
Decoding noisy messages: a method that just shouldn’t work

Leo Liberti1

1 LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
Email:liberti@lix.polytechnique.fr

April 22, 2022

Abstract

This paper is about receiving text messages through a noisy and costly line. Because the line is
noisy we need redundancy, but because it is costly we can afford very little of it. I start by using
well-known machinery for decoding noisy messages (compressed sensing), then I attempt to reduce
the redundancy (using random projections), until I get to a point where I use more orthogonal vectors
than the space dimension allows. Instead of grinding to a halt or spurting out noise, this method is
still able to decode messages correctly or almost correctly. I have no idea why the method works:
this is my first reason for writing this paper using a narrative instead of formal scientific style (the
second one is that I am tired of writing semi-formal prose, and long for a change).

1 The risks of office gossip

At a time when I was mainly working on optimization and Euclidean distance geometry, I happened to
walk past an open office door, where I heard someone mumble “random projection”; my eye glanced upon
a whiteboard bearing the formula

‖Tx− Ty‖2 ≈ ‖x− y‖2. (1)

Intrigued by the Euclidean distances, I stopped, entered the office, and interrupted the ongoing discussion.
“What’s that T?”, I asked. I was told that it was a k×n random matrix, and that the vectors x, y were any
pair of n-dimensional vectors out of a finite set. I immediately objected that no such T could exist, unless
the “approximation” relationship between the two distances was taken very liberally. “Don’t you know
the Johnson-Lindenstrauss lemma?”, was the reply. I did not. After being given a summary explanation
I left the office, my head in turmoil, and headed towards the library in search of more information.

Upon coming back from the library, I met a friendly colleague and asked him what he knew about
random matrices. He immediately started talking about things unrelated to Eq. (1). He had a disposition
to stray far from the subject of conversation, which was one of the reasons I liked him. This attitude
resonated with my habit of making connections between different topics, the more disconnected the
better. He was talking about tiny cameras with a ridiculously small number of pixels, but able to take
fantastically detailed pictures nonetheless. He asked me “do you know how many pixels I really need for
those pictures? guess!”. I guessed in the thousands, then in the hundreds, then gave up. “One!”, he
said, smiling broadly. For the second time that day, I was nonplussed, and couldn’t believe what I was
hearing. A whole parallel world existed in my colleagues’ minds, something that appeared to go against
the expected tenets of normal mathematics, and I was cut off. This had to stop: I would measure the
extent of their lies, and ascertain what truth might be hidden in their unlikely stories.

Thus started a long period of learning, when I became aware of a large part of mathematics I had
ignored so far. I initially focused on the office gossip about Euclidean distances: I read the lemma by
Johnson and Lindenstrauss [16] (whose proof remained unintelligible to me for a long time), learned some
unexpected properties of random matrices having components sampled from Gaussian distributions [3],
and learned about their relation with data science [13]. I heard a reference to the one-pixel nonsense in

Leo Liberti
Leo Liberti, Decoding noisy messages: a method that just shouldn't work, in Antoine Deza, Swati Gupta, Sebastian Pokutta (eds.), Data Science and Optimization, Communications Series on Data Science and Optimization, Fields Institute, Toronto, to appear



2 NOISY COMMUNICATION CHANNELS 2

a talk by Emmanuel Candès at the International College of Mathematicians in 2014 [5], where, again,
random matrices were mentioned. A few web searches later, I had uncovered a name, that of Matoušek,
connected to these concepts.

Links notwithstanding, I was by then fully convinced that my ignorance was abysmal, all-encompassing,
and was procuring me a scientific damage beyond repair. I had been living a quiet mathematical life,
sheltered from the stormy developments of the youngest greatgrandchildren of functional analysis, linear
algebra, and geometry. Contemporary mathematics was passing me by. The Mathematical Programming
(MP) niche that looked so rich and endless appeared like a prehistorical cave with a few ancient rat bones
scattered about.

Luckily, as I walked into one of my favorite bookshops (now unfortunately closed forever), I stumbled
upon a copy of a book about Linear Programming (LP) written by Jǐŕı Matoušek and Bernd Gärtner
[24]. It attracted my attention because it had an in-depth discussion of the Delsarte bound for codes
[11]: my interest was in understanding some difficult papers about the Delsarte bound for spherical codes
[12], which arise in the study of the Kissing Number Problem [21]. Unfortunately, Matoušek and Gärtner
only discussed the application to discrete codes. The next section [24, §8.5], however, was titled “Sparse
solutions of linear systems”, which resonated with the title of Candès’ talk at ICM14, “The mathematics
of sparsity”. So, charmed by serendipity, I kept on reading.

2 Noisy communication channels

At this point I will hand over the story to the authors of [24].

We begin by discussing error-correcting codes again, but this time we want to send a sequence
w ∈ Rd of d real numbers. Or rather not we, but a deep-space probe which needs to transmit
its priceless measurements represented by w back to Earth. We want to make sure that all
components of w can be recovered correctly even if some fraction, say 8%, of the transmitted
numbers are corrupted, due to random errors or even maliciously (imagine that the secret
Brotherhood for Promoting the Only Truth can somehow tamper with the signal slightly in
order to document the presence of supernatural phenomena in outer space). We admit gross
errors; that is, if the number 3.1415 is sent and it gets corrupted, it can be received as 2152.66,
or 3.1425, or −1011, or any other real number.

