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Abstract

In the normal lifespan of large enterprises, the strategic management of IT often evolves. Existing

services must be replaced with new services without impairing operations. The problem of scheduling

such replacement is of critical importance for the success of the operation. We analyze this problem

from a quantitative point of view, underlining the trade-off nature of its solutions. We formalize

this multi-objective optimization problem as a mathematical programming formulation. We discuss

its theoretical properties and show that real-world instances can be solved by standard off-the-shelf

tools.

1 Introduction

For any information system manager, a recurrent key challenge is to avoid creating more complexity
within its existing information system through the numerous IT projects that are launched in order
to respond to the needs of the business. Such an objective leads thus typically to the necessity of co-
optimizing both creation and replacement/destruction — called usually kills in the IT language — of
parts of the information system, and of prioritizing the IT responses to the business consequently.

This important question is well known in practice and quite often addressed in the IT literature,
but basically only from an enterprise architecture or an IT technical management perspective [2, 5, 15].
Architectural and managerial techniques, however, are often only parts of the puzzle that one has to solve
to handle these optimization problems. On the basis of budget, resource and time constraints given by
the enterprise management, architecture provides the business and IT structure of these problems. This is
however not sufficient to model them completely or solve them. Nevertheless, from a methodological point
of view, real systems (especially information ones) can be described adopting different perspectives and
different levels of details according to Systems Architecture methodologies that we can find in literature
[3, 4, 12]. Some powerful techniques help to manage complex systems decoupling them into parts.
Abstraction and Concretization are the processes that allow to shift from a specific level of details to a
properly lower/higher one so that we can focus on the features which are really relevant and “hide” the
others. Decomposition and Integration are the ones that let the analyst to identify and solve sub-problems.
Alternating these activities we can provide a series of partial visions which cooperate to produce the whole
picture, instead of a single global description.

According to these seminal concepts, in a previous work [10] we proposed a first abstract model (or
vision) of the problem and moved a first step towards the integration of architectural business and IT
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project management aspects. More precisely, we proposed an operational model and a Mathematical
Programming (MP) formulation expressing a generic global prioritization problem occurring in the —
limited, but practically relevant — context of a technological evolution of an information system, reducing
to one all the different objectives of the different stakeholders.

In this paper we refine our analysis. In the interest of simplicity, the first model proposed understated
the multi-objective nature of the problem. In particular the presence of many teams at work is worth a
closer examination, because it can lead to puzzling situations if some specific conditions hold or resources
are insufficient. If we introduce a bound on the duration of the whole transition, or, at least, on each step
of it, and force the activation/deactivations to be done before a short deadline we generate a “competition”
between departments. Thus, we employ multi-optimization techniques in order to model and numerically
solve a wider part of this general problem. This is a second step towards a full formalization of the
problem which promises to provide a valuable help for IT practitioners.

The rest of this paper is organized as follows: section 2 describes the problem and the key elements
involved, section 3 proposes the Mathematical Programming formulation and introduces the necessary
multi-optimization techniques, section 4 discusses the theoretical properties of the model and section 5
reports the results of the computational tests.

2 Operational model of an evolving information system

2.1 Elements of information system architecture

Any information system of an enterprise (consisting of a set D of departments) is classically described
by two architectural layers:

• the business layer: the description of the business services (forming a set V ) offered by the infor-
mation system;

• the IT layer: the description of the IT modules (forming a set U) on which business services rely
on.

In general, the relationship A ⊆ V × U between these two layers is not one-to-one. A given business
service can require any number of IT modules to be delivered and vice-versa a given IT module can be
involved in the delivery of several business services, as shown in Fig. 1.

....

Business layer

IT layer

....

service 1 service 2 service |V |

M1 M2 M|U|

Figure 1: A simple two-layer information system architecture.
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2.2 Evolution of an information system architecture

From time to time, an information system may evolve in its entirety due to the replacement of an existing
software technology by a new one (e.g. passing from several independent/legacy software packages to an
integrated one, migrating from an existing IT technology to a new one, and so on). These evolutions
(or transitions) invariably have a strong impact at the IT layer level, where the existing IT modules
UE = {M1, . . . ,Mn} are replaced by new ones in a set UN = {N1, . . . , Nn′} (in the sequel, we assume
U = UE ∪UN). This translates to a replacement of existing services (sometimes denoted as ES) in V by
new services (sometimes denoted as NS) in W ensuring that the impact on the whole enterprise is kept
low in order to avoid business discontinuity. This also induces a relation B ⊆ W ×UN expressing reliance
of new services on IT modules. Note also that in this context, at the business level, there exists a relation
(in V × W ) between existing services and new services which expresses the fact that a given existing
service shall be replaced by a subset of new business services. We note in passing that this relation also
induces another relation in UE × UN expressing the business covering of an existing IT module to a
subset of new IT modules (see Fig. 2).

ES1 ES2 ES|V | NS1 NS2 NS|W |

M1 M2 Mn N1 N2 Nn′

Business layer

IT layer

Requires

Figure 2: Evolution of an information system architecture.

2.3 Management of information system architecture evolutions

Mapping the above information system architecture on the organization of a company, it appears clear
that three main types of enterprise actors are naturally involved in the management of these technological
evolutions which are described below.

1. Business department managers: they are responsible of creating business value — within the perime-
ter of a business department in the set D — through the new business services. This value might
be measured by the amount of money they are ready to invest in the creation of these services
(business services are usually bought internally by their users within the enterprise).

2. IT project managers: they are responsible for creating the new IT modules, which is a pre-requisite
to creating the associated business services. The IT project manager has a project schedule usually
organized in work packages, each having specific starting times and global budget (see Fig. 2): in
our case, this schedule is presented as a set of deployment precedence rules for new modules.
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3. Kill managers: they are responsible for destroying the old IT modules in order to avoid to duplicate
the information system — and therefore its operating costs — when achieving its evolution. Kill
managers have a budget for realizing such “kills”, but they must ensure that any old IT module i

is only killed after the new services replacing those old ones relying on i are put into service. The
enterprise motivates the efficiency of kill managers by setting a monetary value on each deactivation:
this provides a measure of the desirability of killing module i.

In this context, managing the technological evolution of an information system means being able of
creating new IT modules within the time and budget constraints of the IT project manager in order to
maximize both the IT modules business value brought by the new services and the associated kill value
(i.e. the number of old services than can be killed).

2.4 The information system architecture evolution management problem

The architecture evolution of the IT system involves revenues, costs and schedules over a time horizon
tmax, as detailed below.

• Time and budget constraints of the IT project manager. Each new IT module i ∈ U has a cost ai
and a production schedule.

• IT module business value. Each department ℓ ∈ D is willing to pay qℓk monetary units for a new
service k ∈ W from a departmental production budget Hℓ =

∑

k:(ℓ,k)∈F qℓk; the business value

of the new service k is ck =
∑

ℓ:(ℓ,k)∈F qℓk. We assume that this business value is transferred in
a conservative way via the relation B to the IT modules. Thus, there is a business contribution
βik over every (i, k) ∈ B such that for each k we have ck =

∑

(i,k)∈B βik; furthermore, the global

business value of module i is
∑

k:(i,k)∈B βik. We also introduce a set N ⊆ U of IT modules that are
necessary to the new services.

