̺−1

f
, ˇ̺t ◦ ∐

t
8f
◦Πt

8f
◦ λ̂−1

f

] 〉

=
〈 [
∐t,Πf

]
,
[

Πf ,∐t
] 〉

The first equation is an application of Theorem 2.6.2 (iii), the second one uses Propo-
sition 2.4.20 together with the fact that ˆ̺f and λ̂f preserve the ∧-comultiplication (Theo-
rem 2.4.19) and that these maps are closed under ∨ (Theorem 2.6.2 (i)). The third equation
is an easy calculation, involving (2.20) and the naturality of ˆ̺ and λ̂. Before we proceed,
notice that:

Πt
8t

= λ̂t = ˆ̺t = Πt

t8 : t ∧ t→ t and ∐f
8f

= λ̂−1
f

= ˆ̺−1
f

= ∐f

f8 : f → f ∨ f (2.35)

Now we have:

e1 = ˆ̺t ◦ (λ̌t ∧ ˇ̺t) ◦mf ,t,t,f ◦ [ˆ̺−1
f

∨ λ̂−1
f

] ◦ λ̌−1
f

= ˆ̺t ◦
〈 [

∐t,Πf

]

,
[

Πf ,∐t

] 〉

◦ λ̌−1
f

= ˆ̺t ◦
〈 [

∐t,Πf

]

◦ λ̌−1
f
,
[

Πf ,∐t

]

◦ λ̌−1
f

〉

= Πt

t8 ◦
〈 [

∐t,Πf

]

◦ ∐f
8f
,
[

Πf ,∐t

]

◦ ∐f

f8

〉

= Πt

t8 ◦
〈

Πf ,Πf

〉

= Πf

The first two equations are just the definition of e1 and the previous calculation. The third
equation uses Proposition 2.4.20 and the fact that λ̌f = ˇ̺f preserves the ∧-comultiplication
(Corollary 2.6.9). The fourth equation applies (2.35), and the last two equations are again
Proposition 2.4.20, together with the fact that ∐t preserves the ∨-unit and Πf preserves
the ∧-counit (Theorem 2.4.19). Similarly, we show that e2 = Πf and dually, we obtain
e1 = e2 = ∐t.

Theorem 2.6.11. In a B3-category, the strong maps (in fact, all types of maps defined in
Definition 2.4.4) are closed under ∧ and ∨. Furthermore, the maps mA,B,C,D and ňm and
n̂m are strong.

Proof. By Propositions 2.4.14 and 2.4.16, the ∧-comonoid morphisms are closed under ∧,
and by Proposition 2.6.5 and Theorem 2.6.2 they are closed under ∨. Dually, the ∨-monoid
morphisms are closed under ∨ and ∧, and therefore also the strong maps have this property.

2.6. The medial map and the nullary medial map 37

Since by Theorem 2.6.2 (v), medial is ([ΠB
A8

∨ ΠD
C8] ∧ [ΠA

8B
∨ ΠC

8D]) ◦∆(A∧B)∨(C∧D) as well as

∇[A∨C]∧[B∨D]◦[(∐
C
A8

∧∐D
B8)∨(∐A

8C
∧∐B

8D)], we have by Theorem 2.4.19 that it is a ∧-comonoid
morphism and a ∨-monoid morphism, and therefore strong. Since ňm = Πt∨t = ∇t, we get
again from Theorem 2.4.19 that it is a ∧-comonoid morphism and a ∨-monoid morphism.
Similarly for n̂m = ∐f∧f = ∆f .

Proposition 2.6.12. In a B3-category the maps α̌A,B,C , σ̌A,B, λ̌A, and ˇ̺A preserve the

∧-counit for all objects A,B,C. Dually, the maps α̂A,B,C , σ̂A,B, λ̂A, and ˆ̺A all preserve
the ∨-unit.

Proof. As before, the cases for α̌A,B,C and σ̌A,B are similar. This time, we show the case
for α̌A,B,C :

A ∨ [B ∨ C]
α̌A,B,C

ΠA∨[ΠB∨ΠC]

[A ∨B] ∨ C

[ΠA∨ΠB]∨ΠC

t ∨ [t ∨ t]
α̌t,t,t

t∨∇t

[t ∨ t] ∨ t

∇t∨t

t ∨ t

∇t

t ∨ t

∇t

t

The square is naturality of α̌, and the pentagon is associativity of ∇. The left down path
is ΠA∨[B∨C] and the right down path is Π[A∨B]∨C (because of (B3b) and (B3a)). For ˇ̺A,
chase

A ∨ f
ˇ̺A

ΠA∨f

ΠA∨Πf

A

ΠA

t ∨ f

t∨∐t

ˇ̺t

t ∨ t
ňm ∇t

t

ΠA∨f

t

The upper right quadrangle is naturality of ˇ̺. The leftmost triangle is (B3b). The one in
the center next to it commutes because of functoriality of ∨ and Πf = ∐t (Theorem 2.6.10).
The lower right triangle is the monoid equation and the triangle at the bottom is (B3a).
The case for λ̌A is similar.

Proposition 2.6.13. In a B3-category the following are equivalent:

38 2. On the Algebra of Proofs in Classical Logic

(i) The equation

(A ∧B) ∨ (C ∧D)

mA,B,C,D

(B ∧A) ∨ (D ∧ C)
σ̂A,B∨σ̂C,D

[A ∨ C] ∧ [B ∨D]
σ̂A∨C,B∨D

[B ∨D] ∧ [A ∨ C]

mB,A,D,C (m-σ̂)

holds for all objects A, B, C, and D.

(ii) The map σ̂A,B : A ∧B → B ∧A preserves the ∨-multiplication.

(iii) The map σ̌A,B : A ∨B → B ∨A preserves the ∧-comultiplication.

(iv) The equation

(A ∧B) ∨ (C ∧D)

mA,B,C,D

(C ∧D) ∨ (A ∧B)
σ̌A∧B,C∧D

[A ∨ C] ∧ [B ∨D]
σ̌A,C∧σ̌B,D

[C ∨A] ∧ [D ∨B]

mC,D,A,B (m-σ̌)

holds for all objects A, B, C, and D.

Proof. Suppose (m-σ̂) does hold. Then we have

(A ∧B) ∨ (A ∧B)

mA,B,A,B

(B ∧A) ∨ (B ∧A)
σ̂A,B∨σ̂A,B

[A ∨A] ∧ [B ∨B]

∇A∧∇B

σ̂A∨A,B∨B
[B ∨B] ∧ [A ∨A]

mB,A,B,A

A ∧B
σ̂A,B

B ∧A

∇B∧∇A

which together with (B3c′) says that σ̂A,B preserves the ∨-multiplication. Conversely, we
have

(A ∧B) ∨ (C ∧D)

(∐C

A8
∧∐D

B8)∨(∐
A
8C

∧∐B
8D

)

(B ∧A) ∨ (D ∧ C)
σ̂A,B∨σ̂C,D

([A ∨ C] ∧ [B ∨D]) ∨ ([A ∨ C] ∧ [B ∨D])

∇[A∨C]∧[B∨D]

σ̂A∨C,B∨D∨σ̂A∨C,B∨D

([B ∨D] ∧ [A ∨ C]) ∨ ([B ∨D] ∧ [A ∨ C])

(∐D

B8
∧∐C

A8)∨(∐
B
8D

∧∐A
8C

)

[A ∨ C] ∧ [B ∨D]
σ̂A∨C,B∨D

[B ∨D] ∧ [A ∨ C]

∇[B∨D]∧[A∨C]

The upper square is naturality of σ̂, and the lower square says that σ̂A,B preserves the
∨-multiplication. Together with Theorem 2.6.2 (v), this is (m-σ̂). Hence (i) and (ii) are
equivalent. The other equivalences follow because of duality.

Proposition 2.6.14. In a B3-category the following are equivalent:

2.6. The medial map and the nullary medial map 39

(i) The equation

(A ∧ (B ∧ C)) ∨ (D ∧ (E ∧ F))

mA,B∧C,D,E∧F

((A ∧B) ∧ C) ∨ ((D ∧ E) ∧ F)
α̂A,B,C∨α̂D,E,F

[A ∨D] ∧ [(B ∧ C) ∨ (E ∧ F)]

[A∨D]∧mB,C,E,F

[(A ∧B) ∨ (D ∧ E)] ∧ [C ∨ F]

mA∧B,C,D∧E,F

[A ∨D] ∧ ([B ∨ E] ∧ [C ∨ F])
α̂A∨D,B∨E,C∨F

([A ∨D] ∧ [B ∨ E]) ∧ [C ∨ F]

mA,B,D,E∧[C∨F]

(m-α̂)

holds for all objects A, B, C, D, E, and F .

(ii) The map α̂A,B,C : A ∧ (B ∧ C)→ (A ∧B) ∧ C preserves the ∨-multiplication.

Proof. Similar to the previous proposition. (Here the statements corresponding to (iii)
and (iv) in Proposition 2.6.13 are omitted to save space, but obviously they hold accord-
ingly.)

Remark 2.6.15. This proposition allows us to speak of uniquely defined maps

m̂2
A,B,C,D,E,F : (A ∧B ∧ C) ∨ (D ∧ E ∧ F)→ [A ∨D] ∧ [B ∨ E] ∧ [C ∨ F]

and dually

m̌2
A,B,C,D,E,F : (A ∧B) ∨ (C ∧D) ∨ (E ∧ F)→ [A ∨ C ∨ E] ∧ [B ∨D ∨ F]

A more sophisticated and more general notation for composed variations of medial is intro-
duced by Lamarche in [Lam07].

Proposition 2.6.16. In a a B3-category obeying (m-σ̂) and (m-α̂) the following are equiv-
alent:

(i) The equation

[(A ∧B) ∨ (C ∧D)] ∧ E

mA,B,C,D∧E

(A ∧B) ∨ (C ∧D ∧ E)
sA∧B,C∧D,E

[A ∨ C] ∧ [B ∨D] ∧ E
[A∨C]∧sB,D,E

[A ∨ C] ∧ [B ∨ (D ∧ E)]

mA,B,C,D∧E (m-s)

holds for all objects A, B, C, D, and E.

(ii) The map sA,B,C : A ∧ [B ∨ C]→ (A ∧B) ∨ C preserves the ∧-comultiplication.

Proof. First note that if the equations (m-σ̂), (m-α̂), and (m-s) hold, we can compose them
to get the commutativity of diagrams like

[(A ∧B) ∨ (C ∧D)] ∧ E ∧ F (A ∧B) ∨ (C ∧ E ∧D ∧ F)

mA,B,C∧E,D∧F

[A ∨ C] ∧ [B ∨D] ∧ E ∧ F

mA,B,C,D∧E∧F

[A ∨ (C ∧ E)] ∧ [B ∨ (D ∧ F)]

(2.36)

40 2. On the Algebra of Proofs in Classical Logic

where the horizontal maps are the canonical maps (composed of twist, associativity, and
switch) that are uniquely determined by the star-autonomous structure. Now chase

[A ∨B] ∧ C

[∆A∨∆B]∧∆C

sA,B,C
A ∨ (B ∧ C)

∆A∨(∆B∧∆C)

[(A ∧A) ∨ (B ∧B)] ∧ C ∧ C

mA,A,B,B∧C∧C

sA∧A,B∧B,C∧C
(A ∧A) ∨ (B ∧B ∧ C ∧ C)

(A∧A)∨(B∧σ̂B,C∧C)

[A ∨B] ∧ [A ∨B] ∧ C ∧ C

[A∨B]∧σ̂A∨B,C∧C

(A ∧A) ∨ (B ∧ C ∧B ∧ C)

mA,A,B∧C,B∧C

[A ∨B] ∧ C ∧ [A ∨B] ∧ C
sA,B,C∧sA,B,C

[A ∨ (B ∧ C)] ∧ [A ∨ (B ∧ C)]

where the parallelogram is just (2.36), the upper square is naturality of switch and the two
triangles are laws of star-autonomous categories. Note that, by (B2c) and (B3c), the vertical
paths are just ∆[A∨B]∧C and ∆A∨(B∧C). Therefore switch preserves the ∧-comultiplication.
Conversely, consider the diagram

[(A ∧B) ∨ (C ∧D)] ∧ E

∆[(A∧B)∨(C∧D)]∧E

sA∧B,C∧D,E

(A ∧B) ∨ (C ∧D ∧ E)

∆(A∧B)∨(C∧D∧E)

[(A ∧B) ∨ (C ∧D)] ∧ E ∧ [(A ∧B) ∨ (C ∧D)] ∧ E

p

s∧s
[(A ∧B) ∨ (C ∧D ∧ E)] ∧ [(A ∧B) ∨ (C ∧D ∧ E)]

q

[(A ∧ t) ∨ (C ∧ t)] ∧ t ∧ [(t ∧B) ∨ (t ∧D)] ∧ E

∼=

s∧s
[(A ∧ t) ∨ (C ∧ t ∧ t)] ∧ [(t ∧B) ∨ (t ∧D ∧ E)]

∼=

[A ∨ C] ∧ [B ∨ C] ∧ E
[A∨C]∧sB,D,E

[A ∨ C] ∧ [B ∨ (D ∧ E)]

where

p = [(A ∧ ΠB) ∨ (C ∧ ΠD)] ∧ ΠE ∧ [(ΠA ∧B) ∨ (ΠC ∧D)] ∧ E

q = [(A ∧ ΠB) ∨ (C ∧ ΠD ∧ ΠE)] ∧ [(ΠA ∧B) ∨ (ΠC ∧D ∧ E)]

Note that the left vertical map is mA,B,C,D ∧ 1E while the right vertical map is mA,B,C,D∧E .
The upper square commutes because we assumed that switch preserves the ∧-comultipli-
cation, the middle one is naturality of switch, and the lower one commutes because the
category is star-autonomous (the isomorphisms are just compositions of ˆ̺ and λ̂).

Definition 2.6.17. A B4-category is a B3-category that obeys the equations (m-σ̂), (m-α̂),
and (m-s).

Remark 2.6.18. Equivalently, one can define a B4-category as a B3-category in which σ̂,
α̂, and s are strong. We have chosen the form of Definition (2.6.17) to show the resemblance
to the work [Lam07] where the equations (m-σ̂), (m-α̂), and (m-s) are also considered as
primitives.

2.6. The medial map and the nullary medial map 41

Theorem 2.6.19. In a B4-category, the maps α̂A,B,C , σ̂A,B, ˆ̺A, λ̂A and α̌A,B,C , σ̌A,B, ˇ̺A,
λ̌A, as well as sA,B,C and mixA,B are all strong.

Proof. That α̂A,B,C , σ̂A,B, ˆ̺A, λ̂A and α̌A,B,C , σ̌A,B, ˇ̺A, λ̌A are quasientropies follows

from Theorem 2.4.19 and Proposition 2.6.12. That ˆ̺A, λ̂A and ˇ̺A, λ̌A are clonable has
been said already in Corollary 2.6.9. For α̂A,B,C , σ̂A,B and α̌A,B,C , σ̌A,B this follows from
Theorem 2.4.19 and Propositions 2.6.13 and 2.6.14 (and by duality). Hence, all these maps
are strong. That sA,B,C is strong follows from Proposition 2.6.5 and Proposition 2.6.16
(and self-duality of switch). For showing that mixA,B is also strong it suffices to observe
that mix is a composition of strong maps via ◦, ∧, and ∨; see (2.12), Theorem 2.6.10, and
Theorem 2.6.11.

Remark 2.6.20. Theorem 2.6.19 gives justification to the algebraic concern raised in Re-
mark 2.4.6. In a B4-category all isomorphisms that are imposed by the B4-structure do
preserve the ∨-monoid and ∧-comonoid structure (and are therefore “proper isomorphisms”).
Note that there might still be “improper isomorphisms” in a B4-category. But these live
outside the B4-structure and are therefore not accessible to proof-theoretic investigations.

It has first been observed by Lamarche in [Lam07] that the equation (m-mix) (see
below) is a consequence of the equations (m-α̂), (m-σ̂), and (m-s). Due to the presence of
the ∨-monoids and ∧-comonoids, we can give here a simpler proof of that fact:

Corollary 2.6.21. In a B4-category, the diagram

A ∧B ∧ C ∧D
A∧σ̂B,C∧D

A ∧ C ∧B ∧D

mixA,C∧mixB,D

(A ∧B) ∨ (C ∧D)

mixA∧B,C∧D

[A ∨ C] ∧ [B ∨D]
mA,B,C,D

(m-mix)

commutes.

42 2. On the Algebra of Proofs in Classical Logic

Proof. Chase

A ∧B ∧ C ∧D
A∧σ̂B,C∧D

∆A∧∆B∧∆C∧∆D

A ∧ C ∧B ∧D

∆A∧∆C∧∆B∧∆D
A ∧A ∧B ∧B ∧ C ∧ C ∧D ∧D

A∧A∧σ̂B∧B,C∧C∧D∧D

A ∧A ∧ C ∧ C ∧B ∧B ∧D ∧D

∼=
ΠA

8A
∧ΠC

8C
∧ΠB

B8
∧ΠD

D8

A ∧B ∧ C ∧D
∆A∧B∧C∧D

A ∧B ∧ C ∧D ∧A ∧B ∧ C ∧D
(ΠB

A8
∧ΠD

C8)∧Π
A
8B

∧ΠC
8D

mixA∧B,C∧D∧mixA∧B,C∧D

A ∧ C ∧B ∧D

mix∧mix[(A ∧B) ∨ (C ∧D)] ∧ [(A ∧B) ∨ (C ∧D)]

[ΠB

A8
∨ΠD

C8]∧[Π
A
8B

∨ΠC
8D

]

(A ∧B) ∨ (C ∧D)

mix

∆(A∧B)∨(C∧D)

[A ∨ C] ∧ [B ∨D]
mA,B,C,D

The topmost quadrangle commutes because of naturality of σ̂. The pentagon below consists
of several applications of (B2c). The two triangles on the right are trivial. The quadrangle
on the lower left commutes because mix preserves the ∧-comultiplication, and the quadran-
gle on the lower right because of naturality of mix. Finally, the triangle on the bottom is
Theorem 2.6.2 (v).

Obviously one can come up with more diagrams like (m-mix) or (m- ˆ̺) and ask whether
they commute, for example the following due to McKinley [McK05b]:

(A ∧ f) ∨ (B ∧ C)
mA,f ,B,C

[A ∨B] ∧ [f ∨ C]

[A∨B]∧λ̌C

(A ∧ t) ∨ (B ∧ C)

(A∧Πf)∨(B∧C)

[A ∨B] ∧ C

sA,B,C

A ∨ (B ∧ C)

ˆ̺A∨(B∧C)

(2.37)

It was soon discovered independently by several people that (2.37) is equivalent to:

(A ∧B) ∨ (C ∧D)

mA,B,C,D A ∨B ∨ (C ∧D)

mixA,B∨(C∧D)

[A ∨ C] ∧ [B ∨D]
t̂A,C,B,D

(mix-m-̂t)

2.6. The medial map and the nullary medial map 43

Here are two other examples that do not contain the units:

[(A ∧B) ∨ (C ∧D)] ∧ [E ∨ F]

sA∧B,C∧D,E∧F

[A ∨ C] ∧ [B ∨D] ∧ [E ∨ F]
mA,B,C,D∧(E∨F)

(A ∧B) ∨ (C ∧D ∧ [E ∨ F])

(A∧B)∨ťC,D,E,F

([A ∨ C] ∧ F) ∨ (E ∧ [B ∨D])

ťA∨C,B∨D,E,F

(A ∧B) ∨ (C ∧ F) ∨ (E ∧D)
m̌2

A,B,C,F,E,D

[A ∨ C ∨ E] ∧ [F ∨B ∨D]

mA∨C,F,E,B∨D

(m -̌t-s)

[A′ ∨A] ∧ [B′ ∨B] ∧ [C ′ ∨ C] ∧ [D′ ∨D]

p

([A′ ∨B′] ∧ [C ′ ∨D′]) ∨ (D ∧ C) ∨ (B ∧A)

m̌2
A′∨B′,C′∨D′,D,C,B,A

([A′ ∨A] ∧ [B′ ∨ C]) ∨ (B ∧D′) ∨ (D ∨ C ′)

q

[A′ ∨B′ ∨B ∨D] ∧ [D′ ∨ C ′ ∨ C ∨A]

t̂A′∨B′,B∨D,D′∨C′,C∨A

[A′ ∨A ∨B ∨D] ∧ [D′ ∨ C ′ ∨B′ ∨ C]

m̌2
A′∨A,B′∨C,B,D′,D,C′

A′ ∨B′ ∨ ([B ∨D] ∧ [D′ ∨ C ′]) ∨ C ∨A

t̂A′∨A,B∨D,D′∨C′,B′∨C

(m̌2-s-m̌2)

where p and q are the canonical maps (composed of several switches, twists, and asso-
ciativity) that are determined by the star-autonomous structure. We can easily show the
following proposition.

Proposition 2.6.22. In every B4-category

(i) the equation (2.37) holds if and only if equation (mix-m-̂t) holds, and

(ii) the equation (2.24) holds if and only if equation (m-̌t-s) holds.

Proof. This is not needed later, and I leave the proof as an exercise to the reader.

Definition 2.6.23. A B5-category is a B4-category that obeys equations (mix-m-̂t), (m-̌t-s),
and (m̌2-s-m̌2) for all objects.

The motivation for this definition is the following lemma which will be needed in the
next section.

Lemma 2.6.24. In a B5-category the following equation holds for all objects A, A′, B, B′,

44 2. On the Algebra of Proofs in Classical Logic

C, C ′, D, and D′:

[A′ ∨A] ∧ [B′ ∨B] ∧ [C ′ ∨ C] ∧ [D′ ∨D]

t̂A′,A,B′,B
∧t̂C′,C,D′,D

[A′ ∨A] ∧ [B′ ∨ (B ∧ C ′) ∨ C] ∧ [D′ ∨D]

(A′
∨A)∧t̂B′,B,C′,C

∧(D′
∨D)

[A′ ∨B′ ∨ (A ∧B)] ∧ [C ′ ∨D′ ∨ (C ∧D)]

t̂A′∨B′,A∧B,C′∨D′,C∧D

[A′ ∨B′ ∨ (B ∧ C ′) ∨ C ∨A] ∧ [D′ ∨D]

mixA′∨A,B′∨(B∧C′)∨C
∧[D′

∨D]

([A′ ∨B′] ∧ [C ′ ∨D′]) ∨ (D ∧ C) ∨ (B ∧A)

([A′
∨B′]∧[C′

∨D′])∨mD,C,B,A

A′ ∨B′ ∨ (B ∧ [D′ ∨D] ∧ C ′) ∨ C ∨A

sA′∨B′∨C∨A,B∧C′,D′∨D

([A′ ∨B′] ∧ [C ′ ∨D′]) ∨ ([D ∨B] ∧ [C ∨A])

mA′∨B′,C′∨D′,D∨B,C∨A

A′ ∨B′ ∨ (B ∧D′) ∨ (D ∧ C ′) ∨ C ∨A

A′
∨B′

∨ťB,D′,D,C′∨C∨A

[A′ ∨B′ ∨B ∨D] ∧ [D′ ∨ C ′ ∨ C ∨A]

t̂A′∨B′,B∨D,D′∨C′,C∨A

A′ ∨B′ ∨ ([B ∨D] ∧ [D′ ∨ C ′]) ∨ C ∨A

A′
∨B′

∨mB,D′,D,C′∨C∨A

Proof. Chase the following diagram:

[A′
∨A]∧[B′

∨(B∧C′)∨C]∧[D′
∨D]

mix

s

[A′
∨A]∧[B′

∨B]∧[C′
∨C]∧[D′

∨D]
t̂ t̂∧t̂

[A′
∨B′

∨(A∧B)]∧[C′
∨D′

∨(C∧D)]

t̂[([A′
∨A]∧[B′

∨C])∨(B∧C′)]∧[D′
∨D]

mix

m

s
([A′

∨A]∧[B′
∨C])∨(B∧C′

∧[D′
∨D])

ť[A′
∨B′

∨(B∧C′)∨C∨A]∧[D′
∨D]

s

([A′
∨B′]∧[C′

∨D′])∨(D∧C)∨(B∧A)

m[A′
∨A∨B]∧[B′

∨C∨C′]∧[D′
∨D]

ť

t̂

([A′
∨A]∧[B′

∨C])∨(B∧D′)∨(C′
∧D)

m̌2A′
∨B′

∨(B∧[D′
∨D]∧C′)∨C∨A

ť

([A′
∨B′]∧[C′

∨D′])∨([B∨D]∧(C∧A))

m([A′
∨A∨B]∧D′)∨(D∧[B′

∨C∨C′])
m

s∨s

[A′
∨A∨B∨D]∧[D′

∨B′
∨C∨C′]

t̂

A′
∨B′

∨(B∧D′)∨(D∧C′)∨C∨A
m

A′
∨B′

∨([B∨D]∧[D′
∨C′])∨C∨A [A′

∨B′
∨B∨D]∧[D′

∨C′
∨C∨A]

t̂

The little triangle in the upper left commutes because of (mix-α̂). The little triangle below
it is just (mix-m-̂t), and the pentagon below commutes because of the coherence in star-
autonomous categories9 [BCST96, LS06]. The big square in the center is (m-̌t-s) and the

9It even commutes in the setting of weakly distributive categories.

2.7. Beyond medial 45

small parallelogram at the bottom is just two applications of (m-s) plugged together, and
the big horse-shoe shape on the left is (m̌2-s-m̌2).

2.7 Beyond medial

The definition of monoidal categories settles how the maps α̂A,B,C , σ̂A,B, ˆ̺A, and λ̂A behave
with respect to each other, and how the maps α̌A,B,C , σ̌A,B, ˇ̺A, and λ̌A behave with respect
to each other. The notion of star-autonomous category then settles via the bijection (⋆) how
the two monoidal structures interact. Then, the structure of a B1-category adds ∨-monoids
and ∧-comonoids, and the structure of B2-categories allows the ∨-monoidal structure to go
well with the ∨-monoids and the ∧-monoidal structure to go well with the ∧-comonoids.
Finally, the structure of B4-categories ensures that both monoidal structures go well with
the ∨-monoids and the ∧-comonoids.

However, what has been neglected so far is how the ∨-monoids and the ∧-comonoids
go along with each other. Recall that in any B2-category the maps ∇ and ∐ preserve
the ∨-monoid structure and the maps ∆ and Π preserve the ∧-comonoid structure (Theo-
rem 2.6.19).

2.7.1. We have the following possibilities:

(i) The maps Π and ∐ are quasientropies.

(ii) The maps Π and ∐ are clonable.

(iii) The maps ∆ and ∇ are quasientropies.

(iv) The maps ∆ and ∇ are clonable.

Condition (i) says in particular that the following diagram commutes

f

∐A

A
ΠA

t

Πf

(2.38)

Every B1-category obeying (B2a) and (2.38) is not only single-mixed but also for every

object A the composition f
∐A

→ A
ΠA

→ t yields the same result. In [LS05a] the equation (2.38)
was used as basic axiom, and the mix map was constructed from that without the use proper
units, as we did in Section 2.3 (see also Remark 2.4.12).

The next observation to make is that (ii) and (iii) of 2.7.1 are equivalent, provided (B3b)
and (B3a) are present:

Proposition 2.7.2. In a B2-category with nullary medial and (B3a) the following are
equivalent for every object A:

(i) The map ΠA preserves the ∨-multiplication.

(ii) The map ∇A preserves the ∧-counit.

(iii) The map ∐Ā preserves the ∧-comultiplication.

46 2. On the Algebra of Proofs in Classical Logic

(iv) The map ∆Ā preserves the ∨-unit.