Here is a way of encoding w: We choose a suitable number n > d and a suitable n×d encoding
matrix Q of rank d, and we send the vector z = Qw ∈ Rn. Because of the errors, the received
vector is not z but z̄ = z + x, where x ∈ Rn is a vector with at most r = b0.08nc nonzero
components. We ask, under what conditions on Q can z be recovered from z̄?

Somewhat counterintuitively, we will concentrate on the task of finding the “error vector”
x. Indeed, once we know x, we can compute w by solving the system of linear equations
Qw = z = z̄ − x. The solution, if one exists, is unique, since we assume that Q has rank d
and hence the mapping w 7→ Qw is injective.

Let me summarize: we need to send a vector w ∈ Rd on a noisy channel. We would like to find an
encoding n × d matrix Q, with n > d, and send z = Qw ∈ Rn to the recipient. We assume that both
parties know Q. There is a low probability ∆ of communication error (assumed to be 8% in [24]), which
implies that, on average, on sufficiently long vectors, ∆n components of z will be wrong at reception. Let
x ∈ Rn be the error vector, so that the received message is z̄ = z + x. Evidently, x will have on average
only ∆n nonzero components. What conditions on Q should we impose so that the recipient can retrieve
w from z̄?

The book [24] goes on to explain that we (stepping in the recipient’s shoes) should choose an m× n
matrix A with m = n−d such that AQ = 0, and let b = Az̄. We should then find the sparsest solution x′ to



3 THE ONE-PIXEL CAMERA 3

the linear system Ax = b. Armed with x′, we find z′ = z̄−x′, and finally w′ = (Q>Q)−1Q>z′. In general,
we should find that w = w′, or at least that w,w′ are not very different. The sparsity of a vector x′ ∈ Rn

is related to its support, i.e. the set of indices of the nonzero components supp(x′) = {j ≤ n | x′j 6= 0}: x′
is sparse when its support is small w.r.t. n.

There are three technical points worth making about the preceding discussion.

1. We compute b as Az̄ and then want to solve the system Ax = b. An encoded noisy message z̄ and
an error vector x (two vectors with apparently very different meanings) are both being cast in the
same role, in the sense that they are being multiplied by A and give b as a result: why? The reason
is that we have

b = Az̄ = A(z + x) = A(Qw + x) = (AQ)w +Ax = Ax, (2)

since AQ = 0 by definition.

2. The system Ax = b is underdetermined, since A is an (n− d)× n matrix. It has a solution as long
as the rank of A is equal to the rank of the extended matrix (A, b), (a sufficient condition being
that A has full rank n− d).

3. We compute an approximation w′ of the original message as (Q>Q)−1Q>z′: this is the well-known
Moore-Penrose pseudoinverse, which is being used here to “invert” the (overdetermined, hence in
general uninvertible) linear system Qw = z used during the encoding.

Note that, in the aforementioned discussion, x is being used both as a numerical error vector in Rn and
as symbol for a vector of variables in the system Ax = b to be solved. To avoid ambiguities, I shall
henceforth reserve x for the variable vector (as well as to make occasional appearances as a vector in
theorem statements), and use x̄ for the error vector. As long as I am discussing notation, let me clarify
that | · | denotes both absolute value and set cardinality: I accept this ambiguity because both notations
are standard and established, and because I hope to have been careful in explicitly telling sets apart from
numbers.

And then, of course, there is the elephant in the room: why are we finding the sparsest solution x′ to
Ax = b, and why, having found it, would it be equal to the error vector x̄, which does not seem likely
that we — the receiving party, now — could ever know, since it depends on the whims of the noisy line?

3 The one-pixel camera

Eventually, I found some answers to the last questions of the foregoing section. But they are not the type
of answers I had come to expect from mathematics. Rather than the short, clear-cut first-order logical
propositions with the usual, well-known, and trusted sentences of the Zermelo-Fraenkel-Choice (ZFC)
axiom system [19], which are either provable or unprovable (and those that are provable end up being
true in all sensible models), I found myself entangled in vague probabilistic statements. Their associated
probabilities exceed certain threshold values that can be made arbitrarily close to one in function of a
monotonically varying parameter, the actual value of which is at best hard to compute, and at worst
unknowable, in all practical settings. I found something similar in the study of random projections I had
pursued a couple of years earlier — something else that Johnson, Lindenstrauss and the one-pixel camera
had in common.

Let us start from one of the basic questions: how does one find the sparsest solution to an underde-
termined linear system Ax = b? A MP formulation for this problem is min{‖x‖0 | Ax = b}, where ‖ · ‖0
is the “zero-norm”, which is not really a norm, but simply counts the number of nonzero components of
x. For later reference, I shall call this formulation P 0(A, b). It turns out that P 0(A, b) is NP-hard by
reduction from Exact Cover by 3-Sets [14, A6[MP5]].



3 THE ONE-PIXEL CAMERA 4

The signal processing community had been trying to solve these noisy decoding problems for decades:
for example in order to build telephones, radios, TVs. In attempting to solve P 0(A, b) efficiently they
tried everything, including the replacement of the zero-norm with the much friendlier `1 norm. The
corresponding problem min{‖x‖1 | Ax = b}, which I will refer to as P 1(A, b), can be reformulated exactly
to the following LP:

min
∑
j≤n

sj

∀j ≤ n −sj ≤ xj ≤ sj
Ax = b.

 (3)

With much amazement, signal processing researchers noticed that, if they chose the dimensions d and n
carefully, the solution x′ of P 1(A, b) was the same as the solution of P 0(A, b). This happened too often for
them to accept it as a “coincidence”. The theoretical justification came from the work of many people,
but principally David Donoho [26], Terence Tao, and Emmanuel Candès [6, 7]. I do not really want to
provide a full proof here: I will just sketch a proof strategy which I borrowed from many sources, but
mainly from [9].