• Deployment schedule of new modules. We are given a Directed Acyclic Graph (DAG) (U, S) where
each couple (i, h) ∈ S ⊂ U × U encodes a deployment precedence between the new modules i, h

(i.e. h cannot be deployed before i).

• Kill value. Discontinuing (or killing) a module i ∈ U has a cost bi due to the requirement, prior to
the kill, of an analysis of the interactions between the module and the rest of the system architecture,
in order to minimize the chances of the kill causing unexpected system behaviour. As mentioned
above, it also has a monetary value (or desirability) φi .

The evolution involves several stakeholders. The department heads want to maximize the value of
the required new services. The module managers want to produce the modules according to an assigned
schedule whilst maximizing the business value for the new services to be activated. The kill managers
want to maximize the monetary value of the deactivated modules within a certain kill budget. Thus,
the rational planning of this evolution requires the solution of an optimization problem with several
constraints and criteria, which we shall discuss in the next session.

3 Mathematical Programming based approach

Mathematical Programming (MP) is a formal language used for modelling and solving optimization
problems [14, 19]. Each problem is modelled by means of a list of index sets, a list of known parameters
encoding the problem data (the instance), a list of decision variables, which will contain appropriate val-
ues after the optimization process has taken place, an objective function to be minimized or maximized,
and a set of constraints. The objective and constraints are expressed in function of the decision variables
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and the parameters. The constraints might include integrality requirements on the decision variables.
MPs are classified into Linear Programs (LP), Mixed-Integer Linear Programs (MILP), Nonlinear Pro-
grams (NLP), Mixed-Integer Nonlinear Programs (MINLP) according to the linearity of objective and
constraints and to integrality requirements on the variables. MILPs and MINLPs are usually solved using
a Branch-and-Bound (BB) method, explained at the beginning in Sect. 3.4. A solution is an assignment
of numerical values to the decision variables. A solution is feasible if it satisfies the constraints. A feasible
solution is optimal if it optimizes the objective function.

3.1 Multiobjective Programming

Multiobjective Programming (MOP) [9] is a modification of the MP language that allows for sets of
objective functions to be supplied. Optimizing with respect to several objective functions at the same
time makes the classical notion of optimum ill-defined. In such a setting, one looks at a domination
relation between different feasible solutions. A feasible solution s dominates a second one s′ (denoted
by s ≺ s′ if it is at least as good as the first one on all objectives, and strictly better on at least one
objective. The set of all feasible non-dominated (or efficient) solutions is called the efficient set. The
vector of objective function values corresponding to an efficient solution is called a Pareto optimum; the
set of Pareto optima is called the Pareto region or Pareto frontier 1. MOP is dealt with either by looking
for the efficient set or by reformulating the MOP to a single-objective MP which identifies a single efficient
solution. All efficient points are possible choices but the ultimate decision maker usually wants only one
or a few suggestions. In this case the solution process for a MOP includes a first phase, which involves the
computation of all efficient solutions, and a second one, which involves the selection of the most desirable
efficient solution with respect to a set of preferences given by the decision maker. The role played by
these preferences determines four approaches in literature: (no-preference, “a posteriori”, “a priori” and
interactive), according to [16].

• No-preference methods do not use preferences and propose only one solution. In this case, the two
phases are not clearly distinct; the final choice is based on a user-independent criterion.

• “A priori” methods make a limited use of preferences during the optimization process. Specifically,
preferences are used to limit the extent of the efficient set found in the first phase.

• “A posteriori” methods search the whole efficient set and use preferences to delimit the final output
given in the second phase. Typically, these methods are employed when we want to emphasize the
presence of a trade-off rather than to provide a “small” solution set.

• Interactive methods mix different aspects of methods from previous categories.

In particular, we focus on two techniques that we use in the following. The Lp-metric method sketched
below belongs the class of no-preference methods. It aims to identify a point in the objective space
which has minimal distance from a reference point h∗. Typically, the chosen reference is the ideal point
(utopia), which corresponds to the maximum values of all objectives, optimized separately. In other
words, the ideal point is the one we would chose if there were no trade-offs between tasks. For a vector
f = (f1, . . . , fk) of objective functions, the ideal point is formally defined as the h∗ ∈ R

k satisfying:

∀i ∈ {1, . . . , k} h∗
i = max{fi(s) | s ∈ X}, (1)

where depending on the decision variables s and X is the feasible region of the MOP. Figure 3 shows
the sets of points that are equidistant from h∗, determined by different norms. The circle is given by the
common Euclidean norm. The square and the rhombus are determined by the Maximum norm (p = ∞)

1According to [6] “we have to remark that these notations are not unique in literature” and that many authors do not
distinguish between “efficient solution” and “Pareto optimum”. Normally the meaning becomes clear by the context and
they can be used synonymously (consider [6] for a discussion on this subject)
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Y

p = 1

p = 2

h∗

p = ∞

Figure 3: Lp-metric method

and the Manhattan norm (p = 1). Thus, if we use the utopia point as benchmark and the p-norm to
define a metric, the general formulation of the method is:

min

(

k
∑

i=1

|fi(x) − h∗
i |

p

)1/p

(2)

We remark that if we consider p = 1, we obtain the single objective problem: mins

∑

i |h
∗
i − fi(s)| =

mins
∑

i(h
∗
i − fi(s)) = ‖h∗‖1+maxs

∑

i fi(s), since ‖h
∗‖1 is a constant. It therefore suffices to maximize

∑

i fi(s) with respect to s.

The weighted-sum method is (probably) the most common “a posteriori” approach to multi-objective
optimization. Its principle is to assign to each individual objective function a weight αi ≥ 0 normalized
by
∑k

i=1 αi = 1 and then to replace the set of objective functions by the single compound objective

mins
∑k

i=1 αifi(s). By varying α = (α1, α2....αk)
T

one can obtain a subset of the total set of efficient
solutions (see Figure 4). If all of the weights are positive, the minimum of the scalar-valued formulation
is an efficient solution. Conversely, there may be efficient solutions which cannot be found by minimizing
any weight vector α (this might happen whenever the feasible set is nonconvex). In such cases, the
weighted-sum method can be used to find an approximation of the efficient frontier. If necessary, other
techniques can be applied in the second phase to inspect the objective space between solutions found by
the weighted-sum method.

