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Abstract

In this paper we give a theoretical analysis of the Reformulation-Linearization Technique (RLT)
of H. Sherali when applied to continuous bilinear problems with linear equality constraints. From the
analysis we derive a method that identifies “good” subsets of RLT constraints to add to the problem
relaxation in order to make it as tight as possible.

1 Introduction

The Reformulation-Linearization Technique (RLT), first described by H. Sherali [SA92, She98, SA86,
SWO01, SA99, SSA00, She02], is a very efficient method for computing tight convex relaxations of various
types of nonconvex problems. This is extremely useful in Branch-and-Bound algorithms where a tight
lower bound on the objective function value is required at each step, which is usually computed by locally
solving a convex relaxation of the original problem.

The basic idea at the heart of the RLT is to form new constraints by multiplying together bound
factors (z; — aF), (¥ — x;), where 2 < z < zU are the problem variables and their ranges, and
constraint factors g;(x) — b; where g(x) = b (or g(x) < b) are linear problem constraints. We shall call
all such new constraints RLT constraints. The main limitation of this approach is the computational
explosion deriving from multiplying all such bounds together. This is especially true in view of the fact
that the set of all new constraints deriving from all factor products usually contains a lot of redundant
and inactive constraints. Many “limiting devices” have been suggested in the works cited above, some of

which are precise and some of which are heuristic.

In this paper we shall present such a limiting device for the RLT applied to continuous bilinear
problems with linear equality constraints having the following form:

min, z7Qz + 'z
Az = b (1)
el < oz <zV.

where z € R™ are the problem variables, A = (a;;) is an m x n matrix having rank m < n, @ = (g;;)
is an n x n matrix (that we can assume upper-triangular by commutativity of multiplication), ¢ € R,
b€ R™ and z¥, 2V € R are the variable bounds.

The method presented herein tries to find the minimal number of RLT constraints that give the best
linearization benefit. This method is derived from a theoretical discussion of the RLT applied to linearly
constrained continuous bilinear problems that will highlight the reason why RLI’s convex relaxations of
those problems are so tight.

In section 2 we shall give a short resumé of the RLT applied to continuous bilinear problems with
linear equality constraints. Section 3 contains the main theoretical result of this paper. In section 4 we
shall explain how the derived method works. Lastly, we shall draw the conclusions.
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2 The RLT on continuous bilinear problems

In order to form a linear convex relaxation of problem (1), the RLT applied to bilinear problems considers
the following sets [SA92]:

e the bound factor set Br = {z; —zF | i <n}u{zl —=z; | i <n};

e the constraint factor set Cr = {3_7_, aijz; —b; | i <m}.
Note that for each f € Bp the constraint 8 > 0 is a valid problem constraint, and so is v = 0 for all
v € Cp. The RLT procedure for forming the convex relaxation consists in creating new linear valid
constraints (reformulation step) by multiplying together bound factors and constraint factors as follows:

1. for all 81,82 € Bp, 51082 > 0 is a valid constraint (generation via bound factors);

2. for all 8 € Bp and for all v € Cp, By =0 is a valid constraint (mixed generation);

3. for all 1,9 € Cr, 1172 = 0 is a valid constraint (generation via constraint factors).
Having created all these new constraints, we define new variables w; = x;x; for all 4, j between 1 and n,
and we substitute them whenever a bilinear product appears in problem (1) or in the newly generated

constraints (linearization step). We then obtain a very tight linear relaxation of the original bilinear
problem.

2.1 Example

Suppose the original problem contains the bilinear term x;z;, and that we need to find a concave/convex
enclosure for the corresponding bilinear surface w;-“ = zzy. By using the RLT, we form the following
inequalities:

(zj —z)(@p —25) > 0
(z; —zf) (@ —2z) > 0
(@Y —zj) @k —z) > 0
(zf — ) (2} —m) > 0,

which, on substituting x;x; with wf, imply the following linear enclosure for the bilinear surface:

wf > mka + xj:cf;‘ - a:]Lazﬁ
wf < a:]La:k + mj:ckU - mjokU
wf < mgj:ck + :cjzi’ - mgjxf
wf > mgj:ck + :cjmkU - mgj:ckU

The latter inequalities are also known as McCormick’s convex envelope for bilinear terms [McC76].

2.2 Example

Let 37, aijx; = b; be the i-th constraint of a bilinear problem which for all j < n includes the products
xjxy for some k < n. Then (z} — :1:’,;)(2?:1 a;jx; — b;) = 0 is a valid RLT constraint. Notice that
—:UI,;(Z?ZI a;jx; — b;) is just a scalar multiple of the original constraint, so we can limit our attention

to x (37— aijx; — bi) = 0. After the linearization step we obtain 7, a,-jw;-“ = b,z where wf =z}
for all j,k <n. Thus an RLT constraint derived from a bound factor and a constraint factor is in fact a

linear relationship between the original problem variables and the new “linearization” variables w;-“.