Proof. The equivalence of (ii) and (i) follows from

A ∨A

ΠA∨A

∇A
A

ΠA

t ∨ t

ΠA∨ΠA

t
∇t

The lower triangle is (B3b) together with (B3a). The upper triangle is (ii), and the square
is (i). The other equivalences follow by duality.

Condition 2.7.1 (iv) exhibits yet another example of a “creative tension” between algebra
and proof theory. From the viewpoint of algebra, it makes perfect sense to demand that
the ∨-monoid structure and the ∧-comonoid structure be compatible with each other, i.e.,
that 2.7.1 (i)–(iv) do all hold (see [Lam07]). However, from the proof-theoretic point of
view it is reasonable to make some fine distinctions: We have to keep in mind that in the
sequent calculus it is the “contraction-contraction-case”

π1

⊢ Γ, A,A
cont −−−−−−−−−−−−

⊢ Γ, A

π2

⊢ Ā, Ā,∆
cont −−−−−−−−−−−−

⊢ Ā,∆
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⊢ Γ,∆

which spoils the confluence of cut elimination and which causes the exponential blow-up of
the size of the proof. This questions 2.7.1 (iv), i.e., the commutativity of the diagram

A ∨A
∇A

A

∆A

(A ∧A) ∨ (A ∧A)

∆A∨∆A

A ∧A
∇A∧A

(2.39)

motivates the distinction made in the following definition.

Definition 2.7.3. We say a B1-category is weakly flat if for every object A, the maps ΠA

and ∐A are strong and the maps ∆A and ∇A are quasientropies (i.e., 2.7.1 (i)–(iii) hold),
and it is flat if for every object A, the maps ΠA, ∐A, ∆A and ∇A are all strong (i.e., all of
2.7.1 (i)–(iv) do hold).

Corollary 2.7.4. A B3-category is weakly flat, if and only if ΠA is a ∨-monoid morphism
for every object A.

2.7. Beyond medial 47

To understand the next (and final) axiom of this chapter, recall that in every star-auto-
nomous category we have

t
ı̌A∧̌ıA

[Ā ∨A] ∧ [Ā ∨A]

t̂

Ā ∨A

ı̌A

Ā ∨ (A ∧ Ā) ∨A
Ā∨̂ıA∨A

(2.40)

and that this equation is the reason why the cut elimination for multiplicative linear logic
(proof nets as well as sequent calculus) works so well. The motivation for the following
definition is to obtain something similar for classical logic (cf. [LS05a]).

Definition 2.7.5. A B1-category is contractible if the following diagram commutes for all
objects A.

t
ı̌A

Ā ∨A

∆Ā∨A

[Ā ∨A] ∧ [Ā ∨A]

t̂

Ā ∨A

ı̌A

Ā ∨ (A ∧ Ā) ∨A
Ā∨̂ıA∨A

(2.41)

The following theorem states the most surprising result of this chapter. It explains the
deep reasons why the cut elimination for the proof nets of [LS05b], that I will discuss in
the next chapter, is not confluent in the general case. It also shows that the combination
of equations (2.39) and (2.41) together with the B5-structure leads to a certain collapse,
which can be compared to the collapse made by an LK-category. Nonetheless, even with
this collapse we can find reasonable models for proofs of classical proposional logic, as it is
shown in the next chapter.

Theorem 2.7.6. In a B5-category that is flat and contractible, we have

1A + 1A = 1A

for all objects A.

Proof. We proceed by showing that ı̌A + ı̌A = ı̌A : t → Ā ∨ A for all objects A. From this
the result follows by Proposition 2.4.21. Note that in particular we have that ı̌A + ı̌A is the
map

t
ı̌A∧A

Ā ∨ Ā ∨ (A ∧A)
Ā∨Ā∨mixA,A

Ā ∨ Ā ∨A ∨A
∇Ā∨∇A

Ā ∨A

which is (because of (mix-α̂) and the star-autonomous structure) the same as the left-most

48 2. On the Algebra of Proofs in Classical Logic

down path in the following diagram.

t
ı̌A∧̌ıA∧̌ıA∧̌ıA

ı̌A∧̌ıA∧̌ıA

ı̌A∧̌ıA

[Ā ∨A] ∧ [Ā ∨A] ∧ [Ā ∨A] ∧ [Ā ∨A]

t̂Ā,A,Ā,A

[Ā ∨A] ∧ [Ā ∨A] ∧ [Ā ∨A]

t̂Ā,A,Ā,A

ı̌A

[Ā ∨A] ∧ [Ā ∨ (A ∧ Ā) ∨A] ∧ [Ā ∨A]

mixĀ∨A,Ā∨(A∧Ā)∨A

[Ā ∨A] ∧ [Ā ∨ (A ∧ Ā) ∨A]

mix

ı̌A

ı̂A

[Ā ∨ Ā ∨ (A ∧ Ā) ∨A ∨A] ∧ [Ā ∨A]

sĀ∨Ā∨A∨A,A∧Ā,Ā∨A

[Ā ∨A] ∧ [Ā ∨A]

mixĀ∨A,Ā∨A

Ā ∨ Ā ∨ (A ∧ Ā) ∨A ∨A
ı̌A

ı̌A

ı̂A

Ā ∨ Ā ∨ (A ∧ [Ā ∨A] ∧ Ā) ∨A ∨A

ťA,Ā,A,Ā

Ā ∨ Ā ∨A ∨A

∇Ā
∨∇A

Ā ∨ Ā ∨ (A ∧ Ā) ∨A ∨A

∇Ā
∨∇A

ı̂A
Ā ∨ Ā ∨ (A ∧ Ā) ∨ (A ∧ Ā) ∨A ∨A

mA,Ā,A,Ā

∇A∧Ā

Ā ∨A Ā ∨ (A ∧ Ā) ∨A
ı̂A

Ā ∨ Ā ∨ ([A ∨A] ∧ [Ā ∨ Ā]) ∨A ∨A
∇Ā

∨(∇A∧∇Ā)∨∇A

∇A∧∇Ā

The upper triangle commutes because of functoriality of ∧, the square in the lower left
corner because of functoriality of ∨, and the parallelograms because of naturality of mix
and t̂. The quadrangle in the upper left commutes because of (2.40), and the little triangle
in the right center is just (2.9) together with naturality of switch. The pentagon below it
is just the dual of (2.41), and the two little triangles at the lower right corner are (B3c′)
and functoriality of ∨. Therefore, this diagram gives us a complicated way of writing just
ı̌A + ı̌A. Similarly, the next diagram gives us a complicated way of writing ı̌A:

t
ı̌A∧̌ıA∧̌ıA∧̌ıA

ı̌A

ı̌(A∧A)∨(A∧A)

[Ā ∨A] ∧ [Ā ∨A] ∧ [Ā ∨A] ∧ [Ā ∨A]

t̂Ā,A,Ā,A∧t̂Ā,A,Ā,A

[Ā ∨ Ā ∨ (A ∧A)] ∧ [Ā ∨ Ā ∨ (A ∧A)]

t̂Ā∨Ā,A∧A,Ā∨Ā,A∧A

Ā ∨A

∆Ā∨∆A

([Ā ∨ Ā] ∧ [Ā ∨ Ā]) ∨ (A ∧A) ∨ (A ∧A)

mA,A,A,A
(∇Ā∧∇Ā)∨∇A∧A

(Ā ∧ Ā) ∨ (A ∧A)

mĀ,Ā,A,A

([Ā ∨ Ā] ∧ [Ā ∨ Ā]) ∨ ([A ∨A] ∧ [A ∨A])

mĀ∧Ā,Ā∨Ā,A∨A,A∨A

(∇Ā∧∇Ā)∨(∇A∧∇A)

[Ā ∨A] ∧ [Ā ∨A]

t̂Ā,A,Ā,A

[Ā ∨ Ā ∨A ∨A] ∧ [Ā ∨ Ā ∨A ∨A]

t̂Ā∧Ā,A∨A,Ā∨Ā,A∨A

[∇Ā∨∇A]∧[∇Ā∨∇A]

Ā ∨A

ı̌A

Ā ∨ (A ∧ Ā) ∨A
ı̂A

Ā ∨ Ā ∨ ([A ∨A] ∧ [Ā ∨ Ā]) ∨A ∨A
∇Ā∨(∇A∧∇Ā)∨∇A

2.7. Beyond medial 49

Here the big upper right “triangle” commutes because of the star-autonomous structure.
The irregular quadrangle in the center is a transposed version of (2.39), the little triangle
below it is (B3c′), the two squares at the bottom are naturality of m and t̂, and the left-most
part of the diagram commutes because of (2.41) and (B3c). Finally, we apply Lemma 2.6.24
to paste the two diagrams together, which yields ı̌A + ı̌A = ı̌A as desired.

In the next chapter, in Figure 3.15 (on page 72), I use a concrete model, based on proof
nets, to visualize the basic idea of this proof. In that figure, the first four equations express
the idea behind the first big diagram in the proof of Theorem 2.7.6, and the last three
equations in Figure 3.15 express the idea of the second diagram.

Corollary 2.7.7. Let A be a set of propositional variables and let C be the free flat and
contractible B5-category generated by A . Then C is idempotent.

This shows that with the axioms of B5-categories that are at the same time flat and
contractible we reach a certain unwanted degeneration because idempotency does not allow
us to address issues of proof complexity that should be taken into account in a theory of
proofs of classical logic. Thus, we are again in the situation that some axioms have to go.
But which ones?

50 2. On the Algebra of Proofs in Classical Logic

3
Some Combinatorial Invariants of

Proofs in Classical Logic

In the previous chapter, I tried to be as abstract as possible, and in this chapter I am trying
to be as concrete as possible. I will present a series of “graph-like” invariants of proofs.
The basic idea is in all cases to follow the “flow” of the atom occurrences in the proofs,
similar to what happens in coherence graphs [KM71] or logical flow graphs [Bus91]. The
first invariant that I present, called B-nets is a variation of Andrews’ matings [And76] and
Bibel’s matrix proofs [Bib81]. Since B-nets are too rough for modeling proofs in classical
logic because they make too many identifications, I will show several refinements: N-nets,
C-nets, and atomic flows. They reduce the number of proof identifications by keeping more
information in the data structure. I will also show how these invariants can be extracted
from formal deductive proofs. However, we have a correctness criterion only for B-nets
(which is unfortunately exponential). This means that we do not know what is the right
amount of information about the proofs to keep.

This chapter is based on the publications [LS05b, Str05, Str09, GGS10, Str07b].

3.1 Cut free nets for classical propositional logic

We let A = {a, b, . . . } be an arbitrary set of atoms, and Ā = {ā, b̄, . . . } the set of their
duals. Then the set of formulas is defined as follows:

F ::= A | Ā | t | f | F ∧ F | F ∨ F .

The elements of the set {t, f} are called units. We will use A, B, . . . to denote formulas, and
we follow the same notational conventions as in the previous chapter. Sequents, denoted by
Γ, ∆, . . . , are finite lists of formulas, separated by comma.

In the following, we will consider formulas as binary trees (and sequents as forests),
whose leaves are decorated by elements of A ∪ Ā ∪ {t, f}, and whose inner nodes are
decorated by ∧ or ∨. Given a formula A or a sequent Γ, we write L (A) or L (Γ), respectively,
to denote its set of leaves.

51

52 3. Some Combinatorial Invariants of Proofs in Classical Logic

For defining our proof nets, we start with a commutative semiring of weights (W, 0, 1,+, ·).
That is, (W, 0,+) is a commutative monoid structure, (W, 1, ·) is another commutative
monoid structure, and we have the usual distributivity laws x · (y + z) = (x · y) + (x · z)
and 0 · x = 0. This abstraction layer is just there to ensure a uniform treatment for the
two cases that we will encounter in practice, namely W = N (the semiring of the natural
numbers with the usual operations), and W = B = {0, 1} (the Boolean semiring, where
addition is disjunction, i.e., 1 + 1 = 1, and multiplication is conjunction). There are two
additional algebraic properties that we will need:

v + w = 0 implies v = w = 0 (3.1)

v · w = 0 implies either v = 0 or w = 0 . (3.2)

These are obviously true in both concrete cases. No other structure or property on B and
N is needed, and thus other choices for W can be made. They all give sound semantics,
but completeness (or sequentialization) is another matter.

Definition 3.1.1. Given W and a sequent Γ, a W -linking for Γ is a function P : L (Γ)×
L (Γ)→ W which is symmetrical (i.e., P (x, y) = P (y, x) always), and such that whenever
P (x, y) 6= 0 then either

• x = y and the leaf x is decorated by t and P (x, x) = 1, or

• x 6= y and one of x and y is decorated by an atom a and the other by its dual ā.

A W -pre-proof-net10 (or shortly W -prenet) consists of a sequent Γ and a linking P for it.
It will be denoted by P ⊲ Γ. If W = B we say it is a simple pre-proof-net (or shortly simple
prenet).

In what follows, we will simply say prenet, if no semiring W is specified.

Remark 3.1.2. In [LS05b] the definition of prenet is different from Definition 3.1.1 because
of a different treatment of the units. There, the resulting categories have only weak units
(see also [LS05a]), whereas Definition 3.1.1 ensures proper units, as presented in Chapter 2
of this thesis.

If we choose W = B, a linking is just an ordinary, undirected graph structure on L (Γ),
with an edge between x and y when P (x, y) = 1. An example is

b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

.....................................
............................
..

......................
..

...............
...................
...

... (3.3)

To save space that example can also be written as

{ b̄1
⌢
b5 , b̄1

⌢
b8 , b̄4

⌢
b5 , b̄4

⌢
b8 , a2

⌢
ā3 , a6

⌢
ā7 } ⊲ b̄1 ∧ a2, ā3 ∧ b̄4, b5 ∧ a6, ā7 ∧ b8 ,

where the set of linked pairs is written explicitly in front of the sequent. Here we use the
indices only to distinguish different atom occurrences (i.e., a3 and a6 are not different atoms
but different occurrences of the same atom a).

10What I call pre-proof-net here is in the literature (on linear logic) also called a proof structure.

3.1. Cut free nets for classical propositional logic 53

For more general cases of W , we can consider the edges to be decorated with elements
of W \ {0}. When P (x, y) 6= 0 we say that x and y are linked. Here is an example of an
N-prenet:

{ t1
⌢
t1 , t3

⌢
t3 , a4

3
⌢
ā5 , t7

⌢
t7 } ⊲ t1 ∨ (a2 ∧ t3), (a4 ∨ (ā5 ∨ f6)) ∧ (t7 ∨ f8) . (3.4)

As before, no link means that the value is 0. Furthermore, we use the convention that a
link without value means that the value of the linking is 1. When drawing N-prenets as
graphs (i.e., the sequent forest plus linking), we will draw n links between two leaves x and
y, if P (x, y) = n. Although this might be a little cumbersome, I find it more intuitive.
Example (3.4) is then written as

t a t a ā f t f

∧

∨

∨ ∨

∨

∧

............
...

... ..
...
...............
...

...

. (3.5)

Now for some more notation: let P ⊲ Γ be a prenet and L ⊆ L (Γ) an arbitrary subset
of leaves. There is always a P |L : L × L → W which is obtained by restricting P on the
smaller domain. But L also determines a subforest Γ|L of Γ, in the manner that all elements
of L are leaves of Γ|L, and an inner node s of Γ is in Γ|L if one or two of its children is in Γ|L.
Thus Γ|L is something a bit more general than a “subsequent” or “sequent of subformulas”,
since some of the connectors are allowed to be unary, although still labeled by ∧ and ∨. Let
Γ′ = Γ|L. Then not only is Γ′ determined by L, but the converse is also true: L = L (Γ′).
We will say that P |L ⊲ Γ′ is a sub-prenet of P ⊲ Γ, although it is not strictu sensu a
prenet. Since this sub-prenet is entirely determined by Γ′, we can also write it as P |Γ′ ⊲ Γ′

without mentioning L any further.
On the set of W -linkings we define the following operations. Let P : L × L → W and

Q : M ×M →W be two W -linkings.

• If L = M we define the sum P +Q to be the pointwise sum (P +Q)(x, y) = P (x, y)+
Q(x, y). When W = B this is just the union of the two graphs.

• If L ⊆ M we define the extension P ↑M of P to M as the following binary function
on M :

P ↑M (x, y) =

P (x, y) if x, y ∈ L
1 if x = y and x 6∈ L and x is decorated by t

0 otherwise

Most of the times we will write P ↑M simply as P .

• If L and M are disjoint, we define the disjoint sum P ⊕ Q on the disjoint union11

L ⊎M as P ⊕Q = P ↑L⊎M +Q↑L⊎M .

The ⊕ operation is needed in the next section for translating sequent proofs into W -prenets.

11If L and M are not actually disjoint, we can always rename their elements to ensure that they are.

54 3. Some Combinatorial Invariants of Proofs in Classical Logic

id −−−−−−−−−−−−−−−−

{ a
⌢
ā } ⊲ a, ā

t −−−−−−−−−−−−

{ t
⌢
t } ⊲ t

P ⊲ A,B,Γ
∨ −−−−−−−−−−−−−−−
P ⊲ A ∨B,Γ

P ⊲ Γ, A Q ⊲ B,∆
∧ −−−−−−−−−−−−−−−−−−−−−−−−−
P ⊕Q ⊲ Γ, A ∧B,∆

P ⊲ Γ
weak −−−−−−−−−−

P ⊲ A,Γ

P ⊲ A,A,Γ
cont −−−−−−−−−−−−−−

P ′ ⊲ A,Γ

P ⊲ Γ, A,B,∆
exch −−−−−−−−−−−−−−−−−

P ⊲ Γ, B,A,∆

P ⊲ Γ Q ⊲ ∆
mix −−−−−−−−−−−−−−−−−−

P ⊕Q ⊲ Γ,∆

Figure 3.1: Translation of cut free sequent calculus proofs into prenets

Definition 3.1.3. A conjunctive resolution of a prenet P ⊲ Γ is a sub-prenet P |Γ′ ⊲ Γ′

where Γ′ has been obtained by deleting one child subformula for every conjunction node of
Γ (i.e., in P |Γ′ ⊲ Γ′ every ∧-node is unary).

Definition 3.1.4. A W -prenet P ⊲ Γ is said to be correct if for every one of its conjunctive
resolutions P |Γ′ ⊲ Γ′ the W -linking P |Γ′ is not the zero function. A W -proof-net (or shortly
W -net) is a correct W -prenet. A correct B-prenet is also called a simple net.

Both examples shown so far are correct: (3.3) is a B-net as well as an N-net; (3.5) is
an N-net. Notice that the definition of correctness does not take the exact values of the
weights into account, only the presence (P (x, y) 6= 0) or absence (P (x, y) = 0) of a link.
Notice also that correctness is a monotone property because of Axiom (3.1): if P ⊲ Γ is
correct then P +Q ⊲ Γ is also correct.

The terms “linking” and “resolution”, as well as the ⊲-notation, have been lifted directly
from the work on multiplicative additive (MALL) proof nets of [HvG03], and we use them
in the same way, for the same reasons. In fact, there is a remarkable similarity between
the MALL correctness criterion therein—when restricted to the purely additive case—and
ours, which is essentially the same as Andrews’ [And76] and Bibel’s [Bib81].

3.2 Sequentialization

Figure 3.1 shows how sequent proofs are mapped into prenets. The sequent system we
use contains the multiplicative versions of the ∧- and ∨-rules, the usual axioms for identity
(reduced to atoms) and truth, as well as the rules of exchange, weakening, contraction, and
mix. We call that system CL (for Classical Logic).

Note that the mix-rule is not strictly necessary from the point of view of provability.
But, although we do not get more tautologies by including it in the system, we get more
proofs. These new proofs are needed in order to make cut elimination confluent. It is only
one more example of the extreme usefulness of completions in mathematics: adding stuff
can make your life simpler.

Let us now explain the translation from CL sequent proofs to prenets.

Translation 3.2.1. This is done inductively on the size of the proof according to the rules
shown in Figure 3.1. In the two rules for disjunction and exchange, nothing happens to
the linking. In the case of weakening we apply the extension operation to P (i.e., nothing
changes, except that we add loops to all t inside A). In the mix and ∧ rules we get

3.2. Sequentialization 55

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, a, a

id −−−−−−−−
⊢ ā, a

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a, a ∧ ā, a ∧ ā, ā, a

exch5 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, ā, a ∧ ā, a ∧ ā, a, a

cont3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, a

→

id −−−−−−−−
⊢ ¯,

weak −−−−−−−−−−
⊢ ¯, ,

id −−−−−−−−
⊢ ¯,

id −−−−−−−−
⊢ ¯,

weak −−−−−−−−−−
⊢ ¯, ¯,

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ∧ ¯, ¯,

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, , ∧ ¯, ∧ ¯, ¯,

exch5 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ¯, ∧ ¯, ∧ ¯, ,

cont3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ∧ ¯,

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, a, a

id −−−−−−−−
⊢ ā, a

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a, a ∧ ā, a ∧ ā, ā, a

exch5 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, ā, a ∧ ā, a ∧ ā, a, a

cont3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, a

↓

ā a ā a

∧

←

id −−−−−−−−
⊢ ¯,

weak −−−−−−−−−−
⊢ ¯, ,

id −−−−−−−−
⊢ ¯,

id −−−−−−−−
⊢ ¯,

weak −−−−−−−−−−
⊢ ¯, ¯,

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ∧ ¯, ¯,

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, , ∧ ¯, ∧ ¯, ¯,

exch5 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ¯, ∧ ¯, ∧ ¯, ,

cont3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ¯, ∧ ¯,

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, a, a

id −−−−−−−−
⊢ ā, a

id −−−−−−−−
⊢ ā, a

weak −−−−−−−−−−
⊢ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, ā, a

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a, a ∧ ā, a ∧ ā, ā, a

exch5 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, ā, a ∧ ā, a ∧ ā, a, a

cont3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ ā, a ∧ ā, a

Figure 3.2: From sequent calculus to N-prenets

the linking of the conclusion by forming the disjoint sum of the linkings of the premises.
Therefore, the only rule that deserves further explanation is contraction. Consider the two
sequents ∆′ = A,Γ and ∆ = A,A,Γ, where ∆ is obtained from ∆′ by duplicating A. Let
p : L (∆) → L (∆′) be the function that identifies the two occurrences of A. We see in
particular that for any leaf x ∈ L (∆′), the inverse image p−1{x} has either one or two
elements. Given P ⊲ ∆ let us define the linking P ′ for ∆′ as

P ′(x, y) =
∑

z∈p−1{x}

w∈p−1{y}

P (z, w) .

Remark 3.2.2. If W = N, then there is a more intuitive way of translating a sequent proof
into a prenet, by simply drawing the logical flow graph [Bus91] (restricted to atoms) and
“pulling the edges” as indicated in Figure 3.2. To save space we did in the figure several
steps in one. For example cont3 stands for three applications of the contraction rule.

Theorem 3.2.3 (Soundness). Given any semiring W of weights and a sequent proof in
CL, the construction in 3.2.1 yields a correct W -prenet.

Proof. The proof is an easy induction on the structure of the CL-derivation. Notice that we
need condition (3.1) for the contraction rule, but for the time being we do not need (3.2).

We say a prenet is sequentializable if it can be obtained from a sequent calculus proof
via this translation. Theorem 3.2.3 says that every sequentializable W -prenet is a W -net.
The converse holds only for B-nets.

Theorem 3.2.4 (Sequentialization). Every B-net is sequentializable in CL.

56 3. Some Combinatorial Invariants of Proofs in Classical Logic

i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b̄ ∧ b̄) ∨ ([b ∨ b] ∧ [b ∨ b])

m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([b̄ ∨ b̄] ∧ [b̄ ∨ b̄]) ∨ ([b ∨ b] ∧ [b ∨ b])

c↓4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b ∧ b)

i↓2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ [a ∨ ā] ∧ b̄) ∨ (b ∧ [a ∨ ā] ∧ b)

s4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ a) ∨ (ā ∧ b̄) ∨ (b ∧ a) ∨ (ā ∧ b)

→

i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧) ∨ ([∨] ∧ [∨])

m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([∨] ∧ [∨]) ∨ ([∨] ∧ [∨])

c↓4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧)

i↓2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧ [∨] ∧) ∨ (∧ [∨] ∧)

s4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧) ∨ (∧) ∨ (∧)

i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b̄ ∧ b̄) ∨ ([b ∨ b] ∧ [b ∨ b])

m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([b̄ ∨ b̄] ∧ [b̄ ∨ b̄]) ∨ ([b ∨ b] ∧ [b ∨ b])

c↓4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b ∧ b)

i↓2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ [a ∨ ā] ∧ b̄) ∨ (b ∧ [a ∨ ā] ∧ b)

s4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ a) ∨ (ā ∧ b̄) ∨ (b ∧ a) ∨ (ā ∧ b)

↓

b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

←

i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧) ∨ ([∨] ∧ [∨])

m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([∨] ∧ [∨]) ∨ ([∨] ∧ [∨])

c↓4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧)

i↓2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧ [∨] ∧) ∨ (∧ [∨] ∧)

s4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(∧) ∨ (∧) ∨ (∧) ∨ (∧)

i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b̄ ∧ b̄) ∨ ([b ∨ b] ∧ [b ∨ b])

m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([b̄ ∨ b̄] ∧ [b̄ ∨ b̄]) ∨ ([b ∨ b] ∧ [b ∨ b])

c↓4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ b̄) ∨ (b ∧ b)

i↓2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ [a ∨ ā] ∧ b̄) ∨ (b ∧ [a ∨ ā] ∧ b)

s4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b̄ ∧ a) ∨ (ā ∧ b̄) ∨ (b ∧ a) ∨ (ā ∧ b)

Figure 3.3: From the calculus of structures to N-nets

Proof. We proceed by induction on the size of the sequent (i.e., the number of ∧-nodes,
∨-nodes, and leaves in the sequent forest). Consider a B-net P ⊲ ∆. We have the following
cases:

• If ∆ contains a formula A∨B, then we can apply the ∨-rule, and proceed by induction
hypothesis.

• If ∆ contains a formula A ∧B, i.e., ∆ = Γ, A ∧B, then we can form the three B-nets
P ′ ⊲ Γ, A and P ′′ ⊲ Γ, B and P ⊲ Γ, A,B, where P ′ = P |Γ,A and P ′′ = P |Γ,B. All
three of them are correct. Therefore, we can apply the induction hypothesis to them.
Now we apply the ∧-rule twice to get P ′ ⊕ P ′′ ⊕ P ⊲ Γ,Γ,Γ, A ∧B,A ∧B . To finally
get P ⊲ Γ, A ∧B, we only need a sufficient number of contractions (and exchanges).
Let me make two remarks about that case:

– If P ⊲ Γ, A∧B contains no link between A and B, i.e., P |A,B = P |A⊕P |B, then
we do not need the B-net P ⊲ Γ, A,B, and can instead proceed by a single use
of the ∧-rule, followed by contractions.

– This is the only case where the fact that W = B is needed.

• If ∆ = Γ, A, such that P = P |Γ, i.e., the formula A does not take part in the linking
P , then we can apply the weakening rule and proceed by induction hypothesis.

• The only remaining case is where all formulas in ∆ are atoms, negated atoms, or
units. Then the sequent proof is obtained by a sufficient number of instances of the
axioms id, t, and the rules cont, exch, and mix.

Note that the particular sequent system CL is only needed for obtaining the complete-
ness, i.e., sequentialization, of B-nets. For obtaining the soundness result, any sequent
system for classical propositional logic (with the identity axiom reduced to atomic form)

3.3. Nets with cuts 57

0 :
ā a ā a

∧

.................
..

1 :
ā a ā a

∧

.....................................

2 :
ā a ā a

∧

..................................... ..
ā a ā a

∧

..................................... ...
....................
..

3 :
ā a ā a

∧

..................................... ...
..

