

Optimization for Sustainable Development

Leo Liberti

LIX, École Polytechnique, France

Definitions

- A paradigm
- A philosophy

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms
- A moral obligation for all humans

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms
- A moral obligation for all humans
- Producing with low CO₂ emissions

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms
- A moral obligation for all humans
- Producing with low CO₂ emissions
- Only relying on "clean energy"

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms
- A moral obligation for all humans
- Producing with low CO₂ emissions
- Only relying on "clean energy"
- Recycling waste

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms
- A moral obligation for all humans
- Producing with low CO₂ emissions
- Only relying on "clean energy"
- Recycling waste
- Using public/clean transportation instead of private cars

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms
- A moral obligation for all humans
- Producing with low CO₂ emissions
- Only relying on "clean energy"
- Recycling waste
- Using public/clean transportation instead of private cars
- Making sure hazardous material transportation is equitable

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms
- A moral obligation for all humans
- Producing with low CO₂ emissions
- Only relying on "clean energy"
- Recycling waste
- Using public/clean transportation instead of private cars
- Making sure hazardous material transportation is equitable
- Development that can last forever

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms
- A moral obligation for all humans
- Producing with low CO₂ emissions
- Only relying on "clean energy"
- Recycling waste
- Using public/clean transportation instead of private cars
- Making sure hazardous material transportation is equitable
- Development that can last forever
- "Décroissance"

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms
- A moral obligation for all humans
- Producing with low CO₂ emissions
- Only relying on "clean energy"
- Recycling waste
- Using public/clean transportation instead of private cars
- Making sure hazardous material transportation is equitable
- Development that can last forever
- "Décroissance"
- Making sure the earth can survive

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms
- A moral obligation for all humans
- Producing with low CO₂ emissions
- Only relying on "clean energy"
- Recycling waste
- Using public/clean transportation instead of private cars
- Making sure hazardous material transportation is equitable
- Development that can last forever
- "Décroissance"
- Making sure the earth can survive
- Preservation of biodiversity

- A paradigm
- A philosophy
- A set of laws and regulations for manufacturing firms
- A moral obligation for all humans
- Producing with low CO₂ emissions
- Only relying on "clean energy"
- Recycling waste
- Using public/clean transportation instead of private cars
- Making sure hazardous material transportation is equitable
- Development that can last forever
- "Décroissance"
- Making sure the earth can survive
- Preservation of biodiversity
- Helping Africa

The honest definition

Optimization for Sustainable Development

Set of applications of optimization techniques which also concern the environment

Scheduling nuclear plant outages

Decide when to shut down nuclear plants subject to technical and demand constraints

Smart buildings

Buildings regulate their temperatures based on climate and smart energy usage Population-based optimization, evaluate fitness using *EnergyPlus* simulation manager

Concentrator placement

Smart grids \Rightarrow smart meters \Rightarrow concentrators Where do we place them? Several technical constraints

Cost of equitability

Hazmat transportation regulations often share the risk equitably among different administrative regions: this may cost lives

Multifeature shortest paths

Changing vehicles, optimizing time and CO₂ emissions, passing through given spots: **used in road network routing devices**

A more precise definition

Sustainability in time

No single definition

How do we propose to use optimization techniques for something that cannot even be defined precisely?

Focus on one aspect

"Development that can last forever"

"Development": working definition

We define "development" as a set of processes that transform input into output

- Input/output can be: mass, energy, information, work, time, value...
- These processes can sometimes be decomposed into complex networks of inter-related processes
- Conversely, processes can be combined to form networks

Transformation

• π_v^{hk} : quantity of k yielded per unit of h transformed by v

 \checkmark ω_v^k : amount of k stored at v

Unsustainability

Plant 1 draws products **1,2** from inputs 2,3,4,5, transforms **1,2** into 1 unit of **3** and 1 unit of **4**, pushed to outputs 6,7,8,9

Decide flows on arcs

Plant 1 draws products **1,2** from inputs 2,3,4,5, transforms **1,2** into 1 unit of **3** and 1 unit of **4**, pushed to outputs 6,7,8,9

Feasible solution with 8 units of flow

Why is it unsustainable?

