
Chapter 1

Optimal technological architecture evolutions of

Information Systems∗

Vassilis Giakoumakis, Daniel Krob, Leo Liberti†, and Fabio Roda

Abstract We discuss a problem arising in the strategic management of IT enter-

prises: that of replacing some existing services with new services without impairing

operations. We formalize the problem by means of a Mathematical Programming

formulation of the Mixed-Integer Nonlinear Programming class and show it can be

solved to a satisfactory optimality approximation guarantee by means of existing

off-the-shelf software tools.

1.1 Introduction

For any information system manager, a recurrent key challenge is to avoid creating

more complexity within its existing information system through the numerous IT

projects that are launched in order to respond to the needs of the business. Such an

objective leads thus typically to the necessity of co-optimizing both creation and

replacement/destruction — called usually kills in the IT language — of parts of

the information system, and of prioritizing the IT responses to the business conse-

quently.

This important question is well known in practice and quite often addressed in

the IT literature, but basically only from an enterprise architecture or an IT tech-
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LIX, École Polytechnique, 91128 Palaiseau, France.

e-mail: {dk,liberti,roda}@lix.polytechnique.fr
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nical management perspective [2, 3, 10]. Architectural and managerial techniques,

however, are often only parts of the puzzle that one has to solve to handle these

optimization problems. On the basis of budget, resource and time constraints given

by the enterprise management, architecture provides the business and IT structure

of these problems. This is however not sufficient model them completely or solve

them.

In this paper we move a step towards the integration of architectural business

and IT project management aspects. We employ optimization techniques in order to

model and numerically solve a part of this general problem. More precisely, we pro-

pose an operational model and a Mathematical Programming formulation express-

ing a generic global priorization problem occurring in the — limited, but practically

rather important — context of a technological evolution of an information system

(i.e. the replacement of an old IT technology by a new one, without any functional

regression from the point of view of business). This approach promises to provide a

valuable help for IT practitioners.

1.2 Operational model of an evolving information system

1.2.1 Elements of information system architecture

Any information system of an enterprise (consisting of a set D of departments) is

classically described by two architectural layers:

• the business layer: the description of the business services (forming a set V )

offered by the information system;

• the IT layer: the description of the IT modules (forming a set U) on which busi-

ness services rely on.

In general, the relationship A ⊆ V ×U between these two layers is not one-to-one.

A given business service can require any number of IT modules to be delivered and

vice-versa a given IT module can be involved in the delivery of several business

services, as shown in Fig. 1.1.

1.2.2 Evolution of an information system architecture

From time to time, an information system may evolve in its entirety due the replace-

ment of an existing software technology by a new one (e.g. passing from several in-

dependent/legacy software packages to an integrated one, migrating from an existing

IT technology to a new one, and so on). These evolutions invariably have a strong

impact at the IT layer level, where the existing IT modules UE = {M1, . . . ,Mn}
are replaced by new ones in a set UN = {N1, . . . ,Nn′} (in the sequel, we assume

U = UE ∪UN). This translates to a replacement of existing services (sometimes
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....

Business layer

IT layer

....

service 1 service 2 service |V |

M1 M2 M|U |

Fig. 1.1 A simple two-layer information system architecture.

denoted ES) in V by new services (sometimes denoted NS) in W ensuring that the

impact on the whole enterprise is kept low, to avoid business discontinuity. This also

induces a relation B⊆W ×UN expressing reliance of new services on IT modules.

Note also that in this context, at the business level, there exists a relation (in V ×W )

between existing services and new services which expresses the fact that a given

existing service shall be replaced by a subset of new business services. We note

in passing that this relation also induces another relation in UE ×UN expressing

the business covering of an existing IT module to a subset of new IT modules (see

Fig. 1.2).

ES1 ES2 ES|V | NS1 NS2 NS|W |

M1 M2 Mn N1 N2 Nn′

Business layer

IT layer

Requires

Fig. 1.2 Evolution of an information system architecture.
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1.2.3 Management of information system architecture evolutions

Mapping the above information system architecture on the organization of a com-

pany, it appears clear that three main types of enterprise actors are naturally involved

in the management of these technological evolutions which are described below.

1. Business department managers: they are responsible of creating business value

— within the perimeter of a business department in the set D — through the new

business services. This value might be measured by the amount of money they

are ready to invest in the creation of these services (business services are usually

bought internally by their users within the enterprise).