4 :
ā a ā a

∧

..................................... ...
...
...............
...

· · · ā a ā a

∧

.................
...

.....................
..

Figure 3.4: Left: Church numerals as N-nets Right: “Fake” Church numerals

can be used. Moreover, this is not restricted to sequent calculus. We can also start from
resolution proofs (as done in [And76]), tableau proofs, Hilbert style proofs, etc.

Whereas B-nets only take into account whether a certain axiom link is used in the proof,
N-nets also count how often it is used. Therefore, N-nets can be used for investigating
certain complexity issues related to the size of proofs, e.g., the exponential blow-up usually
related to cut elimination. This is not visible for B-nets, where the size of a proof net is
always quadratic in the size of the sequent. It should not come as a surprise that finding
a fully complete correctness criterion for N-nets is much harder. One reason is the close
connection to the NP vs. co-NP problem [CR79]. Moreover, there are correct N-nets for
which no corresponding sequent proof exists (for example (3.3) seen as an N-net), but which
can be represented in other formalisms, for example the calculus of structures [GS01, BT01],
as shown in Figure 3.3. We will come back to the deductive system used in that figure in
Section 3.5.

To give some more examples, consider the sequent ⊢ ā, a ∧ ā, a . This is equivalent to
the formula (a⇒ a) ⇒ (a⇒ a) modulo some applications of associativity and commutativity
(here ⇒ stands for implication). Hence, the proofs of that sequent can be used to encode
the Church numerals. Figure 3.4 shows on the left the encodings of the numbers 0 to 4
as N-nets. Observe that using B-nets, we can distinguish only the numbers 0, 1, and 2,
because all numbers ≥ 2 are collapsed. Note that there are also proofs of that sequent that
do not encode a numeral. There are two examples on the right of Figure 3.4. The top one
is obtained by simply mixing together the two proofs 0 and 2. One of the arguments for
not having the mix rule in a system is that it causes types (resp. formulas) to be inhabited
by more terms (resp. proofs) than the intended ones. However, let me stress the (well-
known) fact, that this phenomenon is by no means caused by the mix rule, as the bottom
“fake” numeral in Figure 3.4 shows, which comes from the mix-free sequent proof shown in
Figure 3.2.

3.3 Nets with cuts

A cut is a formula A♦ Ā, where ♦ is called the cut connective, and where the function (−)
is defined on formulas as follows (with a trivial abuse of notation):

ā = ā , ¯̄a = a , t̄ = f , f̄ = t , (A ∧B) = Ā ∨ B̄ , (A ∨B) = Ā ∧ B̄ .

58 3. Some Combinatorial Invariants of Proofs in Classical Logic

A sequent with cuts is a sequent where some of the formulas are cuts. But cuts are not
allowed to occur inside formulas, i.e., all ♦-nodes are roots. A prenet with cuts is a prenet
P ⊲ Γ, where Γ may contain cuts. The ♦-nodes have the same geometric behavior as the
∧-nodes. Therefore the correctness criterion has to be adapted only slightly:

Definition 3.3.1. A conjunctive resolution of a prenet P ⊲ Γ with cuts is a sub-prenet
P |Γ′ ⊲ Γ′ where Γ′ has been obtained by deleting one child subformula for every ∧-node
and every ♦-node of Γ.

Definition 3.3.2. A W -prenet P ⊲ Γ with cuts is said to be correct if for every one of
its conjunctive resolutions P |Γ′ ⊲ Γ′ the W -linking P |Γ′ is not the zero function. A W -net
with cuts is a correct W -prenet with cuts.

An example of a correct net with cuts (taken from [Gir91]):

b̄ a ā b̄ b b̄ b a ā b

∧ ∧ ♦ ∧ ∧

.....................................
............................
...

......................
...

(3.6)

In the translation from sequent proofs containing the cut rule into prenets with cuts,
the cut is treated as follows:

Γ, A Ā,∆
cut −−−−−−−−−−−−−

Γ,∆
;

P ⊲ Γ, A Q ⊲ Ā,∆
cut −−−−−−−−−−−−−−−−−−−−−−−−

P ⊕Q ⊲ Γ, A ♦ Ā,∆
.

Here the cut connective is used to keep track of the cuts in the sequent proof. To the best of
my knowledge the use of a special connective for cut comes from [Ret97] (see also [HvG03]).

In order to simplify the presentation and maintain the similarity between cut and con-
junction, our sequent calculus allows contraction to be applied to cut formulas. This slightly
unconventional rule is used only for obtaining a generic proof of sequentialization; in no
way does it affect the other results (statements or proofs) in the rest of this chapter.

The generalization of soundness and completeness is now immediate:

Theorem 3.3.3 (Soundness). For any W , a sequentializable W -prenet in CL with cuts is
correct.

Theorem 3.3.4 (Sequentialization). A B-net with cuts is sequentializable in CL + cut.

An interesting subclass of prenets are those P ⊲ Γ in which Γ contains exactly two
non-cut formulas (but may contain an arbitrary number of cuts. Here are two examples,
one with and one without cuts:

bb̄ b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

∨

∨

♦

...............
..................

..
............
..................................

..
................
....................
...............................

...
............
..............
...................

...
..

(3.7)

3.4. Cut Reduction 59

b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

∨

∨

...............
..................

..................
.............................

.......................
......................................

..
............
..................................

...
............
..............
.................

..
...

(3.8)

The two prenets in (3.7) and (3.8) can also be drawn as follows where the two formulas in
Γ are at the outer ends of the picture:

b̄ a ā b̄ b a

b

b̄

♦

āb

∧ ∧ ∧

∨

∨

∨

...............
..................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.......

...

...

..........
..

.........
...........
...........
..........
.....

and
b̄ a ā b̄ b a

āb

∧ ∧ ∧

∨

∨

∨

...............
..................

..................
...........
...........

...........
...........

...........
...........

...........
...........

..................
......................
...................................

...
...........
...........
...........
...........
...........
...........
...........
...........
..

...........
...........
...........
...........
...........
...........
...........
...........
...........

(3.9)

The motivation for this notation is, of course, to indicate the category, whose objects are
the formulas, and whose arrows are the prenets with two conclusions. However, to get such
a category, we have to say how to compose arrows. This is usually done by cut elimination,
which is the subject of the next section.

3.4 Cut Reduction

Cut elimination in W -prenets has much in common with proof nets of multiplicative linear
logic. The cut-reduction step on a compound formula is exactly the same:

P ⊲ (A ∧B) ♦ (Ā ∨ B̄),Γ → P ⊲ A ♦ Ā, B ♦ B̄,Γ

and so it does not affect the linking itself (although we have to show it preserves correctness).
As picture:

∧∧ ♦

; ♦
♦

(3.10)

For saving space, the picture is put on the side. Cuts on the units can simply be removed:

t

f

♦

...........................
...........
.....................

; (3.11)

60 3. Some Combinatorial Invariants of Proofs in Classical Logic

The really interesting things happen in the atomic case. Here cut elimination means “count-
ing paths through the cuts”. Let us illustrate the idea by an example:

ā ā ā a ā a a

♦

..................................... ..
..

...
............................
..

reduces to ā ā ā a a
..

...
..

............................
...
..................
...

...................
.........................
...

More generally, if some weights are different from 1, we multiply them:

{ ā1

p
⌢
a4 , ā2

q
⌢
a4 , ā3

r
⌢
a4 , ā5

m
⌢
a6 , ā5

n
⌢
a7 } ⊲ ā1, ā2, ā3, a4 ♦ ā5, a6, a7

→ { ā1

pm
⌢
a6 , ā1

pn
⌢
a7 , ā2

qm
⌢
a6 , ā2

qn
⌢
a7 , ā3

rm
⌢
a6 , ā3

rn
⌢
a7 } ⊲ ā1, ā2, ā3, a6, a7 .

To understand certain subtleties let us consider

{ ā1

p
⌢
a4 , ā1

q
⌢
a2 , a2

r
⌢
ā3 , ā3

s
⌢
a4 } ⊲ ā1, a2 ♦ ā3, a4 → { ā1

z
⌢
a4 } ⊲ ā1, a4 .

What is the value of z? We certainly cannot just take q · s, we also have to add p. But
the question is what happens to r, i.e., is the result z = p + qs or z = p + q · (1 + r) · s =
p+ qs+ qrs or even z = p+ q · (1 + r + r2 + r3 + · · ·) · s?12 All choices lead to a sensible
theory of cut elimination, but here we only treat the first, simplest case: we drop r. In
[LS05a], this property is called loop-killing, and it corresponds to contractibility, as defined
in Definition 2.7.5.

Let us now introduce some notation. Given P ⊲ Γ and x, y, u1, u2, . . . , un ∈ L (Γ), with

n even, we write P (x⌢u1 ·u2
⌢u3 · . . . ·un

⌢y) as an abbreviation for P (x, u1) ·P (u2, u3) · . . . ·
P (un, y). In addition we define

P (x
∣
∣⌢u1 ·u2

⌢u3 · . . . ·un
∣
∣⌢y) = P (x⌢u1 ·u2

⌢u3 · . . . ·un
⌢y) + P (x⌢un · . . . ·u3

⌢u2 ·u1
⌢y) (3.12)

We now can define cut reduction formally for a single atomic cut:

P ⊲ u ♦ v,Γ → Q ⊲ Γ , where Q(x, y) = P (x, y) + P (x
∣
∣⌢u ·v

∣
∣⌢y)

for all x, y ∈ L (Γ), and where u is labelled by an arbitrary atom and v by its dual. But
we can go further and do simultaneous reduction on a set of atomic cuts:

P ⊲ u1 ♦ v1, u2 ♦ v2, . . . , un ♦ vn,Γ → Q ⊲ Γ , (3.13)

where each ui labelled by an arbitrary atom or unit, and vi by its dual. For defining Q, we
need the following notion:
A cut-path between x and y in a net P ⊲ ∆ with x, y ∈ L (∆) is an expression of the form

x⌢w1 ·z1
⌢w2 ·z2

⌢w3 · . . . ·zk
⌢y where wi ♦ zi are all distinct atomic cuts in ∆, and such that

P (x
∣
∣⌢w1 ·z1

⌢w2 ·z2
⌢w3 · . . . ·zk

∣
∣⌢y) 6= 0. For a set S of atomic cuts in ∆, the cut-path is

12Notice that this is really the Geometry of Interaction’s [Gir89] Execution formula.

3.4. Cut Reduction 61

a

ā

♦ a

ā

♦ a

ā

................
....................

...

p

..
u

...................................
v

................
....................

...

q

..
................

.............

z

.........................
w

ւ ց

a

ā

♦ a

ā

................
....................

...
......................
................................

...

u·q

..
u·v+p

..
..........
.......

z·v

..
q·z+w

a

ā

♦ a

ā

................
....................

...

p·w

..
p·z+u

..
..........
.......

v·z

..
w·v+q

↓ ↓

ā

a

..
..............

...

vuqz+uvw+pqz+pw+uq

..
...........

...

...
..
.....................

...

ā

a

..
..............

...

pzwv+uvw+pqz+pw+uq

..
...........

...

...
..

Figure 3.5: Cut reduction is not confluent for N-prenets

covered by S if all the wi ♦ zi are in S, and it touches S if at least one of the wi ♦ zi is in
S. The Q in (3.13) is now given by

Q(x, y) = P (x, y) +
∑

{x
⌢

w1 ·z1
⌢

w2 ·...·zk
⌢

y }

P (x
∣
∣⌢w1 ·z1

⌢w2 · . . . ·zk
∣
∣⌢y) ,

where the sum ranges over all cut-paths covered by {u1 ♦ v1, u2 ♦ v2, . . . , un ♦ vn}. Notice
that in the case of cut paths at least one of the summands in (3.12) is always zero.

Lemma 3.4.1. Let P ⊲ ∆ be a W -prenet, and let P ⊲ ∆→ P ′ ⊲ ∆′. If P ⊲ ∆ is correct,
then P ′ ⊲ ∆′ is also correct.

The proof is an ordinary case analysis, and it is the only place where Axiom (3.2) is
used. The next observation is that there is no infinite sequence P ⊲ Γ→ P ′ ⊲ Γ′ → P ′′ ⊲

Γ′′ → · · · , because in each reduction step the size of the sequent (i.e., the number of ∧, ∨

and ♦-nodes) is reduced. Therefore we have:

Lemma 3.4.2. The cut reduction relation → is terminating.

Let us now attack the issue of confluence. Obviously we only have to consider atomic
cuts; let us begin when two singleton cuts P ⊲ ai ♦ āj , ah ♦ āk,Γ are reduced. If the first

cut is reduced, we get P ′ ⊲ ah ♦ āk,Γ, where P ′(x, y) = P (x, y) + P (x
∣
∣⌢ai · āj

∣
∣⌢y). Then

reducing the second cut gives us Q1 ⊲ Γ, where Q1(x, y) = P ′(x, y) + P ′(x
∣
∣⌢ah · āk

∣
∣⌢y). An

easy computation shows that

Q1(x, y) =P (x, y) + P (x
∣
∣⌢ai · āj

∣
∣⌢y) + P (x

∣
∣⌢ah · āh

∣
∣⌢y) + P (x

∣
∣⌢ai · āj

⌢
ak · āh

∣
∣⌢y)+

P (x
∣
∣⌢ah · āk

⌢
ai · āj

∣
∣⌢y) + P (x

∣
∣⌢ai · āj

⌢
ah · āk

⌢
ai · āj

∣
∣⌢y) .

(3.14)

Reducing the two cuts in the opposite order yields Q2 ⊲ Γ, where

Q2(x, y) =P (x, y) + P (x
∣
∣⌢ai · āj

∣
∣⌢y) + P (x

∣
∣⌢ah · āk

∣
∣⌢y) + P (x

∣
∣⌢ai · āj

⌢
ak · āh

∣
∣⌢y)+

P (x
∣
∣⌢ah · āk

⌢
ai · āj

∣
∣⌢y) + P (x

∣
∣⌢ah · āk

⌢
ai · āj

⌢
ah · āk

∣
∣⌢y) .

(3.15)

62 3. Some Combinatorial Invariants of Proofs in Classical Logic

We see that the last summand is different in the two results. But if we reduce both cuts
simultaneously, we get Q ⊲ Γ, where

Q(x, y) =P (x, y) + P (x
∣
∣⌢ai · āj

∣
∣⌢y) + P (x

∣
∣⌢ah · āk

∣
∣⌢y)+

P (x
∣
∣⌢ai · āj

⌢
ak · āh

∣
∣⌢y) + P (x

∣
∣⌢ah · āk

⌢
ai · āj

∣
∣⌢y) .

(3.16)

Now the troublesome summand is absent. There are also good news: In the case of B-nets
we have that Q = Q1 = Q2. The reason is that if in either Q1 or Q2 the last summand is
1, then at least one of the other summands is also 1. This ensures that the whole sum is 1,
because of idempotency of addition. Therefore:

Lemma 3.4.3. On B-prenets the cut reduction relation → is locally confluent.

Lemmas 3.4.1–3.4.3 together give us immediately:

Theorem 3.4.4. On B-nets with cuts the cut elimination via → is terminating and con-
fluent, and the normal forms are cut free B-nets.

This theorem allows us to form the category of B-nets, more precisely, we have two
categories whose objects are the formulas. The arrows of the first category, that I call
here PreB are the cut-free B-prenets with two conclusions, and the arrows of the second
category, that I call NetB, are the cut-free B-nets with two conclusions (i.e., an arrow
A → B is a (pre-)net P ⊲ Ā, B). In both categories, the arrow composition is defined by
cut elimination. More precisely, the composition of P ⊲ Ā, B (which is an arrow from A
to B) and Q ⊲ B̄, C (which goes from B to C) is obtained by elimination the cut from
P ⊕Q ⊲ Ā, B ♦ B̄, C.

Theorem 3.4.5. The category NetB is a flat and contractible B5-category.

The proof is a straightforward exercise since the basic morphisms demanded by the
definitions (see Chapter 2) are obtained by the obvious sequent proofs, and the demanded
equations hold trivially.

Note that we do not have results like Theorem 3.4.4 or 3.4.5 for general W . Figure 3.5
shows an example for the non-confluence of cut reduction for N-prenets.

Although we do not have confluence in general, we could for a given proof with cuts
define a “most canonical” way of obtaining a cut-free proof net: do simultaneous elimination
of all the cuts at once. But still, this is not enough to give us a category. In Section 3.6 we
will see how N-nets can be made into a category by adding further restrictions.

Let us now compare our cut elimination with other (syntactic) cut elimination proce-
dures for classical propositional logic. In the case of B-nets, the situation is quite similar
to the sequent calculus: the main differences is that we do not lose any information in the
weak-weak-case (shown in (1.2) on page 4), although we lose some information of a numeric
nature in the cont-cont case.

In the case of N-nets, the situation is very different. Let us use (3.6) as example, whose

3.5. From Deep Inference Derivations to Prenets 63

b̄ a ā b̄ b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧ ∧ ∧

H H

...............................
...................
.........................

...
..........................
..................................
..

..
............................
...

! b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

.....................................
............................
..

......................
..

...............
...................
...

..
..

b̄ a ā b̄ b a ā b b a ā b

∧ ∧ ∧ ∧ ∧ ∧

H H

...............................
.................
..

...................
.......................................

..
...............
............................
...

...
! b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

.....................................
............................
..

......................
..

...............
...................
...

..
..

Figure 3.6: The two different results of applying sequent calculus cut elimination to the
proof (3.6). Left: Written as Girard/Robinson proof-net. Right: Written as N-proof-net.

corresponding sequent proof is shown below:

id −−−−−−−
⊢ b̄, b

id −−−−−−−−
⊢ a, ā

∧ −−−−−−−−−−−−−−−−−−−−−
⊢ b̄ ∧ a, ā, b

id −−−−−−−
⊢ b̄, b

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ b̄ ∧ a, ā ∧ b̄, b, b

cont −−−−−−−−−−−−−−−−−−−−
⊢ b̄ ∧ a, ā ∧ b̄, b

id −−−−−−−
⊢ b̄, b

id −−−−−−−−
⊢ a, ā

id −−−−−−−
⊢ b̄, b

∧ −−−−−−−−−−−−−−−−−−−−−
⊢ b̄, a, ā ∧ b

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⊢ b̄, b̄, b̄ ∧ a, ā ∧ b̄

cont −−−−−−−−−−−−−−−−−−−−
⊢ b̄, b ∧ a, ā ∧ b

cut −−
⊢ b̄ ∧ a, ā ∧ b̄, b ∧ a, ā ∧ b

The sequent calculus cut elimination needs to duplicate either the right-hand side proof or
the left-hand side proof. The two possible outcomes, together with their presentation as
N-nets, are shown in Figure 3.6, where the H stand for contractions13. However, in our
setting, the result of eliminating the cut in (3.6) is always (3.3), whether we are in B-nets
or in N-nets.

Although for N-nets the cut elimination operation does not have a close relationship to
the sequent calculus, there is a good correspondence with cut elimination in the calculus of
structures, when done via splitting [Gug07].

3.5 From Deep Inference Derivations to Prenets

In Section 3.2 we have seen how sequent proofs can be translated into prenets. In this
section, I will do the same for deep inference derivations. Let me use the system SKS [BT01],
whose rules are given in Figure 3.7. Recall that these rules can, like rewrite rules, be applied
inside arbitrary contexts. For example,

[a ∨ (c ∧ [(b ∧ b̄) ∨ ā])] ∨ (b ∧ c̄)
ai↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[a ∨ (c ∧ [f ∨ ā])] ∨ (b ∧ c̄)

13This idea of using explicit contraction nodes was sketched in [Gir91] and is carried out in detail in
[Rob03].

64 3. Some Combinatorial Invariants of Proofs in Classical Logic

K{t}
ai↓ −−−−−−−−−−

K{a ∨ ā}

K{A ∧ [B ∨ C]}
s −−−−−−−−−−−−−−−−−−−
K{(A ∧B) ∨ C}

K{a ∧ ā}
ai↑ −−−−−−−−−−

K{f}

K{f}
aw↓ −−−−−−

K{a}

K{(A ∧B) ∨ (C ∧D)}
m −−−−−−−−−−−−−−−−−−−−−−−−−−
K{[A ∨ C] ∧ [B ∨D]}

K{a}
aw↑ −−−−−−

K{t}

K{a ∨ a}
ac↓ −−−−−−−−−−

K{a}

K{f}
nm↓ −−−−−−−−−−

K{f ∧ f}

K{t ∨ t}
nm↑ −−−−−−−−−

K{t}

K{a}
ac↑ −−−−−−−−−−

K{a ∧ a}

K{A ∨ [B ∨ C]}
α↓ −−−−−−−−−−−−−−−−−−

K{[A ∨B] ∨ C}

K{A ∨B}
σ↓ −−−−−−−−−−−−

K{B ∨A}

K{A ∧B}
σ↑ −−−−−−−−−−−−

K{B ∧A}

K{A ∧ (B ∧ C)}
α↑ −−−−−−−−−−−−−−−−−−−

K{(A ∧B) ∧ C}

K{A}
f↓ −−−−−−−−−−−
K{A ∨ f}

K{A ∨ f}
t↑ −−−−−−−−−−−

K{A}

K{t ∧A}
f↑ −−−−−−−−−−−

K{A}

K{A}
t↓ −−−−−−−−−−−
K{t ∧A}

Figure 3.7: The inference rules of system SKS

is a correct application of the rule ai↑ inside the context [a ∨ (c ∧ [{·} ∨ ā])] ∨ (b ∧ c̄). Note
that we allow negation only on atoms, and therefore the hole of the context never occurs
in a negative position. A derivation Φ: A→ B in SKS is a rewrite path from A to B using
the rules in Figure 3.7. We call A the premise and B the conclusion of Φ. A derivation is
also denoted as

A

Φ
∥

∥

∥∥S

B

.

where S is the set of inference rules used in Φ. A derivation whose premise is t is called a
proof and is denoted by

−
Φ
∥

∥

∥∥S

B
.

The translation from a derivation into prenets with cuts is done by assigning to each
inference rule a rule net :

A
r −−−
B

;

B

Ā

..

where the linking is subject to certain side conditions which depend on the rule r.
For the occurrences of t and f in the premise and conclusion of r there is no choice:

There can never be an edge coming out of an f , and there is always exactly one edge
connecting a t to itself. But we have to explain how to connect propositional variables.

Figures 3.8, 3.9, 3.10, 3.11 and 3.12 show the rule nets for the rules of system SKS,
as they are given in Figure 3.7. For the rules s, m, α↓, α↑, σ↓, and σ↑, it is intuitively

3.5. From Deep Inference Derivations to Prenets 65

A

Ā

. .
···

···

C

B̄

. .

···

···. .
···

···

B

C̄

D

D̄

. .
···

···

∧

∨

∧

∨

∨

∧

K

K̄

. .
···

··· . .
···

···

A

Ā

. .
···

···

B

B̄

. .
···

···

C

C̄

. .
···

···

∧

∨

∨

∧

K

K̄

. .
···

··· . .
···

···

Figure 3.8: The shape of m-rule nets and s-rule nets

A

Ā

. .
···

···

B

B̄

. .
···

···

C

C̄

. .
···

···

∨

∨

∨

∨

K

K̄

. .
···

··· . .
···

···

A

B̄

. .

···

···. .
···

···

B

Ā

∨

∨

K

K̄

. .
···

··· . .
···

···

Figure 3.9: The shape of α↓-rule nets and σ↓-rule nets

Ā

A
f

∨

K

K̄

. .
···

···. .
···

··· . .
···

···

Ā

A
t

∧

K

K̄

. .
···

···. .
···

··· . .
···

···
..........
..........
......................................

Figure 3.10: The shape of f↓-rule nets and t↓-rule nets

clear what should happen: every leaf in the premise tree is connected to its counterpart

66 3. Some Combinatorial Invariants of Proofs in Classical Logic

a

t

K

K̄

. .
···

··· . .
···

···

..
.........
....

ā

t

K

K̄

. .
···

··· . .
···

···
..........
..........
.......................................

a ā

f

∨

K

K̄

. .
···

··· . .
···

···
...........
............................

ā a

f

∧

K

K̄

. .
···

··· . .
···

···

...................................
....

Figure 3.11: The shape of rule nets for aw↓, aw↑, ai↓, and ai↑

ā ā

a

∨

K

K̄

. .
···

··· . .
···

···

...

...
a a

ā

∧

K

K̄

. .
···

··· . .
···

···
.........
.........
.........
.........
.....

.........
.........
.........
.........
.....

f f

t

∨

K

K̄

. .
···

··· . .
···

···
..........
..........
.......................................

f f

t

∧

K

K̄

. .
···

··· . .
···

···

..
.........
....

Figure 3.12: The shape of rule net for ac↓, ac↑, nm↓, and nm↑

in the conclusion via an edge in the linking; and there are no other edges. Note that the
rule nets for α↓ and α↑ are identical; one written as the upside-down version of the other.
The same holds for all other pairs of dual rules. For α↓, σ↓, f↓, and t↓ only one version
is shown (Figures 3.9 and 3.10), but for the atomic rules both versions are given (Figures
3.11 and 3.12) because it is instructive to see them next to each other. In Figure 3.12 we
show the rule nets for ac↓, ac↑, nm↓, and nm↑.

We can use cuts to plug rule nets together to get derivation nets, as it is shown in
Figure 3.13. Note that in derivation nets the “duality” between derivations

A

∆
∥

∥

∥∥S

B

and

B̄

∆̄
∥

∥

∥∥S

Ā

disappears because both are represented by the same net. A derivation which contains no
rules, i.e., premise and conclusion coincide, is represented by the identity net :

A

Ā

. .···

···
(3.17)

For eliminating the cut we can proceed as in Section 3.4. And if we choose B as semiring
of weights, we get again the category NetB.

3.6. Proof Invariants Through Restricted Cut Elimination 67

A
ρ0 −−−
C1

ρ1 −−−
C2

ρ2 −−−
...

−−−
Cn

ρn −−−
B

;

B
..

C̄n

♦

Cn

..

...

..

C̄2

♦

C2

..

C̄1

♦

C1

..

Ā

Figure 3.13: From derivations to derivation nets.

3.6 Proof Invariants Through Restricted Cut Elimination

If we do not eliminate any cut, then a derivation net, as defined in the previous section,
contains the same amount of information as an SKS derivation; there is a one-to-one cor-
respondence between the two. Thus, these derivation nets are not suited as invariants for
proofs. On the other hand, if we eliminate all the cuts, with N as semiring of weights, we
do not get reasonable invariants for proofs either, because the cut-free derivation net for
a given derivation is not uniquely defined. The obtained N-prenet depends on the chosen
order for eliminating the cuts. This, in particular, means that we do not have a category
of N-prenets.

An inspection of the cut elimination process for N-prenets shows that there is only one
case which is responsible for the non-confluence: atomic cut reduction when both cut atoms
are connected to many other atoms:

a

ā

♦

ā ā

a a

· · ·

· · ·

......................
..............
..

......................
..............
..

......................................
......................................

;

ā ā

a a

· · ·

· · ·

...

...

...

...

(3.18)

68 3. Some Combinatorial Invariants of Proofs in Classical Logic

···

a♦

ā

···
···

a♦

ā

···
···

a

.......................

.................
......

...................................
...

.........
..........
............
.................
.....

...........................
..

...........

............
..........
.......
........
.........
...........
......

ւ ց

···

a♦

ā

···
···

···
···

a

.......................

..................
.....

...................................
..

...........

............
..........
.......
........
.........
...........
......

...

.........
..........
............
.................
.....

···
···

···

a♦

ā

···
···

a

.......................

..................
.....

...

.........
..........
............
.................
.....

...................................
..

...........

............
..........
.......
........
.........
...........
......

ց ւ

···
···

···
···

···

a
.......................