Part of the vagueness I referred to above comes from a practical need: that of computing with floating
point numbers. If you find that a component of x′ is O(10−9), do you say that it is zero or nonzero? Let
us provide ourselves with a small ε > 0. We say that a scalar σ is “almost zero” or “near-zero” if |σ| ≤ ε.
Moreover, given an integer s ≤ n, for a vector x̂ ∈ Rn having support size ≥ s, we say that x̂ “almost”
has support size s if

|supp(max(0, |x̂| − ε1))| = s.

The notation used in the above equation is vectorial: 0 and 1 are the all-zero and all-one vectors, and
we extend the absolute value and maximum operators | · |,max to apply to vectors componentwise. So a
vector almost has support size s if there are s components with absolute value larger than ε. Warning:
the inner | · | operator denotes absolute value, while the outer denotes set cardinality.

Notationwise, if the m × n matrix A has every component sampled from a distribution D, we write
A ∼ Dmn.

3.1 Theorem
Given x̂ ∈ Rn and a scalar δ ∈ (0, 1/(2 + 2

√
2)), there exist two constants c1, c2 > 0 depending on δ such

that, under the following assumptions:

1. x̂ almost has support size s;

2. A ∼ N(0, 1)mn is such that m ≥ 1
c1
s ln(n

s );

3. P 1(A,Ax̂) has a minimum x∗ with |supp(x∗)| = s,

we have

Prob

[
‖x∗ − x̂‖1 ≤ 2

1 + 2δ(
√

2− 1)

1 + 2δ(1−
√
s)
‖x̃− x̂‖1 ≤ (n− s)ε

]
≥ 1− e−c2m. (4)

where x̃ is obtained by zeroing the n− s smallest components of x̂ (in absolute value).

This theorem is a convincing example of my accusations of vagueness. (a) It is based on some “constants
c1, c2 depending on δ” (but we are not told how to compute them). (b) It proves a probabilistic statement
which approaches 1 rapidly as m increases, but we may not be able to control m in practice: after all if
m = n− d is large, it means that the transmitted message is much larger than the original one: what if
the communication channel is both noisy and costly? (c) It expects that a human reader would interpret
the almost unparseable statement in Eq. (4) as “x∗ is a good approximation of x̂”: what if it is not quite
as good an approximation as we need? We can certainly fine-tune δ, but probably at the expense of the
constants c1, c2.

In fact, my understanding of these results is that they explain phenomena that were already known
computationally within an engineering community. They provide a qualitative account, more than a



4 FINDING HAY IN A HAYSTACK 5

workable recipe. These theories work inconclusively often, with unforeseeable exceptions that are possibly
curable at the expense of increasing sizes to unwieldy millions, billions or more. Nonetheless, they have
the merit of addressing foundational doubts that the engineering communities must have had. “Goodness
gracious, I’m designing a communication protocol for a new aircraft, and I’m using a technique which
has always worked, but no-one knows why. I’m going to hell, aren’t I?” Such engineers will sleep soundly,
from now on — at least with arbitrarily high probability depending on an unknowable constant.

Proving Thm. 3.1 requires quite a bit of time and patience, at least in the treatment of [9]. The
strategy is as follows:

1. If A has a certain complicated property called “null space property” (NSP), Eq. (4) follows.

2. If A has a certain other somewhat less complicated property called “restricted isometry property”
(RIP), then A also has the NSP.

3. If A ∼ N(0, 1)mn, then A has the RIP.

Note that this proof is a chain of implications. We end up proving that matrices sampled componentwise
from a normal distribution are good, but this does not mean they are the only ones. Moreover, the lower
bound for m given in Assumption 2 in Thm. 3.1 is valid, but it may not be tight. In proving Thm. 3.1,
by the way, we also learn that the NSP guarantees that the minimum x∗ of P 1(A,Ax̂) having support
size s is unique.

Again, all this comes mostly from [9]. The theoretical treatment of Thm. 3.1 in [24] is more compact
than that of [9], and has no probabilistic statements of the likes of Eq. (4), but it actually proves a
much weaker and less general result than Thm. 3.1 — only enough to justify the LP with the application
at hand. I find that the treatment in [25, §5.5] has a better balance between vagueness, clarity, and
generality.

To go back to our original issue, we now know that solving P 1(A, b) gives a good approximation to
the sparsest solution of Ax = b with high probability, as long as the number of rows m of A is large
enough: we have a lower bound for m, but it is not tight.

In case you are still wondering about the one-pixel camera, let me provide some closure. I did find a
few mentions of a “one-pixel camera” connected with the names usually attributed to Thm. 3.1 (namely:
“compressed sensing”, “compressive sampling”, “mathematics of sparsity”). I would not be surprised if
the physical existence of this object were just as vague as many of the theoretical statements that no
doubt prompted my colleague to mention it to me.

4 Finding hay in a haystack

Let me go back to Eq. (1), and replace that nasty “≈” sign by something more precise. Johnson and
Lindenstrauss worked in a period where statements such as Eq. (4) were less common. Their lemma is
existential rather than probabilistic (the method of proof is probabilistic, however). Again with minor
notation changes, we have:

4.1 Lemma
For each ε ∈ (0, 1) there is a constant c = c(ε) > 0 (not depending on n) so that if X ⊂ Rn with |X| = n,

then there is a mapping f : X → Rk (where k = dc(ε) lnne) which satisfies

∀x, y ∈ X (1− ε)‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε)‖x− y‖2. (5)

Any probabilistic proof argues a positive probability of the existence of a certain entity, whence it infers
that the entity must exist. The entity referred to in Lemma 4.1 is the function f . The proof shows that



4 FINDING HAY IN A HAYSTACK 6

f is a random orthogonal projection to a lower-dimensional subspace — of course it does not exclude
that f could take other forms.