3.2 Introducing the MP formulation

As explained above, an enterprise in our context consists of a set D of departments currently relying
on existing services in V and wishing to evolve to new services in W within a time horizon tmax. Each
service relies on some IT module in U . The set N ⊆ U indexes those IT modules that are necessary.
The relations between services and modules and, respectively, departments and services, are denoted as
follows: A ⊆ V × U , B ⊆ W × U , E ⊆ D × V and F ⊆ D ×W . If an IT module i ∈ U is required by a
new service, then it must be produced (or activated) at a certain cost ai. When an IT module i ∈ U is
no longer used by any service it must be killed at a certain cost bi. Departments can discontinue using
their existing services only when all new services providing the functionalities have been activated; when
this happens, the service (and the corresponding IT modules) can be killed; a killed module i contributes
φi monetary units to the goal of the kill manager. Departments have budgets dedicated to producing
and killing IT modules, which must be sufficient to perform their evolution to the new services; for the
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Figure 4: Weighted-sum method

purposes of this paper, we suppose that departmental budgets are interchangeable, i.e. all departments
credit and debit their costs and revenues to two unique enterprise-level budgets: a production budget Ht

and a kill budget Kt indexed by the time period t. A new service k ∈ W has a value ck, and an IT module
i ∈ U contributes βik to the value of the new service k that relies on it. We use the graph G = (V , E)
shown in Fig. 5 to model departments, existing services, new services, IT modules and their relations.
The vertices are V = U ∪ V ∪W ∪D, and the edges are E = A ∪B ∪ E ∪ F . This graph is the union of
the four bipartite graphs (U, V,A), (U,W,B), (D,V,E) and (D,W,F ) encoding the respective relations.
We remark that E and F collectively induce a relation between existing services and new services with
a “replacement” semantics (an existing service can be killed if the related new services are active).

vj

ui

wk

zi

U

V

W

ℓ

existing services

new services

IT modules

departments
E

F

A

B

D

Figure 5: The bipartite graphs used to model the problem.
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3.3 Sets, variables, objectives, constraints

We present here the MP formulation of the Architecture Evolution Problem (AEP). We recall that NS
stands for new service and ES for existing service.

1. Sets:

• T = {0, . . . , tmax}: set of time periods (Sect. 2.4, p. 4);

• U : set of IT modules (Sect. 2.1, p. 2);

• N ⊆ U : set of IT modules that are necessary for the NS (Sect. 2.4, p. 4);

• V : set of existing services (Sect. 2.1, p. 2);

• W : set of new services (Sect. 2.2, p. 3);

• A ⊆ V × U : relations between ES and IT modules (Sect. 2.1, p. 2);

• B ⊆ W × U : relations between NS and IT modules (Sect. 2.2, p. 3);

• D: set of departments (Sect. 2.1, p. 2);

• E ⊆ D × V : relations between departments and ES (Sect. 3.2, p. 7);

• F ⊆ D ×W : relations between departments and NS (Sect. 3.2, p. 7);

• S ⊂ N ×N : deployment precedences between new modules (Sect. 2.4, p. 4).

2. Parameters:

• ∀i ∈ U ai = cost of producing an IT module (Sect. 2.4, p. 2.4);

• ∀i ∈ U bi = cost of killing an IT module (Sect. 2.4, p. 2.4);

• ∀i ∈ U φi = desirability (monetary units) of killing an IT module (Sect 2.4, p. 2.4)

• ∀t ∈ T Ht = production budget per time period (Sect. 3.2, p. 3.2);

• ∀t ∈ T Kt = kill budget per time period (Sect. 3.2, p. 3.2);

• ∀(i, k) ∈ B βik = monetary value given to NS k by IT module i (Sect. 2.4, p. 2.4).

3. Decision variables:

∀i ∈ U, t ∈ T uit =

{

1 if IT module i is used for a ES at time t

0 otherwise;
(3)

∀i ∈ U, t ∈ T zit =

{

1 if IT module i is used for a NS at time t

0 otherwise;
(4)

∀j ∈ V, t ∈ T vjt =

{

1 if existing service j is active at time t

0 otherwise;
(5)

∀k ∈ W, t ∈ T wkt =

{

1 if new service k is active at time t

0 otherwise.
(6)

4. Objective functions.

• Business gain: value contributed to new services by IT modules. This is the objective of the
module managers, and, because β is indexed on both modules and services, it agrees with the
objective of the department heads.

max
u,v,w,z

∑

t∈T

(i,k)∈B

βikzitwkt. (7)
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• Killing gain: objective of the kill managers.

max
u,v,w,z

∑

t∈T

i∈U

φi(1− uit). (8)

5. Constraints.

• Production budget (cost of producing new IT modules; this is another objective of the module
managers):

∀t ∈ T r {tmax}
∑

i∈U

ai(zi,t+1 − zit) ≤ Ht, (9)

where the term zi,t+1 − zit is only ever 1 when a new service requires production of an IT
module — we remark that the next constraints prevent the term from ever taking value −1.

• Once an IT module is activated, do not deactivate it.

∀t ∈ T r {tmax}, i ∈ U zit ≤ zi,t+1. (10)

• Kill budget (cost of killing IT modules; this is part of the objective of the kill managers):

∀t ∈ T r {tmax}
∑

i∈U

bi(uit − ui,t+1) ≤ Kt, (11)

where the term uit − ui,t+1 is only ever 1 when an IT module is killed — we remark that the
next constraints prevent the term from ever taking value −1.

• Once an IT module is killed, cannot activate it again.

∀t ∈ T r {tmax}, i ∈ U uit ≥ ui,t+1. (12)

• If an existing service is active, the necessary IT modules must also be active:

∀t ∈ T, (i, j) ∈ A uit ≥ vjt. (13)

• If a new service is active, the necessary IT modules must also be active:

∀t ∈ T, (i, k) ∈ B : i ∈ N zit ≥ wkt. (14)

• An existing service can be deactivated once all departments relying on it have already switched
to new services; for this purpose, we define setsWj = {k ∈ W | ∃ℓ ∈ D ((ℓ, j) ∈ E∧(ℓ, k) ∈ F )}
for all j ∈ V :

∀t ∈ T, j ∈ V
∑

k∈Wj

(1− wkt) ≤ |Wj |vjt. (15)

• New modules must be deployed according to precedences: for a precedence (i, h) ∈ S, i must
be deployed at least one timestep before h is; therefore, if zit = 0 then zhs = 0 for all s ≤ t

(16), and if t is the first timestep where zit = 1 then zht = 0 (17):

∀s ≤ t ∈ T, (i, h) ∈ S zhs − zit ≤ 0 (16)

∀s ≤ t ∈ T r {0}, (i, h) ∈ S zhs + zit − zi,t−1 ≤ 1. (17)

• Boundary conditions. To be consistent with the objectives of the module and kill managers,
we postulate that:
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– at t = 0 all IT modules needed by existing services are active, all IT modules needed by
new services are inactive:

∀i ∈ U rN ui0 = 1; (18)

∀i ∈ N ui0 = 0; (19)

∀i ∈ U zi0 = 0; (20)

∀j ∈ V vj0 = 1 ∧ ∀k ∈ W wk0 = 0. (21)

– at t = tmax all IT modules needed by the existing services have been killed:

∀i ∈ U uitmax = 0. (22)

These boundary conditions are a simple implementation of the objectives of module and kill
managers. Similar objectives can also be pursued by adjoining further constraints to the MP,
such as for example that the number of IT modules serving ES must not exceed a given amount.

The formulation above is a Binary Quadratic Program (BQP) with two objective functions. Single-
objective BQPs exhibit products of binary decision variables [17]; they can either be solved directly
using standard BB-based solvers [1, 11, 18] or reformulated exactly (see [13] for a formal definition of
reformulation) to a MILP, by means of the ProdBin reformulation [7, 14] prior to solving is with standard
MILP solvers.