.................
......

...

.........
..........
............
.................
.....

..

...........

............
..........
.......
........
.........
...........
......

Figure 3.14: Critical peak for level-C cut reduction

For this reason, we will now forbid this reduction. We speak of level-C cut reduction14 if
a cut on atoms can only be reduced if at least one of the two cut atoms is connected to
at most one other atom that is not participating in the cut. I.e., we allow only atomic cut
reductions of the following forms:

a

ā

♦ ;

ā

a

♦

ā ā· · ·

......................
..............
..

......................
..............
..

; ā ā· · ·

a

ā

a

♦

···

··· ···
............
...........
...........
.

.........
.........
.....

.........
.........
.....

.........................
.............
...........
.......

.........................
.............
...........
.......

; a

···

.........
.........
.....

.........
.........
.....··· ···

.........................
.............
...........
.......

.........................
.............
...........
.......

A prenet is called C-reduced if no further cut reduction steps according to these restrictions
are possible.

14The terminology comes from the terminology of bureaucracy of type A, B, and C [Gug04, Gug04, Str09].

3.6. Proof Invariants Through Restricted Cut Elimination 69

Theorem 3.6.1. Level-C reduction is terminating and confluent.

Proof. Termination follows for the same reason as before. For showing confluence, it suffices
to note that Figure 3.14 shows the only critical peak.

Because of this theorem, we can define two more categories that I call here PreC and
DeriC. As before, in both categories the objects are the formulas. For PreC the arrows
are the C-reduced prenets with two conclusions, and for DeriC we consider only those
C-reduced prenets that are obtained from an SKS-derivation as described in the previous
section. As expected, arrow composition is defined by level-C cut reduction.

As the category PreB, the category PreC is star-autonomous and obeys all the axioms
needed for a B5-category. However, PreC is not flat and not contractible. In the same
way, the category DeriC is not flat and not contractible. Furthermore, surprisingly the
category DeriC is not even a B5-category, simply because it is not star-autonomous. The
reason is that we do in the general case not have a natural bijection between the proofs
from A ∧B to C and the proofs from B to A⇒C. To see this consider the example on the
left below, which can easily be obtained from an SKS-derivation:

b̄ a ā b̄ b a

āb

∧ ∧ ∧

∨

∨

∨

...............
..................

..................
...........
...........

...........
...........

...........
...........

...........
...........

..................
.......................
....................................

...
...........
...........
...........
...........
...........
...........
...........
...........
..

...........
...........
...........
...........
...........
...........
...........
...........
...........

∼=

ābb̄a

ā b̄ b a

∨

∧ ∧

∨

∨

∧

...
......................

...........
...........
...........
...........
...........
...........
...........
...

...........
...........
...........
...........
...........
...........
...........
..
..

(3.19)

The prenet on the right above is obtained by the star-autonomous structure of PreC.
But there is no SKS-derivation that correspond to this prenet. On the other hand, if we
reintroduce the cut as in the example on the left below, we can do the same transformation
as above, without leaving the category DeriC:

b̄ a ā b̄ b a

b

b̄

♦

āb

∧ ∧ ∧

∨

∨

∨

...............
..................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.......

...

...

..........
..

.........
...........
...........
..........
.....

∼=

ābb̄a

ā b̄ b a

b

b̄

♦

∨

∧ ∧

∨

∨

∧

...
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.......

.................................
.........
.......
............
..........
..........
.........
........
........
........
.......
.......
.......
........
............
............
...

..

..........
...

.........

.........
.........
.........
......

(3.20)

Both prenets in (3.20) are direct translations of SKS-derivations, as the reader can easily
verify. This raises the question whether we can find a deep inference proof system S such
that its C-reduced nets form a star-autonomous subcategory of PreC.

70 3. Some Combinatorial Invariants of Proofs in Classical Logic

Even though DeriC is not star-autonomous, it obeys the equations discussed in Sec-
tion 2.6. PreC and DeriC also carry the semigroup structure on the homsets, as defined
in Section 2.4. In particular, this semigroup structure is not idempotent. The sum of two
prenets is given by their union. This is best understood by seeing an example. Let f be
the proof graph on the left in (3.9) and g the one on the right. Then we can form f + f ,
f + g, and g + g as follows:

b̄ a ā b̄ b a

b

b̄

♦

b

b̄

♦

āb

∧ ∧ ∧

∨

∨

∨

.....................................
...

...........

...........

...........

...........

...........
...........
...........
...........
...........
...........
...........
............
............
.............
.............
..............
................

...............

............

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
............
............
.............
...........
........
........
..

...

..

...

...

..........
..............
..

.......
........
.........
..........
.........

..........
..

.........

.........

.........

.........

.....

b̄ a ā b̄ b a

b

b̄

♦

āb

∧ ∧ ∧

∨

∨

∨

.....................................
...

...........

...........

...........

...........

...........
...........
...........
...........
...........
...........
...........
............
............
.............
.............
..............
................

...............

............

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
............
............
.............
...........
........
........
..

..

...

............
...

...........
............
.......

..
..............
.......................
..

...
..........
..........
..........
..........
...........
...........
...........
............
...........
......
.......
.......
.......
.......
........
........
.......

...........

...........

...........

...........

...........

...........
...........
...........
...........
...........
...........
...........
............
............
.............
.............
...............
................
.......

b̄ a ā b̄ b a

āb

∧ ∧ ∧

∨

∨

∨

.....................................
...

...........

...........

...........

...........

...........
...........
...........
...........
...........
...........
...........
............
............
.............
.............
..............
................

...............

............

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
............
............
.............
...........
........
........
..

.................................
..

..................
.......................

...
...

..............
................
.....................

..
...

..........

..........

..........

..........

...........

...........
...........
............
...........
......
.......
.......
.......
.......
........
........
.......

.........
.........
.........
.........
..........
..........
..........
..........
...........
...........
............
......
.......
.......
........
........
.........
........

...........

...........

...........

...........

...........

...........
...........
...........
...........
...........
...........
...........
............
............
.............
.............
...............
................
.......

...........

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
............
............
.............
..........
........
........

Furthermore, we can equip the Hom-sets of our categories with a partial order, defined
by cut elimination, as indicated in Section 2.5: We say f ≤ g if g is obtained from f by
eliminating some of the remaining cuts15, as it is the case in our example above for f and g.
Then we also have f + f ≤ f + g ≤ g+ g. The important observation about the semigroup
structure and this partial order structure is, that they are independent. Although this seems
to be natural from the viewpoint of our prenets, it is not the case in the LK-categories of
[FP04c] which are based on the proof nets in [Rob03] and the sequent calculus LK [Gen34].
In an LK-category the sum-of-proofs-semigroup structure and the cut-elimination-partial-
order structure on the Hom-sets determine each other uniquely via f 4 g iff f + g = f (see
Section 2.5).16 In the case of prenets this collapse is only present in the case of W = B:

Theorem 3.6.2. The category NetB is an LK-category.

Proof. Let f, g : A → B be two maps in NetB. Let f be given by the proof net P ⊲ Ā, B
and g be given by Q ⊲ Ā, B. Then, by what has been said above, we define f 4 g iff
Q ⊆ P . After Theorem 3.4.5 it only remains to show that equation (LK-∆) holds for all f .
But this follows immediately from the definition of composition of prenets.

3.7 Prenets as Coherence Graphs

We can give a more compact notation of C-reduced prenets if we write the formulas not as
trees but as usual strings, and replace the atomic cuts by big dots. The lost information
can be recovered by simply directing the edges. Here is a simple example that corresponds

15Even if this process is not confluent, we stay in the realm of C-reduced proof graphs.
16In [DP04] and [LS05a] there is also a partial order structure on the Hom-sets, simply because the

semigroup structure is idempotent. But this partial order structure has nothing to do with cut elimination,
simply because everything is a priory cut-free.

3.8. Atomic Flows 71

to the left example in (3.20):

b̄ ∨ a

•

(b̄ ∧ a) ∨ [(ā ∧ b̄) ∨ (b ∧ a)]

(3.21)

This allows us to use C-reduced prenets as “coherence graphs” for the categories studied
in Chapter 2. As example, consider the contractibility axiom (applied to a single atom):

t

ā ∨ a

(ā ∨ a) ∧ (ā ∨ a)

ā ∨ (a ∧ ā) ∨ a

ā ∨ a

;

t

• •

• • • •

• • • •

ā ∨ a

;

t

• •

ā ∨ a

;

t

•

ā ∨ a

;

t

•

ā ∨ a

;

t

ā ∨ a

However, since we do not (yet) have a coherence theorem, we can use this notation only
as help to guide the intuition. For example, in Figure 3.15 we use this notation to illustrate
the idea behind the proof of Theorem 2.7.6. The middle equation in the second line is
(2.39), i.e, the identity of the two nets below:

a ∨ a

a ∧ a

and

a ∨ a

•

a ∧ a

(3.22)

The left-most equation in the second line and the right-most equation in the first line in
Figure 3.15 are both the contractibility equation (2.41). Everything else in Figure 3.15 is
rather trivial from the viewpoint of proof nets.

3.8 Atomic Flows

In this section we present yet another variant of the basic idea underlying this chapter.
We start from a countable set A of atomic types, equipped with an involutive bijection
(̄·) : A → A , such that for all a ∈ A , we have ā 6= a and ¯̄a = a. A (flow) type is a finite
list of atomic types, denoted by p, q, r, . . ., and we write p | q for the list concatenation of p
and q, and we write 0 for the empty list. An atomic flow φ : p → q is a two-dimensional

72 3. Some Combinatorial Invariants of Proofs in Classical Logic

ā ∨ a
=

• • • •

• •

ā ∨ a

=

• • • • • •

• • • •

• •

ā ∨ a

=

• • • • • • • •

• • • • • • • •

• • • •

ā ∨ a

‖

ā ∨ a
=

• •

• • • •

• • • •

ā ∨ a

= • • • •

• • • •

ā ∨ a

=

• • • • • • • •

• • • • • • • •

• • • •

ā ∨ a

Figure 3.15: The idea of the proof of Theorem 2.7.6

diagram [Laf95a], written as
p

︷ ︸︸ ︷

· · ·
φ
· · ·

︸ ︷︷ ︸

q

where p is the input type and q is the output type. The number of edges corresponds to the
lengths of the lists, and each edge is labelled by the corresponding list element. For each
type q, we have the identity flow idq:

· · ·

We can compose atomic flows horizontally: for φ : p→ q and φ′ : p′ → q′, we get φ|φ′ : p|p′ →
q | q′ of the shape

· · ·
φ
· · ·

· · ·
φ′
· · ·

And we can compose atomic flows vertically: for φ : p→ q and ψ : q → r, we get ψ◦φ : p→ r
of the shape

· · ·
ψ
· · ·
φ
· · ·

3.8. Atomic Flows 73

ai↓ ac↓ aw↓ ae aw↑ ac↑ ai↑

a ā
a a

a a a b

b a a
a a

a a ā

Figure 3.16: Generators for atomic flows

= =

= =

= =

= =

= =

a ā = ā a a ā = ā a

Figure 3.17: Relations for atomic flows

For φ : p → q we have φ ◦ idp = φ = idq ◦ φ and φ | id0 = φ = id0 | φ. We also have
(ψ ◦ φ) | (ψ′ ◦ φ′) = (ψ | ψ′) ◦ (φ | φ′) which is pictured as

· · ·
ψ
· · ·
φ
· · ·

· · ·
ψ′
· · ·
φ′
· · ·

Finally, we have to give a set of generators and relations, which is done in Figures 3.16
and 3.17. It is easy to see that atomic flows form a (strict) monoidal category, that we
denote by AF.

The generators in Figure 3.16 are called ai↓ (atomic interaction down), ac↓ (atomic con-
traction down), aw↓ (atomic weakening down), ae (atomic exchange), aw↑ (atomic weaken-
ing up), ac↑ (atomic contraction up), and ai↑ (atomic interaction up). Note that some of
them have already been studied, e.g., [Bur91, Laf95a, ER06, MT10]. The typing informa-
tion in Figure 3.16 says that

• for ai↓ (resp. ai↑) the two output edges (resp. input edges) carry opposite atomic
types,

74 3. Some Combinatorial Invariants of Proofs in Classical Logic

• for ac↓ (resp. ac↑) all input and output edges carry the same atomic type,

• for aw↓ (resp. aw↑) there are no typing restrictions, and

• for ae, the left input has to carry the same type as the right output, and vice versa.

When picturing an atomic flow we will omit the typing when this information is irrelevant
or clear from context, as done in Figure 3.17. The typing is needed for two reasons: first,
we need to exclude illegal flows like

.

Note, that for this it would suffice to have only two types, + and −, as done in [GG08].
The second reason for having the types here is the use of the flows as tool for proof trans-
formations later in this chapter.

Definition 3.8.1. For a given atomic flow diagram φ, we define its atomic flow graph Gφ

to be the directed acyclic graph whose vertices are the generators ai↓, ai↑, ac↓, ac↑, aw↓,
aw↑ (i.e., all except ae) appearing in φ, whose incoming (resp. outcoming) edges are the
incoming (resp. outcoming) edges of φ, and whose inner edges are downwards oriented as
indicated by the flow diagram for φ. A path in φ is a path in Gφ.

Remark 3.8.2. If we label the edges in Gφ by the corresponding atomic type, then for
every path in φ, all its edges carry the same label.

Remark 3.8.3. In [GG08], atomic flows have been defined as directed graphs, as done in
Definition 3.8.1. Indeed, Gφ is the “canonical representative” of a class of flow diagrams wrt.
to the equalities in Figure 3.17. However, with this definition the order of the input/output
edges is lost, which makes the vertical composition and the mapping from formal derivations
(done in the next section) more difficult to define.

Remark 3.8.4. We could add the relations

= and = (3.23)

and their duals to the ones given in Figure 3.17, and this would equip every object in AF

with a monoid and a comonoid structure. We do not use the equations (3.23) here, in order
to maintain the close relationship to the original definition of atomic flows in [GG08] and
to derivations in SKS (see next section).

Notation 3.8.5. For making large atomic flows easier to read, we introduce the following
notation:

abbreviates · · ·

3.8. Atomic Flows 75

This can be extended to all generators:

abbreviates ···

abbreviates

··· ···

··· ···

abbreviates

··· ···

···

abbreviates ···

··· ···

And similarly for aw↑, ac↑, and ai↑. In each case we allow the number of edges to be 0,
which then yields the empty flow. Moreover, if we label an abbreviation with atomic type a,
we mean that each edge being abbreviated has type a. For instance:

a ā
abbreviates

a a āā

···

··· ···

.

Remark 3.8.6. The category AF of atomic flows is strictly monoidal, but it is not compact
closed (and also not star-autonomous): although we can for a given atomic flow φ : p|x→ q|x
define the atomic flow Trx(φ) : p→ q as

φ ,

the category AF is not traced [JSV96], because it does not obey yanking:

6=

This makes the category AF very different from the category PreC.

Notation 3.8.7. A box containing some generators stands for an atomic flow generated
only from these generators, and a box containing some generators crossed out stands for an
atomic flow that does not contain any of these generators. For example, the two diagrams

and

stand for a flow that contains only ai↓ and aw↓ generators and a flow that does not contain
any ac↑ and ai↑ generators, respectively.

76 3. Some Combinatorial Invariants of Proofs in Classical Logic

Proposition 3.8.8. Every atomic flow φ can be written in the following form:

(3.24)

Proof. Let φ be given and pick an arbitrary occurrence of ai↓ inside φ. Then φ can be
written as shown on the left below.

φ′

φ′′
=

φ′

φ′′

(3.25)

The equality follows by induction on the number of vertical edges to cross, For ai↑ we
proceed dually.

Proposition 3.8.9. Let a be an atomic type. Then every atomic flow φ can be written as

a ā

φ′

a ā

, (3.26)

where φ′ is ai-free with respect to a.

Proof. We apply the construction of the proof of Proposition 3.8.8 together with the rela-
tions in the last line of Figure 3.17.

3.9 From Formal Deductions to Atomic Flows

We can assign to each formula, sequent, or list of sequents its flow type by forgetting the
structural information of ∧, ∨, t and f, and simply keeping the list of atomic types as they
occur in the formulas. For a formula A, we denote this type by fl(A).

Similarly, we will assign flows to inference rules. Rules like

⊢ Γ, A ⊢ B,∆
∧ −−−−−−−−−−−−−−−−−−−−−
⊢ Γ, A ∧B,∆

and
⊢ Γ, A,B

∨ −−−−−−−−−−−−−
⊢ Γ, A ∨B

will be translated into the identity flows idfl(Γ) | idfl(A) | idfl(B) | idfl(∆) and idfl(Γ) | idfl(A) | idfl(B),
respectively. And the rules

⊢ Γ, A,A
cont −−−−−−−−−−−−

⊢ Γ, A
and

⊢ Γ
weak −−−−−−−−−

⊢ Γ, A

3.9. From Formal Deductions to Atomic Flows 77

will be translated into flows of the shape

and .

In this manner, we could translate whole sequent proofs into atomic flows. However,
atomic flows carry more symmetries than present in the sequent calculus. In order to be
able to mirror the richness of atomic flows inside a sound and complete deductive system for
classical logic, we use here the deep inference system SKS (shown in Figure 3.7 on page 64).
In the next section we will need the following property of SKS:

Proposition 3.9.1. The inference rules

K{A ∨A}
c↓ −−−−−−−−−−−−

K{A}
and

K{A}
c↑ −−−−−−−−−−−−
K{A ∧A}

are derivable in system SKS. [BT01]

I write SKS to denote the category whose objects are the formulas and whose arrows
are the derivations of SKS. This system has the advantage that the rules for weakening,
contraction, and identity and cut are already in atomic form. Thus, it is straightforward to
translate SKS derivations into atomic flows. Formally, we assign to each context K{·} a left
type and a right type denoted by l(K{·}) and r(K{·}), containing the lists of atomic types
appearing in K{·} on the left, respectively on the right of the hole {·}. For example, for
K{·} = [a ∨ (c ∧ [{·} ∨ ā])] ∨ (b ∧ c̄) we have l(K{·}) = 〈a, c〉 and r(K{·}) = 〈ā, b, c̄〉. Then,
for each rule r of SKS we define the rule flow fl(r) as follows: we map the rules ai↓, ai↑,
ac↓, ac↑, aw↓, and aw↑ to the corresponding generator (with the appropriate typing), and
we map the rules σ↓, σ↑, and m to the permutation flows shown below:

σ↓, σ↑ : m :
fl(A) fl(B)

fl(A)fl(B)

fl(A) fl(B) fl(C) fl(D)

fl(A) fl(C) fl(B) fl(D)

All remaining rules are mapped to the identity flow.
Then an inference step

K{A}
r −−−−−−−
K{B}

is mapped to idl(K{·}) | fl(r) | idr(K{·})

A derivation Φ is mapped to the atomic flow φ = fl(Φ), which is the vertical composition of
the atomic flows obtained from the inference steps in Φ. This translation defines a forgetful
functor fl : SKS → AF. This functor has an interesting property: for every atomic flow
there is a derivation that maps to it:

Theorem 3.9.2. For every flow φ : p → q there is a derivation Φ: A → B with fl(A) = p
and fl(B) = q and fl(Φ) = φ. [GG08]

Theorem 3.9.2 only works because the flows forget the structural information about ∧,
∨, t and f. In that respect, atomic flows are different from C-reduced prenets. However,

78 3. Some Combinatorial Invariants of Proofs in Classical Logic

if we compare the results of translating SKS-derivations into C-prenets respectively atomic
flows, then both are very similar, as the following example shows, which is the same as the
one on the left in (3.20):

b̄ a ā b̄ b a

b

b̄

♦

āb

.............................
.......
............
............
............
............
............
............
............
............
............
............
............
............
............
............
...........
......
......

...

...

..........
..

..........
............
............
..........
...

vs.

a ā

b̄ a

b̄ b̄ b a

If we fix φ : p → q together with A and B with fl(A) = p and fl(B) = q, we can in
general not provide a derivation Φ: A → B with fl(Φ) = φ. We are thus interested in
properties of atomic flows that can be lifted to derivations, in the following sense:

Definition 3.9.3. We say that a binary relation R on atomic flows can be lifted to SKS,
if R(φ, φ′) implies that for every derivation Φ: A→ B with fl(Φ) = φ there is a derivation
Φ′ : A→ B with fl(Φ′) = φ′.

3.10 Normalizing Derivations via Atomic Flows

In this section I will show how atomic flows can be used to provide a normalization procedure
for SKS-derivations. This is done by showing transformations on atomic flows that can be
lifted to derivations in SKS.

Definition 3.10.1. An atomic flow is weakly streamlined (resp., streamlined and strongly
streamlined) if it can be represented as the flow on the left (resp., in the middle and on the
right):

.

Proposition 3.10.2. An atomic flow φ is weakly streamlined if and only if in Gφ there is
no path from an ai↓-vertex to an ai↑-vertex.

Proof. Immediate from (3.25), read from right to left.

Definition 3.10.3. An atomic flow φ is weakly streamlined with respect to an atomic type a
if in Gφ there is no path from an ai↓-vertex to an ai↑-vertex, whose edges are labelled by a
or ā.

Definition 3.10.4. A derivation Φ: A→ B is weakly streamlined (resp. streamlined, resp.
strongly streamlined) if fl(Φ) is weakly streamlined (resp. streamlined, resp. strongly stream-
lined).

3.10. Normalizing Derivations via Atomic Flows 79

→ →

→ →

→ →

→ →

Figure 3.18: Local rewrite rules

The property strongly streamlined can indeed be seen as the up-down symmetric gen-
eralization being cut-free:

Proposition 3.10.5. Every strongly streamlined proof in SKS does not contain any of the
rules ai↑, ac↑, aw↑.

Proof. If the premise of a derivation is t, then the upper box of its flow, as given in Defini-
tion 3.10.1, must be empty.

In this section, we are going to show the following:

Theorem 3.10.6. For every SKS derivation from A to B, there is a SKS-derivation from
A to B that is strongly streamlined.

From which we get immediately a cut elimination theorem for SKS:

Corollary 3.10.7. For every SKS-proof of A, there is a SKS-proof of A, not containing
any of the rules ai↑, ac↑, aw↑.

Proof. By Theorem 3.10.6 and Proposition 3.10.5.

Consider now the rewrite relation on atomic flows generated by the rules shown in
Figure 3.18, that is denoted by

cw
→ (see [GG08]).

Proposition 3.10.8. The rewrite relation
cw
→ is locally confluent.

Proof. The result follows from a case analysis on the critical peaks, which are:

, and ,

and their duals.

80 3. Some Combinatorial Invariants of Proofs in Classical Logic

However, in general the reduction
cw
→ is not terminating. This can easily be seen by the

following example:

a a
ā

a

cw
→

ā
a

a

ā

cw
→

a a
ā

a
.

The reason is that there can be cycles composed of paths connecting instances of the
ai↓ and ai↑ generators. The purpose of the notion “weakly streamlined” (Definition 3.10.1)
is precisely to avoid such a situation.

Theorem 3.10.9. Every weakly streamlined atomic flow has a unique normal form with
respect to

cw
→, and this normal form is strongly streamlined.

Proof. We do not show the proof of termination here since it can be found in [GG08]. We
only note that the crucial point is Proposition 3.10.2. Then, by Proposition 3.10.8, we have
uniqueness of the normal form. Since

cw
→ preserves the property of being weakly streamlined,

and in the normal form there are no more redexes for
cw
→, there is no generator ai↓, aw↓,

ac↓ above a generator ai↑, aw↑, ac↑.

Theorem 3.10.10. The relation
cw
→ can be lifted to SKS. [GG08]

Thus, it remains to find a method for transforming any atomic flow into a weakly
streamlined one that can be lifted to SKS-derivations.

Definition 3.10.11. Let φ be an atomic flow of the shape

φ =

a ā

ψ

a ā

, (3.27)

where the edges of the selected ai↓ and ai↑ generators carry the same atomic types, as
indicated in (3.27), and let φ′ be the atomic flow

φ′ =

a ā

ψ

a

ā

ā

ψ

a

ā

a

ψ

a ā

. (3.28)

3.10. Normalizing Derivations via Atomic Flows 81

Then we call φ′ a path breaker of φ with respect to a, and write φ
pb
→a φ

′.

Lemma 3.10.12. Let φ and φ′ be given with φ
pb
→a φ

′, and let b be any atomic type. If φ
is weakly streamlined with respect to b, then so is φ′.

Proof. The only edges connecting an output of one copy of ψ to an input of another copy
of ψ are typed by a and ā. Thus, the lemma is evident for b 6= a and b 6= ā. Let us now
assume b = a and proceed by contradiction. Assume there is an ai↓ generator connected to
an ai↑ generator via a path typed by a. If this is inside a copy of ψ, we have a contradiction;
if it passes through the a-edge between the upper and the middle copy of ψ in (3.28), then
this path connects to the ai↓ in (3.27), which also is a contradiction. Similarly for a path
typed by ā.

Lemma 3.10.13. Let φ, ψ, and a be given as in (3.27), and let φ
pb
→a φ

′. If ψ is ai-free
with respect to a, then φ′ is weakly streamlined with respect to a.

Proof. For not being weakly streamlined with respect to a, we would need a path connecting
the upper ai↓ in (3.28) to the lower ai↑. However, such a path must pass through both
the evidenced edge of type a and the evidenced edge of type ā, which is impossible (see
Remark 3.8.2).

Lemmas 3.10.12 and 3.10.13 justify the name path breaker for the atomic flow in (3.28).
It breaks all paths between the upper ai↓ and the lower ai↑ in (3.27), and it does not
introduce any new paths. Furthermore, the interior of the flow ψ is not touched.

We now have to find a way to convert any atomic flow φ into one of shape (3.27) with
ψ being ai-free with respect to a. For this, notice that by Proposition 3.8.9, we can write φ
as

φ =

a ā

θ

a ā

, (3.29)

where θ is ai-free with respect to a. This can be transformed into a flow φ′:

φ′ =

a ā

θ

a ā

ψ

, (3.30)

which is of the desired shape and fulfills the condition of Lemma 3.10.13.

82 3. Some Combinatorial Invariants of Proofs in Classical Logic

Definition 3.10.14. Let φ and φ′ of shape (3.29) and (3.30) be given. If θ is ai-free with

respect to a, then we call φ′ a taming of φ with respect to a, and write φ
tm
→a φ

′.

Lemma 3.10.15. Let φ and φ′ be given with φ
tm
→a φ

′, and let b be any atomic type. If φ
is weakly streamlined with respect to b, then so is φ′.

Proof. Immediate from (3.29) and (3.30).

Definition 3.10.16. On atomic flows, we define the path breaking relation
PB
→ as follows. We

have φ
PB
→ φ′ if and only if there is a flow φ′′ and an atomic type a, such that φ

tm
→a φ

′′ pb
→a φ

′

and φ is not weakly streamlined with respect to a.

Theorem 3.10.17. The relation
PB
→ is terminating, and its normal forms are weakly stream-

lined.

Proof. Let φ be given. We proceed by induction on the number of atomic types occurring

in φ, with respect to which φ is not weakly streamlined. Whenever we have φ
PB
→ φ′,

this number is decreased by one for φ′ (by Lemmas 3.10.12, 3.10.13 and 3.10.15). By the
constructions in (3.28) and (3.30), there is always such a φ′ if φ is not weakly streamlined.

It remains to show that the path breaker can be lifted to SKS-derivations. For the
remainder of this section, we use the following convention for saving space:

A
= −−
B

abbreviates

A
∥

∥

∥∥{α↓,α↑,σ↓,σ↑,t↓,f↑,f↓,t↑}

B

.