2. IT project managers: they are responsible for creating the new IT modules, which

is a pre-requisite to creating the associated business services. The IT project man-

ager has a project schedule usually organized in workpackages, each having a

specific starting times and global budget (see Fig. 1.2).

3. Kill managers: they are responsible for destroying the old IT modules in order

to avoid to duplicate the information system — and therefore its operating costs

— when achieving its evolution. Kill managers have a budget for realizing such

“kills”, but they must ensure that any old IT module i is only killed after the new

services replacing those old ones relying on i are put into service.

In this context, managing the technological evolution of an information system

means being able of creating new IT modules within the time and budget constraints

of the IT project manager in order to maximize both the IT modules business value

brought by the new services and the associated kill value (i.e. the number of old

services than can be killed).

1.2.4 The information system architecture evolution management

problem

The architecture evolution of the IT system involves revenues, costs and schedules

over a time horizon tmax, as detailed below.

• Time and budget constraints of the IT project manager. Each new IT module

i ∈U has a cost ai and a production schedule.

• IT module business value. Each department ℓ ∈ D is willing to pay qℓk mon-

etary units for a new service k ∈ W from a departmental production budget

Hℓ = ∑k:(ℓ,k)∈F qℓk; the business value of the new service k is ck = ∑ℓ:(ℓ,k)∈F qℓk.

We assume that this business value is transferred in a conservative way via the

relation B to the IT modules. Thus, there is a business contribution βik over every

(i,k) ∈ B such that for each k we have ck = ∑(i,k)∈B βik; furthermore, the global

business value of module i is ∑k:(i,k)∈B βik. We also introduce a set N ⊆U of IT

modules that are necessary to the new services.
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• Kill value. Discontinuing (or killing) a module i ∈U has a cost bi due to the re-

quirement, prior to the kill, of an analysis of the interactions between the module

and the rest of the system architecture, in order to minimize the chances of the

kill causing unexpected system behaviour.

The evolution involves several stakeholders. The department heads want to max-

imize the value of the required new services. The module managers want to produce

the modules according to an assigned schedule whilst maximizing the business value

for the new services to be activated. The kill managers want to maximize the num-

ber of deactivated modules within a certain kill budget. Thus, the rational planning

of this evolution requires the solution of an optimization problem with several con-

straints and criteria, which we shall discuss in the next session.

1.3 Mathematical Programming based approach

Mathematical Programming (MP) is a formal language used for modelling and solv-

ing optimization problems [12, 9]. Each problem is modelled by means of a list of

index sets, a list of known parameters encoding the problem data (the instance), a

list of decision variables, which will contain appropriate values after the optimiza-

tion process has taken place, an objective function to be minimized or maximized,

and a set of constraints. The objective and constraints are expressed in function of

the decision variables and the parameters. The constraints might include integral-

ity requirements on the decision variables. MPs are classified into Linear Programs

(LP), Mixed-Integer Linear Programs (MILP), Nonlinear Programs (NLP), Mixed-

Integer Nonlinear Programs (MINLP) according to the linearity of objective and

constraints and to integrality requirements on the variables. MILPs and MINLPs

are usually solved using a Branch-and-Bound (BB) method, explained at the begin-

ning in Sect. 1.3.2. A solution is an assignment of numerical values to the decision

variables. A solution is feasible if it satisfies the constraints. A feasible solution is

optimal if it optimizes the objective function.

As explained above, an enterprise in our context consists of a set D of depart-

ments currently relying on existing services in V and wishing to evolve to new

services in W within a time horizon tmax. Each service relies on some IT module

in U (the set N ⊆ U indexes those IT modules that are necessary). The relations

between services and modules and, respectively, departments and services, are de-

noted as follows: A ⊆ V ×U , B ⊆W ×U , E ⊆ D×V and F ⊆ D×W . If an IT

module i∈U is required by a new service, then it must be produced (or activated) at

a certain cost ai. When an IT module i ∈U is no longer used by any service it must

be killed at a certain cost bi. Departments can discontinue using their existing ser-

vices only when all new services providing the functionalities have been activated;

when this happens, the service (and the corresponding IT modules) can be killed.

Departments have budgets dedicated to producing and killing IT modules, which

must be sufficient to perform their evolution to the new services; for the purposes

of this paper, we suppose that departmental budgets are interchangeable, i.e. all de-



6 Vassilis Giakoumakis, Daniel Krob, Leo Liberti, and Fabio Roda

partments credit and debit their costs and revenues to two unique enterprise-level

budgets: a production budget Ht and a kill budget Kt indexed by the time period t.