Other than that, the proof is barely understandable. It contains sentences an old-school mathematician
would never want to read in a proof, e.g. “We plugged in the exact constant of

√
2 in Khintchine’s

inequality [18], but of course any constant would serve as as well”, which the part of me who was
educated on Kenneth Kunen’s Set Theory [19] considers as inacceptably vague1. If the constants do not
matter, how can one ever hope to use the result in practice, where computation requires that all constant
symbols must take a definite value? Or are we to understand that we are facing a computation which
will give the same result no matter what the value of the constant is? But that would simply imply that
the statement is independent of such constant, which should therefore be ignored: so why isn’t it? And
so on with the nagging doubts.

At the end of the proof we learn that

c(ε) ≥ 100

ε2
. (6)

Now suppose you had a set X of 1000 vectors in R1000, and you wanted to lose some dimensions,
obtaining a corresponding set f(X) such that all pairwise distances are preserved up to 1% accuracy.
Then ε = 0.01, which means that the projected dimension k = d100/(0.01)2 ln(1000)e, which has value
6, 907, 756: a remarkable increase from n = 1000. Of course, if you had a set of one billion vectors in
one billion dimensions, k would be just over one fiftieth of that, at 20, 723, 266. From one trillion, the
figure for k would be only 28 millions. When the logarithm in the growth order starts kicking in, we are
obviously doing fine. The fact that the minimum value for k starts at six millions (in the above example),
however, makes one wonder about the practical usefulness. The issue, here, resides in the “inacceptably
vague” statement in the proof of Lemma 4.1 to the effect that Johnson and Lindenstrauss chose a certain
constant (namely

√
2) resulting in the number 100 in Eq. (6). Choosing something other than

√
2 would

have perhaps yielded a value smaller than 100 in Eq. (6).

Later proofs (see e.g. [10]) contributed a few other fundamental concepts to the Johnson-Lindenstrauss
Lemma (JLL): (i) the notation k = dCε−2 ln(n)e, which makes the existence of coefficient C explicit,
without providing any hint about its value; (ii) the fact that the dimension m of the vectors in X need
not be equal to the number n of such vectors; (iii) an estimation of the probability of f to do what it’s
supposed to (a probability which tends to one with exponential speed, but where the exponential term
involves a “universal constant” c which we cannot really compute); (iv) a variety of simpler constructions
for f . Nowadays, we take f to be k × n matrices sampled from sub-Gaussian distributions, of which
the Gaussian distribution is one; but there are also nicer sub-Gaussian distributions, for example the
distribution which samples 1 or −1 with probability 1/6, and 0 with probability 2/3 [1], its subsequent
variants where Prob

(
1
)

= Prob
(
−1
)

= α/2 and Prob
(
0
)

= 1 − α [17], or the more comfortable sparse
normal matrices described in [8, §5.1].

The literature on the JLL is by now vast. In modern treatments (e.g. [28]), the JLL is presented as a
statement that has clear analogies with Thm. 3.1.

4.2 Theorem
Let X be a set of n points in Rm, ε > 0, and C, c be two universal constants. Then there exist an integer

k ≥ C
ε2 ln(n), and a k ×m matrix T sampled componentwise from a sub-Gaussian distribution with zero

mean and standard deviation 1√
k

, such that:

Prob [∀x, y ∈ X (1− ε)‖x− y‖2 ≤ ‖Tx− Ty‖2 ≤ (1 + ε)‖x− y‖2] ≥ 1− 2n(n+ 1)e−cε
2k. (7)

In the form of Thm. 4.2, the result says that any random sub-Gaussian matrix T is a good choice for the
f in the JLL (Lemma 4.1). The issue of determining the constant has been made a non-issue: the JLL
today is viewed as a principle more than a recipe for computation. It is up to the computer programmer

1This should not be misconstrued into a feeling that I lack respect for this result or either of its authors! I am only
lamenting my lack of imagination when reading creative proofs.



5 EPIPHANY AND COMMUNION 7

to find values for C, c that verify Eq. (7). Some attempts have been made in this sense, see e.g. [27].
Once you try sampling T you soon realize that values in the range [0.5, 2] seem to be fine, which lowers
the usefulness bar from “over one million” to “between 5, 000 and 20, 000”, a much more acceptable
threshold. If you want smaller thresholds, you can allow for higher errors, and raise that 1% to 10% or
even 20%. There are many more caveats in order to successfully use the JLL in practice (see e.g. [22,
§7.3.1]), but there is also considerable flexibility.

The vagueness of these probabilistic results turns out to be a blessing, albeit in disguise. It only cap-
tures a wealth of gauges which you can calibrate for your own uses. The trade-off of this flexibility is that
making theoretically valid choices for the universal constants is only possible if the specific mathematical
properties of the problem at hand allow it (moreover, you have to construct the theoretical arguments,
which takes time and skill). Otherwise, if you lack skill and time (like me), you can resort to informed
guessing aided by empirical tests.