Lemma 3.10.18. Given a context K{·} and a formula A, there exist derivations

A ∧K{t}
∥

∥

∥∥{s,=}

K{A}

and

K{A}
∥

∥

∥∥{s,=}

K{f} ∨A

.

Proof. By structural induction on K{·}. [Str03a, Brü03].

We use this lemma to show that the transformation in the proof of Proposition 3.8.8,
which does nothing to the flows can “be lifted” to SKS in the following sense. Let Φ be a
derivation. Then for every instance of the rule ai↓, we can do the transformation:

A

Φ′
∥

∥

∥∥

K{t}
ai↓ −−−−−−−−−−

K{a ∨ ā}

Φ′′
∥

∥

∥∥

B

→

A
t↓ −−−−−

t ∧A
ai↓ −−−−−−−−−−−

[a ∨ ā] ∧A

Φ′
∥

∥

∥∥

[a ∨ ā] ∧K{t}
∥

∥

∥∥{s,=}

K{a ∨ ā}

Φ′′
∥

∥

∥∥

B

, (3.31)

3.10. Normalizing Derivations via Atomic Flows 83

which does not change the atomic flow, and dually for ai↑.

Lemma 3.10.19. The relation
tm
→a can be lifted to SKS.

Proof. Let Φ: A→ B with fl(Φ) = φ and a be given. By repeatedly applying (3.31) we get
the derivation

A
∥

∥

∥∥{ai↓,=}

[a ∨ ā] ∧ · · · ∧ [a ∨ ā] ∧A

Θ
∥

∥

∥∥

B ∨ (a ∧ ā) ∨ · · · ∨ (a ∧ ā)
∥

∥

∥∥{ai↑,=}

B

,

with fl(Θ) = θ, from which we can obtain a derivation

A
t↓ −−−−−

t ∧A
ai↓, t↓ −−−−−−−−−−−

[a ∨ ā] ∧A
∥

∥

∥∥{ac↑,=}

[(a ∧ · · · ∧ a) ∨ (ā ∧ · · · ∧ ā)] ∧A
∥

∥

∥∥{m,=}

[a ∨ ā] ∧ · · · ∧ [a ∨ ā] ∧A

Θ
∥

∥

∥∥

B ∨ (a ∧ ā) ∨ · · · ∨ (a ∧ ā)
∥

∥

∥∥{m,=}

B ∨ ([a ∨ · · · ∨ a] ∧ [ā ∨ · · · ∨ ā])
∥

∥

∥∥{ac↓,=}

B ∨ (a ∧ ā)
ai↑ −−−−−−−−−−−−

B ∨ f
t↑ −−−−−

B

,

whose flow is as shown in (3.30).

Lemma 3.10.20. The relation
pb
→a can be lifted to SKS.

Proof. Let Φ: A → B with fl(Φ) = φ and a be given. By applying (3.31) we have a
derivation

A
ai↓, t↓ −−−−−−−−−−−

[a ∨ ā] ∧A

Ψ
∥

∥

∥∥

B ∨ (a ∧ ā)
t↑, ai↑ −−−−−−−−−−−−

B

,

84 3. Some Combinatorial Invariants of Proofs in Classical Logic

with fl(Ψ) = ψ. We also have the derivations

[B ∨ (a ∧ ā)] ∧A
aw↑ −−−−−−−−−−−−−−−−−−

[B ∨ (a ∧ t)] ∧A
= −−−−−−−−−−−−−−−−−−

[B ∨ [a ∨ f]] ∧A
aw↓ −−−−−−−−−−−−−−−−−−

[B ∨ [a ∨ ā]] ∧A
s −−−−−−−−−−−−−−−−−−
B ∨ ([a ∨ ā] ∧A)

and

[B ∨ (a ∧ ā)] ∧A
aw↑ −−−−−−−−−−−−−−−−−−

[B ∨ (t ∧ ā)] ∧A
= −−−−−−−−−−−−−−−−−−

[B ∨ [f ∨ ā]] ∧A
aw↓ −−−−−−−−−−−−−−−−−−

[B ∨ [a ∨ ā]] ∧A
s −−−−−−−−−−−−−−−−−−
B ∨ ([a ∨ ā] ∧A)

that we call Φa and Φā, respectively. We can now build

A
∥

∥

∥∥{c↑,ai↓,=}

(([a ∨ ā] ∧A) ∧A) ∧A

(Ψ∧A)∧A
∥

∥

∥∥

([B ∨ (a ∧ ā)] ∧A) ∧A

Φa∧A
∥

∥

∥∥

[B ∨ ([a ∨ ā] ∧A)] ∧A

[B∨Ψ]∧A
∥

∥

∥∥

B ∨ ([B ∨ (a ∧ ā)] ∧A)

B∨Φā

∥

∥

∥∥

B ∨ [B ∨ ([a ∨ ā] ∧A)]

B∨[B∨Ψ]
∥

∥

∥∥

B ∨ [B ∨ [B ∨ (a ∧ ā)]]
∥

∥

∥∥{c↓,ai↑,=}

B

,

whose atomic flow is as shown in (3.28).

Theorem 3.10.21. The relation
PB
→ can be lifted to SKS.

Proof. Immediate from Lemmas 3.10.19 and 3.10.20.

Proof of Theorem 3.10.6. For every SKS-derivation Φ: A→ B there exists a weakly stream-
lined SKS-derivation Φ′ : A→ B by Theorem 3.10.17 and Theorem 3.10.21; for every weakly
streamlined SKS-derivation Φ′ : A → B there exists a strongly streamlined SKS-derivation
Φ′′ : A→ B by Theorem 3.10.9 and Theorem 3.10.10.

4
Towards a Combinatorial

Characterization of Proofs in Classical

Logic

In the previous chapter I have mentioned the problem that there is no correctness criterion
for N-nets, C-nets, nor atomic flows. Part of the problem is the lack of understanding of
the “linear” rules s (switch) and m (medial) in system SKS (see Figure 3.7 on page 64), i.e.,
those rules which are represented by simple wires in the atomic flows. In this chapter I will
investigate the combinatorial properties of rewriting paths formed with these rules (modulo
associativity and commutativity of ∧ and ∨). As an application, I will show a combinatorial
proof of a decomposition theorem for classical logic. The results of this chapter have been
published in [Str07a].

4.1 Rewriting with medial

For simplicity, we consider here only the formulas not containing the units t and f , i.e., we
consider the set T of formulas defined by the grammar

T ::= A | (T ∧ T) | [T ∨ T]

where A = {a, b, c, . . . , ā, b̄, c̄, . . .} is the countable set of atoms (propositional variables and
their duals). As before, to ease the readability, we use different types of parentheses: (. . .)
for ∧ and [. . .] for ∨. We use capital Latin letters to denote formulas. To ease readability,
we will sometimes write (A ∧B ∧ C) for ((A ∧B) ∧ C) and [A ∨B ∨ C] for [[A ∨B] ∨ C].

Let AC be the following set of equations on formulas, saying that ∧ and ∨ are both
associative and commutative:

(A ∧B) ≈ (B ∧A) ((A ∧B) ∧ C) ≈ (A ∧ (B ∧ C))

[A ∨B] ≈ [B ∨A] [[A ∨B] ∨ C] ≈ [A ∨ [B ∨ C]]
(4.1)

and let ≈AC be the equational theory induced by AC, i.e., the smallest congruence relation

85

86 4. Towards a Combinatorial Characterization of Proofs in Classical Logic

containing AC. Then we have P ≈AC Q if and only if there is an SKS-derivation from P
to Q using the inference rules σ↓, σ↑, α↓, α↑ (see Figure 3.7 on page 64).

Now let M be the rewriting system consisting only of the medial rule

[(A ∧B) ∨ (C ∧D)]→ ([A ∨ C] ∧ [B ∨D]) , (4.2)

We are now interested in the rewrite relation →M/AC, i.e., rewriting via the medial rule
modulo associativity and commutativity of the two binary operations. More formally: Let
P and Q be formulas. Then P →M/AC Q, if and only if there are formulas P ′ and Q′

such that P ≈AC P ′ and P ′ →M Q′ and Q′ ≈AC Q, where P ′ →M Q′ means there is a
single rewriting step from P ′ to Q′ using the rule in (4.2). For more details on the formal
definitions see, e.g, [BN98]. Since no ambiguity is possible here, we omit the index AC and
simply write P ≈ Q instead of P ≈AC Q. Further, we write P −→

M
Q instead of P →M/AC Q,

and we define −→
∗

M
to be the reflexive transitive closure of −→

M
. Then P −→

∗

M
Q iff there is a

derivation in SKS from P to Q that uses only the rules m, σ↓, σ↑, α↓, α↑.
We are interested in the question: Under which conditions do we have P −→

∗

M
Q ?

4.2 Relation webs

For simplifying the definitions, I will in the following assume that every atom appears at
most once in a formula. This allows us to ignore the distinction between atoms and atom
occurrences. What matters in this and the next section are the positions occupied by the
atoms in the formulas.

For a given formula P , let VP denote the set of atoms occurring in P . Let us now treat
a formula as a binary tree whose inner nodes are labeled by either ∧ or ∨, and whose leaves
are the elements of VP . For a, b ∈ VP we write a⌢

∧

P
b if their first common ancestor in P is

an ∧ and we write a⌢
∨

P
b if it is an ∨. Furthermore, we define the sets

E
∧

P = {(a, b) ∈ VP × VP | a⌢
∧

P
b}

E
∨

P = {(a, b) ∈ VP × VP | a⌢
∨

P
b}

Note that E
∧

P and E
∨

P are symmetric, i.e., (a, b) ∈ E
∧

P iff (b, a) ∈ E
∧

P , and similarly for E
∨

P .
We also have:

E
∧

P ∩ E
∨

P = ∅ and E
∧

P ∪ E
∨

P = (VP × VP) \ {(a, a) | a ∈ VP } .

The triple �P = 〈VP ; E ∧

P ,E
∨

P 〉 is called the relation web of P . We can think of it as a
complete undirected graph with vertices VP and edges E

∧

P ∪ E
∨

P where we color the edges
in E

∧

P red and the edges in E
∨

P green.
Consider for example the formula P = [[a ∨ (b ∧ c)] ∨ [d ∨ (e ∧ f)]]. Its syntax tree and its

relation web are, respectively,

∨

∨ ∨

∧ ∧

a b c d e f

and

a b

f c

e d

(4.3)

4.2. Relation webs 87

where the red lines are solid and green lines are drawn as dotted lines.17

It is now easy to see that we have the following:

Proposition 4.2.1. Let P and Q be formulas. Then �P = �Q iff P ≈ Q.

More interesting, however, is the question, under which circumstances a triple 〈V; E ∧,E ∨〉
is indeed the relation web of a formula. Let us define a preweb to be a triple 〈V; E ∧,E ∨〉
where E

∧ and E
∨ are symmetric subsets of V × V such that

E
∧ ∩ E

∨ = ∅ and E
∧ ∪ E

∨ = (V × V) \ {(a, a) | a ∈ V} . (4.4)

Proposition 4.2.2. Let G = 〈V; E ∧,E ∨〉 be a preweb. Then G = �P for some formula P
if and only if we do not have any a, b, c, d ∈ V with

a b

c d
(4.5)

Proof. See, e.g., [Möh89, Ret93, BdGR97, Gug07].

The term “relation web” first appears in [Gug07]. The basic idea, however, is much
older. In graph theory, a graph 〈V; E ∧〉 not containing configuration (4.5) is called P4-
free. It is also called a cograph because its complement 〈V; E ∨〉 has the same property.
Cographs are used in [Ret96] to provide a correctness criterion for linear logic proof nets,
where 〈∧, ∨〉 is 〈�,O〉. One can also find the terms N -free or Z-free if configuration (4.5) is
forbidden, depending on how the picture is drawn. A comprehensive survey is for example
[Möh89]. If ∧ is not commutative, but only associative, then E

∧ becomes a partial order,
more precisely, a series-parallel order (by Proposition 4.2.2 it can be obtained from the
singletons via series- and parallel composition of orders). The inclusion relation for these
orders has been characterized by a rewriting system in [BdGR97].

Remark 4.2.3. Proposition 4.2.2 also scales to the case with more than two binary opera-
tions. For example in [Ret93, BdGR97, Gug07] it is proved for the case of two commutative
operations and one non-commutative operation. This is the reason why we use here the
more general notion of relation web, instead of cographs.

Let P be a formula and let W ⊆ VP . Then we can obtain from �P a new relation
web (�P)|W = 〈W; F∧,F∨〉 by simply removing all vertices not belonging to W and all
edges adjacent to them. Similarly we can obtain from P a formula P |W by removing in the
formula tree all leaves not in W and then systematically removing all ∨- and ∧-nodes that

17Note that formally, in E
∧

P and E
∨

P every edge appears twice, namely as (a, b) and as (b, a), while in the
graph we draw it only once. We chose, nonetheless, this way of presentation because it easily scales to cases
where non-commutative operations are added.

88 4. Towards a Combinatorial Characterization of Proofs in Classical Logic

became unary by this. More formally, we define inductively on the formula structure:

a|W =

{

a if a ∈ W

undefined otherwise

[A ∨B]|W =

[A|W ∨B|W] if VA ∩W 6= ∅ and VB ∩W 6= ∅

A|W if VA ∩W 6= ∅ and VB ∩W = ∅

B|W if VA ∩W = ∅ and VB ∩W 6= ∅

undefined otherwise

(A ∧B)|W =

(A|W ∧B|W) if VA ∩W 6= ∅ and VB ∩W 6= ∅

A|W if VA ∩W 6= ∅ and VB ∩W = ∅

B|W if VA ∩W = ∅ and VB ∩W 6= ∅

undefined otherwise

Clearly we then have �(P |W) = (�P)|W , but note that P |W is not necessarily a subformula
of P . For example, let P = [(a∧b)∨(c∧[(d∧e)∨f])] and W = {a, c, f}. Then P |W = [a∨(c∧f)].
If we have another formula Q with VP ∩ VQ 6= ∅ then we write P |Q to abbreviate P |VP∩VQ

.

4.3 The Characterization of Medial

For two formulas P and Q, we write P ⊳◮ Q if their relation webs obey the following three
properties:

(i) VP = VQ,

(ii) E
∧

P ⊆ E
∧

Q (or, equivalently, E
∨

Q ⊆ E
∨

P), and

(iii) for all a, d ∈ VP (= VQ) with a⌢
∨

P
d and a⌢

∧

Q
d, there are b, c ∈ VP such that we have

the following configurations

in �P : in �Q:

a b

c d

a b

c d

(4.6)

The motivation for this definition is the following theorem.

Theorem 4.3.1. For any two formulas P and Q we have P −→
∗

M
Q iff P ⊳◮ Q.

In the proof of this theorem, we make crucial use of two lemmas.

Lemma 4.3.2. Let P and Q be formulas with P −→
∗

M
Q. If P ′ is a subformula of P , then

P ′ −→
∗

M
Q|P ′. And if Q1 is a subformula of Q, then P |Q1 −→

∗

M
Q1.

4.3. The Characterization of Medial 89

Proof. Since P −→
∗

M
Q, we have an n ≥ 0 and formulas R0, . . . , Rn, such that P ≈ R0 −→M

R1 −→M · · · −→
M

Rn ≈ Q. We will say an Ri (for 0 ≤ i ≤ n) is nested if there is a formula

R ≈ Ri which has a subformula [(A1 ∧ B1) ∨ (A2 ∧ B2)] such that VA1 ∩ VP ′ 6= ∅ and
VA2 ∩VP ′ 6= ∅ and VB1 ∩VP ′ = ∅. We first show that none of the Ri can be nested. Clearly
R0 (≈ P) is not nested. Now we proceed by way of contradiction and pick the smallest i
such that Ri is nested. Since Ri is obtained from Ri−1 via a medial rewriting step, we can,
without loss of generality, assume that A1 = [A∨C] and B1 = [B∨D] such that VA∩VP ′ 6= ∅
and V[B∨D] ∩VP ′ = ∅, and that Ri−1 has [(A ∧B) ∨ (C ∧D) ∨ (A2 ∧B2)] as subformula. But
then Ri−1 is also nested. Contradiction. Now we define R′

i = Ri|P ′ for all 0 ≤ i ≤ n. We
are going to show that R′

i ≈ R′
i+1 or R′

i −→M R′
i+1 for all 0 ≤ i ≤ n. We have Ri −→M Ri+1.

Hence, Ri has a subformula [(A ∧ B) ∨ (C ∧D)] which is replaced by ([A ∨ C] ∧ [B ∨D]) in
Ri+1. Now we proceed by way of contradiction: since R′

i 6≈ R′
i+1 we have (without loss of

generality) that VA ∩ VP ′ 6= ∅ and VD ∩ VP ′ 6= ∅. Since additionally R′
i /−→

M
R′

i+1, we must

have VA ∩ VP ′ = ∅ or VC ∩ VP ′ = ∅. Hence Ri is nested, which is a contradiction. Now the
first statement of the lemma follows by an induction on n. The second statement is shown
analogously.

Lemma 4.3.3. Let P and Q be formulas with P ⊳◮ Q. If P ′ is a subformula of P , then
P ′ ⊳◮ Q|P ′. And if Q1 is a subformula of Q, then P |Q1 ⊳◮ Q1.

Proof. For proving the first statement, let Q′ = Q|P ′ . We have VP ′ = VQ′ and E
∧

P ′ ⊆ E
∧

Q′ .

Now let a, d ∈ VP ′ with a⌢
∨

P ′ d and a⌢
∧

Q′ d. Then we also have a⌢
∨

P
d and a⌢

∧

Q
d, and therefore

we have b, c ∈ VP such that (4.6). In order to complete the proof of the lemma, we need
to show that b, c ∈ VP ′ . By way of contradiction, assume that b occurs in the context
of P ′. Then b has the same first common ancestor with a and d in P . Hence, the edges
(a, b) and (d, b) have the same color in �P . Contradiction. The second statement is shown
analogously.

Remark 4.3.4. It is important to observe that it is crucial for both lemmas that P ′ is a
subformula of P (or that Q1 is a subformula of Q). If we just have P ⊳◮ Q (resp. P −→

∗

M
Q)

and a subset W ⊆ VP , then in general we do not have that P |W ⊳◮ Q|W (resp. P |W −→
∗

M
Q|W).

A simple example is given by P = [(a∧b)∨(c∧d)] and Q = ([a∨c]∧ [b∨d]) and W = {a, b, d}.
Then P |W = [(a ∧ b) ∨ d] and Q|W = (a ∧ [b ∨ d]). We clearly have P ⊳◮ Q (resp. P −→

∗

M
Q)

but not P |W ⊳◮ Q|W (resp. P |W −→
∗

M
Q|W).

Proof of Theorem 4.3.1. First, assume we have P −→
∗

M
Q. Then there is an n ≥ 0 with

P −→
n

M
Q. Obviously, we have VP = VQ because no rewriting step can change the set of

atom occurrences, and E
∧

P ⊆ E
∧

Q because every rewriting step transforms some green edges
into red ones and never the other way around. Hence Conditions (i) and (ii) are satisfied.
For proving Condition (iii), we proceed by induction on n. For n = 0 this is trivial. Now
let n ≥ 1, and assume we have a and d with a⌢

∨

P
d and a⌢

∧

Q
d. Then there are formulas R

and T such that P −→
∗

M
R −→

M
T −→

∗

M
Q and a⌢

∨

R
d and a⌢

∧

T
d. Because of Proposition 4.2.1,

we can assume without loss of generality that that R has a subformula [(A ∧B) ∨ (C ∧D)],

90 4. Towards a Combinatorial Characterization of Proofs in Classical Logic

which is in T replaced by ([A∨C] ∧ [B ∨D]). We can without loss of generality assume that
a ∈ VA and d ∈ VD. Then we have for all b ∈ VB and c ∈ VC the following configurations:

in �P : in �R: in �T : in �Q:

a b

c d

a b

c d

a b

c d

a b

c d

We will now show that there is a b ∈ VB with a⌢
∧

P
b and b⌢

∨

Q
d. For this, we need an

auxiliary definition. For a formula S and an atom a ∈ VS we define a partial order ≺
a

S
on

the set VS as follows: b1 ≺
a

S
b2 iff the first common ancestor of a and b2 in the formula tree

of S is also an ancestor of b1, and the first common ancestor of b1 and b2 is also an ancestor
of a. It is easy to see that ≺

a

S
is reflexive, transitive, and antisymmetric, and hence, a partial

order. For example, in (4.3) we have b ≺
c

P
e, and d, e are incomparable wrt. ≺

c

P
. Now pick

b1 ∈ VB which is minimal wrt. ≺
a

P
. We claim that a⌢

∧

P
b1. By way of contradiction, assume

a⌢
∨

P
b1. Then we apply the induction hypothesis to P −→

∗

M
R, which gives us a′ and b′ with

the following configurations:

in �P : in �R:

a b′

a′ b1

a b′

a′ b1

It follows (by the same argumentation as in the proof of Lemma 4.3.3) that b′ ∈ VB and
that b′ ≺

a

P
b1, contradicting the minimality of b1. If b1⌢

∨

Q
d, then we have found our desired b.

So, assume b1⌢
∧

Q
d, and pick a b4 ∈ VB which is minimal wrt. ≺

d

Q
. With a similar argument

as above, we can show that b4⌢
∨

Q
d. If a⌢

∧

P
b4, then, as before, we have our b. So, let us

assume that a⌢
∨

P
b4. Since we also have that b1 ≺

a

P
b4 and b4 ≺

d

Q
b1, it follows that b1⌢

∨

P
b4 and

b1⌢
∧

Q
b4. By Lemma 4.3.2 we have P |B −→

∗

M
B −→

∗

M
Q|B. Now we can apply the induction

hypothesis to P |B −→
∗

M
Q|B and get b2, b3 ∈ VB such that we have:

in �P |B: in �Q|B:
b1 b2

b3 b4

b1 b2

b3 b4

Note that b2, b3 ∈ VB and that b2 ≺
b1

P
b4. Hence, in the formula tree for P , we have one of

the following situations:

∨

∧

∧

b1 a b2 b4

or

∨

∧

∧

b1 b2 a b4

4.3. The Characterization of Medial 91

In both cases a⌢
∧

P
b2. Similarly, it follows that b2⌢

∨

Q
d. With a similar argumentation, we

can find c2 ∈ VC with c2⌢
∧

P
d and a⌢

∨

Q
c2. Hence, Condition (iii) is fulfilled, and we have

P ⊳◮ Q.
Conversely, assume we have P ⊳◮ Q. We proceed by induction on the cardinality of

VP , to show that P −→
∗

M
Q. The base case, where VP is a singleton, is trivial. Now we make

a case analysis on the formula structure of P and Q.

1. P = [P ′ ∨ P ′′] and Q = [Q1 ∨Q2]. We define the following four sets:

V
′
1 = VP ′ ∩ VQ1 , V

′
2 = VP ′ ∩ VQ2 , V

′′
1 = VP ′′ ∩ VQ1 , V

′′
2 = VP ′′ ∩ VQ2 .

First, note that we cannot have that one of V ′
1 and V ′′

2 is empty, and at the same
time that one of V ′

2 and V ′′
1 is empty because then one of VP ′ ,VP ′′ ,VQ1 ,VQ2 would

be empty, which is impossible. The remaining two possibilities of two empty sets are:

• If V ′
2 = ∅ and V ′′

1 = ∅, then VP ′ = VQ1 and VP ′′ = VQ2 . Hence, by Lemma 4.3.3
we have P ′ ⊳◮ Q1 and P ′′ ⊳◮ Q2. By induction hypothesis we have therefore

P = [P ′ ∨ P ′′] −→
∗

M
[Q1 ∨ P ′′] −→

∗

M
[Q1 ∨Q2] = Q

• If V ′
1 = ∅ and V ′′

2 = ∅, then VP ′ = VQ2 and VP ′′ = VQ1 , and we proceed similarly.

Let us now assume that one of the four sets is empty, say V ′
1 = ∅. We let

P ′
2 = P ′|Q2 , P ′′

1 = P ′′|Q1 , P ′′
2 = P ′′|Q2 .

Then P ′
2 = P ′ and P ′′ ≈ [P ′′

1 ∨ P ′′
2] because E

∨

Q ⊆ E
∨

P . By Lemma 4.3.3 we have
P ′′
1 ⊳◮ Q1 and [P ′

2 ∨ P ′′
2] ⊳◮ Q2. Hence, by induction hypothesis we have

P ≈ [P ′
2 ∨ [P ′′

1 ∨ P ′′
2]] ≈ [P ′′

1 ∨ [P ′
2 ∨ P ′′

2]] −→
∗

M
[Q1 ∨ [P ′

2 ∨ P ′′
2]] −→

∗

M
[Q1 ∨Q2] = Q

If one of V ′
2 ,V

′′
1 ,V

′′
2 is empty, we can proceed analogously. Let us now consider the

case where none of V ′
1 ,V

′
2 ,V

′′
1 ,V

′′
2 is empty. Then we can define

P ′
1 = P ′|Q1 , P ′

2 = P ′|Q2 , P ′′
1 = P ′′|Q1 , P ′′

2 = P ′′|Q2 .

We have P ′ ≈ [P ′
1 ∨P ′

2] and P ′′ ≈ [P ′′
1 ∨P ′′

2]. By Lemma 4.3.3 we have [P ′
1 ∨P ′′

1] ⊳◮ Q1

and [P ′
2 ∨ P ′′

2] ⊳◮ Q2. Hence, by induction hypothesis:

P ≈ [[P ′
1 ∨ P ′

2] ∨ [P ′′
1 ∨ P ′′

2]] ≈ [[P ′
1 ∨ P ′′

1] ∨ [P ′
2 ∨ P ′′

2]] −→
∗

M
[Q1 ∨Q2] = Q

2. P = (P ′ ∧ P ′′) and Q = (Q1 ∧Q2). This is analogous to the previous case.

3. P = (P ′ ∧ P ′′) and Q = [Q1 ∨Q2]. As before, we let

V
′
1 = VP ′ ∩ VQ1 , V

′
2 = VP ′ ∩ VQ2 , V

′′
1 = VP ′′ ∩ VQ1 , V

′′
2 = VP ′′ ∩ VQ2 .

Note that if V ′
1 6= ∅ and V ′′

2 6= ∅ then we have immediately a contradiction to Con-
dition (ii), and similarly if V ′

2 6= ∅ and V ′′
1 6= ∅. Hence, one of V ′

1 and V ′′
2 must be

empty, and one of V ′
2 and V ′′

1 must be empty. But this is impossible as observed in
Case 1 above.

92 4. Towards a Combinatorial Characterization of Proofs in Classical Logic

4. P = [P ′ ∨P ′′] and Q = (Q1 ∧Q2). This is the most interesting case. As before, we let

V
′
1 = VP ′ ∩ VQ1 , V

′
2 = VP ′ ∩ VQ2 , V

′′
1 = VP ′′ ∩ VQ1 , V

′′
2 = VP ′′ ∩ VQ2 .

We first show that none of the sets V ′
1 ,V

′′
1 ,V

′
2 ,V

′′
2 is empty. So, assume, by way

of contradiction, that V ′′
1 = ∅. By a similar argumentation as before it follows that

V ′
1 6= ∅ and V ′′

2 6= ∅. So, pick a ∈ V ′
1 and d ∈ V ′′

2 . We have a⌢
∨

P
d and a⌢

∧

Q
d. Since

P ⊳◮ Q, we have b, c ∈ VP such that (4.6). Because c⌢
∧

P
d we must have that c ∈ VP ′′ ,

and because of a⌢
∨

Q
c, we must have that c ∈ VQ1 . Hence c ∈ V ′′

1 . Contradiction. We

can therefore define:

P ′
1 = P ′|Q1 , P ′

2 = P ′|Q2 , P ′′
1 = P ′′|Q1 , P ′′

2 = P ′′|Q2 ,

and

Q′
1 = Q1|P ′ , Q′

2 = Q2|P ′ , Q′′
1 = Q1|P ′′ , Q′′

2 = Q2|P ′′ .