A new service k ∈W has a value ck, and an IT module i ∈U contributes βik to the

value of the new service k that relies on it. We use the graph G = (V ,E ) shown in

Fig. 1.3 to model departments, existing services, new services, IT modules and their

relations. The vertices are V =U ∪V ∪W ∪D, and the edges are E = A∪B∪E∪F .

This graph is the union of the four bipartite graphs (U,V,A), (U,W,B), (D,V,E) and

(D,W,F) encoding the respective relations. We remark that E and F collectively in-

duce a relation between existing services and new services with a “replacement”

semantics (an existing service can be killed if the related new services are active).

v j

ui

wk

zi

U

V

W

ℓ

existing services

new services

IT modules

departments

E

F

A

B

D

Fig. 1.3 The bipartite graphs used to model the problem.

Although in Sect. 1.3.1 we omit, for simplicity, to list explicit constraints for the

production schedule of IT modules, these are not hard to formulate (see e.g. [4]),

and do not change the computational complexity of the solution method we employ.

1.3.1 Sets, variables, objective, constraints

We present here the MP formulation of the evolution problem. We recall that NS

stands for new service and ES for existing service.
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1. Sets:

• T = {0, . . . , tmax}: set of time periods (Sect. 1.2.4, p. 4);

• U : set of IT modules (Sect. 1.2.1, p. 2);

• N ⊆U : set of IT modules that are necessary for the NS (Sect. 1.2.4, p. 4);

• V : set of existing services (Sect. 1.2.1, p. 2);

• W : set of new services (Sect. 1.2.2, p. 3);

• A⊆V ×U : relations between ES and IT modules (Sect. 1.2.1, p. 2);

• B⊆W ×U : relations between NS and IT modules (Sect. 1.2.2, p. 3);

• D: set of departments (Sect. 1.2.1, p. 2);

• E ⊆ D×V : relations between departments and ES (Sect. 1.3, p. 6);

• F ⊆ D×W : relations between departments and NS (Sect. 1.3, p. 6).

2. Parameters:

• ∀i ∈U ai = cost of producing an IT module (Sect. 1.2.4, p. 1.2.4);

• ∀i ∈U bi = cost of killing an IT module (Sect. 1.2.4, p. 1.2.4);

• ∀t ∈ T Ht = production budget per time period (Sect. 1.3, p. 1.3);

• ∀t ∈ T Kt = kill budget per time period (Sect. 1.3, p. 1.3);

• ∀(i,k) ∈ B βik = monetary value given to NS k by IT module i (Sect. 1.2.4,

p. 1.2.4).

3. Decision variables:

∀i ∈U, t ∈ T uit =

{

1 if IT module i is used for a ES at time t

0 otherwise;
(1.1)

∀i ∈U, t ∈ T zit =

{

1 if IT module i is used for a NS at time t

0 otherwise;
(1.2)

∀ j ∈V, t ∈ T v jt =

{

1 if existing service j is active at time t

0 otherwise;
(1.3)

∀k ∈W, t ∈ T wkt =

{

1 if new service k is active at time t

0 otherwise.
(1.4)

4. Objective function. Business value contributed to new services by IT modules.

This is part of the objective of the module managers, which agrees with the ob-

jective of the department heads.

max
u,v,w,y,z

∑
t∈T

(i,k)∈B

βikzitwkt . (1.5)

5. Constraints.

• Production budget (cost of producing new IT modules; this is another objec-

tive of the module managers):

∀t ∈ T r{tmax} ∑
i∈U

ai(zi,t+1 − zit) ≤ Ht , (1.6)
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where the term zi,t+1 − zit is only ever 1 when a new service requires produc-

tion of an IT module — we remark that the next constraints prevent the term

from ever taking value −1.

• Once an IT module is activated, do not deactivate it.

∀t ∈ T r{tmax}, i ∈U zit ≤ zi,t+1. (1.7)

• Kill budget (cost of killing IT modules; this is part of the objective of the kill

managers):

∀t ∈ T r{tmax} ∑
i∈U

bi(uit −ui,t+1) ≤ Kt , (1.8)

where the term uit − ui,t+1 is only ever 1 when an IT module is killed — we

remark that the next constraints prevent the term from ever taking value −1.

• Once an IT module is killed, cannot activate it again.