There is one further safeguard against poor choices for C, c, k, and T in Thm. 4.2. The JLL is based
on the phenomenon of “concentration of measure” [20, 4], which ensures that a certain sampled function
has high probability of being close to its median value. As a consequence, the event of sampling a random
projector T that completely fails (i.e. it fails for most of all pairs x, y) to satisfy its expected property
that

∀x, y ∈ X (1− ε)‖x− y‖2 ≤ ‖Tx− Ty‖2 ≤ (1 + ε)‖x− y‖2 (8)

is going to be extremely rare. It may be the case that Eq. (8) fails to hold for a few pairs x, y, but it
will hold for most pairs. This may or may not be an issue, depending on the problem at hand. But in
most large-dimensional datasets, where the data are prone to be partly wrong and noisy, small failures
of Eq. (8) should not impair the usefulness of the dimensionally reduced vector set TX.

In summary, acceptable random projectors look more like hay in a haystack, than needles.

5 Epiphany and communion

I wrote in Sect. 3 that the bound in Assumption 2 in Thm. 3.1 is not tight. In choosing the n × d
encoding matrix Q, it would be great to decrease the ratio n/d, so that the resulting encoded vector
z = Qw is not excessively costly in terms of storage and bandwidth: after all, the noisy channel is likely
to be costly too, especially if it is a two-way communication link between Earth and a deep-space probe,
as in Matoušek and Gärtner’s example. But what sort of result can I invoke in order to reassure myself
that I am following, if not a theoretically proven recipe, at least a theoretically solid principle?

Let us go back to the formulation of P 1(A, b) in Eq. (3): the equation constraints Ax = b can be
equivalently written as

∑
j Ajxj = b, where j ≤ n indexes the column vectors Aj of A, and xj is the

j-th component of the decision variable vector x. We know that X = {A1, . . . , An, b} ⊂ Rm. If we
apply the JLL to X, we should obtain lower dimensional vectors TX = {TA1, . . . , TAn, T b} ⊂ Rk, with
k = O(ε−2 ln(n+1)). If m is large enough, we can hopefully concoct some universal constants, and choose
an appropriate ε, such that k � m (or at least k < m), and that the probability of Eq. (8) is still high.
But one question remains: will the corresponding LP P 1(TA, Tb) yield approximately the same optimal
value and optimal solutions as P 1(A, b), simply because the pairwise distances between the vectors in
TX are a good approximation of the corresponding distances in X?

This question was answered in the affirmative (vaguely, as usual in these types of results) in [29, 23].
This justifies, at least in principle, the application of the JLL to P 1(A, b), and its replacement with the
smaller-sized P 1(TA, Tb). Forward-thinking readers might make the following objection. Suppose you
are able to compute a tight lower bound for the number of rows m of A, for which Thm. 3.1 still held;
again, you would be confronted with an LP, and again you could apply the JLL to its columns in order
to make them shorter. Would this not negate the tightness of your bound for m and create a paradox?

The answer to this objection may reside in the observation that varying m in P 1(A, b) induces a phase



6 PARDONING MORE ERRORS 8

transition w.r.t. the truth value of Eq. (4) [2]. When m is at its empirical lower bound, decreasing m by a
few units will cause P 1(A, b) to produce completely dense solutions arbitrarily far from the original sparse
error vector, with sharply rising probability [2, Fig. 1]. I will venture to say that this is compatible with
the vague nature of the JLL, full of unknown constants and guessed ε’s. The JLL works in “areas” with
comfortably large neighbourhoods of variation tolerance. If you are on the edge of a phase transition, it
may well fail to apply. Supposing I were able to compute the universal constants exactly in the case of
compressed sensing (which I am not), and that I wanted to work with a tiny ε in order to carefully control
the risk of overstepping the phase transition threshold, the JLL would perhaps tell me that k would need
to be as large as m or even higher (due to the huge constant C/ε2, since the ln(n) term increases too
slowly to wreak such havoc).

But I have other weapons to deploy: for example, the fact that messages are strings of characters
rather than real vectors.

6 Pardoning more errors

We assume that all messages have been segmented into textual pieces of d characters (including the
spaces), that a redundancy factor R > 1 is given, and that a certain n × d matrix Q (with n = Rd) is
known to both sender and recipient. Every party also knows that the communication line has an error
rate ∆. Let us now look at the encoding and decoding algorithm.

Given a string µ such as “I am a string”, we have a function called string2bitlist which takes µ as
input and returns a binary vector w ∈ {0, 1}d as output, with d = 8|µ| This function works by expressing
the ASCII codes of the string characters into a base-2 representation. We assume that each ASCII code
is in the range {0, . . . , 255}, which means that each character takes 8 bits of binary storage to be encoded.
The vector w is then considered a real vector in Rd. The sender computes z = Qw ∈ Rn, which will be
sent over the ∆-noisy (and somewhat costly) communication line.

We remark that string2bitlist has an inverse function bitlist2string which takes a vector w ∈ {0, 1}d
(where d is an integer multiple of 8), splits w into d/8 contiguous sub-vectors in {0, 1}8, which are then
expressed in base 10 and interpreted as ASCII codes. The output of bitlist2string is the corresponding
string µ.

We make a few assumptions specific to the receiving end: the recipient has computed an m×n matrix
A where m = n − d and AQ = 0. Moreover, the recipient has implemented two functions: bσe, which
rounds the scalar σ to the nearest integer, and cap(σ, [L,U ]) = min(max(σ, L), U), which restricts σ to
lie in [L,U ]. The decoding algorithm works as follows:

1. receive z̄ on the noisy communication line;

2. compute b = Az̄;

3. solve P 1(A, b) and obtain the optimal solution x′;

4. compute z′ = z̄ − x′;
5. compute w′ = cap(b((Q>Q)−1Q>z′)e, [0, 1]);

6. return µ′ = bitlist2string(w′).

