
Stage

◮ Quantile regression by random projections
◮ Forecasting energy prices
◮ Involves statistics, probability theory, LP
◮ Implementation: easy
◮ Taste for theory
◮ Supported by grants from Siebel Energy Institute
and RTE

◮ Could lead to CIFRE PhDwith RTE
◮ Hurry if interested
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Mathematical Programming
Formulations
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Mathematical Programming

MP: formal language for expressing optimization
problems P

Parameters p =problem input
p also called an instance of P

Decision variables x: encode problem output

Objective function min f(p, x)

Constraints ∀i ≤ m gi(p, x) ≤ 0
f, g: explicit mathematical expressions involving
symbols p, x

If an instance p is given (i.e. an assignment of numbers
to the symbols in p is known), write f(x), gi(x)

This excludes black-box optimization
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Main optimization problem classes

gen.
pooling

blackbox

MINLP

linear

co
n
ti

n
u
o
u
s

in
te

g
er

NLP

cMINLP

MILP

cNLP

SOCP

SDP

LP BLP

BQP

pooling

MBQP

nonlinear

graph drawing
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Notation

P : MP formulation with decision variables
x = (x1, . . . , xn)

Solution: assignment of values to decision variables,
i.e. a vector v ∈ Rn

F(P ) =set of feasible solutions x ∈ Rn such that
∀i ≤ m (gi(x) ≤ 0)

G(P ) =set of globally optimal solutions x ∈ Rn

s.t. x ∈ F(P ) and ∀y ∈ F(P ) (f(x) ≤ f(y))
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Citations

Williams, Model building in mathematical programming, 2002

Liberti, Cafieri, Tarissan, Reformulations in Mathematical

Programming: a computational approach, in Abraham et al.
(eds.), Foundations of Comput. Intel., 2009
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Haverly’s pooling problem
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Description

Given an oil routing network with pools and blenders,
unit prices, demands and quality requirements:

Pool

Blend 1

Blend 2

x11

3% Sulphur

$ 6

x21

1% Sulphur

$ 16

x12

2% Sulphur

$ 10

y11

y12
y21

y22

≤ 2.5% Sulphur

$ 9
≤ 100

≤ 1.5% Sulphur

$ 15
≤ 200

Find the input quantities minimizing the costs and
satisfying the constraints: mass balance, sulphur
balance, quantity and quality demands
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Variables and constraints

Variables: input quantities x, routed quantities y,
percentage p of sulphur in pool

Every variable must be ≥ 0 (physical quantities)

Bilinear terms arise to express sulphur quantities in
terms of p, y

Sulphur balance constraint: 3x11 + x21 = p(y11 + y12)

Quality demands:

py11 + 2y21 ≤ 2.5(y11 + y21)

py12 + 2y22 ≤ 1.5(y12 + y22)

Continuous bilinear formulation⇒ nonconvex NLP
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Formulation

Pool

Blend 1

Blend 2

x11

3% Sulphur

$ 6

x21

1% Sulphur

$ 16

x12

2% Sulphur

$ 10

y11

y12
y21

y22

≤ 2.5% Sulphur

$ 9
≤ 100

≤ 1.5% Sulphur

$ 15
≤ 200



















































































min
x,y,p

6x11 + 16x21 + 10x12−

−9(y11 + y21)− 15(y12 + y22) cost

s.t. x11 + x21 − y11 − y12 = 0 mass balance

x12 − y21 − y22 = 0 mass balance

y11 + y21 ≤ 100 demand

y12 + y22 ≤ 200 demand

3x11 + x21 − p(y11 + y12) = 0 sulphur balance

py11 + 2y21 ≤ 2.5(y11 + y21) sulphur limit

py12 + 2y22 ≤ 1.5(y12 + y22) sulphur limit
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Network design

Decide whether to install pipes or not (0/1 decision)

Associate a binary variable zij with each pipe



































































































min
x,y,p,z

6x11 + 16x21 + 10x12 +
∑

ij θijzij−

−9(y11 + y21)− 15(y12 + y22) cost

s.t. x11 + x21 − y11 − y12 = 0 mass balance

x12 − y21 − y22 = 0 mass balance

y11 + y21 ≤ 100 demand

y12 + y22 ≤ 200 demand

∀i, j ≤ 2 yij ≤ 200zij pipe activation: if zij = 0, no flow

3x11 + x21 − p(y11 + y12) = 0 sulphur balance

py11 + 2y21 ≤ 2.5(y11 + y21) sulphur limit

py12 + 2y22 ≤ 1.5(y12 + y22) sulphur limit
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The optimal network

Pool

Blend 1

Blend 2

x11 = 0
3% Sulphur

$ 6

x21 = 100
1% Sulphur

$ 16

x12 = 100
2% Sulphur

$ 10

y12 = 100

y22 = 100

≤ 2.5% Sulphur

$ 9
≤ 100

≤ 1.5% Sulphur

$ 15
≤ 200

z11 = 0, z21 = 0

z12 = 1, z22 = 1
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Pooling problem network
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Formulation: sets and parameters
◮ Sets