- Above solution is feasible
- Plant transforms <u>one unit of 1,2</u> into <u>1 unit of 3</u> and
 <u>1 unit of 4</u>
- Input flow of 4 units of 1,2 produces eight units of 3,4
- Only <u>four</u> units of 3,4 arrive at nodes 6,7,8,9
- Four units wasted at plant
- We would like the model to warn us about this!

Sustainability

Sustainable development:

a process network ${\cal G}=(V,A)$ where

transformed flow is conserved

Forces to take into account every by-product of transformation process

Flow conservation

For $v \in V$ let $N^-(v) = \{u \in V \mid (u, v) \in A\}$ and $N^+(v) = \{u \in V \mid (v, u) \in A\}$

Solution f **ordinary flow** f:

$$\forall v \in V \quad \sum_{u \in N^-(v)} f_{uv} - \sum_{u \in N^+(v)} f_{vu} = \omega_v$$

Sources Conservation of multicommodity flow f^k :

$$\forall v \in V, k \in K \quad \sum_{u \in N^-(v)} f_{uv}^k - \sum_{u \in N^+(v)} f_{vu}^k = \omega_v^k$$

Conservation of transformation flow (transflow) f^k :

$$\forall v \in V, k \in K \sum_{h \in K} \pi_v^{hk} \left(\omega_v^h + \sum_{u \in N^-(v)} f_{uv}^h \right) - \sum_{u \in N^+(v)} f_{vu}^k = \omega_v^k$$

Transflow properties

No process can create something from nothing:

$$\forall v \in V, k \in K \quad \pi_v^{kk} \le 1$$

No process cycle can create something from nothing:

$$\forall m \in \mathbb{N}, (k_i \mid i \leq m) \in K^m, (v_i \mid i \leq m) \in V^m$$
$$(v_1 = v_m \land \{(v_i, v_{i+1}) \mid i < m\} \subseteq A \rightarrow$$
$$\pi_{v_1}^{k_1 k_2} \cdots \pi_{v_m}^{k_m k_1} \leq 1)$$

Processes cannot destroy without transforming

$$\forall v \in V, k, h \in K \quad (\pi_v^{kh} \ge 0)$$

Transflow bounds

Taking into account budget and limit constraints

Limit constraints: no process v can exceed its given transformation limit λ_v^k

$$\forall v \in V, k \in K \quad \omega_v^k + \sum_{u \in N^-(v)} f_{uv}^k \le \lambda_v^k$$

Budget constraints: transformation costs for commodity k at process node v are bounded above by budget B_v^k

$$\forall v \in V, k \in K \quad \gamma_v^k \left(\omega_v^k + \sum_{u \in N^-(v)} f_{uv}^k \right) \le B_v^k$$

Often consider aggregated versions of these constraints

The simple transformation plant example yields an infeasible instance

```
presolve, variable f[2,1,2]:
impossible deduced bounds: lower = 0, upper = -2
presolve, variable f[4,1,1]:
impossible deduced bounds: lower = 0, upper = -2
presolve, variable f[4,1,1]:
impossible deduced bounds: lower = 0, upper = -2
presolve, variable f[4,1,1]:
impossible deduced bounds: lower = 0, upper = -2
Infeasible constraints determined by presolve.
```

Model itself tells us it's wrong!

Percentages

A different interpretation

• $\pi_v^{hk} = 1, \pi_v^{h\ell} = 1$:

1 unit of h is transformed into π_v^{hk} units of $k \text{ and } \pi_v^{h\ell}$ units of ℓ

- **Example:** 1 coal \rightarrow 0.05 tar + 0.015 benzol + 500 methane
- Model inappropriate for some transformation processes
- Example: 50% of milk is pasteurised, 20% is transformed into cheese, 20% into butter and 10% is sold to other industries
- Decide percentages and flows to optimize process

Formulation

- **Decision variables** p_v^{hk} : percentage of h to be transformed into k at v
- Transflow conservation equations:

$$\forall v \in V, k \in K \sum_{h \in K} \pi_v^{hk} p_v^{hk} \left(\omega_v^h + \sum_{u \in N^-(v)} f_{uv}^h \right) - \sum_{u \in N^+(v)} f_{vu}^k = \omega_v^k$$