3.1 Remark (Differences between single-objective and bi-objective formulations)
Consider the single objective formulation with objective function (7) only. This pursues the maximization
of the business value by activating those modules that are necessary to the implementation of new services
as soon as possible. The deactivation of old modules is considered as a cost, hence this formulation forces
the solutions to respect a kill budget by means of constraint (11). The time of deactivation might influence
feasibility (through constraint (15)) but not the solution cost. In the biobjective formulation, on the other
hand, objective function (8) induces an anticipation of the deactivation of the useless modules. Consider

time module: uit uit − ui,t+1 1− uit

1 1 0 0
2 1 0 0
3 1 0 0
4 1 1 0
5 0 0 1
. . . . . . . . . . . .

time module: uit uit − ui,t+1 1− uit

1 1 1 0
2 0 0 1
3 0 0 1
4 0 0 1
5 0 0 1
. . . . . . . . . . . .

Table 1: Left: a partial solution of the single-objective formulation. Right: effect of second objective

the two partial solutions showed in Tables 1. We observe that uit−ui,t+1 is positive only at step 3, while
1−uit is true from the deactivation till to the end. Thus the earlier the deactivation of a module occurs,
the larger the value

∑

i,t φi(1 − uit) of objective (8) will be.

3.4 Valid cuts from implied properties

The BB method for MPs with binary variables performs a binary tree-like recursive search. At every node,
a lower bound to the optimal objective function value is computed by solving a continuous relaxation of
the problem. If all integral variables happen to take integer values at the optimum of the relaxation, the
node is fathomed with a feasible optimum. If this optimum has better objective function value than the
feasible optima found previously, it replaces the incumbent, i.e. the best current optimum. Otherwise, a
variable xj taking fractional value x̄j is selected for branching. Two subnodes of the current node are
created by imposing constraints xj ≤ ⌊x̄j⌋ (left node) and xj ≥ ⌈x̄j⌉ (right node) to the problem. If the
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relaxed objective function value at a node is worse than the current incumbent, the node is also fathomed.
The step of BB which most deeply impacts its performance is the computation of the lower bound. To
improve the relaxation quality, one often adjoins “redundant constraints” to the problem whenever their
redundancy follows from the integrality constraints. Thus, such constraints will not be redundant with
respect to the relaxation. An inequality is valid for a MP if it is satisfied by all its feasible points. If an
inequality is valid for an MP but not for its relaxation, it is called a valid cut.

We shall now discuss two valid inequalities for the evolution problem. The first one stems from the
following statement: If a new service k ∈ W is inactive, then all existing services linked to all departments
relying on k must be active. We formalize this statement by defining the sets:

∀k ∈ W Vk = {j ∈ V | ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ, k) ∈ F )}.

The statement corresponds to the inequality:

∀t ∈ T, k ∈ W
∑

j∈Vk

(1 − vjt) ≤ |Vk|wkt. (23)

3.2 Lemma
Whenever (v, w) are part of a feasible solution of the evolution problem, (15) ⇔ (23).

Proof. Firstly, we start proving that (15) ⇒ (23). We proceed by contradiction: suppose (15) holds and
(23) does not. Then there must be t ∈ T, k ∈ W, j ∈ Vk such that wkt = 0 and vjt = 0. By (15), vjt = 0
implies ∀h ∈ Wj (wht = 1). By definition of Vk and Wj , we have that k ∈ Wj , and hence wkt = 1 against
the assumption. Secondly, we observe that the converse, (15) ⇐ (23), also holds. The proof is symmetric:
it suffices to swap j with k, Wj with Vk, v with w, (15) with (23). 2

We remark that (15)⇒ (23) let us assert that (23) is a valid inequality for the AEP. The second inequality
is a simple relation between v and w.

3.3 Proposition
The inequalities

∀t ∈ T, j ∈ V, k ∈ W ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ, k) ∈ F ) vjt + wkt ≥ 1 (24)

are valid for the AEP.

Proof. Suppose (24) does not hold: hence there are t ∈ T, j ∈ V, k ∈ W, ℓ ∈ D with (ℓ, j) ∈ E and
(ℓ, k) ∈ F such that vjt +wkt = 0. Since vjt, wkt ≥ 0, this implies vjt = wkt = 0. It is easy to verify that
if this is the case, (15) and (23) cannot both hold, contradicting (15) ⇔ (23) (cf. Lemma (3.2)). 2

Eq. (24) states that at any given time period no pair (ES, NS) related to a given department must
be inactive (otherwise the department cannot be functional). We can add (23) and (24) to the MP
formulation of the AEP, and hope they will improve the quality of the lower bound obtained via the LP
relaxation. This is verified empirically in Sect. 5.3.

4 Formulation properties and trade-off

As mentioned previously, the formulation (3)-(22) models a biobjective problem. Notice, however, that
the two objective functions (7), (8) involve different sets of variables. Thus, it is not immediately evident
that this formulation might not be decomposed in two separate problems, one maximizing (7) and the
other (8). Nor it is evident that the Pareto region might consist of more than one single optimum. In
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other words, establishing whether this bi-objective formulation really corresponds to a trade-off type of
problem is a relevant question.

In this section we present a mathematical analysis which shows that this is indeed the case. Specifically,
we show that without (15), the problem can be decomposed in such a way that the only efficient solution is
the utopia point. In this sense, (15) are the true source of the trade-off nature of (3)-(22). We first analyse
a Lagrangian relaxation of (15), then give an example of a class of problem instances whose corresponding
Pareto region fails to be a singleton set. For simplicity, we consider the original formulation only, without
the valid cuts of Sect. 3.4.

4.1 Decomposability

Without (15), the formulation can be decomposed into two bi-objective subproblems involving only the
u, v and respectively w, z variables. This suggests a Lagrangian relaxation [20] of (15) using Lagrangian
coefficients λ, µ ≥ 0, which yields the two maximization objectives:

ζ(λ, u, v, w, z) =
∑

(i,k)∈B

t∈T

βikzitwkt +
∑

t∈T

j∈V

λjt





∑

k∈Wj

(wkt − 1) + |Wj |vjt



 =

=
∑

t∈T

(i,k)∈B

βikzitwkt +
∑

t∈T,j∈V

k∈Wj

λjtwkt +
∑

t∈T

j∈V

|Wj |λjt(vjt − 1),

and

η(µ, u, v, w, z) =
∑

t∈T

i∈U

φiuit +
∑

t∈T

j∈V

µjt





∑

k∈Wj

(wkt − 1) + |Wj |vjt



 =

=
∑

t∈T

i∈U

φiuit +
∑

t∈T,j∈V

k∈Wj

µjtwkt +
∑

t∈T

j∈V

|Wj |µjt(vjt − 1).