We now want to show that P ′
1 ⊳◮ Q′

1. But by Remark 4.3.4 we cannot apply
Lemma 4.3.3. However, we have VP ′

1
= VQ′

1
and E

∧

P ′
1
⊆ E

∧

Q′
1
. Now let a, d ∈ VP ′

1

with a⌢
∨

P ′
1
d and a⌢

∧

Q′
1
d. Hence, we have a⌢

∨

P
d and a⌢

∧

Q
d. Since P ⊳◮ Q, we have

b, c ∈ VP such that (4.6). Note that because a, d ∈ VP ′ , we also have b ∈ VP ′ (other-
wise we would have a⌢

∨

P
b) and c ∈ VP ′ (otherwise we would have c⌢

∨

P
d). Similarly,

because a, d ∈ VQ1 , we also have b, c ∈ VQ1 (otherwise we would have a⌢
∧

Q
c and b⌢

∧

Q
d,

respectively). Hence b, c ∈ VP ′
1
, and therefore P ′

1 ⊳◮ Q′
1. Similarly, we get P ′′

1 ⊳◮ Q′′
1

and P ′
2 ⊳◮ Q′

2 and P ′′
2 ⊳◮ Q′′

2. Hence, we have by induction hypothesis

P ′
1 −→

∗

M
Q′

1 , P ′′
1 −→

∗

M
Q′′

1 , P ′
2 −→

∗

M
Q′

2 , P ′′
2 −→

∗

M
Q′′

2 . (4.7)

Now let P ′
12 = (P ′

1 ∧ P ′
2). We clearly have VP ′ = VP ′

12
and E

∧

P ′ ⊆ E
∧

P ′
12

. Now let us

assume we have a, d ∈ VP ′ with a⌢
∨

P ′ d and a⌢
∧

P ′
12
d. Then we must have a ∈ VP ′

1
and

d ∈ VP ′
2
, or vice versa (otherwise the two edges would have the same color in P ′ and

P ′
12). Hence, we have a⌢

∨

P
d and a⌢

∧

Q
d. Since P ⊳◮ Q, we have b, c ∈ VQ such that

(4.6). Note that because a, d ∈ VP ′ , we also have b, c ∈ VP ′ (otherwise we would have
a⌢

∨

P
b and d⌢

∨

P
c). This means we have in �P ′ the configuration

a b

c d

Since we have a⌢
∨

Q
c and b⌢

∨

Q
d, we must also have a⌢

∨

P ′
12
c and b⌢

∨

P ′
12
d. And since we have

a⌢
∧

P
b and c⌢

∧

P
d, we also have a⌢

∧

P ′
12
b and c⌢

∧

P ′
12
d. Furthermore, we have a⌢

∧

P ′
12
d (because

a ∈ VP ′
1

and d ∈ VP ′
2
). Hence, we have in �P ′

12 the configuration

a b

c d

4.4. The Characterization of Switch 93

By Proposition 4.2.2, we must have

a b

c d

Hence, P ′ ⊳◮ (P ′
1 ∧ P ′

2). By the same argumentation, we get P ′′ ⊳◮ (P ′′
1 ∧ P ′′

2) and
[Q′

1 ∨Q′′
1] ⊳◮ Q1 and [Q′

2 ∨Q′′
2] ⊳◮ Q2. By induction hypothesis we have therefore

P ′ −→
∗

M
(P ′

1 ∧ P ′
2) [Q′

1 ∨Q′′
1] −→

∗

M
Q1

P ′′ −→
∗

M
(P ′′

1 ∧ P ′′
2) [Q′

2 ∨Q′′
2] −→

∗

M
Q2

(4.8)

Now we can combine (4.7) and (4.8) to get

[P ′ ∨ P ′′] −→
∗

M
[(P ′

1 ∧ P ′
2) ∨ (P ′′

1 ∧ P ′′
2)] −→

M
([P ′

1 ∨ P ′′
1] ∧ [P ′

2 ∨ P ′′
2])

−→
∗

M
([Q′

1 ∨Q′′
1] ∧ [Q′

2 ∨Q′′
2]) −→

∗

M
(Q1 ∧Q2)

In other words: P −→
∗

M
Q.

Corollary 4.3.5. The relation ⊳◮ ⊆ T ×T is transitive.

4.4 The Characterization of Switch

Let us compare the result of the previous section to the one in [BdGR97], where one of the
two binary operations was not commutative but only associative. Although this has some
consequences for the characterization of relation webs (Proposition 4.2.2), the consequences
for the main result (Theorem 4.3.1) are only cosmetic. For this reason let us recall here the
commutative version of the results in [BdGR97]. Let P be the rewriting system

([A ∨B] ∧ [C ∨D])→ [(A ∧ C) ∨ (B ∧D)]

(A ∧ [B ∨ C])→ [(A ∧B) ∨ C]

(A ∧B)→ [A ∨B]

(4.9)

Note that it is not a typo that the first rewrite rule is the inversion of medial. Analogous
to −→

∗

M
, we define −→

∗

P
to be the transitive closure of the rewriting relation via (4.9) modulo

AC. The result of [BdGR97] can be stated as follows:

Theorem 4.4.1. For any two formulas P , Q we have P −→
∗

P
Q iff VP = VQ and E

∨

P ⊆ E
∨

Q.

In other words, the main difference to Theorem 4.3.1 is that the Condition (iii) is absent
in [BdGR97]. Let us now look at the case where we remove the first rule from P. Let S be
the rewrite system

(A ∧ [B ∨ C])→ [(A ∧B) ∨ C]

(A ∧B)→ [A ∨B]
(4.10)

We define −→
∗

S
as the transitive and reflexive closure of →S/AC. This means that P −→

∗

S
Q

if and only if there is a derivation in (a variant of) SKS, using only the rules s, α↓, α↑, σ↓,
σ↑, and mix, where mix is the deep inference rule obtained from the mix map, as discussed
in Section 2.3. The characterization of this relation is the following:

94 4. Towards a Combinatorial Characterization of Proofs in Classical Logic

Theorem 4.4.2. We have P −→
∗

S
Q if and only if VP = VQ, and for all n ≥ 1 and all

subsets W = {a1, b1, . . . , an, bn} ⊆ VP we do not have that

P |W ≈ ([a1 ∨ b1] ∧ · · · ∧ [an ∨ bn]) and Q|W ≈ [(b1 ∧ a2) ∨ (b2 ∧ a3) ∨ · · · ∨ (bn ∧ a1)]

In other words, we are not allowed to have the following configurations in the relation
webs of P and Q:

in �P : in �Q:

b2 a3

a2 b3

b1 a4

a1 b4

bn a5

an · · · b5

b2 a3

a2 b3

b1 a4

a1 b4

bn a5

an · · · b5

Note that E
∨

P ⊆ E
∨

Q follows by letting n = 1.
The characterization in Theorem 4.4.2 is simply an alternative formulation of the cor-

rectness criterion for proof nets for multiplicative linear logic with mix [Ret96]. It is equiv-
alent to the acyclicity condition of [DR89].18

It is interesting to note the different nature of the three characterizations of the rewrite
systems M, P, and S. This is the reason for the difficulty to give a characterization of the
rewrite system MS, which combines M and S:

[(A ∧B) ∨ (C ∧D)]→ ([A ∨ C] ∧ [B ∨D])

(A ∧ [B ∨ C])→ [(A ∧B) ∨ C]

(A ∧B)→ [A ∨B]

(4.11)

Finding a characterization of the rewrite relation −→
∗

MS
in terms of relation webs remains an

open problem.

4.5 A Combinatorial Proof of a Decomposition Theorem

If a formula I is of the shape

([a1 ∨ ā1] ∧ [a2 ∨ ā2] ∧ · · · ∧ [an ∨ ān])

for some n ≥ 1 and atoms a1, a2, . . . , an, then we say I is an initial formula.

18If mix is absent, then an additional condition (connectedness) would be needed. For more details on
the relation between S and linear logic, see, e.g., [DHPP99, Ret93, Gug07, Str03a], and for relating the
condition in Theorem 4.4.2 to multiplicative proof nets, see, e.g., [Ret03]. For more information on mix, see
[FR94], and for a direct proof of Theorem 4.4.2, see, e.g., [Str03b, Str03a].

4.5. A Combinatorial Proof of a Decomposition Theorem 95

It is well-known that classical logic is multiplicative linear logic plus contraction and
weakening. Let us therefore introduce two more rewrite systems. Let W be the rewrite
system containing only the rule

A→ [A ∨B] (4.12)

and let C be the system containing only the rule

[A ∨A]→ A (4.13)

Now let K1 = S ∪W ∪ C. Then we have the following theorem, which says that a proof in
classical logic is a rewrite path in K1.

Theorem 4.5.1. A formula Q is a Boolean tautology if and only if there is an initial
formula I with I −→

∗

K1
Q. [BT01]

The main reason for introducing medial in [BT01] was that with medial we can reduce
the contraction to atoms. Consequently, in SKS the contraction rule is restricted to an
atomic version. Let C′ be the rewrite system consisting of a rule

[a ∨ a]→ a (4.14)

for every atom symbol (including their duals). If we let K2 = MS ∪W ∪ C′, then we have

Theorem 4.5.2. Let P and Q be formulas. Then P −→
∗

K1
Q iff P −→

∗

K2
Q. [BT01]

While [BT01] and related work (e.g., [GS01, Gug07, Brü03, Str03a]) are mainly con-
cerned with the syntactic manipulation of formulas/formulas, Hughes proposes in [Hug06]
the notion of combinatorial proof, which is based on a variant of Theorem 4.4.2 and the
notion of skew fibration: Given two prewebs G1 = 〈V1; E

∧

1 ,E
∨

1 〉 and G2 = 〈V2; E
∧

2 ,E
∨

2 〉, then
a skew fibration h : G1 → G2 is a mapping V1 → V2 such that

(a) (a, b) ∈ E
∧

1 implies (h(a), h(b)) ∈ E
∧

2 (i.e., h is a graph homomorphism for the red
edges), and

(b) for all a ∈ V1 and d ∈ V2, if (h(a), d) ∈ E
∧

2 , then there is a b ∈ V1 with (a, b) ∈ E
∧

1 and
(h(b), d) /∈ E

∧

2 .

A combinatorial proof of a Boolean formula Q is a skew fibration h : � P → �Q for a
formula P such that

(c) �P does not contain a configuration

ā2 a3

a2 ā3

ā1 a4

a1 ā4

ān a5

an · · · ā5

(4.15)

for any n ≥ 1 and atoms a1, a2, . . . , an, and

96 4. Towards a Combinatorial Characterization of Proofs in Classical Logic

(d) h maps only non-negated atoms to non-negated atoms and negated atoms to negated
ones.

Theorem 4.5.3. A formula Q is a Boolean tautology, if and only if it has a combinatorial
proof. [Hug06]

Remark 4.5.4. Note that for Theorems 4.5.1 and 4.5.3 to make sense, we have to allow
more than one occurrence of an atom in a formula. This means that in the relation web
�P of a formula P , the set VP is the set of atom occurrences. Then we can call a map
h : VP → VQ label preserving if the name of an atom is not changed by h.

To give an example, we show here the combinatorial proof of Pierce’s law Q = [([ā ∨ b] ∧

ā)∨a], taken from [Hug06]. We let P = [(ā1∧ ā2)∨a1∨a2]. The skew fibration h : �P → �Q
is given as follows:

�P → �Q

ā1 ā2 ā ā

a1 a2 b a

Theorem 4.5.5. Let P and Q be formulas. Then P ⊳◮ Q if and only if VP = VQ and the
identity function on VP is a skew fibration �P → �Q.

Proof. First, assume P ⊳◮ Q. Since E
∧

P ⊆ E
∧

Q, Condition (a) above is fulfilled. Now let

a, d ∈ VP with a⌢
∧

Q
d. If a⌢

∧

P
d, then we let b = d and we are done. If a⌢

∨

P
d, then we have

b, c ∈ VP with (4.6). Now b has the desired properties. Conversely, assume that VP = VQ

and the identity VP → VQ is a skew fibration. By (a) we have E
∧

P ⊆ E
∧

Q. Now let a, d ∈ VP

with a⌢
∨

P
d and a⌢

∧

Q
d. Then by (b) there is a b ∈ VP with a⌢

∧

P
b and b⌢

∨

Q
d. Since E

∧

P ⊆ E
∧

Q,

we also have a⌢
∧

Q
b and b⌢

∨

P
d. By exchanging the roles of a and d and applying (b) again,

we get c ∈ VP with d⌢
∧

P
c and c⌢

∨

Q
a. Since E

∧

P ⊆ E
∧

Q, it follows that d⌢
∧

Q
c and c⌢

∨

P
a. Hence

c 6= b. By Proposition 4.2.2, we conclude that b⌢
∨

P
c and b⌢

∧

Q
c.

In the following, we establish a precise relation between the notion of proof as rewriting
path (in a deep inference deductive system) and the notion of proof as a combinatorial
object using relation webs and skew fibrations. For this, we first have to characterize the
rewrite systems W and C′. Let P and Q be formulas. A map w : � P → �Q is called a
weakening, if

(e) w is an injective skew fibration, and

(f) for all a, b ∈ VP , we have a⌢
∧

P
b iff w(a)⌢

∧

Q
w(b).

A map c : � P → �Q is called an atomic contraction, if

(g) c is surjective, and

(h) for all a, b ∈ VP , we have a⌢
∧

P
b iff c(a)⌢

∧

Q
c(b).

Note that it follows that c is a skew fibration. We have the following:

4.5. A Combinatorial Proof of a Decomposition Theorem 97

Proposition 4.5.6. For all formulas P and Q,

1. P −→
∗

W
Q iff there is a label preserving weakening w : � P → �Q.

2. P −→
∗

C′ Q iff there is a label preserving atomic contraction c : � P → �Q.

Proof. The “only if” direction is trivial for both statements. The “if” direction for the first
statement follows by observing that condition (b) implies that for all d not in the image of
w there is in Q a subformula D containing only material (including d) not appearing in P ,
and a subformula B containing only material (including b) appearing in P , such that [B∨D]
is also a subformula of Q. Injectivity and Condition (f) ensure that B is also a subformula
of P . Hence, we can rewrite B into [B ∨ D]. For the second statement it suffices to note
that whenever two occurrences of an atom a in P are mapped onto the same occurrence in
Q, then they must appear as subformula [a ∨ a] in P .

Lemma 4.5.7. A label preserving skew fibration h : VP → VQ is surjective if and only if
there is a formula R with VR = VP such that P ⊳◮ R and h is an atomic contraction when
seen as map �R→ �Q.

Proof. Let h be surjective. We construct R from Q by replacing each atom occurrence a
by [a ∨ · · · ∨ a] where the number of a’s is the cardinality of the preimage h−1(a) in P .
Then obviously the canonical map VR → VQ is an atomic contraction, and the identity
map VP → VR inherits from h the property of being a skew fibration. Finally we apply
Theorem 4.5.5. The converse follows from the fact that the composition of a skew fibration
with an atomic contraction is again a skew fibration.19

Now we can put everything together to give a combinatorial proof for the following
theorem:

Theorem 4.5.8. A formula Q is a Boolean tautology if and only if there is an initial
formula I, such that

I −→
∗

S
P −→

∗

M
R −→

∗

C′ S −→
∗

W
Q

for some formulas P , R, and S.

Proof. The “if” direction follows immediately from Theorems 4.5.1 and 4.5.2. For the “only
if” direction we start with the combinatorial proof for Q given by Theorem 4.5.3. We have
a skew fibration h : � P → �Q. By Theorem 4.4.2 and Condition (c) we can obtain an
initial formula I with I −→

∗

S
P . Now we let VS ⊆ VQ be the image of h : VP → VQ, and

let S = Q|VS
. This gives us a surjective skew fibration h′ : � P → �S. We can rename in

P (and in I) all appearing atoms such that h′ becomes label preserving. Then we apply
Lemma 4.5.7 to get R. By Theorem 4.3.1 we have P −→

∗

M
R, and by Proposition 4.5.6.2

we have R −→
∗

C′ S. Finally, note that the embedding �S → �Q is a weakening. So, by

Proposition 4.5.6.1 we get S −→
∗

W
Q.

19An anonymous referee pointed out that it is in general not true that the composition of two skew
fibrations is again a skew fibration because they are defined on prewebs.

98 4. Towards a Combinatorial Characterization of Proofs in Classical Logic

Remark 4.5.9. The proof of Theorem 4.5.8, together with the rule permutation results in
the calculus of structures [Brü03] can be used to show that skew fibrations are closed under
composition when their definition is restricted to relation webs (cf. Footnote 19).

Remark 4.5.10. Theorem 4.5.8 can also be proved without using relation webs and skew
fibrations by using the permutability of inference rules in the calculus of structures [Brü03,
Str03a]. However, that proof is rather tedious, and certainly much longer.

5
Comparing Mechanisms of

Compressing Proofs in Classical Logic

If we study the problem of the identity of proofs, we also have to address the size of proofs.
In fact, a satisfactory notion of proof identity should take into account the proof size.
However, there are proof normalization procedures that cause an exponential blow-up. The
two most important ones are cut elimination and extension elimination. Thus, the use of
cut and extension can both be seen as ways of compressing proofs in classical logic with a
(potentially) exponential speed-up. Unfortunately, the two concepts are generally studied
for different reasons by different communities.

The purpose of this chapter is to present a deductive system that allows to study cut and
extension together as well as independently. This will be done by the use of deep inference.
With the help of the resulting system, I will provide a new proof of the p-equivalence of
Frege systems with extension and Frege systems with substitution.

5.1 Deep Inference and Frege Systems

The concept of extension is usually studied within Frege systems (also known as Hilbert
systems or Hilbert-Frege-systems or Hilbert-Ackermann-systems [Hil22, HA28]), which con-
sists of a set of axioms (more precisely, axiom schemes) and a set of inference rules, which
in the case of classical propositional logic only contains modus ponens:

A A⇒B
mp −−−−−−−−−−−−−−−−−

B

As before, I use A⇒B as abbreviation for Ā ∨B and A⇔B for [Ā ∨B] ∧ [B̄ ∨A]. I assume
the reader to be familiar with Frege systems, and I will not go into further details. The
important facts are that the set of axioms in a Frege system has to be sound and complete,
and that all Frege systems p-simulate each other. We also immediately have:

Proposition 5.1.1. Every Frege system p-simulates SKS.

99

100 5. Comparing Mechanisms of Compressing Proofs in Classical Logic

Proof. Notice that ā ∨ a has a Frege proof, and for every rule

K{A}
r −−−−−−−
K{B}

in SKS, we can show by induction on K{ } that there is a Frege proof of K{A} ∨K{B}
whose size is polynomial in the size of K{B}. Then the application of an inference rule in
SKS can be simulated by modus ponens.

Let us use KS to denote the system obtained from SKS by removing the rules ai↑, aw↑,
and ac↑. Then, KS is considered to be the cut-free version of SKS [BT01, Brü03] (see also
Section 3.10).

Proposition 5.1.2. The rules

K{t}
i↓ −−−−−−−−−−−−
K{Ā ∨A}

K{f}
w↓ −−−−−−−

K{A}

K{A ∨A}
c↓ −−−−−−−−−−−−

K{A}

K{[A ∨ C] ∧ [B ∨ C]}
d↓ −−−−−−−−−−−−−−−−−−−−−−−−

K{(A ∧B) ∨ C}

are derivable in KS. More precisely, KS p-simulates KS ∪ {i↓,w↓, c↓, d↓}. [BT01]

The rules i↓, w↓, and c↓ are the general (non-atomic) versions of ai↓, aw↓, and ac↓,
respectively.

Proposition 5.1.3. The system KS p-simulates cut-free sequent calculus. [BT01]

The converse is not true, i.e., cut-free sequent calculus cannot p-simulate KS. A counter-
example can be found in [BG09], where Bruscoli and Guglielmi show that the example used
by Statman [Sta78] to prove an exponential lower bound for cut-free sequent calculus admits
polynomial size proofs in KS. This situation changes when we add cut, i.e., go to SKS.

Proposition 5.1.4. The rules

K{A ∧ Ā}
i↑ −−−−−−−−−−−−

K{f}

K{A}
c↑ −−−−−−−−−−−−
K{A ∧A}

K{A}
w↑ −−−−−−−

K{t}
(5.1)

are derivable in SKS. More precisely, SKS p-simulates SKS ∪ {i↑, c↑,w↑}. [BT01]

Proposition 5.1.5. SKS is p-equivalent to every sequent system with cut. [BT01]

As before, we use

A
= −−
B

to abbreviate

A
∥

∥

∥∥{α↓,α↑,σ↓,σ↑,t↓,f↑,f↓,t↑}

B

.

In this chapter, we also need the following inference rule, that we call open:

A B
open↓ −−−−−−−−−−−−

A ∧B
(5.2)

It is a branching rule that says, if we have a proof of A and a proof of B, then we can get a
proof of A ∧B. Note that it cannot be applied deep inside a context. This rule is needed in

5.2. Extension 101

order give the substitution rule (to be discussed in Section 5.3) the same power as in Frege
systems.20

We write SKSo to denote the system SKS extended by the rule open↓, and we write KSo
to denote the system KS extended by the rule open↓. We can easily prove the following
propositions:

Proposition 5.1.6. SKS and SKSo are p-equivalent, and KS and KSo are p-equivalent.

Proof. Note that SKSo trivially p-simulates SKS. For showing that SKS p-simulates SKSo,
we replace

t
ai↓ −−−−−

ā ∨ a
∥

∥

∥∥

A

t
ai↓ −−−−−

b̄ ∨ b
∥

∥

∥∥

B
open↓ −−−−−−−−−−−−−−

A ∧B

by

t
ai↓ −−−−−

ā ∨ a
∥

∥

∥∥

A
ai↓ −−−−−−−−−−−

A ∧ [b̄ ∨ b]
∥

∥

∥∥

A ∧B

everywhere in a given SKSo-proof to obtain an SKS-proof, whose size is quadratic in the
size of the original proof. For KSo and KS the proof is the same.

Proposition 5.1.7. SKSo p-simulates any Frege system F.

Proof. For every axiom B in F one can give a proof

−
SKS

∥

∥

∥∥

B

and modus ponens can be simulated as follows:

A Ā ∨B
modus ponens −−−−−−−−−−−−−−

B
;

A Ā ∨B
open↓ −−−−−−−−−−−−−−

A ∧ [Ā ∨B]
s −−−−−−−−−−−−−

(A ∧ Ā) ∨B
i↑ −−−−−−−−−−−−−

B

which gives a p-simulation (by a constant factor).

We have just shown:

Theorem 5.1.8. SKS and SKSo are p-equivalent to each other and to every Frege-system.

5.2 Extension

Let us now turn to the actual interest of this chapter, the extension rule (first formulated
by Tseitin [Tse68]), which allows to use abbreviations in the proof. I.e., there is a finite
set of fresh and mutually distinct propositional variables a1, . . . , an which can abbreviate

20As observed by Bruscoli, substitution in plain SKS is weaker than substitution in Frege systems.

102 5. Comparing Mechanisms of Compressing Proofs in Classical Logic

formulas A1, . . . , An, that obey the side condition that for all 1 ≤ i ≤ n, the variable ai
does not appear in A1, . . . , Ai. Extension can easily be integrated in a Frege-system by
simply adding the formulas ai ⇔ Ai, for 1 ≤ i ≤ n, to the set of axioms. In that case we
speak of an extended Frege-system [CR79]. In the sequent calculus one could add these
formulas as non-logical axioms, with the consequence that cut-elimination would not hold
anymore. This very idea is used by Bruscoli and Guglielmi in [BG09] for adding extension
to a system in the calculus of structures: instead of starting a proof from no premises, they
use the conjunction

[ā1 ∨A1] ∧ [Ā1 ∨ a1] ∧ · · · ∧ [ān ∨An] ∧ [Ān ∨ an] (5.3)

of all extension formulas as premise. Let us write xSKS to denote the system SKS with the
extension incorporated this way, i.e., a proof of a formula B in xSKS is a derivation

[ā1 ∨A1] ∧ [Ā1 ∨ a1] ∧ · · · ∧ [ān ∨An] ∧ [Ān ∨ an]

SKS
∥

∥

∥∥π

B

(5.4)

where
the propositional variables a1, . . . , an are mutually distinct, and for
all 1 ≤ i ≤ n, the variable ai does not appear in A1, . . . , Ai nor in B.

(5.5)

The system xSKSo is defined similarly, by additionally allowing the rule open↓.

Proposition 5.2.1. xSKS and xSKSo are p-equivalent.

Proof. As in the proof of Proposition 5.1.6: xSKSo trivially p-simulates xSKS, and for
showing that xSKS p-simulates xSKSo, we replace

X
∥

∥

∥∥

A

X
∥

∥

∥∥

B
open↓ −−−−−−−

A ∧B

by

X
c↑ −−−−−−−
X ∧X

∥

∥

∥∥

A ∧X
∥

∥

∥∥

A ∧B

where X is the conjunction of extension formulas in (5.3). Again, the blow-up of the proof
is only quadratic.

Proposition 5.2.2. Any Frege system with extension p-simulates xSKS.

Proof. As in the proof of Proposition 5.1.1. Observe that the premise of (5.4) is provable
in an extended Frege system.

It should be clear that xSKS crucially relies on the presence of cut, in the same way as
extended Frege-system rely on the presence of modus ponens: The premise of (5.4) contains
the variables a1, . . . , an, which do not appear in the conclusion B. Thus, the derivation in
(5.4) must contain cuts. This raises the question whether the virtues of extension can also

5.2. Extension 103

be used in a cut-free system. For this, let us for every extension axiom ai ⇔ Ai add the
following two rules (we use the same name for both of them):

K{ai}
ext↓ −−−−−−−−

K{Ai}
and

K{āi}
ext↓ −−−−−−−−

K{Āi}
(5.6)

Note that the rule ext↓ is not sound. Consider for example the extension axiom a ⇔ b ∧ c
where a abbreviates b ∧ c. Applying it to a ∨ ā (which is a tautology) yields (b ∧ c) ∨ ā (which
is not a tautology). Nonetheless, we allow to apply (5.6) in an arbitrary context K{ },
provided that condition (5.5) is satisfied.

We write eKS to denote the system KS ∪ {ext↓}. A proof in eKS is a derivation in eKS
that has premise t and that obeys condition (5.5). Similarly, we define eSKS as SKS∪{ext↓},
and eSKSo as SKSo∪ {ext↓}, and eKSo as KS∪ {ext↓, open↓}. Then we have the following:

Proposition 5.2.3. eKS and eSKS and eKSo and eSKSo are all sound and complete for
classical propositional logic.

Proof. Completeness of all systems follows from completeness of KS, and soundness of eSKS
follows from Theorem 5.2.8 below. This entails soundness of the other systems.

Proposition 5.2.4. eSKS and eSKSo are p-equivalent.

Proof. As in the proof of Proposition 5.1.6.

Proposition 5.2.5. eSKS p-simulates xSKS, and eSKSo p-simulates xSKSo.

Proof. Given a proof π of a formula B in xSKS, we can construct

−
{ai↓}

∥

∥

∥∥π2

[ā1 ∨ a1] ∧ [ā1 ∨ a1] ∧ · · · ∧ [ān ∨ an] ∧ [ān ∨ an]

{ext↓}
∥

∥

∥∥π1

[ā1 ∨A1] ∧ [Ā1 ∨ a1] ∧ · · · ∧ [ān ∨An] ∧ [Ān ∨ an]

SKS
∥

∥

∥∥π

B

where π1 consists of 2n instances of ext↓ and π2 of 2n instances of ai↓.