Interpretation : π no longer parameters but decision variables

Simple plant example

All 1 is transformed into 3, all 2 into 4: sustainable

Nonlinearity

- \checkmark p, f, ω are decision variables
- Transflow conservation equations are <u>bilinear</u> (contain products $p\omega$, pf)
- Need a nonconvex NLP solver
- To find guaranteed global optima, need sBB (see PMA course)
- **For example**, COUENNE **solver**

- Exact linearization: reformulation MINLP→MILP s.t. GlobOpt(MINLP) = GlobOpt(MILP)
- Aim: transform a nonconvex bilinear NLP into an LP
- Can use very efficient LP methods (simplex / interior point algorithm)
- In practice, can use CPLEX

Define new variables x (quantity of commodity in process)

$$\forall v \in V, k \in K \quad x_v^k = \omega_v^k + \sum_{u \in N^-(v)} f_{uv}^k$$

Define new variables z (q.ty of comm. to be transformed into another comm.)

$$\forall v \in V, h, k \in K \quad z_v^{hk} = p_v^{hk} x_v^h \tag{1}$$

■ Linearization of Eq. (1): multiply $\forall v \in V, h \in H$ $\sum_{k \in K} p_v^{hk} = 1$ by x_v^h , get

$$\forall v \in V, h \in H \quad \sum_{k \in K} z_v^{hk} = x_v^h$$

Transflow conservation equations become:

$$\forall v \in V, k \in H \quad \sum_{h \in K} \pi_v^{hk} z_v^{hk} = \omega_v^k + \sum_{v \in N^+(v)} f_{uv}^k$$

Thm.

The linearization is exact

Thm.

The linearization is exact

Proof

Let (f', ω', x', z') be a solution of the LP. For all $v \in V, h, k \in K$ such that $x_v^h > 0$ we define $p_v^{hk} = \frac{z_v^{hk}}{x_v^h}$. If $x_v^h = 0$, we define $p_v^{hk} = 0$. In either case, the bilinear relation $z_v^{hk} = p_v^{hk} x_v^h$ is satisfied. This implies that the bilinear version of the transflow conservation equations hold.

Multiple input processes

Motivation

- Real transformation often require more types of input which transform as a whole
- Example: transformation of methane (mass only) $1 \text{ CH}_4 + 2 \text{ O}_2 \longrightarrow 1 \text{ CO}_2 + 2 \text{ H}_2\text{O}$
- π_v^{hk} makes no sense (*h*, *k* should be sets of products)
- Percentages p_v^{hk} are given
- Flow is aggregated

Multiple inputs

- A multiple input transformation process is a quadruplet $H = (H^-, H^+, p^-, p^+)$ with:
 - $H^-, H^+ \subseteq K$
 - $p^-: H^- \to \mathbb{R}_+, p^+: H^+ \to \mathbb{R}_+$
- Example:
 - $H^- = \{ CH_4, O_2 \}, H^+ = \{ CO_2, H_2O \}$

•
$$p^- = (1, 2), p^+ = (1, 2)$$

• Multiple input transflow conservation: let $H = (H^-, H^+, p^-, p^+)$,

$$\forall v \in V, H \in \mathcal{H}_v \qquad \sum_{k \in H^-} p_k^- x_v^k = \sum_{k \in H^+} p_k^+ y_v^k$$

Chemical balances

Motivation

- Chemical reactions also produce energy
- Chemical formula:

 $1 \text{ CH}_4 + 2 \text{ O}_2 \longrightarrow 1 \text{ CO}_2 + 2 \text{ H}_2\text{O} + 891 \text{ kJ}$

Equation

$$\mathsf{CH}_4 + 2\mathsf{O}_2 = \mathsf{CO}_2 + 2\mathsf{H}_2\mathsf{O} + 891\mathsf{kJ}$$

makes no sense

- Can't mix molar equations with energy balances
- Think of transformation engendering a new source of kJ at plant node
- Can also engender a new target (absorption of energy)

Chemical transflows

Example:

•
$$H^- = \{ CH_4, O_2 \}, H^+ = \{ CO_2, H_2O \}$$

• $J^- = \emptyset, J^+ = \{ kJ \}$
• $p^- = (1, 2), p^+ = (1, 2)$
• $q^- = (), q^+ = (891)$

New sources and targets

- Product $k \in J_v^+$ originates from a transformation at v
- Define a new source:

$$q_k^+ \omega_v^k = \sum_{u \in N^+(v)} f_{vu}^k$$

- ▶ Product $k \in J_v^-$ is absorbed by a transformation at v
- Define a new target:

$$q_k^- \omega_v^k = \sum_{u \in N^-(v)} f_{uv}^k$$

Ratios

• $1 CH_4 + 2 O_2 \rightarrow 1 CO_2 + 2 H_2O + 891 kJ$ also implies:

- $\frac{\text{oxygen}}{2} = \text{methane}$
- carbon dioxide = methane

•
$$\frac{\text{water}}{2} = \text{methane}$$

•
$$\frac{\text{energy}}{891} = \text{methane}$$

Enforce these as equations in the model

Formulation

• Let
$$H = (H^-, H^+, p^-, p^+, J^-, J^+, q^-, q^+)$$
, and $\bar{h} \in H^-$

Chemical transflow conservation:

$$\begin{aligned} \forall v \in V, H \in \mathcal{H}_{v} \qquad \sum_{k \in H^{-}} p_{k}^{-} x_{v}^{k} &= \sum_{k \in H^{+}} p_{k}^{+} y_{v}^{k} \\ \forall v \in V, H \in \mathcal{H}_{v}, k \in J^{-} \qquad q_{k}^{-} \omega_{v}^{k} &= \sum_{u \in N^{-}(v)} f_{uv}^{k} \\ \forall v \in V, H \in \mathcal{H}_{v}, k \in J^{+} \qquad q_{k}^{+} \omega_{v}^{k} &= \sum_{u \in N^{+}(v)} f_{vu}^{k} \\ \forall v \in V, H \in \mathcal{H}_{v}, k \in H^{-}(v) \smallsetminus \bar{h} \qquad x_{v}^{k} / p_{\bar{k}}^{-} &= x_{v}^{\bar{h}} / p_{\bar{h}}^{-} \\ \forall v \in V, H \in \mathcal{H}_{v}, k \in H^{+}(v) \qquad y_{v}^{k} / p_{k}^{+} &= x_{v}^{\bar{h}} / p_{\bar{h}}^{-} \\ \forall v \in V, H \in \mathcal{H}_{v}, k \in J^{-} \qquad \omega_{v}^{k} &= x_{v}^{\bar{h}} / p_{\bar{h}}^{-} \\ \forall v \in V, H \in \mathcal{H}_{v}, k \in J^{+} \qquad \omega_{v}^{k} &= x_{v}^{\bar{h}} / p_{\bar{h}}^{-} \end{aligned}$$

Near sustainability

Dealing with infeasibility

- Sometimes there is no feasible "purely sustainable" plan
- Solution: add bounded slacks to each equation

$$F(x) = 0 \longrightarrow F(x) = \epsilon_F$$

$$\epsilon_F^L \leq \epsilon_F \leq \epsilon_F^U$$

- ϵ is a decision variable
- Can also minimize:

•
$$\sum_{F} \epsilon_{F}^{2}$$
,

•
$$\sum_F |\epsilon_F|$$
,

• $\max_F |\epsilon_F|$

Application to biomass production

Transform crops into energy

Route materials and energy optimally through this processing network

- Crop stocks (provide raw materials to transform into energy)
- energy demand points (processed energy must be routed to these points)
- Itransformation plants (transform fixed proportions of materials into other materials/energy)

A multi-commodity network

- Crops (■), demand points (●), plants (☞) are all nodes
 V =set of nodes
- Arcs between nodes represent transportation lines
 A = set of arcs
- Materials and energy begin routed in the network are commodities H = set of commodities
- Other sets:
 - $H^{-}(v) =$ set of commodities that can enter node v
 - $H^+(v) =$ set of commodities that can exit node v
 - V_0 =set of nodes corresponding to plants