∀t ∈ T r{tmax}, i ∈U uit ≥ ui,t+1. (1.9)

• If an existing service is active, the necessary IT modules must also be active:

∀t ∈ T,(i, j) ∈ A uit ≥ v jt . (1.10)

• If a new service is active, the necessary IT modules must also be active:

∀t ∈ T,(i,k) ∈ B : i ∈ N zit ≥ wkt . (1.11)

• An existing service can be deactivated once all departments relying on it have

already switched to new services; for this purpose, we define sets W j = {k ∈
W | ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ,k) ∈ F)} for all j ∈V :

∀t ∈ T, j ∈V ∑
k∈W j

(1−wkt) ≤ |W j|v jt . (1.12)

• Boundary conditions. To be consistent with the objectives of the module and

kill managers, we postulate that:

– at t = 0 all IT modules needed by existing services are active, all IT mod-

ules needed by new services are inactive:

∀i ∈U ui0 = 1 ∧ zi0 = 0; (1.13)

∀ j ∈V v j0 = 1 ∧ ∀k ∈W wk0 = 0. (1.14)

– at t = tmax all IT modules needed by the existing services have been killed:

∀i ∈U uitmax
= 0. (1.15)

These boundary conditions are a simple implementation of the objectives of

module and kill managers. Similar objectives can also be pursued by adjoin-
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ing further constraints to the MP, such as for example that the number of IT

modules serving ES must not exceed a given amount.

The formulation above belongs to the MINLP class, as a product of decision vari-

ables appears in the objective function and all variables are binary; more precisely, it

is a Binary Quadratic Program (BQP). This BQP can either be solved directly using

standard BB-based solvers [1, 11, 7] or reformulated exactly (see [8] for a formal

definition of reformulation) to a MILP, by means of the PRODBIN reformulation

[9, 5] prior to solving is with standard MILP solvers. A few preliminary experi-

ments showed that the MILP reformulation yielded longer solution times compared

to solving the BQP directly.

1.3.2 Valid cuts from implied properties

The BB method for for MPs with binary variables performs a binary tree-like recur-

sive search. At every node, a lower bound to the optimal objective function value is

computed by solving a continuous relaxation of the problem. If all integral variables

happen to take integer values at the optimum of the relaxation, the node is fathomed

with a feasible optimum. If this optimum has better objective function value than

the feasible optima found previously, it replaces the incumbent, i.e. the best current

optimum. Otherwise, a variable x j taking fractional value x̄ j is selected for branch-

ing. Two subnodes of the current node are created by imposing constraints x j ≤ ⌊x̄ j⌋
(left node) and x j ≥ ⌈x̄ j⌉ (right node) to the problem. If the relaxed objective func-

tion value at a node is worse than the current incumbent, the node is also fathomed.

The step of BB which most deeply impacts its performance is the computation of

the lower bound. To improve the relaxation quality, one often adjoins “redundant

constraints” to the problem whenever their redundancy follows from the integrality

constraints. Thus, such constraints will not be redundant with respect to the relax-

ation. An inequality is valid for a MP if it is satisfied by all its feasible points. If an

inequality is valid for an MP but not for its relaxation, it is called a valid cut.

We shall now discuss two valid inequalities for the evolution problem. The first

one stems from the following statement: If a new service k ∈W is inactive, then all

existing services linked to all departments relying on k must be active. We formalize

this statement by defining the sets:

∀k ∈W Vk = { j ∈V | ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ,k) ∈ F)}.

The statement corresponds to the inequality:

∀t ∈ T,k ∈W ∑
j∈Vk

(1− v jt) ≤ |Vk|wkt . (1.16)
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1.3.1 Lemma

Whenever (v,w) are part of a feasible solution of the evolution problem, (1.12) im-

plies (1.16).

Proof. We proceed by contradiction: suppose (1.12) holds and (1.16) does not. Then

there must be t ∈ T,k ∈W, j ∈ Vk such that wkt = 0 and v jt = 0. By (1.12), v jt = 0

implies ∀h ∈ W j (wht = 1). By definition of Vk and W j, we have that k ∈ W j, and

hence wkt = 1 against the assumption. ⊓⊔

Thus, (1.16) is a valid inequality for the evolution problem.

The second inequality is a simple relation between v and w. First, we observe that

the converse of Lemma 1.3.1 also holds; the proof is symmetric to that of Lemma

1.3.1: it suffices to swap j with k, W j with Vk, v with w, (1.12) with (1.16). Hence,

(1.12) ⇔ (1.16) for all feasible (v,w).