Thus, we can decompose the problem of Sect. 3.2 into the two bi-objective Lagrangian subproblems
P,Q:

max
u,v

∑

t∈T

j∈V

|Wj |λjt(vjt − 1)

max
u,v

∑

t∈T

i∈U

φiuit +
∑

t∈T

j∈V

|Wj |µjt(vjt − 1)

∀t ∈ T r {tmax}
∑

i∈U

bi(uit − ui,t+1) ≤ Kt

∀t ∈ T r {tmax}, i ∈ U uit ≥ ui,t+1

∀t ∈ T, (i, j) ∈ A uit ≥ vjt
∀i ∈ U ui0 = 1
∀j ∈ V vj0 = 1
∀i ∈ U uitmax = 0,



































































(25)
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max
w,z

∑

t∈T

(i,k)∈B

βikzitwkt +
∑

t∈T,j∈V

k∈Wj

λjtwkt

max
w,z

∑

t∈T,j∈V

k∈Wj

µjtwkt

∀t ∈ T r {tmax}
∑

i∈U

ai(zi,t+1 − zit) ≤ Ht

∀t ∈ T r {tmax}, i ∈ U zit ≤ zi,t+1

∀t ∈ T, (i, k) ∈ B : i ∈ N zit ≥ wkt

∀s ≤ t ∈ T, (i, h) ∈ S zhs − zit ≤ 0
∀s ≤ t ∈ T r {0}, (i, h) ∈ S zhs + zit − zi,t−1 ≤ 1

∀i ∈ U zi0 = 0
∀j ∈ V wj0 = 0.











































































(26)

We remark that objective functions for (25) and (26) are specific instances of the following more
general case:

max
y∈Y

f(y) + g(y)

max
y∈Y

g(y)







. (27)

for functions f, g and a set Y . We have the following results.

4.1 Proposition
The efficient set of (27) is contained in that of:

max
y∈Y

f(y)

max
y∈Y

g(y)







. (28)

Proof. Let y, y′ be in the efficient set of (27). Then, either f(y) + g(y) ≤ f(y′) + g(y′) (∗) and g(y) ≥
g(y′) (†), or f(y) + g(y) ≥ f(y′) + g(y′) (∗∗) and g(y) ≤ g(y′) (‡). By rearrangement of (∗) we have
f(y)− f(y′) ≤ g(y′) − g(y); by (†), g(y′) − g(y) ≤ 0. Therefore, f(y)− f(y′) ≤ 0. By rearrangement of
(∗∗) we have f(y)− f(y′) ≥ g(y′)− g(y), which by (‡) is ≥ 0, hence f(y)− f(y′) ≥ 0. Thus y, y′ are in
the efficient set of (28). 2

By Prop. 4.1 one could find the efficient sets of:

max
u,v

∑

t∈T

j∈V

|Wj |λjt(vjt − 1)

max
u,v

∑

t∈T

i∈U

φiuit

constraints of (25)



















(29)

max
w,z

∑

t∈T

(i,k)∈B

βikzitwkt

max
w,z

∑

t∈T,j∈V

k∈Wj

µjtwkt

constraints of (26)























(30)

and then simply filter out all the dominated solutions with respect to the objectives of (25) and, respec-
tively, (26).

Formulations (29)-(30) are difficult to solve because, in accordance with Lagrangian duality theory, one
would also have to minimize with respect to λ, µ. In practice, one could employ a “pure decomposition”
where λ = µ = 0. This reduces (29)-(30) to the two following single-objective problems:

max
u,v

∑

t∈T

i∈U

φiuit

constraints of (25)







(31)
max
w,z

∑

t∈T

(i,k)∈B

βikzitwkt

constraints of (26)







(32)

This proves the following result:

4.2 Theorem
Relaxing (15) yields a MP with the single objective function (7) + (8).
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In other words, the MP cannot be decomposed unless constraints (15) are relaxed.

4.2 Trade-off

Often, in complex environments, architects and systems engineers have to regard many non-functional
requirements such as safety and maintainability. These requirements do not change the main mission of
a system which is to fulfil the functional requirements but influence its quality. Different architectures
could attain the target, uncovering different additional features. The main functional requirement that
the evolution of an information system must satisfy is the complete switching to new services without
service discontinuity. This task is optimized when the transition can be done quickly, in order to profit
from the income provided by the new services. The first objective of the model (business gain) expresses
this feature. The second objective, killing gain, incorporates the need of keeping the system “clean”,
because it rewards the fact that old modules are removed. These useless modules pollute the system
and may, in the worst case, introduce some elements of risk, if obsolete functionalities are not managed
properly. Thus, this second objective pushes the research of transitions which leads to a configuration of
the whole system which exhibits good non-functional attributes.

Consider the following class of instances: U = {1, 2}, N = {1, 2}, V = {1, 2}, D = {1, 2}, W = {3, 4},
A = {(1, 1), (2, 2)}, B = {(1, 3), (2, 4)}, E = {(1, 1), (2, 2)}, F = {(1, 3), (2, 4)}, summarized graphically in
Fig. 6. Two IT modules have to be switched from old services to new services by activating/deactivating

existing services

IT modules

new services

vj

ui

wk

zi

U

V

W

ℓ

departments

E

FA

B

D

Figure 6: Basic instance

their interfaces to these services. The set T is limited to only two time periods. From this class, consider
the specific instances given by the parameter values in Table 2.

We remark on some effects produced by the constraints of the model combined with the budget
thresholds in Table 2. The production budget constraints (9) prevent both new modules from being
switched on at the same time period, because this would cost 2 monetary units and the allowed bound
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i ai bi φi βi1 βi2

1 0 1 2 0 0
2 0 1 1 0 0

t Ht Kt

0 0 0
1 1 1
2 1 1

Table 2: Time-independent (left) and time-dependent (right) parameter values

is 1. Similarly, the kill budget constraints (11) prevent both old modules from being switched off at the
same time period. The utopia point therefore corresponds to the solution given in Table 3, where the
most profitable modules are switched on/off first. Because of the values of φ and β, however, this solution

t u1t u2t z1t z2t v1t v2t w1t w2t

0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1
2 0 0 1 1 0 0 1 1

Table 3: Utopia point

is infeasible with respect to constraints 15.

These constraints require that when old modules are deactivated, and hence the corresponding services
are stopped, the replacing (new) services, on which the departments rely, must already be in place. For
example, if we switch the old module 1 off, the old service 1 based on it has to be halted. Thus,
department 1, which loses its existing service 1, needs the new service 3, and consequently the module
1 has to be switched (and similarly for department 2 with old service 2 and new service 4 and the
corresponding module 2). The partial solution u1 = 0 ∧ z2 = 1 is not possible because of constraints
(15), and this make the utopical solution in Table 3 infeasible. The allowed partial solutions are u1 =
0 ∧ z1 = 1 and u2 = 0 ∧ z2 = 1. Thus, a feasible efficient transition is represented by table 4: at first
the most profitable deactivation is realised and then the less profitable activation must be carried out to
avoid service discontinuity for the first business department. A second feasible and efficient transition

t u1t u2t z1t z2t v1t v2t w1t w2t

0 1 1 0 0 1 1 0 0
1 0 1 1 0 0 1 1 0
2 0 0 1 1 0 0 1 1

Table 4: Feasible Solution 1

is represented by table 5: at first the most profitable activation is realised, which means that the most
profitable deactivation must be delayed. These two solutions are feasible. Nevertheless no option is

t u1t u2t z1t z2t v1t v2t w1t w2t

0 1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0 1
2 0 0 1 1 0 0 1 1

Table 5: Feasible Solution 2

clearly better than the other one. Business gain and killing gain are different if you choose the first
solution or the second one. If we simply sum them without preference, namely if we weight equally the
objectives, we get the same gain with both solutions (9 monetary units), but the “composition” of the
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KILLING GAIN

BUSINESS GAIN

4 5

5

4

Solution 2

Solution 1

Figure 7: Basic trade-off

revenue varies. Figure 7 shows the Pareto region. We can observe that no solution dominates the other.
If the decision maker favours the deactivation of the old modules, then the first solution is preferable.
If the decision maker likes the activation of the new services better, the second solution becomes more
desirable. This simple example dispels the doubt that this bi-objective problem might simply be a single
objective problem in disguise, and highlights constraints (15) as the main source of the trade-off.