Proposition 5.2.6. xSKS p-simulates eSKS, and xSKSo p-simulates eSKSo.

Proof. Assume we have an eSKS proof π of a formula B. We transform it as follows

−
eSKS

∥

∥

∥∥π

B
;

[ā1 ∨A1] ∧ [Ā1 ∨ a1] ∧ · · · ∧ [ān ∨An] ∧ [Ān ∨ an]

eSKS
∥

∥

∥∥π′

[ā1 ∨A1] ∧ [Ā1 ∨ a1] ∧ · · · ∧ [ān ∨An] ∧ [Ān ∨ an] ∧B
w↑ −−−

B

104 5. Comparing Mechanisms of Compressing Proofs in Classical Logic

where π′ is obtained from π by putting every line in conjunction with the formula (5.3).
The instances of ext↓ in π′ can now be removed as follows:

· · · ∧ [āi ∨Ai] ∧ · · · ∧K{ai}
ext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

· · · ∧ [āi ∨Ai] ∧ · · · ∧K{Ai}
;

· · · ∧ [āi ∨Ai] ∧ · · · ∧K{ai}
c↑ −−−
· · · ∧ [āi ∨Ai] ∧ [āi ∨Ai] ∧ · · · ∧K{ai}

{s}
∥

∥

∥∥πs

· · · ∧ [āi ∨Ai] ∧ · · · ∧K{ai ∧ [āi ∨Ai]}
s −−−
· · · ∧ [āi ∨Ai] ∧ · · · ∧K{(ai ∧ āi) ∨Ai}

ai↑ −−−
· · · ∧ [āi ∨Ai] ∧ · · · ∧K{Ai}

(5.7)

where K{ } is an arbitrary (positive) context, and the existence of πs (which contains only
instances of the rule s) can be shown by an easy induction on K{ } (see Lemma 3.10.18 on
page 82). The length of πs is bound by the depth of K{ }. Note the crucial use of the cut
rule in (5.7). For eSKSo we proceed similarly.

Proposition 5.2.7. eSKSo p-simulates any Frege system with extension.

Proof. As in the proof of Proposition 5.1.7. Observe that every extension axiom ai ⇔ Ai,
can be proved in eSKS with the rule ext↓.

We can summarize the propositions of this section as follows:

Theorem 5.2.8. eSKS, xSKS, eSKSo, and xSKSo are all p-equivalent to each other and to
every extended Frege system.

Proof. Immediate from Propositions 5.2.1, 5.2.2, 5.2.4, 5.2.5, 5.2.6, and 5.2.7.

Systems eKS and eKSo give us a way of adding extension to a deductive system indepen-
dently from cut. To show that extension without cut is potentially useful for giving short
proofs for some of the standard benchmark tautologies, we give in Section 5.4 polynomial
size proofs of the propositional pigeon hole principle in eKS.

5.3 Substitution

Let us next consider systems with substitution. A substitution is a function σ from the set A

of propositional variables to the set F of formulas, such that σ(a) = a for almost all a ∈ A .
We can define σ(A) inductively for all formulas via σ(A ∧B) = σ(A) ∧ σ(B) and σ(A ∨B) =
σ(A) ∨ σ(B) and σ(Ā) = σ(A). Following the tradition, we write Aσ for σ(A). For example,
if A = a ∨ b̄ ∨ b and σ = {a 7→ a ∧ b, b 7→ a ∨ c̄} then Aσ = (a ∧ b) ∨ (ā ∧ c) ∨ a ∨ c̄. We can
define the inference rule for substitution

A
sub↓ −−−

Aσ
(5.8)

Note that the rule sub↓ cannot be applied inside a context K{ }. Thus, it is exactly the
same rule as in Frege systems and in strong contrast to all other rules in deep inference.
Let us define sSKS = SKS ∪ {sub↓} and sSKSo = SKSo ∪ {sub↓}. Contrary to the other
systems we discussed so far, we cannot easily prove that sSKS p-simulates sSKSo, as in the
proof of Proposition 5.1.6. However, we have the following two propositions:

5.3. Substitution 105

Proposition 5.3.1. Any Frege-system with substitution p-simulates sSKS.

Proof. As in the proof of Proposition 5.1.1, because the substitution rule is the same in
SKS and Frege-systems.

Proposition 5.3.2. sSKSo p-simulates any Frege-system with substitution.

Proof. As in the proof of Proposition 5.1.7.

Proposition 5.3.3. sSKS p-simulates xSKS.

Proof. This proof can already be found in [BG09]. For a given xSKS proof π of a formula
B, we construct

t
i↓ −−

(ān ∧An) ∨ (Ān ∧ an) ∨ · · · ∨ (ā1 ∧A1) ∨ (Ā1 ∧ a1) ∨

([ā1 ∨A1] ∧ [Ā1 ∨ a1] ∧ · · · ∧ [ān ∨An] ∧ [Ān ∨ an])

SKS
∥

∥

∥∥π′

(ān ∧An) ∨ (Ān ∧ an) ∨ · · · ∨ (ā1 ∧A1) ∨ (Ā1 ∧ a1) ∨B
= −−

(ān ∧An) ∨ (Ān ∧ an) ∨

(ān−1 ∧An−1) ∨ (Ān−1 ∧ an−1) ∨ · · · ∨ (ā1 ∧A1) ∨ (Ā1 ∧ a1) ∨B
sub↓ −−

(Ān ∧An) ∨ (Ān ∧An) ∨

(ān−1 ∧An−1) ∨ (Ān−1 ∧ an−1) ∨ · · · ∨ (ā1 ∧A1) ∨ (Ā1 ∧ a1) ∨B
2∗i↑ −−−

(ān−1 ∧An−1) ∨ (Ān−1 ∧ an−1) ∨ · · · ∨ (ā1 ∧A1) ∨ (Ā1 ∧ a1) ∨B
sub↓ −−

...
2∗i↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−

(ā1 ∧A1) ∨ (Ā1 ∧ a1) ∨B
sub↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(Ā1 ∧A1) ∨ (Ā1 ∧A1) ∨B
2∗i↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B

(5.9)

where π′ is obtained from π by putting every formula in disjunction with

(ān ∧An) ∨ (Ān ∧ an) ∨ · · · ∨ (ā1 ∧A1) ∨ (Ā1 ∧ a1)

The derivation (5.9) is a valid derivation in sSKS because of condition (5.5). Note that we
proceed backwards in eliminating the ai in order to keep the size of the proof polynomial.

Proposition 5.3.4. sSKSo p-simulates xSKSo.

Proof. By Theorem 5.2.1 we have that xSKS p-simulates xSKSo. The previous theorem
tells us that sSKS p-simulates xSKS, and it is trivial that sSKSo p-simulates sSKS.

For the other direction, the basic idea is to simulate the substitution inference step from
A to Aσ by many extension inference steps, one for each occurrence of a variable a with

106 5. Comparing Mechanisms of Compressing Proofs in Classical Logic

σ(a) 6= a in A. Consider for example:

−∥
∥

∥∥π2

K{a ∨ (b ∧ c) ∨ ā}
sub↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

K{(a ∧ c) ∨ (b ∧ [a ∨ c]) ∨ ā ∨ c̄}
∥

∥

∥∥π1

B

;

−∥
∥

∥∥π2

K{a ∨ (b ∧ c) ∨ ā}
ext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−

K{(a ∧ c) ∨ (b ∧ c) ∨ ā}
ext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

K{(a ∧ c) ∨ (b ∧ [a ∨ c]) ∨ ā}
ext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

K{(a ∧ c) ∨ (b ∧ [a ∨ c]) ∨ ā ∨ c̄}
∥

∥

∥∥π1

B

(5.10)

where the used substitution is {a 7→ a ∧ c, c 7→ a ∨ c} and the context K{ } does not contain
any occurrences of a or c. The problem with this is that the result will, in general, not be
a valid proof because both conditions in (5.5) might be violated. For this reason we first
have to rename the variables a and c in π2:

−∥
∥

∥∥π′
2

K{a′ ∨ (b ∧ c′) ∨ ā′}
sub↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

K{(a ∧ c) ∨ (b ∧ [a ∨ c]) ∨ ā ∨ c̄}
∥

∥

∥∥π1

B

;

−∥
∥

∥∥π′
2

K{a′ ∨ (b ∧ c′) ∨ ā′}
ext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−

K{(a ∧ c) ∨ (b ∧ c′) ∨ ā′}
ext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

K{(a ∧ c) ∨ (b ∧ [a ∨ c]) ∨ ā′}
ext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

K{(a ∧ c) ∨ (b ∧ [a ∨ c]) ∨ ā ∨ c̄}
∥

∥

∥∥π1

B

(5.11)

Here a and c have been replaced everywhere in π2 by fresh variables a′ and c′, respectively.
The new substitution is {a′ 7→ a ∧ c, c′ 7→ a ∨ c}, which can be replaced by instances of
extension, without violating (5.5).

Theorem 5.3.5. eSKS p-simulates sSKS.

Proof. Let π be an sSKS proof of a formula B. Suppose π contains k instances of sub↓,
and let σ1,1, . . . , σk,1 be the k substitutions used in them. Then π is of the shape as shown
in the left-most derivation in Figure 5.1. In the following, we use Ai,j to denote the set
of variables a with σi,j(a) 6= a. As explained above, we can now iteratively rename the
propositional variables in A1,1, . . . ,Ak,1, starting from the bottommost instance of sub↓, as
indicated in Figure 5.1. The result of this renaming is shown in the rightmost derivation
in Figure 5.1 and has the property that

for all i with 1 ≤ i ≤ k, we have that no variable in Ai,i+1 appears
in any of π1,1, π2,2, . . . , πi,i.

(5.12)

Let Ai,i+1 = {ai,1, . . . , ai,mi}, and let Ai,h = σi,i+1(ai,h). We now have n = m1 +m2 + · · ·+
mk extension variables, defined via

ai,h
ext↓ −−−−−−

Ai,h

and
āi,h

ext↓ −−−−−−
Āi,h

If we give the index pair (i, h) the lexicographic ordering, it immediately follows from (5.12)
that condition (5.5) is fulfilled. Hence, we can trivially replace each instance of sub↓ by a

5.3. Substitution 107

−
SKS

∥

∥

∥∥πk+1,1

Bk,1
sub↓ −−−−−−−−−

Bk,1σk,1
SKS

∥

∥

∥∥πk,1

...

SKS
∥

∥

∥∥π3,1

B2,1
sub↓ −−−−−−−−−

B2,1σ2,1
SKS

∥

∥

∥∥π2,1

B1,1
sub↓ −−−−−−−−−

B1,1σ1,1
SKS

∥

∥

∥∥π1,1

B

;

−
SKS

∥

∥

∥∥πk+1,2

Bk,2
sub↓ −−−−−−−−−

Bk,2σk,2
SKS

∥

∥

∥∥πk,2

...

SKS
∥

∥

∥∥π3,2

B2,2
sub↓ −−−−−−−−−

B2,2σ2,2
SKS

∥

∥

∥∥π2,2

B1,2
sub↓ −−−−−−−−−

B1,2σ1,2
= −−−−−−−−−
B1,1σ1,1
SKS

∥

∥

∥∥π1,1

B

;

−
SKS

∥

∥

∥∥πk+1,3

Bk,3
sub↓ −−−−−−−−−

Bk,3σk,3
SKS

∥

∥

∥∥πk,3

...

SKS
∥

∥

∥∥π3,3

B2,3
sub↓ −−−−−−−−−

B2,3σ2,3
= −−−−−−−−−
B2,2σ2,2
SKS

∥

∥

∥∥π2,2

B1,2
sub↓ −−−−−−−−−

B1,2σ1,2
= −−−−−−−−−
B1,1σ1,1
SKS

∥

∥

∥∥π1,1

B

; · · · ;

−
SKS

∥

∥

∥∥πk+1,k+1

Bk,k+1
sub↓ −−−−−−−−−−−−−−−

Bk,k+1σk,k+1
= −−−−−−−−−−−−−−−

Bk,kσk,k
SKS

∥

∥

∥∥πk,k

...

SKS
∥

∥

∥∥π3,3

B2,3
sub↓ −−−−−−−−−

B2,3σ2,3
= −−−−−−−−−
B2,2σ2,2
SKS

∥

∥

∥∥π2,2

B1,2
sub↓ −−−−−−−−−

B1,2σ1,2
= −−−−−−−−−
B1,1σ1,1
SKS

∥

∥

∥∥π1,1

B

Figure 5.1: Renaming propositional variables in an sSKS proof

sequence of instances of ext↓, whose number is bound by the size of the Bi,i+1. Hence, the
size of the resulting eSKS proof is at most quadratic in the size of π.

Theorem 5.3.6. eSKSo p-simulates sSKSo.

Proof. The proof is almost literally the same as the previous one, which is not affected by
the branching of the open↓-rule.

I think that the proofs of Theorems 5.3.3 and 5.3.5 (and 5.2.8) are simpler than the ones
in [CR79] and [KP89]. In fact, here the results look almost trivial, whereas the construction
in [KP89] is rather involved. We have, in fact, more than enough to give alternative proofs
of the results in [CR79] and [KP89]:

Theorem 5.3.7. Frege systems with substitution p-simulate Frege systems with extension.

Proof. By Theorem 5.2.7 we have that eSKSo p-simulates Frege systems with extension.
By Theorem 5.2.8, we have that xSKS p-simulates eSKSo, by Theorem 5.3.3 we have that
sSKS p-simulates xSKS, and finally, from Theorem 5.3.1, we get that Frege systems with
substitution p-simulate sSKS.

Theorem 5.3.8. Frege systems with extension p-simulate Frege systems with substitution.

Proof. By Theorem 5.3.2, we have that sSKSo p-simulates Frege systems with substitution.
By Theorem 5.3.6 we have that eSKSo p-simulates sSKSo. By Theorem 5.2.8, we have that

108 5. Comparing Mechanisms of Compressing Proofs in Classical Logic

xSKS p-simulates eSKSo, and by Theorem 5.2.2, we have that Frege systems with extension
p-simulate xSKS.

Furthermore, note that the transformation in the proof of Theorem 5.3.5 does not involve
any cuts. Hence, we have also proved the following:

Theorem 5.3.9. eKS p-simulates sKS, and eKSo p-simulates sKSo.

5.4 Pigeonhole Principle and Balanced Tautologies

In this section I show two classes of tautologies which both admit polynomial-size proofs
in eKS and sKS. The first one is the propositional pigeon-hole principle. The second one is
a variation which has the property that every member of the class is a balanced tautology.
A formula A is balanced if every propositional variable occurring in A occurs exactly twice,
once positive and once negated. For example,

([a ∨ b] ∧ [d ∨ e]) ∨
(
[ā ∨ c] ∧

[
d̄ ∨ f

])
∨
([
b̄ ∨ c̄

]
∧
[
ē ∨ f̄

])

is balanced (and a tautology), whereas

a ∨ a ∨ (ā ∧ ā) and a ∧ ā ∧ b

are not balanced. I use the notation
∧∧

0≤i≤n Fi as abbreviation for F0 ∧ · · · ∧ Fn, and simi-
larly for

∨∨
. Furthermore, for a literal a, I abbreviate the formula a ∨ · · · ∨ a by an, if there

are n copies of a. Consider now

PHPn =
∧∧

0≤i≤n

∨∨

1≤j≤n

pi,j ⇒
∨∨

0≤i<m≤n

∨∨

1≤j≤n

(pi,j ∧ pm,j) (5.13)

This formula is called the propositional pigeon hole principle because it expresses the fact
that if there are n+ 1 pigeons and only n holes and every pigeon is in a hole then at least
one hole contains two pigeons, provided one reads the propositional variable pi,j as “pigeon
i sits in hole j”.

The formulas (5.13) have been well investigated from the viewpoint of proof complex-
ity. In [CR79] they where presented as a candidate for separating Frege systems and ex-
tended Frege systems (wrt. p-simulation). But Buss [Bus87] has shown that PHPn admits
a polynomial-size proof in a Frege system (and therefore in SKS) for every n.

I will here show that in eKS as well as in sKS we have cut-free polynomial-size proofs
for (5.13). For this I use a new class of tautologies which also admit polynomial-size proofs
in eKS, and which are defined as follows:

QHQn =
∨∨

0≤i≤n

∧∧

1≤j≤n

[
∨∨

1≤k≤i

q̄i,j,k ∨
∨∨

i<k≤n

qk,j,i+1

]

(5.14)

5.4. Pigeonhole Principle and Balanced Tautologies 109

Here are the first three examples:

QHQ1 = q1,1,1 ∨ q̄1,1,1

QHQ2 = ([q1,1,1 ∨ q2,1,1] ∧ [q1,2,1 ∨ q2,2,1]) ∨ ([q̄1,1,1 ∨ q2,1,2] ∧ [q̄1,2,1 ∨ q2,2,2])∨

([q̄2,1,1 ∨ q̄2,1,2] ∧ [q̄2,2,1 ∨ q̄2,2,2])

QHQ3 = ([q1,1,1 ∨ q2,1,1 ∨ q3,1,1] ∧ [q1,2,1 ∨ q2,2,1 ∨ q3,2,1] ∧ [q1,3,1 ∨ q2,3,1 ∨ q3,3,1])∨

([q̄1,1,1 ∨ q2,1,2 ∨ q3,1,2] ∧ [q̄1,2,1 ∨ q2,2,2 ∨ q3,2,2] ∧ [q̄1,3,1 ∨ q2,3,2 ∨ q3,3,2])∨

([q̄2,1,1 ∨ q̄2,1,2 ∨ q3,1,3] ∧ [q̄2,2,1 ∨ q̄2,2,2 ∨ q3,2,3] ∧ [q̄2,3,1 ∨ q̄2,3,2 ∨ q3,3,3])∨

([q̄3,1,1 ∨ q̄3,1,2 ∨ q̄3,1,3] ∧ [q̄3,2,1 ∨ q̄3,2,2 ∨ q̄3,2,3] ∧ [q̄3,3,1 ∨ q̄3,3,2 ∨ q̄3,3,3])

The tautologies QHQn are balanced. This means that the size of a proof of such a
tautology is directly related to the number of applications of ac↓. Furthermore, all proofs
that we show here do not contain any weakening. This makes this class interesting for
investigating the gap between linear logic and classical logic [Lam07, Str07b].

The formulas QHQ1 and QHQ2 are easily provable in KS\{ac↓}. One might be tempted
to conjecture that KS \ {ac↓} or eKS \ {ac↓} is already complete for the class of balanced
tautologies. But unfortunately, this is not the case. The smallest counterexample known
to me is QHQ3. Every possible application of ai↓, s, m, or w↓ leads to a non-tautologous
formula. Thus also the extension rule is of no use. (The same is true for all formulas QHQn

with n ≥ 3.)

This is not surprising under the view of the following theorem, which says that balanced
tautologies are not easier to prove than other tautologies.

Theorem 5.4.1. The set of balanced tautologies is coNP-complete.

Proof. We can reduce provability of general tautologies to provability of balanced tautolo-
gies. For a formula B, we let B′ be the formula obtained from B by doing the following
replacement for every propositional variable a occurring in B: Let n be the number of
occurrences of a in positive form in B, and let m be the number of occurrences of ā in B.
If n ≥ 1 and m ≥ 1, then introduce n ·m fresh propositional variables ai,j for 1 ≤ i ≤ n
and 1 ≤ j ≤ m. Now replace for every 1 ≤ i ≤ n the ith occurrence of a by ai,1 ∨ · · · ∨ ai,m,
and replace for every 1 ≤ j ≤ m the jth occurrence of ā by ā1,j ∨ · · · ∨ ān,j . If n = 0, then
introduce m fresh variables a1, . . . am and replace the jth ā by āj ∧ aj . If m = 0, proceed
similarly. Then B′ is balanced, and its size is quadratic in the size of B. Furthermore, B′

is a tautology if and only if B is a tautology.

Let us now reduce PHPn to QHQn. We first replace the implication by disjunction and
negation, and then apply associativity and commutativity of ∨:

PHPn =
∨∨

0≤i≤n

∧∧

1≤j≤n

p̄i,j ∨
∨∨

0≤i<n

∨∨

i<m≤n

∨∨

1≤j≤n

(pi,j ∧ pm,j) (5.15)

=
∨∨

0≤i≤n

∧∧

1≤j≤n

p̄i,j ∨
∨∨

0≤i≤n

∨∨

1≤j≤n

∨∨

i<m≤n

(pi,j ∧ pm,j) (5.16)

=
∨∨

0≤i≤n

[
∧∧

1≤j≤n

p̄i,j ∨
∨∨

1≤j≤n

∨∨

i<m≤n

(pi,j ∧ pm,j)

]

(5.17)

110 5. Comparing Mechanisms of Compressing Proofs in Classical Logic

Now consider the following class of formulas (where p̄ii,j abbreviates p̄i,j ∨ · · · ∨ p̄i,j with i
copies of p̄i,j):

PHP′
n =

∨∨

0≤i≤n

∧∧

1≤j≤n

[

p̄ii,j ∨
∨∨

i<m≤n

pm,j

]

(5.18)

We have for each n a derivation from PHP′
n to PHPn of length O(n3):

PHP′
n

= −−∨∨

0≤i≤n

∧∧

1≤j≤n[p̄ii,j ∨
∨∨

i<m≤n pm,j]
n(n+1)/2∗ai↓ −−∨∨

0≤i≤n

∧∧

1≤j≤n[p̄ii,j ∨
∨∨

i<m≤n([p̄i,j ∨ pi,j] ∧ pm,j)]
n(n+1)/2∗s −−∨∨

0≤i≤n

∧∧

1≤j≤n[p̄ii,j ∨ p̄n−i
i,j

∨
∨∨

i<m≤n(pi,j ∧ pm,j)]
= −−∨∨

0≤i≤n

∧∧

1≤j≤n[p̄ni,j ∨
∨∨

i<m≤n(pi,j ∧ pm,j)]
n(n+1)(n−1)∗ac↓ −−∨∨

0≤i≤n

∧∧

1≤j≤n[p̄i,j ∨
∨∨

i<m≤n(pi,j ∧ pm,j)]
n(n+1)∗s −−∨∨

0≤i≤n[
∧∧

1≤j≤n p̄i,j ∨
∨∨

1≤j≤n

∨∨

i<m≤n(pi,j ∧ pm,j)]
= −−

PHPn

(5.19)

Remark 5.4.2. Since PHP′
n is just an instance of QHQn with qi,j,k = pi,j , every polynomial-

size proof of QHQn yields also a polynomial-size proof of PHPn. On the other hand, with
the substitution (found by an anonymous referee)

pi,j 7→
∧∧

1≤k≤i

qi,j,k ∧
∧∧

i<k≤n

q̄k,j,i+1

a polynomial-size proof of PHPn can be transformed into a polynomial-size proof of QHQn.
Thus the result by Buss [Bus87] can be used to give a polynomial-size proof of QHQn

in SKS.

For a given number n, we define for all 0 ≤ i ≤ n and 1 ≤ j ≤ n the formula

Qi,j =
∨∨

1≤k≤i

q̄i,j,k ∨
∨∨

i<k≤n

qk,j,i+1

= q̄i,j,1 ∨ q̄i,j,2 ∨ · · · ∨ q̄i,j,i ∨ qi+1,j,i+1 ∨ qi+2,j,i+1 ∨ · · · ∨ qn,j,i+1

(5.20)

Then QHQn = (Q0,1 ∧ · · · ∧Q0,n) ∨ (Q1,1 ∧ · · · ∧Q1,n) ∨ · · · ∨ (Qn,1 ∧ · · · ∧Qn,n). The for-
mula Qi,j consists of n disjuncts. Let Q∨m

i,j denote the formula obtained from Qi,j by
removing the mth disjunct. Then for all m ≤ i we have Qi,j = Q∨m

i,j
∨ q̄i,j,m and for all

m > i we have Qi,j = Q∨m
i,j

∨ qm,j,i+1. Figure 5.2 shows a derivation in sKS from QHQn−1

to QHQn of length O(n3). In that figure, the number z abbreviates n · (n−1) · (n−2). The
used substitution is defined as follows:

qi,j,k 7→ [qi,j,k ∨ qn,j,k] ∧ [q̄n,j,i+1 ∨ qi,n,k] .

Since the proof of QHQ1 is trivial, we exhibited a cut-free polynomial-size proof of QHQn

and PHPn. We can transform the complete proof of QHQn into an eKS proof by renam-
ing the variables qi,j,k at each stage (see proof of Theorem 5.3.5) and use the extension
formulas21

q′i,j,k ⇔ [qi,j,k ∨ qn,j,k] ∧ [q̄n,j,i+1 ∨ qi,n,k]

21To distinguish between the propositional variable occurrences in QHQn and the occurrences QHQn−1,
we use q′ for those in QHQn−1. This is more legible than adding yet another index to the q.

5.4. Pigeonhole Principle and Balanced Tautologies 111

.