We also want to evaluate the difference between the decoded message µ′ and the original message µ. We
therefore also compute µerr = dist(µ, µ′) for some “distance function” dist (for example the number of
different characters). We remark that, at Step 3, we know that if the assumptions of Thm. 3.1 hold,
then the solution of P 1(A, b) will be unique and a good approximation of the communication error vector
x̄ = z − z′ (which has density ∆, and support size b∆ne).

The rounding and capping operation at Step 5 is extremely forgiving to errors, in the sense that even
if the number m of rows in A is smaller than required by Eq. (2), resulting in x′ being dense, after the



7 THE OUTCOME 9

rounding and capping operation in Step 5 every component of x′ in (−∞, 0.5] will have been set to zero
(with every other component being set to one). Note that we started from binary vectors, so no undue
trick is being played. We exposed our sent vector z to a lot more noise than was being logically necessary
by embedding it in a real vector space; and now we are reducing that noise in the most common-sense
possible way. This might allow us to guess the universal constants C, c of Thm. 4.2 carelessly, and set ε
to a very tolerant 20%, and still be able to decode messages correctly. Moreover, if we are sending plain
text in natural language, which comes with its own redundancy, we might even be able to tolerate some
errors and still understand the message.

7 The outcome

I set up my code with R = 4, ∆ = 0.08 (in accordance with [24]), so it could solve P 1(A, b) as well as
P 1(TA, Tb) where T is a sparse (1, 0,−1) sub-Gaussian random projector with density α = 0.02 (see
page 6) and tolerance ε = 0.2. I used the following algorithm in order to generate appropriately sized
matrices A,Q such that AQ = 0:

1. sample an n×n matrix M componentwise from a uniform distribution (e.g. on [−1, 1]): M will have
full rank with probability 1 (since the probability that there should be fortuitous linear relations is
proportional to the volume occupied by a subspace in the full space: zero);

2. find an eigenvector matrix of M>M : this provides an orthonormal basis of Rn;

3. concatenate d (column) eigenvectors to make Q;

4. stack m = n− d (row) eigenvectors to make A.

Clearly, AQ = 0 by construction, since (Q,A>) is an orthonormal n × n matrix. The corresponding
implementation is fast, since there are robust and efficient implementations of pseudorandom sampling
and spectral decomposition.

I then simulated the noisy message encoding and decoding for various initial segments of the beginning
of Virgil’s Æneid ’s second canto:

Conticuere omnes intentique ora tenebant
inde toro pater Æneas sic orsus ab alto:
“Infandum, regina, iubes renovare dolorem:
Troianas ut opes et lamentabile regnum
eruerint Danai, quæquæ ipse miserrima vidi,
et quorum pars magna fui. Quis talia fando,
Myrmidonum Dolopumve, aut duri miles Ulixi
temperet a lacrymis? Et iam nox humida cælo
præcipitat, suadentque cadentia sidera somnos.
Sed si tantus amor casus cognoscere nostros,
et breviter Troiæ supremum audire laborem,
quamquam animus meminisse horret luctuque refugit,
incipiam.”

The computational results of these tests have been reported in Table 1, where I reported the size
(d and n) of each tested instance, the error between original and decoded messages for the original LP
P 1(A, b) (µorg

err ) and the projected LP P 1(TA, Tb) (µprj
err), with the corresponding CPU times. Evidently,

the redundancy ratio R = 4 for an error rate ∆ = 0.08 (used in [24]) is overkill for computation, which
is always successful even with the projected LP. Since P 1(TA, Tb) has fewer constraints than P 1(A, b),
it takes much less time to solve (see Fig. 1).



8 AIMING FOR THE IMPOSSIBLE 10

d n µorg
err µprj

err CPUorg CPUprj

80 320 0 0 1.05 0.56
128 512 0 0 2.72 1.10
216 864 0 0 8.83 2.12
248 992 0 0 12.53 2.53
320 1280 0 0 23.70 3.35
408 1632 0 0 43.80 4.75

Table 1: Comparison of accuracy and CPU times taken to solve P 1(A, b) and P 1(TA, Tb). Each line
refers to a single run over the corresponding instance.

Figure 1: CPU time for original and projected LP.

8 Aiming for the impossible

If you think about it, a redundancy R = 4 for an error rate ∆ = 0.08 is just excessive. I told myself that
a good communication line should work with a redundancy R that should be more or less 1 + ∆. So then
n = (1 + ∆)d. In particular, n and d would be very close (say d = O(n)), which would in turn make A
very short and fat: specifically, the number m of rows of A would be n − d, which would be very close
to zero. On the other hand, Thm. 3.1 requires m to be “large enough”. As we have seen before, “almost
zero” can be “large enough” if all sizes involved are enormous. But I wanted this protocol to work with
small sizes too, which means that, in practice, m would need to be O(n). So m needs to be both “close
to zero” and “almost n”, clearly an impossible feat.

I decided to drop the first condition: let us make m “sizable” with respect to n, say O(n). Now the
orthogonality condition AQ = 0 implies that every one of the O(n) rows of A should be orthogonal to
every one of the O(n) columns of Q. This requires finding around 2n orthogonal vectors in Rn, which is,
again, impossible. Given the vagueness of the results leading to my idea, I thought it worthwhile to ask
what one can obtain by relaxing “orthogonality” to “near-orthogonality”.