Usually the set of all new constraints is redundant, in the sense that some of the constraints are linear
combinations of other constraints, whereas other constraints are simply inactive. In this sense the precise
RLT creation method, applied blindly, is not always practical because of the very high number of new
constraints.
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3 Exact reformulation of bilinear terms with linear equations

Lower bounds on bilinear problems calculated with the RLT are generally very tight, producing linear
relaxations which are very close to the original bilinear problem. This would not be justified if one only
took into account the bound factor products. These are also known as McCormick convex envelope for
bilinear terms [McC76], and their geometry is such that the gap between the original bilinear surface and
the enclosure formed by its convex/concave relaxations is usually very wide [AKF83, AMF95]. Further-
more, it can easily be shown that both the products of bound by constraint factors and the constraint
factor products are in fact linear combinations of the bound factor products and the products of original
problem variables z; (for ¥ < m) by original linear constraints Z]rle aijxz; = b; (for i+ < n). Thus,
the excellent performance of the RLT should be attributed to RLT constraints obtained by multiply-
ing original problem variables by linear equality constraints. Namely, given the ¢-th equality constraint
> i1 @ijzj = b; and the multiplier variable y, the derived RLT constraint is z >_;_, a;jz; — zxbi = 0;
on substituting w;? = z;xy, for each j,k < n, we obtain E?:l aijw;? — xb; = 0. In this section we shall
explain why these RLT constraints tighten the relaxation so effectively.

For all j, k < nlet w¥ = z;24. Tt is easy to show that the cardinality of {w¥ | j,k < n}ist = jn(n+1).
Consider the feasibile region F = {z € R" |Az = b,z < 2 < 2V} of the original problem (1), and let
C C R™** be the superset (or “lift”) of F defined as

C ={(w,x) |:1:€F/\\7’j,l<:§n(wf =z;zk)}.

Notice that, because of the bilinear relationships w;-“ = z;zy, to each F' there corresponds exactly one
C'. Furthermore, if we reformulate the original problem (1) so that we substitute all bilinearities in the
objective function with the corresponding w variables, we obtain an equivalent bilinear problem in R?+?
whose feasible region is C. Now consider the linear system of all RLT constraints that are products of
problem variables and linear equality constraints:

Vk < n (AwF — 2xb = 0) (2)
where wk = (w¥, ..., wk) and zxb = (zkb1,. .., 2rby). On substituting b = Az we obtain Aw* — Az =
0,ie. A(w* —zpx) = 0. We define variables 2§ = w} — x;xy, for all j,k < n and we express (2) as

Vk <n (AzF =0) (3)
where 2% = (2§ ..., 2%) for all k < n. We call system (3) the companion system. It is easy to show that

provided Az = b, (2) & (3). Let I4 be a set of index pairs (4, k) such that {z;c | (4,k) € 14} is a set of
basic variables of system (3). Lastly, consider R C R**? such that

R={(w,z) |z € FAVE <n (Aw® —z;b=0) AV(j, k) € 14 (w;c =z;z)}-

We are now in the position to prove the main theorem of this paper, i.e. that C' = R. This means that
R is a precise reformulation of the feasible region of the original problem (1) which involves less bilinear
terms.

3.1 Theorem
C =R.

Proof. The fact that C C R is obvious: since z is such that Az = b then it is also true that for all
k < n, z(Ax) = xpb, which immediately implies system (2). Furthermore, restricting the number of
bilinear relations between w and z variables ensures that C C R. We shall now prove that R C C. The
relations V(j,k) ¢ Ia(w§ = zjz;) imply that all the nonbasic variables of the companion system (3)
are zero. Thus, the only possible solution for the basic variables of the companion system zf (such that
(j,k) € I4) is the zero solution, i.e. V(j, k) € I4 (w% = z;z;). This immediately implies that all the

J
bilinear relations defining C' are satisfied, thus establishing the result. O
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3.2 Corollary
Let r be the rank of the companion system (3). Then the reformulation R of the original feasible region
C has t —r bilinear terms, where t = in(n + 1).

Proof. Any set of basic variables of (3) has cardinality r, and the number of variables zf of system (3)

is in(n + 1); thus, by theorem (3.1), the number of bilinear terms required to define R is t — r. O

The geometric meaning of theorem (3.1) is that under the given conditions, the bilinearly constrained
feasible region C' can be reformulated precisely to the region R which has more variables, more linear
constraints, but less bilinear terms. In terms of the problem at hand, i.e. the construction of the convex
relaxation of the original bilinear problem, this in turn means that a smaller number of bilinear terms
are actually being relaxed by their McCormick (also known as RLT “bound factor products”) relaxations
than would be required when not using the RLT constraints; hence the gap between the original problem
and its convex relaxation is greatly reduced.

4 The derived method

From theorem (3.1) we can quickly derive a practical method which would seem to guarantee the tightest
possible (linear) convex relaxation of a bilinear problem in form (1): find a set of basic variables of
system (3), reformulate C' to R and then form the convex relaxation of R by substituting all remaining
bilinear surfaces w¥ = z;z; (corresponding to the nonbasic variables of (3)) with their McCormick convex

J
relaxations.