QHQn−1
= −−−∨∨

0≤i<n

∧∧
1≤j<n[

∨∨
1≤k≤i q̄i,j,k ∨

∨∨
i<k<n qk,j,i+1]

sub↓ −−−∨∨
0≤i<n

∧∧
1≤j<n[

∨∨
1≤k≤i[(q̄i,j,k ∧ q̄n,j,k) ∨ (qn,j,i+1 ∧ q̄i,n,k)] ∨

∨∨
i<k<n([qk,j,i+1 ∨ qn,j,i+1] ∧ [q̄n,j,k+1 ∨ qk,n,i+1])]

z/2∗m −−−∨∨
0≤i<n

∧∧
1≤j<n[

∨∨
1≤k≤i([q̄i,j,k ∨ qn,j,i+1] ∧ [q̄n,j,k ∨ q̄i,n,k]) ∨

∨∨
i<k<n([qk,j,i+1 ∨ qn,j,i+1] ∧ [q̄n,j,k+1 ∨ qk,n,i+1])]

zm −−∨∨
0≤i<n

∧∧
1≤j<n([

∨∨
1≤k≤i[q̄i,j,k ∨ qn,j,i+1] ∨

∨∨
i<k<n[qk,j,i+1 ∨ qn,j,i+1]]∧

[
∨∨

1≤k≤i[q̄n,j,k ∨ q̄i,n,k] ∨
∨∨

i<k<n[q̄n,j,k+1 ∨ qk,n,i+1]]
= −−−∨∨

0≤i<n

∧∧
1≤j<n([q̄i,j,1 ∨ · · · ∨ q̄i,j,i ∨ qi+1,j,i+1 ∨ · · · ∨ qn−1,j,i+1 ∨ q n−1

n,j,i+1]∧

[q̄n,j,1 ∨ · · · ∨ q̄n,j,i ∨ q̄n,j,i+2 ∨ · · · ∨ q̄n,j,n ∨ q̄i,n,1 ∨ · · · ∨ q̄i,n,i ∨ qi+1,n,i+1 ∨ · · · ∨ qn−1,n,i+1]
= −−∨∨

0≤i<n

∧∧
1≤j<n([Q

∨n
i,j ∨ q n−1

n,j,i+1] ∧ [Q∨i+1
n,j

∨ Q∨n
i,n])

z∗ac↓ −−∨∨
0≤i<n

∧∧
1≤j<n([Q

∨n
i,j ∨ qn,j,i+1] ∧ [Q∨i+1

n,j
∨ Q∨n

i,n])
= −−∨∨

0≤i<n

∧∧
1≤j<n(Qi,j ∧ [Q∨i+1

n,j
∨ Q∨n

i,n])
= −−−∨∨

0≤i<n(Qi,1 ∧ · · · ∧ Qi,n−1 ∧ [Q∨i+1
n,1

∨ Q∨n
i,n] ∧ · · · ∧ [Q∨i+1

n,n−1
∨ Q∨n

i,n])
n(n−2)∗d↓ −−−∨∨

0≤i<n(Qi,1 ∧ · · · ∧ Qi,n−1 ∧ [(Q∨i+1
n,1

∧ · · · ∧ Q∨i+1
n,n−1) ∨ Q∨n

i,n])
n∗ai↓ −−∨∨

0≤i<n(Qi,1 ∧ · · · ∧ Qi,n−1 ∧ [(Q∨i+1
n,1

∧ · · · ∧ Q∨i+1
n,n−1

∧ [q̄n,n,i+1 ∨ qn,n,i+1]) ∨ Q∨n
i,n])

n∗s −−∨∨
0≤i<n(Qi,1 ∧ · · · ∧ Qi,n−1 ∧ [(Q∨i+1

n,1
∧ · · · ∧ Q∨i+1

n,n−1
∧ q̄n,n,i+1) ∨ qn,n,i+1 ∨ Q∨n

i,n])
= −−∨∨

0≤i<n(Qi,1 ∧ · · · ∧ Qi,n−1 ∧ [Qi,n ∨ (Q∨i+1
n,1

∧ · · · ∧ Q∨i+1
n,n−1

∧ q̄n,n,i+1)])
n∗s −−

[
∨∨

0≤i<n(Qi,1 ∧ · · · ∧ Qi,n−1 ∧ Qi,n)] ∨ [
∨∨

0≤i<n(Q
∨i+1
n,1

∧ · · · ∧ Q∨i+1
n,n−1

∧ q̄n,n,i+1)]
= −−

[
∨∨

0≤i<n

∧∧
1≤j≤n Qi,j] ∨ [(Q∨1

n,1 ∧ · · · ∧ Q∨1
n,n−1 ∧ q̄n,n,1) ∨ · · · ∨ (Q∨n

n,1 ∧ · · · ∧ Q∨n
n,n−1 ∧ q̄n,n,n)]

(n−1)(n−1)∗m −−−

[
∨∨

0≤i<n

∧∧
1≤j≤n Qi,j] ∨ ([Q∨1

n,1 ∨ · · · ∨ Q∨n
n,1] ∧ · · · ∧ [Q∨1

n,n−1 ∨ · · · ∨ Q∨n
n,n−1] ∧ [q̄n,n,1 ∨ · · · ∨ q̄n,n,n])

= −−−

[
∨∨

0≤i<n

∧∧
1≤j≤n Qi,j] ∨ ([q̄ n−1

n,1,1
∨ · · · ∨ q̄ n−1

n,1,n] ∧ · · · ∧ [q̄ n−1
n,n−1,1

∨ · · · ∨ q̄ n−1
n,n−1,n] ∧ [q̄n,n,1 ∨ · · · ∨ q̄n,n,n])

z∗ac↓ −−−

[
∨∨

0≤i<n

∧∧
1≤j≤n Qi,j] ∨ ([q̄n,1,1 ∨ · · · ∨ q̄n,1,n] ∧ · · · ∧ [q̄n,n−1,1 ∨ · · · ∨ q̄n,n−1,n] ∧ [q̄n,n,1 ∨ · · · ∨ q̄n,n,n])

= −−−

[
∨∨

0≤i<n

∧∧
1≤j≤n Qi,j] ∨ (Qn,1 ∧ · · · ∧ Qn,n−1 ∧ Qn,n)

= −−∨∨
0≤i≤n

∧∧
1≤j≤n Qi,j

= −−−−−−−−−−−−−−−−−−−−−−−−−−

QHQn

Figure 5.2: Derivation from QHQn−1 to QHQn

as extension axioms, i.e., the rules

q′i,j,k
ext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[qi,j,k ∨ qn,j,k] ∧ [q̄n,j,i+1 ∨ qi,n,k]

q̄′i,j,k
ext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(q̄i,j,k ∧ q̄n,j,k) ∨ (qn,j,i+1 ∧ q̄i,n,k)
(5.21)

In [Jap07], Japaridze provides another cut-free polynomial size proof of PHPn. His
system of deep cirquents uses a form of sharing instead of extension or substitution. But it
is not known whether his method can also be used for QHQn.

112 5. Comparing Mechanisms of Compressing Proofs in Classical Logic

6
Open Problems

In this final chapter I will mention some of the questions that have been left open by this
thesis.

6.1 Full Coherence for Boolean Categories

One usually speaks of “coherence” [Mac71] if all diagrams of a certain kind commute. Very
often a “coherence theorem” is based on so-called “coherence graphs” [KM71, DP04]. In
certain cases (see, e.g., [Str05]) the notion of coherence graph is too restricted. For this
reason, in [LS05a], the notion of “graphicality” is introduced.

Definition 6.1.1. Let C be a single-mixed B1-category, and let C ∨∧ be the category ob-
tained from C by adding for each pair of objects A and B a map mix−1

A,B : A ∨ B → A ∧ B
which is inverse to mixA,B (i.e., the two bifunctors −∧− and −∨− are naturally isomorphic
in C ∨∧). We say that C is graphical if the canonical forgetful functor F : C → C ∨∧ is faithful.

Note that C ∨∧ is a star-autonomous category in which the two monoidal structures
coincide, i.e., it is a compact closed category. The actual problem is usually to find a
canonical way of making this collapse. But here, we can explore the fact that C is single-
mixed and that the structure of a B1-category does not induce any other natural maps
A ∧ B → A ∨ B or A ∨ B → A ∧ B. Although in general inverting arrows in a category
can destroy the structure, it is harmless here since it only makes mix an iso, and hence C ∨∧

compact closed. We do not go into further details of inverting arrows in categories. The
whole point of Definition 6.1.1 is to provide the means of formulating the following open
problem.

Open Problem 6.1.2. Let E be a set of equations and let C be the free B1-category that
is generated from a set A of generators (e.g., propositional variables) and that obeys all of
E . Is C graphical? This question is equivalent to asking for a general coherence result for
Boolean categories. Chapter 2 of this work exhibits many equations that have to hold, but
it gives no clue whether they are enough, or what could be missing.

For example the freely generated star-autonomous category without units [LS05a, HHS05,
DP05] is graphical. This can be shown by using traditional proof nets for multiplicative

113

114 6. Open Problems

linear logic. However, the work of [LS06] can be used to show that the freely generated
star-autonomous category with units is not graphical.

Clearly, in a graphical B4-category the equations (mix-m-̂t), (m-̌t-s), and (m̌2-s-m̌2) all
hold. However, at the current state of the art it is not known whether they hold in every
B4-category. I conjecture that this is not the case, but so far no counterexample could be
constructed.

A related problem occurs in Section 3.6:

Open Problem 6.1.3. Is there a sound and complete deep inference proof system S for
classical propositional logic such that its C-reduced prenets (obtained as shown in Sections
3.5 and 3.6) form a star-autonomous category, more precisely, a star-autonomous subcate-
gory of PreC.

6.2 Correctness Criteria for Proof Nets for Classical Logic

The most important open problem left open by this work is the question of correctness
criteria for N-nets, C-nets, and atomic flows, as discussed in Chapter 3.

Open Problem 6.2.1. Given two formulas A and B and an atomic flow φ : fl(A)→ fl(B),
is there an algorithm that decides in polynomial time whether there is an SKS-derivation
from A to B whose atomic flow is φ?

Open Problem 6.2.2. Given a C-reduced prenet π with two conclusion Ā and B, is there
an algorithm that decides in polynomial time whether there is an SKS-derivation from A
to B which is translated to π (using the method in Sections 3.5 and 3.6)?

Open Problem 6.2.3. Given a cut-free N-prenet P ⊲ A, is there a polynomial algorithm
deciding if there is a proof of A in KS or some sequent system translating into the given
net.

All three open problems are closely related. The simplest one might be the last one,
because it can be reduced to the problem mentioned at the end of Section 4.4:

Open Problem 6.2.4. Given two formulas A and B with the same atom occurrences, is
there an algorithm that decides in polynomial time whether A −→

∗

MS
B.

6.3 The Relative Efficiency of Propositional Proof Systems

Chapter 5 of this thesis provides more new open problems than it provides answers. Fi-
gure 6.1 shows a refined version of Figure 1.2 on page 6 (see also [BG09]). A solid arrow

A B means that A p-simulates B, the notation A × B means that A does not
p-simulate B, and a dotted arrow A B means that it is not known whether A p-
simulates B or not. The open problems indicated by these dotted arrows are surprisingly
difficult:

(1) The question whether SKS p-simulates eSKS is equivalent to the question whether Frege
systems p-simulate extended Frege systems. This question has already been asked in
[CR79], and is one of the most important open problems in the area of proof complexity.

6.3. The Relative Efficiency of Propositional Proof Systems 115

Gentzen
with cuts

SKS = SKSo =
Frege (1)

(5)

eSKS = eSKSo =
xSKS = xSKSo =
Frege + ext.

eSKSo =
Frege + sub.

sKSo

(4)

(6)

cut-free
Gentzen

×

×

KS = KSo

(2)

(3)

(3)

eKS = eKSo

(4)(5)

sKS

(7)

(6)

Figure 6.1: Classification of propositional proof systems

(2) We conjecture that KS does not p-simulate SKS (see also [BG09] and [BGGP10]),

(3) We also conjecture that KS does not p-simulate eKS. More precisely, it is conjec-
tured that KS cannot provide polynomial size proofs of the formulas PHPn (or QHQn),
whereas this is possible in SKS (as shown in [Bus87]) as well as in eKS (as shown in Sec-
tion 5.4). However, so far, no technique has been developed for showing that something
cannot be done in KS.

(4) This is the question whether extension or substitution can simulate the behavior of the
cut. It is one of the contributions of this paper that this question can now be asked. I
conjecture that the answer is positive, but it is not clear how to prove it. Note that the
naive cut elimination procedures fail in the presence of extension. Even if we manage
to modify the technicalities such that we get a cut elimination procedure for eSKS, it
is not clear how to avoid the exponential blow-up usually caused by cut elimination.

(5) The questions whether extension without cut is as powerful as the cut without exten-
sion, and vice-versa, can be seen as the little brothers of (1).

(6) It has already been shown in [CR79] that under the presence of cut substitution p-
simulates extension, but without cut, this question is not trivial.

(7) We do not even know whether under the absence of cut the substitution rule alone is
as powerful as the substitution rule together with the open↓-rule.

Remark 6.3.1. It has recently been shown [Jeř09, BGGP10] that the system KS + ac↑
quasipolynomially simulates SKS, and it is conjectured that this result can be improved to
a polynomial simulation.

116 6. Open Problems

Bibliography

[And76] Peter B. Andrews. Refutations by matings. IEEE Transactions on Computers,
C-25:801–807, 1976.

[Bar79] Michael Barr. *-Autonomous Categories, volume 752 of Lecture Notes in Math-
ematics. Springer, 1979.

[Bar91] Michael Barr. *-autonomous categories and linear logic. Math. Structures in
Comp. Science, 1:159–178, 1991.

[BCST96] Richard Blute, Robin Cockett, Robert Seely, and Todd Trimble. Natural deduc-
tion and coherence for weakly distributive categories. J. of Pure and Applied
Algebra, 113:229–296, 1996.

[BdGR97] Denis Bechet, Philippe de Groote, and Christian Retoré. A complete axioma-
tisation of the inclusion of series-parallel partial orders. In H. Common, editor,
Rewriting Techniques and Applications, RTA 1997, volume 1232 of LNCS, pages
230–240. Springer, 1997.

[BG09] Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep inference.
ACM Transactions on Computational Logic, 10(2):1–34, 2009. Article 14.

[BGGP10] Paola Bruscoli, Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A
quasipolynomial cut-elimination procedure in deep inference via atomic flows
and threshold formulae. In LPAR-16, 2010.

[BHL+06] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik
Spohr. Proof transformation by CERES. In MKM’06, volume 4108 of LNCS,
pages 82–93. Springer, 2006.

[BHRU06] Gianluigi Bellin, Martin Hyland, Edmund Robinson, and Christian Urban. Cat-
egorical proof theory of classical propositional calculus. Theoretical Computer
Science, 364(2):146–165, 2006.

[Bib81] Wolfgang Bibel. On matrices with connections. Journal of the ACM, 28:633–
645, 1981.

[Blu93] Richard Blute. Linear logic, coherence and dinaturality. Theoretical Computer
Science, 115:3–41, 1993.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[Brü03] Kai Brünnler. Deep Inference and Symmetry for Classical Proofs. PhD thesis,
Technische Universität Dresden, 2003.

117

118 Bibliography

[BT01] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In
R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250 of LNAI,
pages 347–361. Springer, 2001.

[Bur91] Albert Burroni. Higher dimensional word problem. In Proceedings of the 4th
International Conference on Category Theory and Computer Science, pages 94–
105, London, UK, 1991.

[Bus87] Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole principle.
The Journal of Symbolic Logic, 52(4):916–927, 1987.

[Bus91] Samuel R. Buss. The undecidability of k-provability. Annals of Pure and Applied
Logic, 53:72–102, 1991.

[BW99] Michael Barr and Charles Wells. Category Theory for Computing Science. Les
Publications CRM, Montréal, third edition, 1999.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ICFP,
pages 233–243, 2000.

[Coq95] Thierry Coquand. A semantics of evidence for classical arithmetic. The Journal
of Symbolic Logic, 60(1):325–337, 1995.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of proposi-
tional proof systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

[CS97a] J.R.B. Cockett and R.A.G. Seely. Proof theory for full intuitionistic linear
logic, bilinear logic, and mix categories. Theory and Applications of Categories,
3(5):85–131, 1997.

[CS97b] J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. J. of Pure
and Applied Algebra, 114:133–173, 1997.

[CS09] J. Robin B. Cockett and Luigi Santocanale. On the word problem for ΣΠ-
categories, and the properties of two-way communication. In Computer Science
Logic, CSL’09, volume 5771 of Lecture Notes in Computer Science, pages 194–
208. Springer, 2009.

[DHPP99] H. Devarajan, Dominic Hughes, Gordon Plotkin, and Vaughan R. Pratt. Full
completeness of the multiplicative linear logic of Chu spaces. In 14th IEEE
Symposium on Logic in Computer Science (LICS 1999), 1999.

[DJS97] V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive logic: Linear
logic. The Journal of Symbolic Logic, 62(3):755–807, 1997.

[DP04] Kosta Došen and Zoran Petrić. Proof-Theoretical Coherence. KCL Publ., Lon-
don, 2004.

[DP05] Kosta Došen and Zoran Petrić. Proof-net categories. preprint, Mathematical
Institute, Belgrade, 2005.

[DR89] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Annals
of Mathematical Logic, 28:181–203, 1989.

[ER06] T. Ehrhard and L. Regnier. Differential interaction nets. Theor. Comput. Sci.,
364(2):166–195, 2006.

Bibliography 119

[FP04a] Carsten Führmann and David Pym. On the geometry of interaction for classical
logic. preprint, 2004.

[FP04b] Carsten Führmann and David Pym. On the geometry of interaction for classical
logic (extended abstract). In 19th IEEE Symposium on Logic in Computer
Science (LICS 2004), pages 211–220, 2004.

[FP04c] Carsten Führmann and David Pym. Order-enriched categorical models of the
classical sequent calculus. To appear in J. of Pure and Applied Algebra, 2004.

[FR94] Arnaud Fleury and Christian Retoré. The mix rule. Math. Structures in Comp.
Science, 4(2):273–285, 1994.

[Gen34] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathematis-
che Zeitschrift, 39:176–210, 1934.

[GG08] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference
via atomic flows. Logical Methods in Computer Science, 4(1:9):1–36, 2008.

[GGS10] Alessio Guglielmi, Tom Gundersen, and Lutz Straßburger. Breaking paths in
atomic flows for classical logic. In LICS 2010, 2010.

[Gir89] Jean-Yves Girard. Geometry of interaction 1: Interpretation of System F. In
R. Ferro et al., editor, Logic Colloquium 88. North-Holland, 1989.

[Gir91] Jean-Yves Girard. A new constructive logic: Classical logic. Math. Structures
in Comp. Science, 1:255–296, 1991.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

[GS01] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the
calculus of structures. In Laurent Fribourg, editor, Computer Science Logic,
CSL 2001, volume 2142 of LNCS, pages 54–68. Springer-Verlag, 2001.

[Gug04] Alessio Guglielmi. Formalism A. note, April 2004.

[Gug07] Alessio Guglielmi. A system of interaction and structure. ACM Transactions
on Computational Logic, 8(1), 2007.

[HA28] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik,
volume XXVII of Die Grundlehren der Mathematischen Wissenschaften. Verlag
von Julius Springer, 1928.

[HdP93] J. Martin E. Hyland and Valeria de Paiva. Full intuitionistic linear logic (ex-
tended abstract). Annals of Pure and Applied Logic, 64(3):273–291, 1993.

[HHS05] Robin Houston, Dominic Hughes, and Andrea Schalk. Modelling linear logic
without units (preliminary results). Preprint, 2005.

[Hil22] David Hilbert. Die logischen Grundlagen der Mathematik. Mathematische An-
nalen, 88:151–165, 1922.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479–490. Academic Press, 1980.

120 Bibliography

[Hug05] Dominic Hughes. Simple free star-autonomous categories and full coherence.
Preprint, 2005.

[Hug06] Dominic J.D. Hughes. Proofs Without Syntax. Annals of Mathematics,
164(3):1065–1076, 2006.

[HvG03] Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free multiplicative-
additive linear logic. In 18th IEEE Symposium on Logic in Computer Science
(LICS 2003), pages 1–10, 2003.

[Hyl02] J. M. E. Hyland. Proof theory in the abstract. Annals of Pure and Applied
Logic, 114(1–3):43–78, 2002.

[Hyl04] J. Martin E. Hyland. Abstract interpretation of proofs: Classical propositional
calculus. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Sci-
ence Logic, CSL 2004, volume 3210 of LNCS, pages 6–21. Springer-Verlag, 2004.

[Jap07] Giorgi Japaridze. Cirquent calculus deepened. preprint, 2007.

[Jeř09] Emil Jeřábek. Proof complexity of the cut-free calculus of structures. Journal
of Logic and Computation, 19(2):323–339, 2009.

[JSV96] André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories.
Mathematical Proceedings of the Cambridge Philosophical Society, 3:447–468,
1996.

[Kel64] Gregory Maxwell Kelly. On MacLane’s conditions for coherence of natural as-
sociativities, commutativities, etc. Journal of Algebra, 4:397–402, 1964.

[KM71] Gregory Maxwell Kelly and Saunders Mac Lane. Coherence in closed categories.
J. of Pure and Applied Algebra, 1:97–140, 1971.

[KP89] Jan Kraj́ıcek and Pavel Pudlák. Propositional proof systems, the consistency
of first order theories and the complexity of computations. The Journal of
Symbolic Logic, 54(3):1063–1079, 1989.

[Laf88] Yves Lafont. Logique, Catégories et Machines. PhD thesis, Université Paris 7,
1988.

[Laf95a] Yves Lafont. Equational reasoning with 2-dimensional diagrams, volume 909 of
LNCS, pages 170–195. 1995.

[Laf95b] Yves Lafont. From proof nets to interaction nets. In J.-Y. Girard, Y. Lafont,
and L. Regnier, editors, Advances in Linear Logic, volume 222 of London Math-
ematical Society Lecture Notes, pages 225–247. Cambridge University Press,
1995.

[Lam68] Joachim Lambek. Deductive systems and categories. I: Syntactic calculus and
residuated categories. Math. Systems Theory, 2:287–318, 1968.

[Lam69] Joachim Lambek. Deductive systems and categories. II. standard constructions
and closed categories. In P. Hilton, editor, Category Theory, Homology Theory
and Applications, volume 86 of Lecture Notes in Mathematics, pages 76–122.
Springer, 1969.

Bibliography 121

[Lam07] François Lamarche. Exploring the gap between linear and classical logic. Theory
and Applications of Categories, 18(18):473–535, 2007.

[Lau99] Olivier Laurent. Polarized proof-nets: proof-nets for LC (extended abstract).
In Jean-Yves Girard, editor, Typed Lambda Calculi and Applications (TLCA
1999), volume 1581 of LNCS, pages 213–227. Springer, 1999.

[Lau02] Olivier Laurent. Etude de la Polarisation en Logique. PhD thesis, Univ. Aix-
Marseille II, 2002.

[Lau03] Olivier Laurent. Polarized proof-nets and λµ-calculus. Theoretical Computer
Science, 290(1):161–188, 2003.

[LS86] Joachim Lambek and Phil J. Scott. Introduction to higher order categorical logic,
volume 7 of Cambridge studies in advanced mathematics. Cambridge University
Press, 1986.

[LS05a] François Lamarche and Lutz Straßburger. Constructing free Boolean categories.
In LICS’05, pages 209–218, 2005.

[LS05b] François Lamarche and Lutz Straßburger. Naming proofs in classical proposi-
tional logic. In Pawe l Urzyczyn, editor, TLCA’05, volume 3461 of LNCS, pages
246–261. Springer, 2005.

[LS06] François Lamarche and Lutz Straßburger. From proof nets to the free *-
autonomous category. Logical Methods in Computer Science, 2(4:3):1–44, 2006.

[Mac63] Saunders Mac Lane. Natural associativity and commutativity. Rice University
Studies, 49:28–46, 1963.

[Mac71] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer, 1971.

[McK05a] Richard McKinley. Classical categories and deep inference. In Structures and
Deduction 2005 (Satellite Workshop of ICALP’05), 2005.

[McK05b] Richard McKinley. New bureacracy/coherence. Email
to the frogs mailinglist on 2005-06-03, archived at
http://news.gmane.org/gmane.science.mathematics.frogs, 2005.

[Möh89] Rolf H. Möhring. Computationally tractable classes of ordered sets. In I. Rival,
editor, Algorithms and Order, pages 105–194. Kluwer Acad. Publ., 1989.

[MT10] Paul-André Melliès and Nicolas Tabareau. Resource modalities in tensor logic.
Annals of Pure and Applied Logic, 161(5):632–653, 2010. The Third workshop
on Games for Logic and Programming Languages (GaLoP), Galop 2008.

[Par92] Michel Parigot. λµ-calculus: An algorithmic interpretation of classical natural
deduction. In LPAR 1992, volume 624 of LNAI, pages 190–201. Springer-Verlag,
1992.

[Pra71] Dag Prawitz. Ideas and results in proof theory. In J. E. Fenstad, editor, Pro-
ceedings of the Second Scandinavian Logic Symposium, pages 235–307. North-
Holland Publishing Co., 1971.

http://news.gmane.org/gmane.science.mathematics.frogs

122 Bibliography

[Ret93] Christian Retoré. Réseaux et Séquents Ordonnés. PhD thesis, Université Paris
VII, 1993.

[Ret96] Christian Retoré. Perfect matchings and series-parallel graphs: multiplicatives
proof nets as r&b-graphs. Electronic Notes in Theoretical Computer Science, 3,
1996.

[Ret97] Christian Retoré. Pomset logic: A non-commutative extension of classical linear
logic. In Ph. de Groote and J. R. Hindley, editors, Typed Lambda Calculus and
Applications, TLCA’97, volume 1210 of LNCS, pages 300–318. Springer, 1997.

[Ret03] Christian Retoré. Handsome proof-nets: perfect matchings and cographs. The-
oretical Computer Science, 294(3):473–488, 2003.

[Rob03] Edmund P. Robinson. Proof nets for classical logic. Journal of Logic and
Computation, 13:777–797, 2003.

[See89] R.A.G. Seely. Linear logic, *-autonomous categories and cofree coalgebras. Con-
temporary Mathematics, 92, 1989.

[Sel01] Peter Selinger. Control categories and duality: on the categorical semantics of
the lambda-mu calculus. Math. Structures in Comp. Science, 11:207–260, 2001.

[Sim95] Alex Simpson. Categorical completeness results for the simply-typed lambda-
calculus. In Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin, editors,
Typed Lambda Calculi and Applications, Proceedings TLCA’95, volume 902 of
Lecture Notes in Computer Science, pages 414–427. Springer, 1995.

[SL04] Lutz Straßburger and François Lamarche. On proof nets for multiplicative linear
logic with units. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer
Science Logic, CSL 2004, volume 3210 of LNCS, pages 145–159. Springer-Verlag,
2004.

[SR98] Thomas Streicher and Bernhard Reus. Classical logic, continuation semantics
and abstract machines. J. of Functional Programming, 8(6):543–572, 1998.

[Sta78] Richard Statman. Bounds for proof-search and speed-up in predicate calculus.
Annals of Mathematical Logic, 15:225–287, 1978.

[Sta82] Richard Statman. Completeness, invariance and lambda-definability. The Jour-
nal of Symbolic Logic, 47(1):17–26, 1982.

[Str03a] Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of Struc-
tures. PhD thesis, Technische Universität Dresden, 2003.

[Str03b] Lutz Straßburger. MELL in the Calculus of Structures. Theoretical Computer
Science, 309(1–3):213–285, 2003.

[Str05] Lutz Straßburger. From deep inference to proof nets. In Paola Bruscoli and
François Lamarche, editors, Structures and Deduction 2005 (Satellite Workshop
of ICALP’05), 2005.

[Str06] Lutz Straßburger. What could a boolean category be? In Steffen van Bakel, ed-
itor, Classical Logic and Computation 2006 (Satellite Workshop of ICALP’06),
2006.

Bibliography 123

[Str07a] Lutz Straßburger. A characterisation of medial as rewriting rule. In Franz
Baader, editor, Term Rewriting and Applications, RTA’07, volume 4533 of
LNCS, pages 344–358. Springer, 2007.

[Str07b] Lutz Straßburger. On the axiomatisation of Boolean categories with and without
medial. Theory and Applications of Categories, 18(18):536–601, 2007.

[Str09] Lutz Straßburger. From deep inference to proof nets via cut elimination. Journal
of Logic and Computation, 2009. To appear.

[Thi97] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD
thesis, University of Edinburgh, 1997.

[TS00] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cam-
bridge University Press, second edition, 2000.

[Tse68] G. S. Tseitin. On the complexity of derivation in propositional calculus. Zapiski
Nauchnykh Seminarou LOMI, 8:234–259, 1968.

	Table of Contents
	Vers une théorie des preuves pour la logique classique
	Catégories des preuves
	Notations syntaxique pour les preuves
	Taille des preuves

	Introduction
	Categories of Proofs
	Syntactic Denotations for Proofs
	Size of Proofs

	On the Algebra of Proofs in Classical Logic
	What is a Boolean Category ?
	Star-Autonomous Categories
	Some remarks on mix
	.2ex .2ex .12ex -Monoids and .2ex .2ex .12ex -comonoids
	Order enrichment
	The medial map and the nullary medial map
	Beyond medial

	Some Combinatorial Invariants of Proofs in Classical Logic
	Cut free nets for classical propositional logic
	Sequentialization
	Nets with cuts
	Cut Reduction
	From Deep Inference Derivations to Prenets
	Proof Invariants Through Restricted Cut Elimination
	Prenets as Coherence Graphs
	Atomic Flows
	From Formal Deductions to Atomic Flows
	Normalizing Derivations via Atomic Flows

	Towards a Combinatorial Characterization of Proofs in Classical Logic
	Rewriting with medial
	Relation webs
	The Characterization of Medial
	The Characterization of Switch
	A Combinatorial Proof of a Decomposition Theorem

	Comparing Mechanisms of Compressing Proofs in Classical Logic
	Deep Inference and Frege Systems
	Extension
	Substitution
	Pigeonhole Principle and Balanced Tautologies

	Open Problems
	Full Coherence for Boolean Categories
	Correctness Criteria for Proof Nets for Classical Logic
	The Relative Efficiency of Propositional Proof Systems

	Bibliography