◮ I : index set for input nodes
◮ P : index set for pool nodes
◮ J : index set for output nodes
◮ K : index set for �ow attributes
◮ ∀p ∈ P N−(p): index set for inputs→ p
◮ ∀p ∈ P N+(p): index set for p→ outputs

◮ Parameters
◮ ∀i ∈ I Si = supply at node i
◮ ∀j ∈ J Di =max. demand at node j
◮ ∀i ∈ I, k ∈ K Aik = qty of attribute k in input �ow i
◮ ∀j ∈ J, k ∈ K Ljk =min qty attr k at output j
◮ ∀j ∈ J, k ∈ K Ujk =max qty attr k at output j
◮ ∀i ∈ I cIi = unit acquisition costs at input i
◮ ∀j ∈ J cJj = unit selling price at output j
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Formulation: decision variables & objective

◮ Decision variables
◮ ∀i ∈ I, p ∈ P xip = �ow in pipe (i, p)
◮ ∀p ∈ P, j ∈ J yip = �ow in pipe (p, j)
◮ ∀p ∈ P, k ∈ K qpk = qty attr k in pool p
◮ ∀j ∈ J, k ∈ K Qjk = qty attr k in output j

◮ Objective function

minF (x, y) =
∑

p∈P

i∈N−(p)

cIixip −
∑

p∈P

j∈N+(p)

cJj ypj

6 / 16



Formulation: constraints
◮ Supply: ∀i ∈ I

∑
p∈P

i∈N−(p)

xip ≤ Si

◮ Max demand: ∀j ∈ J
∑
p∈P

j∈N+(p)

ypj ≤ Dj

◮ Mass balance for �ow across pools:

∀p ∈ P
∑

i∈N−(p)

xip =
∑

j∈N+(p)

ypj

◮ Attr. qty balance input/pools:

∀p ∈ P, k ∈ K
∑

i∈N−(p)

Aikxip =
∑

i∈N−(p)

qpkxip

◮ Attr. qty balance pools/output:

∀j ∈ J, k ∈ K
∑

p∈P

j∈N+(p)

qpkypj =
∑

p∈P

j∈N+(p)

Qjkypj
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Generalized pooling problem

◮ Decision variables
◮ ∀i ∈ I, p ∈ P z✐♥ip = 1 i� pipe (i, p) installed, 0 othw
◮ ∀p ∈ P, j ∈ J z♦✉tpj = 1 i� pipe (p, j) installed, 0 othw

◮ Objective function

minF (x, y) +
∑

p∈P

i∈N−(p)

z✐♥ip +
∑

p∈P

j∈N+(p)

z♦✉tpj

◮ Constraints
◮ Pipe activation:

∀p ∈ P, i ∈ N−(p) xip ≤ Siz
✐♥
ip

∀p ∈ P, j ∈ N+(p) ypj ≤ Djz
♦✉t
pj
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Classi�cation in systematics

◮ Attribute constraints involve qpkxip, qpkypj ,Qjkypj

◮ Bilinear terms in equations: nonconvexF(P )

◮ ⇒ (nonconvex) NLP
◮ Generalized pooling problem: (nonconvex) MINLP
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Drawing graphs
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At a glance
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MPRO — PMA – p. 11



Euclidean graphs

Graph G = (V,E), edge weight function d : E → R+

E.g. V = {1, 2, 3}, E = {{1, 2}, {1, 3}, {2, 3}}
d12 = d13 = d23 = 1

Find positions xv = (xv1, xv2) of each v ∈ V in the plane
s.t.:

∀{u, v} ∈ E ‖xu − xv‖2 = duv

Generalization to RK for K ∈ N: xv = (xv1, . . . , xvK)

1

23
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Application to proteomics

An artificial protein test set: lavor-11 7

0

1

2

3

4

8

5

7

9

6

10

0 / 1.526

1 / 2.49139

2 / 3.8393

3 / 1.526

4 / 2.49139

5 / 3.83142

27 / 3.38763

6 / 1.526

7 / 2.49139

29 / 3.00337

8 / 3.8356

28 / 3.96678
30 / 3.79628

9 / 1.526

32 / 2.10239

10 / 2.49139

31 / 2.60831

33 / 3.15931

11 / 3.03059

34 / 2.68908

12 / 1.526

14 / 2.89935
35 / 3.13225

13 / 2.49139

24 / 1.526
25 / 2.49139

17 / 3.08691

16 / 2.49139 36 / 3.55753

15 / 1.526

21 / 1.526

22 / 2.4913923 / 2.88882

26 / 1.526

19 / 2.49139

18 / 1.526

20 / 2.78861

37 / 3.22866
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Embedding protein data in R
3

1aqr: four non-isometric embeddings
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Sensor networks in 2D and 3D
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Formulation

min
x,t

∑

{u,v}∈E

t2uv

∀{u, v} ∈ E
∑

k≤K

(xuk − xvk)
2 = d2uv + tuv
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Citations

1. Lavor, Liberti, Maculan, Mucherino, Recent advances on the

discretizable molecular distance geometry problem, Eur. J. of
Op. Res., invited survey