1.3.2 Proposition

The inequalities

∀t ∈ T, j ∈V,k ∈W ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ,k) ∈ F) v jt +wkt ≥ 1 (1.17)

are valid for the evolution problem.

Proof. Suppose (1.17) does not hold: hence there are t ∈ T, j ∈V,k ∈W, ℓ ∈D with

(ℓ, j) ∈ E and (ℓ,k) ∈ F such that v jt +wkt = 0. Since v jt ,wkt ≥ 0, this implies

v jt = wkt = 0. It is easy to verify that if this is the case, (1.12) and (1.16) cannot

both hold, contradicting (1.12) ⇔ (1.16). ⊓⊔

Eq. (1.17) states that at any given time period no pair (ES, NS) related to a given

department must be inactive (otherwise the department cannot be functional). We

can add (1.16) and (1.17) to the MP formulation of the evolution problem, and hope

they will improve the quality of the lower bound obtained via the LP relaxation. We

remark that other valid inequalities similar to (1.16), (1.17) can be derived by the

problem constraints; these will be studied in further works.

1.4 Computational Results

We aim to establish to what extent the proposed methodology can be used to solve

realistically sized instances our problem. We first solve a set of small instances to

guaranteed optimality and then a set of larger instances to within an approxima-

tion guarantee. We look at the CPU time and approximation guarantee behaviours

in function of the instance size, and use these data to assess the suitability of the

method.

We used the AMPL modelling environment [6] and the off-the-shelf CPLEX 10.1

solver [7] running on a 64-bit 2.1 GHz Intel Core2 CPU with 4GB RAM. Ordinarily

CPLEX’s Quadratic Programming (QP) solver requires QPs with Positive Semi-

Definite (PSD) quadratic forms only. Although in our case this may not be true

(depending on the values of β ), CPLEX can reformulate the problem exactly to the

required form because all variables are binary.
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Fig. 1.4 CPU time when solving small instances to guaranteed optimality.

We consider a set of small instances, to be solved to guaranteed optimality, and

one of larger instances where the BB algorithm is stopped either at BB termination

or after 30 minutes of CPU time (whichever comes first). All instances have been

randomly generated from a model that bears some similarity to data coming from an

actual service industry. We consider three parameter categories: cardinalities (vertex

set), graph density (edge creation probability) and monetary values. Each of the 64

instances in each set corresponds to a triplet (cardinality, edge creation probability,

monetary value), each component of which ranges over a set of four elements.

In order to observe how CPU time scales when solving to guaranteed optimality,

we present 12 plots referring to the small set, grouped by row. We plot seconds of

user CPU time: for each fixed cardinality, in function of edge creation probability

and monetary value (Fig. 1.4, first row); for each fixed edge creation probability,

in function of cardinality and monetary value (Fig. 1.4, second row); for each fixed

monetary value, in function of cardinality and edge creation probability (Fig. 1.4,

third row). The largest “small instance” corresponds to the triplet (20,0.8,8). The

plots show that the proposed methodology can solve a small instance to guaranteed

optimality within half an hour; it is also possible to notice that denser graphs and

smaller budgets yield more difficult instances. Sudden drops in CPU time might

correspond to infeasible instances, which are usually detected quite fast.

Fig. 1.5 is organized by rows as Fig. 1.4, but we plot the optimality gap —

an approximation ratio — at termination rather than the CPU time, which is in

this case limited to 30 minutes. The largest “large instance” corresponds to the

triplet (40,0.8,16). The optimality gap, expressed in percentage, is defined as
(

100| f ∗− f̄ |
| f ∗+10−10|

)

%, where f ∗ is the objective function value of the best feasible so-

lution found within the time limit, and f̄ is the tightest overall lower bound. A gap

of 0% corresponds to the instance being solved to optimality. The plots show that

the proposed methodology is able to solve large instances to a gap of 14% within

half an hour of CPU time at worst, and to an average gap of 1.18% within an average

CPU time of 513s (just over 8 minutes).
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Fig. 1.5 Optimality gap when solving large instances within 30 minutes of CPU time.

It took 6h of user CPU time to reach a 15% gap in the real instance, which roughly

corresponds to a triplet (80,0.2,10). We managed, however, to reach a satisfactory

20% gap within 513s (the actual solution value improvement was < 0.01%).
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