Such a straightforward application of theorem (3.1), however, has a very serious drawback. By corol-
lary (3.2), reformulation R must contain s =t —1r = %n(n +1) — r terms. Numerical experiments in this
sense seem to point out the fact that s > 0 unless m = n, i.e. unless the feasible region of the original
problem (1) is trivial, in which case s = 0. If the number of bilinear terms in the original problem (1)
happens to be strictly less than s, as is often the case in sparse bilinear problems (i.e. problems where the
matrix () is sparse), then our reformulation R actually has more bilinear terms than the original prob-
lem, thus resulting in a very loose convex relaxation. Even if the number of bilinear terms in the original
problem is greater than s, it might still happen that each set of nonbasic variables of the companion
system involves bilinear terms which are not present in the original problem.

The way to circumvent this problem is to identify subsets of candidate multiplier variables and linear
equation constraints so that the resulting RLT system of equations replaces (in the sense of theorem (3.1))
more bilinear terms than it needs to add during the linearization step. Le. find a subset of equations
A'z =V of the original system Az = b, and a subset K of {1,...n} such that the RLT subsystem

Vk € K (A'w* —b'z), = 0) (4)
(where w* = (wf,...w}) and w} = xjz; for each k € K and j < n) eliminates more bilinear terms
than the additional bilinear terms wf = xx;, not originally in the problem, needed to define the RLT
subsystem. Let H = K N{1,...,n}. The size of the set of bilinear terms L = {z}z; | k € K,j < n}
needed to define (4) is |Lg| = 1|H|(|H|+ 1) + |K|(n— |K]). Suppose that the set of bilinear terms in the
original problem is L. Then the number of additional bilinear terms required by (4) is 8 = |Lg|—|LNLg|.

Thus, we require that the rank ' of the RLT companion subsystem

Vke K (A'2F =0) (5)
(where zf = wf — zpx; for each k € K, j < n) is strictly greater than §. An optimal search in this sense
would be prohibitively expensive: for each subset of equations of Az = b and each subset K C {1,...,n},

it would involve finding the minimum rank of all the possible companion RLT subsystems.
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In the algorithm that follows, we shall denote systems (2) and (3) in more compact forms as, respec-
tively, T'(w,z) = 0 and Bz = 0, where B depends on A, and T depends on A and b. It is easily shown
that T has the structure (B|-). This fact emphasizes a 1-1 correspondence between the rows of Bz = 0
and those of T'(w,x) = 0. In particular, any row operation on Bz = 0 can be carried out on T'(w,z) = 0,
and the resulting RLT system is valid in the original problem as it is just a linear combination of valid
equations.

The algorithm below identifies and erases from Bz = 0 a sufficient number of equations so that the
corresponding RLT subsystem T'(w,z) = 0 will require the creation of less bilinear terms than it can
replace. This algorithm may not find the globally optimal RLT subsystem; however, it is somewhat
tuned to the typical shape of the matrix B, so that, paired with graph-theoretical based techniques such
as that described in [LP03], it is able to find good locally optimal subsets of RLT constraints.

1. Put Bz = 0 in row echelon form and delete any zero rows, so that we obtain a system with r rows
(and having full rank r).

2. For all i <7, let R(7) be the i-th row of Bz = 0:

(a) denote with v(i) the number of nonzero coefficients of R(i),

(b) assign to R(7) a bonus 9 (i) equal to the number of nonzero coefficients in R(7) which correspond
to bilinear terms that already exist in the problem;

(c) assign to R(i) a cost v(i) — ¥(4).

3. Let J be the subset of column indices corresponding to bilinear terms that are not in the problem,
and let I be the subset of row indices corresponding to rows with positive cost.

Let j € J so that the j-th column of Bz = 0 has the maximum number of nonzero coefficients.
Let ¢(j) be the subset of row indices that have a nonzero coefficient in column j.

Decrease the cost of each row indexed by ¢(j) by 1.

Set J «+ J\{j} and I + I\C(j).

If |J| = 0, go to 9; otherwise, repeat from 4.

© N o o e

Generate the RLT equations corresponding to the equations in the companion system that have
nonpositive cost.

5 Conclusion

In this paper we discussed a theoretical aspect of the RLT applied to continuous bilinear problems
with linear equality constraints. We showed that RLT constraints can geometrically substitute bilinear
products by exhibiting a precise reformulation of the feasible region which has more linear constraints
and less bilinear products. We then gave an algorithm that identifies a set of RLT constraints that reduce
the number of bilinear products in the original bilinear problem.

Although this paper does not include computational results for the implementation of the proposed
methods, the implementation of another algorithm for the creation of RLT constraints was carried out
and tested, within the Branch-and-Bound global optimization algorithm proposed in [SP99]. The results
point out the fact that RLT constraints slash the order of magnitude of the computational cost of a generic
Branch-and-Bound algorithm by factors of 10, 100 or sometimes more. This fact is all the more evident
on pooling and single-quality blending problems [ATS99], where a running time of 10,000 or 100,000
iterations is sometimes reduced to just 1 iteration. The performance on multi-quality problems, though
less spectacular, is impressive nonetheless. Formulation-wise, the effect of RLT on blending problems is
emphasized in [TS02].
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