Node parameters

- $c_{vk} : cost of supplying node v with a unit of commodity k$
- C_{vk} : storage capacity for commodity k at node v
- d_{vk} : demand for commodity k at node v

Arc parameters

- τ_{uvk} : cost of transporting a unit of commodity k along arc (u, v)
- T_{uvk} : maximum amount of units of commodity k that can be transported across arc (u, v)

Transformation parameters

- λ_{vkh} : cost of transforming a unit of k into h at v
- π_{vkh} : quantity of h yielded per unit of k transformed at v

$$\frac{v}{\text{unit of }k} > \frac{\text{process}}{\pi_{vkh} \text{ units of }h} >$$

Decision variables

- $x_{vk} =$ quantity of commodity k at vertex v $\forall v \in V, k \in H$ $d_{vk} \leq x_{vk} \leq C_{vk}$
- y_{uvk} =quantity of commodity k on arc (u, v) ∀(u, v) ∈ A, k ∈ H 0 ≤ y_{uvk} ≤ T_{uvk}
- z_{vkh} =quantity of commodity k processed into commodity h at vertex v $\forall v \in V, k \in H^{-}(v), h \in H^{+}(v) \quad z_{vkh} \ge 0$
- ✓ For generality, all variables are indexed over all nodes, but not all apply (if not, fix them to 0)
 E.g. $x_{vk} = 0$ when $k \notin H^-(v) \cup H^+(v)$

Objective function

Cost of supplying vertices with commodities:

$$\gamma_1 = \sum_{k \in H} \sum_{v \in V} c_{vk} x_{vk};$$

ÉCOLE

$$\gamma_2 = \sum_{k \in H} \sum_{(u,v) \in A} \tau_{uvk} y_{uvk}$$

$$\gamma_3 = \sum_{v \in V} \sum_{k \in H^-(v)} \sum_{h \in H^+(v)} \lambda_{vkh} z_{vkh}$$

Constraints

Composition of out-commodity

$$\forall v \in V, h \in H^+(v) \quad \sum_{k \in H^-(v)} \pi_{vkh} z_{vkh} = x_{vh}$$

In-commodity limit

$$\forall v \in V, k \in H^{-}(v) \quad \sum_{h \in H^{+}(v)} z_{vkh} \le x_{vk}$$

In- and out-commodity consistency

$$\forall v \in V, k \in H^{-}(v) \qquad \sum_{(u,v)\in A} y_{uvk} = x_{vk}$$
$$\forall v \in V, h \in H^{+}(v) \qquad \sum_{(v,u)\in A} y_{vuh} = x_{vh}$$

Sustainable routing

Recycling

- Plants produce waste when processing
- Waste from a given plant could be input to another type of plant
- If this holds for every type of waste, we have a closed (sustainable) system
- Also: negative cost c_{vk} < 0 where k is "waste" turning waste into energy derives profit from sales and servicing waste
- Flow conservation
 - Mass balance / flow conservation does not hold at plant nodes (i.e. those with $H^-(v) \neq H^+(v)$)

Planning the network construction

Network construction

• Types of plant: P(v) =set of plant types that can be installed at node v

Parameters:

- $\lambda_{vkhp} = \text{cost of using plant } p \in P(v)$ to transform a unit of k into h at v
- $\pi_{vkhp} =$ yield of *h* using plant *p* as percentage of *k* at *v*
- Decision variables:

$$w_{vp} = \begin{cases} 1 & \text{if plant } p \text{ is installed at vertex } v \\ 0 & \text{otherwise} \end{cases}$$

Formulation changes:

- Replace λ_{vkh} by $\sum_{p \in P(v)} \lambda_{vkhp} w_{vp}$
- Replace π_{vkh} by $\sum_{p \in P(v)} \pi_{vkhp} w_{vp}$

MINLP formulation

Processing costs:

$$\gamma_3 = \sum_{v \in V} \sum_{k \in H^-(v)} \sum_{h \in H^+(v)} \left(\sum_{p \in P(v)} \lambda_{vkhp} w_{vp} \right) z_{vkh}$$