As it happens, one can obtain quite a lot. Another way of seeing the JLL is that Rn can contain
exponentially many almost orthogonal vectors. This follows from two corollaries of the JLL.

8.1 Corollary
Let X be a set of n points in Rm, ε > 0, and C, c be two universal constants. Then there exist k ≥ C

ε2 ln(n)
and a k × m matrix T sampled componentwise from a sub-Gaussian distribution with zero mean and



8 AIMING FOR THE IMPOSSIBLE 11

standard deviation 1√
k

, such that:

Prob
[
∀x, y ∈ X |〈Tx, Ty〉 − 〈x, y〉| ≤ ε

2
(‖x‖22 + ‖y‖22)

]
≥ 1− 4e−c(ε

2−ε3)k.

8.2 Corollary
Let k ∈ N, ε > 0, C ′, c be two universal constants, and n = de ε2

C′ ke. Then

Prob [|〈Tei, T ej〉| ≤ ε] ≥ 1− 4e−c(ε
2−ε3)k.

The first corollary says that if Euclidean distances are almost preserved, then vector angles are also almost
preserved (it makes sense, as preserving distances leads to a congruence, which also preserves angles).
The second corollary follows from the first corollary when it is applied to X = {e1, . . . , en} = Bn, the

standard basis of Rn, such that the constant C ′ ≤ C is chosen in a way that yields k = dC
′

ε2 ln(n)e in the
first corollary: then the second corollary says that there is sufficient space in Rk to host O(ek) almost
orthogonal vectors. Then the same will hold for n by symbolic replacement.

The issue is now to see whether “almost orthogonality” is as good as orthogonality for the decoding
process. After all, the last step of Eq. (2) states (AQ)w+Ax = Ax because AQ = 0. What if ‖AQ‖ ≤ ε
for some small ε instead? A few tests with the almost orthogonal vectors that can be produced using
TB2n with an n× 2n random projector T led to disappointing results.

There is one further murky corner where I could try and scrape some more advantage for my impossible
method: all I need, in order to decode z̄ at least approximately, is that:

• A is an m × n matrix sampled componentwise from N(0, 1) (A will be used to solve P 1(TA, Tb),
where n = b(1 + ∆)me and T is a k ×m random projector);

• Q is an n×m matrix with AQ ≈ 0: in other words, requiring that all the columns of Q should be
orthogonal is overkill.

I therefore formulated a LP in order to decide the components of Q. For every ` ≤ m let q` ∈ Rn be
the `-th column of Q. Then for each ` ≤ m I need to decide q` so that: (a) Q = (q` | ` ≤ m) has full
rank, and (b) Aq` ≈ 0. I attempted to enforce (a) by optimizing a random objective function, and (b)
by imposing the linear constraints Aq` = 0. The following LP (Eq. 9) must be solved m times (each time
with different random cost coefficients): the `-th solution q` must be stored in the corresponding column
of Q (for ` ≤ m).

max
q`∈[−1,1]n

∑
j≤n

Uniform(−1, 1)q`j

∀i ≤ m
∑
j≤n

Aijq`j = 0.

 (9)

Eq. (9) can be solved with any algorithm for LP. In my experiments, I used the interior point method
without crossing over to the simplex algorithm at the end, since I only needed feasible solutions.

Let me add that solving these LPs in order to create Q can take a considerable CPU time: definitely
more than solving P 1(A, b). But these matrices can be pre-computed for given sizes, and shared before
communications occur. So I have not taken these CPU times into account in my tests.

I was expecting Eq. (9) to lead to the inevitable trivial solution Q = 0 (which negates the requirement
of Q having full rank), and was prepared to increase the feasibility tolerances of the CPLEX solver I
was using [15]. Instead, CPLEX provided me with a magnificent matrix Q with full rank, and such that
AQ = 0 with precision O(10−10). When I fine-tuned my rank evaluation code with sufficiently small
numerical tolerances I discovered a rank deficiency, which was not acceptable since I would need Q>Q
to be truly invertible for pseudoinverse purposes. So I switched Q with A in my process: I sampled Q
randomly, obtaining a full rank Q with probability 1, and then applied Eq. (9) to the rows of A instead.



9 CONCLUSION 12

A would not be a normally sampled matrix satisfying the assumption of Thm. (3.1), but I hoped that
the non-necessary nature of that theorem (which only lists sufficient conditions to its conclusion) would
allow my A, almost orthogonal to a random matrix, to do the trick nonetheless.

The results of my experiments are in Table 2: on top of reporting the error measures for the accuracy
of the two methods (original and projected LP) and the CPU times, I have also tried different values of
∆.

m n ∆′ µorg
err µprj

err CPUorg CPUprj

328 426 0.3 182 15 2.45 1.87
328 426 0.3 154 0 2.20 1.49
328 459 0.4 0 1 4.47 2.45
328 459 0.4 5 17 2.86 1.46
328 492 0.5 60 0 4.53 1.18
328 492 0.5 34 0 5.38 1.18
328 590 0.8 14 0 8.30 1.41
328 590 0.8 107 4 6.76 1.43

1896 2465 0.3 0 2 29.67 17.13

Table 2: Comparison of accuracy and CPU time taken to solve P 1(A, b) and P 1(TA, Tb) with the
impossible choice of A. Each instance was solved twice, and the results reported for each of the two runs
(black and grey entries).