5 Computational results

In [10], which the present papers extends, we proposed a single objective model of the architecture
evolutions problem and showed that it can be solved in a reasonable amount of time with regard to
realistically sized instances. Here, we aim to establish if we can solve the MOP involving the two
objectives (7) and (8) as well. We are more interested in evaluating the computational effort required
rather than in exactly modelling the preferences of the decision makers. Hence, we adopt a no-preference
approach, the Lp-metric method, with p = 1 and solve:

min
u,v,w,z

∣

∣

∣

∣

∣

∣

∣

∑

t∈T

(i,k)∈B

βikzitwkt − h∗
1

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∑

t∈T

i∈U

φi(1− uit)− h∗
2

∣

∣

∣

∣

∣

∣

∣

, (33)

where h∗
1, h

∗
2 are the optimum values of the single-objective maximizations of (7) and, respectively, (8),

subject to all problem constraints.

We consider a set of small instances, to be solved to guaranteed optimality, and another set of larger
instances where the BB algorithm is stopped either at BB termination or after 30 minutes of CPU time
(whichever comes first). We use the AMPL modelling environment [8] and the off-the-shelf CPLEX
12.2 solver [11] running with its default configuration on a single 2.4 GHz Intel Xeon CPU with 8GB
RAM. Ordinarily CPLEX’s Quadratic Programming (QP) solver requires QPs with Positive Semi-Definite
(PSD) quadratic forms only. Although in our case this may fail to hold, CPLEX can reformulate the
problem exactly to the required form because all variables involved in the quadratic products are binary.

We consider the same set of instances both for the single objective form of the problem and the bi-
objective form. All instances have been randomly generated from a model that bears some similarity
to data coming from an actual service industry. We consider three parameter categories: cardinalities
(vertex set), graph density (edge creation probability) and monetary values. Each of the 64 instances in
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each set corresponds to a triplet (cardinality, edge creation probability, monetary value), each component
of which ranges over a set of four elements.

Since our solution method of choice, which consists in solving (33), makes use of the single-objective
optimum values h∗

1 and h∗
2, we have to compute them. We remind that our previous paper [10] deals

Card. Prob. Bud. feas. cpu Killing Gain

25 0.2 10 feasible 0.01 300
25 0.2 12 feasible 0.01 300
25 0.2 14 feasible 0.01 300
25 0.2 16 feasible 0.01 300
25 0.4 10 feasible 0.74 159
25 0.4 12 feasible 0.06 225
25 0.4 14 feasible 0.07 225
25 0.4 16 feasible 0.07 228
25 0.6 10 feasible 0.43 150
25 0.6 12 feasible 0.43 150
25 0.6 14 feasible 0.10 225
25 0.6 16 feasible 0.12 225
25 0.8 10 feasible 0.24 150
25 0.8 12 feasible 0.21 150
25 0.8 14 feasible 0.12 225
25 0.8 16 feasible 0.14 225
30 0.2 10 feasible 0.06 315
30 0.2 12 feasible 0.01 360
30 0.2 14 feasible 0.13 327
30 0.2 16 feasible 0.01 360
30 0.4 10 feasible 0.53 183
30 0.4 12 feasible 0.53 180
30 0.4 14 feasible 0.13 270
30 0.4 16 feasible 0.11 270
30 0.6 10 feasible 0.45 180
30 0.6 12 feasible 0.43 180
30 0.6 14 feasible 0.49 180
30 0.6 16 feasible 0.16 270
30 0.8 10 feasible 0.41 180
30 0.8 12 feasible 0.46 180
30 0.8 14 feasible 0.43 180
30 0.8 16 feasible 0.18 270
35 0.2 10 feasible 0.02 420
35 0.2 12 feasible 0.07 354
35 0.2 14 feasible 0.18 354
35 0.2 16 feasible 0.02 420
35 0.4 10 feasible 3.83 111
35 0.4 12 feasible 0.58 210
35 0.4 14 feasible 0.51 210
35 0.4 16 feasible 2.03 213
35 0.6 10 feasible 0.98 105
35 0.6 12 feasible 0.47 210
35 0.6 14 feasible 0.52 210
35 0.6 16 feasible 0.46 210
35 0.8 10 feasible 0.73 105
35 0.8 12 feasible 0.52 210
35 0.8 14 feasible 0.51 210
35 0.8 16 feasible 0.45 210
40 0.2 10 feasible 0.10 369
40 0.2 12 feasible 0.07 396
40 0.2 14 feasible 0.12 381
40 0.2 16 feasible 0.02 480
40 0.4 10 feasible 0.98 120
40 0.4 12 feasible 3.76 120
40 0.4 14 feasible 3.66 240
40 0.4 16 feasible 1.19 240
40 0.6 10 feasible 1.31 120
40 0.6 12 feasible 1.64 120
40 0.6 14 feasible 0.58 240
40 0.6 16 feasible 0.80 240
40 0.8 10 feasible 0.88 120
40 0.8 12 feasible 1.71 120
40 0.8 14 feasible 0.82 240
40 0.8 16 feasible 0.89 240

Table 6: Killing Gain - Single Objective

with the CPU time necessary for solving the mono-objective model which considers only the Business
Gain and which provides the values of h∗

1. Thus, we focus now on CPU times necessary for solving
the mono-objective model which considers only the Killing Gain and which gives the values of h∗

2. The
results, for medium and big instances, are reported in Table 6. We remark that it can be achieved with
small computational effort.

We suppose h∗
1, h

∗
2 as pre-calculated in the tests we present in the next section. Hence, our subsequent

results do not consider the time needed to calculate the utopia point.
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Figure 8: Bi-objective Model: CPU time when solving small instances.