Composition of out-commodity:

$$\forall v \in V, h \in H^+(v) \quad \sum_{k \in H^-(v)} \left(\sum_{p \in P(v)} \pi_{vkhp} w_{vp} \right) z_{vkh} = x_{vh}$$

Assignment consistency:

$$\forall v \in V_0 \quad \sum_{p \in P(v)} w_{vp} \leq 1$$
$$\forall v \in V \smallsetminus V_0 \quad \sum_{p \in P(v)} w_{vp} = 0$$

Citations

- 1. Bruglieri, Liberti, *Optimal running and planning of a biomass-based energy production process*, Energy Policy 2008
- 2. Bruglieri, Liberti, *Optimally running a biomass-based energy production process*, in Kallrath et al. (eds.), Optimization in the Energy Industry, 2009

The cost of risk equitability in hazardous material transportation

Transportation network

- Digraph G = (V, A)
- $\forall v \in V \quad N^+(v) = \{ u \in V \mid (v, u) \in A \}$
- $\forall v \in V \quad N^-(v) = \{ u \in V \mid (u,v) \in A \}$
- Arc weights:
 - $\ell: A \to \mathbb{R}_+$ (lengths, travelling time or traversal cost)
 - $C: A \to \mathbb{R}_+$ (arc capacity)

Commodities and zones

Commodities:

- Set $K = \{1, \ldots, K_{max}\}$ of commodity indices
- Map $s: K \to V$ of source nodes for each commodity
- Map $t: K \to V$ of target nodes for each commodity
- Map $d: K \to \mathbb{R}$ of target demand for each commodity
- *Administrative zones*:
 - Set $Z = \{1, \ldots, Z_{max}\}$ of zones
 - Set $\zeta : Z \to \mathcal{P}(A)$ of arcs (routes) within each zone $\forall z \in Z \quad \zeta_z \subseteq A$

Damage and risk

- Map $p: A \rightarrow [0, 1]$: probability of accident on arc
- Map $\Delta : A × K → \mathbb{R}_+$: damage caused by accident with unit of commodity on arc
- For $(u, v) \in A, k \in K$: $r_{uv}^k = p_{uv} \Delta_{uv}^k$ is the traditional risk

Variables, objective

Decision variables:

- $x: A \times K \to \mathbb{R}_+$: flow of commodity on arc
- Possible objective functions:
 - minimize total damage:

$$\min\sum_{\substack{(u,v)\in A\\k\in K}}\Delta_{uv}^k x_{uv}^k$$

minimize total transportation cost:

$$\min\sum_{(u,v)\in A\atop k\in K}\ell_{uv}x_{uv}^k$$

Other objectives and linear combinations thereof

Basic constraints

Arc capacity:

$$\forall (u, v) \in A \quad \sum_{k \in K} x_{uv}^k \le C_{uv}$$

Demand:

$$\forall k \in K \quad \sum_{v \in N^-(t_k)} x_{vt_k}^k = d_k$$

Flow conservation:

$$\forall k \in K, v \in V \setminus \{s_k, t_k\} \quad \sum_{u \in N^-(v)} x_{uv}^k = \sum_{u \in N^+(v)} x_{vu}^k$$

Also: zero flow into sources and out of targets

Risk sharing constraints

Risk sharing (min pairwise risk difference)

$$\forall z < w \in Z \quad \left| \sum_{\substack{(u,v) \in \zeta_z \\ k \in K}} r_{uv}^k x_{uv}^k - \sum_{\substack{(u,v) \in \zeta_w \\ k \in K}} r_{uv}^k x_{uv}^k \right| \le R_D$$

- Scalar R_D : inequitability threshold for risk sharing
- Rawls' principle (min risk of riskiest zone)

$$\forall z \in Z \quad \sum_{(u,v) \in \zeta_z \atop k \in K} r_{uv}^k x_{uv}^k \le R_P$$

Scalar R_P : inequitability threshold for Rawls' principle

ÉCOLE POLYTECHNIOL

 $R_D = 10, R_P = 67.8$: total damage 855.045

The moral of the story

Fairness has a cost

Looking for smart PhD student for a thesis on *Smart buildings* Funding provided by Microsoft Research Co-directed by Y. Hamadi (MSR) and myself (LIX) Requires optimization and simulation

The end