Table 2 tells an exhilarating and disturbing story. In most cases, solving the original LP P 1(A, b) leads
to Thm. 3.1 failing, as can be ascertained from the high values of the error µorg

err . Solving the projected LP
P 1(TA, Tb), however, sometimes just does the trick. It is exhilarating to think that using one theorem
wrongly is bad, but that using two of them wrongly is fine. It is even more satisfying to think that
I am exploiting a redundancy ratio as small as the error ratio, and managing to reconstruct messages
“reasonably well”. On the other hand, it is disturbing to think that, in order to achieve these results,
I have misused Thm. 3.1, Thm. 4.2, basic linear algebra, and the LP machinery in ways that I really
should not have done: eppur si muove.

9 Conclusion

The lack of a formal (if vague) theoretical justification for the apparent success of my impossible method
for decoding messages is part of the reason why this paper is written with an unusual style. Signal
processing engineers, however, had used P 1(A, b) instead of P 0(A, b) for years, before a theory was
constructed. So I am not despairing that one day someone will find a reason why this impossible method
works.

10 Acknoledgements

I am grateful to two anonymous referees for helping to improve this paper.

References

[1] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins.
Journal of Computer and System Sciences, 66:671–687, 2003.



REFERENCES 13

[2] D. Amelunxen, M. Lotz, M. McCoy, and J. Tropp. Living on the edge: phase transitions in convex
programs with random data. Information and Inference: A Journal of the IMA, 3:224–294, 2014.

[3] R. Arriaga and S. Vempala. An algorithmic theory of learning: Robust concepts and random
projection. Machine Learning, 63:161–182, 2006.

[4] A. Barvinok. Math 710: Measure Concentration, 2005. Class notes.

[5] E. Candès. The mathematics of sparsity. In S.Y. Jang, Y.R. Kim, D.-W. Lee, and I. Yie, editors,
Proceedings of the International Congress of Mathematicians, volume I. Kyung Moon SA, Seoul,
2014.

[6] E. Candès and T. Tao. Decoding by Linear Programming. IEEE Transactions on Information
Theory, 51(12):4203–4215, 2005.

[7] E. Candès and T. Tao. Reflections on compressed sensing. IEEE Information Theory Society
Newsletter, 58(4):14–17, 2008.

[8] C. D’Ambrosio, L. Liberti, P.-L. Poirion, and K. Vu. Random projections for quadratic programs.
Mathematical Programming B, 183:619–647, 2020.

[9] S. Damelin and W. Miller. The mathematics of signal processing. CUP, Cambridge, 2012.

[10] S. Dasgupta and A. Gupta. An elementary proof of a theorem by Johnson and Lindenstrauss.
Random Structures and Algorithms, 22:60–65, 2002.

[11] P. Delsarte. Bounds for unrestricted codes by linear programming. Philips Research Reports, 27:272–
289, 1972.

[12] P. Delsarte, J.M. Goethals, and J.J. Seidel. Spherical codes and designs. Geometriæ Dedicata,
6:363–388, 1977.

[13] S. Dirksen. Dimensionality reduction with subgaussian matrices: A unified theory. Foundations of
Computational Mathematics, 16:1367–1396, 2016.

[14] M. Garey and D. Johnson. Computers and Intractability: a Guide to the Theory of NP-Completeness.
Freeman and Company, New York, 1979.

[15] IBM. ILOG CPLEX 12.8 User’s Manual. IBM, 2017.

[16] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In G. Hed-
lund, editor, Conference in Modern Analysis and Probability, volume 26 of Contemporary Mathe-
matics, pages 189–206, Providence, RI, 1984. AMS.

[17] D. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. Journal of the ACM, 61(1):4,
2014.

[18] A. Khintchine. Über dyadische brüche. Mathematische Zeitschrift, 18(1):109–116, 1923.

[19] K. Kunen. Set Theory. An Introduction to Independence Proofs. North Holland, Amsterdam, 1980.

[20] M. Ledoux. The concentration of measure phenomenon. Number 89 in Mathematical Surveys and
Monographs. AMS, Providence, RI, 2005.

[21] L. Liberti. Mathematical programming bounds for kissing numbers. In A. Sforza and C. Sterle,
editors, Optimization and Decision Science: Methodologies and Applications (AIRO-ODS17), volume
217 of Proceedings in Mathematics and Statistics, pages 213–222, New York, 2017. Springer.

[22] L. Liberti. Distance geometry and data science. TOP, 28:271–339, 220.

[23] L. Liberti, P.-L. Poirion, and K. Vu. Random projections for conic programs. Linear Algebra and
its Applications, 626:204–220, 2021.



REFERENCES 14

[24] J. Matoušek and B. Gärtner. Understanding and using Linear Programming. Springer, Berlin, 2007.

[25] A. Moitra. Algorithmic aspects of Machine Learning. CUP, Cambridge, 2018.

[26] J.-L. Starck, M. Elad, and D. Donoho. Image decomposition via the combination of sparse repre-
sentations and a variational approach. IEEE Transactions on Image Processing, 14(10):1570–1582,
2005.

[27] S. Venkatasubramanian and Q. Wang. The Johnson-Lindenstrauss transform: An empirical study.
In Algorithm Engineering and Experiments, volume 13 of ALENEX, pages 164–173, Providence, RI,
2011. SIAM.

[28] R. Vershynin. High-dimensional probability. CUP, Cambridge, 2018.

[29] K. Vu, P.-L. Poirion, and L. Liberti. Random projections for linear programming. Mathematics of
Operations Research, 43(4):1051–1071, 2018.