5.1 CPU time

In order to observe how CPU time scales when solving to guaranteed optimality, we present 12 plots
referring to the small set, grouped by row. We plot seconds of user CPU time: for each fixed cardinality,
in function of edge creation probability and monetary value (Fig. 8, first row); for each fixed edge creation
probability, in function of cardinality and monetary value (Fig. 8, second row); for each fixed monetary
value, in function of cardinality and edge creation probability (Fig. 8, third row). The largest “small
instance” corresponds to the triplet (20, 0.8, 8). The plots show that the proposed methodology can solve
a small instance to guaranteed optimality within half an hour on standard computational equipment; it
is also possible to notice that denser graphs and smaller budgets yield more difficult instances. Sudden
drops in CPU time might correspond to infeasible instances, which, interestingly, are usually detected
quite fast.

These results and the results reported in [10] show that we can solve both the single objective and
the bi-objective formulations for realistic instances reasonably quickly. Table 7 shows the results of the
comparison (with cardinality fixed at 20, i.e. the largest instances in the set of small instances) and
the relative increase of the CPU time needed to solve the bi-objective formulation, with respect to the
single-objective one (which considers only Business Gain). The effort is considerably higher but still
manageable for practical purposes. Infeasibily is detected similarly in both models. Table 8 reports the
results for medium and big instances. However in this case the timeout is set to 30 minutes and thus only
executions shorter than 30 minutes are relevant to the comparison of CPU time. The other executions
are relevant only for the evaluation of the optimality gap.

5.2 Optimality Gap

In Fig. 9 and Fig. 10 we plot the optimality gap at termination (which is limited to 30 minutes). The largest
“large instance” corresponds to the triplet (40, 0.8, 16). The optimality gap, expressed in percentage, is

defined by CPLEX as
(

100|f∗−f̄ |
|f∗+10−10|

)

%, where f∗ is the objective function value of the best feasible solution

found within the time limit, and f̄ is the tightest overall lower bound. A gap of 0% corresponds to the
instance being solved to optimality. The plots show that the proposed methodology is able to solve large
instances to a gap of 12.8% within half an hour of CPU time at worst. It can solve and to an average gap
of 1.13% both the single objective (which considers only Business Gain) and the bi-objective formulation
(which considers both Business Gain and Killing Gain), within an average CPU time of 459s and 538s
respectively (about 8 minutes). Table 8 reports the details of this comparison.
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Edge Probability Budget feasible/infeasible CPU time increment
0.4 2 infeasible 0.0
0.4 4 feasible 314.3
0.4 6 feasible 241.2
0.4 8 feasible 257.9
0.6 2 infeasible 12.5
0.6 4 infeasible 0.0
0.6 6 feasible 73.4
0.6 8 feasible 135.7
0.8 2 infeasible -4.5
0.8 4 infeasible 4.0
0.8 6 feasible 186.7
0.8 8 feasible 137.0

Table 7: CPU time increment
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Figure 9: Single Objective Model: Optimality gap.
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Figure 10: Bi-objective Model: Optimality gap.

5.3 Cuts effectiveness

As discussed in Section 3.4, valid cuts are redundant for the original formulation, but may improve the
bound given by its continuous relaxation. In order to show that the cuts we have introduced are actually
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Card. Prob. Bud. feas. (1) CPU (1) obj. (1) gap (1) feas. (2) CPU (2) obj. (2) gap (2) CPU time increment

Single Objective Model Bi-objective Model

25 0.20 10 yes 0.09 230 0.13 yes 0.03 529 0.37 -66.6
25 0.20 12 yes 0.03 261 0.58 yes 0.04 561 0.23 33.3
25 0.20 14 yes 0.02 190 0.65 yes 0.03 490 0.25 50.0
25 0.20 16 yes 0.02 205 0.06 yes 0.02 505 0.02 0.0
25 0.40 10 yes 0.12 344 1.45 yes 0.69 497 0.63 475.0
25 0.40 12 yes 0.17 404 0.21 yes 0.35 629 0.84 105.8
25 0.40 14 yes 0.04 411 1.62 yes 0.26 636 1.25 550.0
25 0.40 16 yes 0.1 424 3.41 yes 0.44 652 0.3 340.0
25 0.60 10 yes 1.33 424 0.42 yes 3.14 574 0.03 136.0
25 0.60 12 yes 0.46 499 0.37 yes 2.48 649 0.76 439.1
25 0.60 14 yes 0.22 578 1.13 yes 0.64 803 0.03 190.9
25 0.60 16 yes 0.32 562 0.79 yes 0.72 787 0.44 125.0
25 0.80 10 yes 196.76 540 0.01 yes 504.4 690 0.01 156.3
25 0.80 12 yes 1801.15 631 0.55 yes 1800.55 781 0.83 0.0
25 0.80 14 yes 5.85 734 0.02 yes 13.4 959 0.01 129.0
25 0.80 16 yes 2.15 745 0.08 yes 6.33 970 0.04 194.4
30 0.20 10 yes 0.51 304 0.05 yes 0.69 612 1.04 35.2
30 0.20 12 yes 0.05 344 0.59 yes 0.05 704 0.24 0.0
30 0.20 14 yes 0.04 303 1.05 yes 0.44 627 0.21 1000.0
30 0.20 16 yes 0.06 315 0.53 yes 0.05 674 0.47 -16.6
30 0.40 10 yes 2.54 477 0.09 yes 7.34 657 0.06 188.9
30 0.40 12 yes 0.95 532 0.14 yes 4.36 712 0.11 358.9
30 0.40 14 yes 0.27 609 0.49 yes 0.76 879 0.89 181.4
30 0.40 16 yes 0.26 560 0.16 yes 1.94 830 0.06 646.1
30 0.60 10 yes 13.27 635 0.01 yes 37.76 815 0.01 184.5
30 0.60 12 yes 10.06 634 0.02 yes 11.43 814 0.07 13.6
30 0.60 14 yes 3.11 734 0.06 yes 5.81 914 0.11 86.8
30 0.60 16 yes 0.31 824 0.19 yes 1.2 1094 0.34 287.1
30 0.80 10 yes 1800.96 772 3.84 yes 1800.46 952 3.55 0.0
30 0.80 12 yes 1800.96 789 1.31 yes 1800.45 969 1.44 0.0
30 0.80 14 yes 1800.99 837 1.73 yes 1800.46 1017 1.78 0.0
30 0.80 16 yes 359.42 1099 0.01 yes 1296.32 1369 0.01 260.6
35 0.20 10 yes 7.51 352 0.02 yes 0.28 764 0.02 -96.27
35 0.20 12 yes 0.31 377 0.04 yes 0.33 716 0.07 6.45
35 0.20 14 yes 0.09 425 0.11 yes 0.39 769 0.11 333.3
35 0.20 16 yes 0.09 437 0.03 yes 0.07 857 0.32 -22.2
35 0.40 10 yes 20.45 534 0.03 yes 212.1 641 0.02 937.1
35 0.40 12 yes 6.86 665 0.01 yes 20.34 875 0.01 196.5
35 0.40 14 yes 5.46 726 0.05 yes 15.19 936 0.04 178.2
35 0.40 16 yes 5.5 701 0.02 yes 10.72 914 0.07 94.9
35 0.60 10 yes 61.68 613 0.02 yes 459.1 718 0.01 644.3
35 0.60 12 yes 55.69 824 0.01 yes 87.78 1034 0.01 57.6
35 0.60 14 yes 12.79 816 0.02 yes 28.15 1026 0.01 120.0
35 0.60 16 yes 2.53 1012 0.13 yes 8.29 1222 0.03 227.6
35 0.80 10 yes 1800.83 579 7.74 yes 1800.45 684 7.32 0.0
35 0.80 12 yes 1800.85 978 4.97 yes 1800.4 1188 4.5 0.0
35 0.80 14 yes 1800.87 969 2.45 yes 1800.45 1179 2.33 0.0
35 0.80 16 yes 1800.72 1121 0.31 yes 1800.37 1331 0.56 0.0
40 0.20 10 yes 6.13 463 0.01 yes 1.72 812 0.04 -71.9
40 0.20 12 yes 2.75 453 0.01 yes 0.62 837 0.04 -77.4
40 0.20 14 yes 0.39 449 0.03 yes 0.59 822 0.01 51.2
40 0.20 16 yes 0.19 479 0.16 yes 0.08 948 0.1 -57.8
40 0.40 10 yes 511.06 588 0.01 yes 1800.31 708 1.38 252.2
40 0.40 12 yes 324.62 686 0.01 yes 994.54 806 0.01 206.3
40 0.40 14 yes 41.64 818 0.01 yes 69.13 1058 0.01 66.0
40 0.40 16 yes 7.48 906 0.03 yes 25.12 1146 0.02 235.8
40 0.60 10 yes 1800.88 638 2.36 yes 1800.33 758 6.72 0.0
40 0.60 12 yes 1273.08 753 0.01 yes 1800.27 873 2.9 41.4
40 0.60 14 yes 1800.95 1061 0.73 yes 1800.37 1301 0.66 0.0
40 0.60 16 yes 1222.44 1105 0.01 yes 1800.36 1345 0.37 47.2
40 0.80 10 yes 1800.72 720 12.84 yes 1800.33 840 11.49 0.0
40 0.80 12 yes 1800.75 807 9.18 yes 1800.46 927 8.3 0.0
40 0.80 14 yes 1800.72 1340 6.08 yes 1800.39 1580 5.48 0.0
40 0.80 16 yes 1800.74 1315 3.59 yes 1800.53 1555 3.41 0.0

Table 8: Comparison

useful, we compare the optimal solution value of the continuous relaxation with and without the cuts.

Table 9 reports the most interesting variations of the objective function we recorded during the
tests. The value of the average variation for all the instances is 0.0106. Although this is may not

Card. Prob. Bud. Objective function variation
25 0.4 10 0.012
30 0.2 10 0.016
35 0.2 12 0.011
40 0.2 10 0.018
40 0.2 14 0.019

Table 9: Cuts effectiveness

sound so impressive, one must bear in mind that these values refer to the root node relaxation only:
improvements in deeper BB nodes might improve the bound considerably. Table 9 should only taken to
be a counterexample dispelling the doubt that our cuts might be supposed useless.
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5.4 Trade-off in realistic instances

We empirically observed a trend involving the edge density of the tripartite graph (D ∪ V ∪W,E ∪ F )
and the shape of the Pareto region. It is easy to see that, if E ∪F = ∅, then constraints (15) disappear,
and hence the efficient set only consists of the utopia point. Pareto regions of different shapes and sizes
can be obtained by employing instances with different edge sets E ∪ F .

We consider medium-sized realistic instances (which correspond to triplets (30, p, b(p)), where vertex
cardinality is fixed, the edge probability changes, and the budget is augmented with respect to the edge
probability) and perform computational tests using the weighted-sum method. Varying the α coefficient
vector, we obtain different points in the Pareto region. Fig. 11 shows three different Pareto regions,
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Figure 11: Pareto frontiers for realistic instances

corresponding to three different densities of the bipartite graphs linking departments with old and new
services: densest graphs yield flatter Pareto regions, and vice versa.

6 Conclusion

The information system architecture evolution management problem, namely the problem of scheduling
the replacement of existing services with new services without discontinuity, has considerable practical
importance, yet was never previously formalized to the extent we discussed in this paper. The presence of
many decision makers, as business department managers, IT project managers and kill managers, requires
several objectives. These different stakeholders have different needs that the evolution of the system has
to satisfy and this causes conflicts between the respective tasks, especially when the scheduling of the
activities is tight. The decision makers typically aim to gain: (1) top business value produced by the
new services, (2) the maximum number of new useful modules activated and (3) the maximum number of
useless modules deactivated. In most situations, the objectives (1) and (2) are not really conflicting since
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the activation of new services require new modules, thus Business and IT managers push the activities
in the same direction. On the contrary, the objective (3) is potentially controversial, when there is a lack
of time and resources. The activation of new modules and the deactivation of old ones requires work. If
the amount of workforce is limited, as is usually the case, we then have to decide what has to be done
first and, eventually, what is not necessary and can be planned for a later period. Business and project
managers on one side and kill managers on the other have to compete for the existing resources and
employ them for diverging aims. The former can fully attain their tasks on time only forcing the latter
to delay theirs and vice versa. In our work, we define a Mathematical Programming formulation that
models the problem correctly, provide a theoretical analysis thereof, showing exactly where the source of
trade-off lies, and verify empirically that it can be used as a practical tool to solve realistically-structured
instances.
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[7] R. Fortet. Applications de l’algèbre de Boole en recherche opérationelle. Revue Française de
Recherche Opérationelle, 4:17–26, 1960.

[8] R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

[9] A. Geoffrion. Proper efficiency and the theory of vector maximization. Journal of Mathematical
Analysis and Applications, 22:618–630, 1968.

[10] V. Giakoumakis, D. Krob, L. Liberti, and F. Roda. Optimal technological architecture evolutions of
information systems. In M. Aiguier et al., editor, Complex Systems Design and Management, pages
137–148, Berlin, 2010. Springer.

[11] IBM. ILOG CPLEX 12.2 User’s Manual. IBM, 2010.

[12] Daniel Krob. Modelling of complex software systems: A reasoned overview. In FORTE, pages 1–22,
2006.



REFERENCES 23

[13] L. Liberti. Reformulations in mathematical programming: Definitions and systematics. RAIRO-RO,
43(1):55–86, 2009.

[14] L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical programming: A computa-
tional approach. In A. Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht, editors, Foundations
of Computational Intelligence Vol. 3, number 203 in Studies in Computational Intelligence, pages
153–234. Springer, Berlin, 2009.

[15] J.N. Luftman. Competing in the Information Age. Oxford University Press, Oxford, 2003.

[16] K. Miettinen. Nonlinear multiobjective optimization. Kluwer Academic Publishers, Boston, 1999.

[17] M. Padberg. The boolean quadric polytope: some characteristics, facets and relatives. Mathematical
Programming, 45:139–172, 1989.

[18] N.V. Sahinidis and M. Tawarmalani. BARON 7.2.5: Global Optimization of Mixed-Integer Nonlinear
Programs, User’s Manual, 2005.

[19] H.P. Williams. Model Building in Mathematical Programming. Wiley, Chichester, 4th edition, 1999.

[20] L.A. Wolsey. Integer Programming. Wiley, New York, 1998.