2. Liberti, Lavor, Mucherino, Maculan, Molecular distance

geometry methods: from continuous to discrete, Int. Trans. in
Op. Res., 18:33-51, 2010

3. Liberti, Lavor, Maculan, Computational experience with the

molecular distance geometry problem, in J. Pintér (ed.), Global

Optimization: Scientific and Engineering Case Studies, Springer,
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Reformulations

MPRO — PMA – p. 23



Exact reformulations

The formulation Q is an exact reformulation of P if

∃ an efficiently computable surjective map
φ : F(Q)→ F(P ) s.t. φ|G(Q) is onto G(P )

Informally: any optimum of Q can be mapped easily to an

optimum of P , and for any optimum of P there is a corresponding

optimum of Q
P

Q

F

F

GG

φ

φ|G

Construct Q so that it is easier to solve than P

MPRO — PMA – p. 24



xy when x is binary

If ∃ bilinear term xy where x ∈ {0, 1}, y ∈ [0, 1]

We can construct an exact reformulation:

Replace each term xy by an added variable w

Adjoin Fortet’s reformulation constraints:

w ≥ 0

w ≥ x+ y − 1

w ≤ x

w ≤ y

Get a MILP reformulation

Solve reformulation using CPLEX: more effective
than solving MINLP
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“Proof”
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Relaxations

The formulation Q is a relaxation of P if min fQ(y) ≤ min fP (x) (∗)

Relaxations are used to compute worst-case bounds to the optimum

value of the original formulation

Construct Q so that it is easy to solve

Proving (∗) may not be easy in general

The usual strategy:

Make sure y ⊃ x and F(Q) ⊇ F(P )

Make sure ∀x ∈ F(P ) (fQ(y) ≤ fP (x))

Then it follows that Q is a relaxation of P

Example: convex relaxation

F(Q) a convex set containing F(P )

fQ a convex underestimator of fP

Then Q is a cNLP and can be solve efficiently
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xy when x, y continuous

Get bilinear term xy where x ∈ [xL, xU ], y ∈ [yL, yU ]

We can construct a relaxation:

Replace each term xy by an added variable w

Adjoin following constraints:

w ≥ xLy + yLx− xLyL

w ≥ xUy + yUx− xUyU

w ≤ xUy + yLx− xUyL

w ≤ xLy + yUx− xLyU

These are called McCormick’s envelopes

Get an LP relaxation (solvable in polynomial time)
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Software

ROSE (https://projects.coin-or.org/ROSE)
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Citations

McCormick, Computability of global solutions to factorable

nonconvex programs: Part I — Convex underestimating problems,
Math. Prog. 1976

Liberti, Reformulations in Mathematical Programming: definitions

and systematics, RAIRO-RO 2009
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Global Optimization methods

MPRO — PMA – p. 31



Deterministic / Stochastic

subregion 2

b c a d e

subregion 1
discarded as h(c) > f(e)

b: local solution of objective function in whole space
a: solution of convex relaxation in whole space

convex relaxation in whole space
objective function

f(x)

g(x)

h(x)

Exact = Deterministic

“Exact” in continuous
space: ε-approximate
(find solution within

pre-determined ε distance

from optimum in

obj. fun. value)

For some problems, fi-
nite convergence to opti-
mum (ε = 0)

Heuristic = Stochastic

Find solution with proba-
bility 1 in infinite time
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Multistart

The easiest GO method

1: f∗ =∞
2: x∗ = (∞, . . . ,∞)
3: while ¬ termination do
4: x′ = (random(), . . . , random())
5: x = localSolve(P, x′)
6: if fP (x) < f∗ then
7: f∗ ← fP (x)
8: x∗ ← x

9: end if
10: end while

Termination condition: e.g. repeat k times
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Six-hump camelback function

f(x, y) = 4x2 − 2.1x4 + 1
3x

6 + xy − 4y2 + 4y4

Global optimum (COUENNE)
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Six-hump camelback function

f(x, y) = 4x2 − 2.1x4 + 1
3x

6 + xy − 4y2 + 4y4
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-1

-0.5
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Multistart with IPOPT, k = 5
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Six-hump camelback function

f(x, y) = 4x2 − 2.1x4 + 1
3x

6 + xy − 4y2 + 4y4

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
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Multistart with IPOPT, k = 10
MPRO — PMA – p. 34



Six-hump camelback function

f(x, y) = 4x2 − 2.1x4 + 1
3x

6 + xy − 4y2 + 4y4

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

-1

-0.5

 0

 0.5
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Multistart with IPOPT, k = 20
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Six-hump camelback function

f(x, y) = 4x2 − 2.1x4 + 1
3x

6 + xy − 4y2 + 4y4
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Multistart with IPOPT, k = 50
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Six-hump camelback function

f(x, y) = 4x2 − 2.1x4 + 1
3x

6 + xy − 4y2 + 4y4
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Multistart with SNOPT, k = 20
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Citations
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Pardalos et al. (eds.), Handbook of Global Optimization 2,
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Liberti, Kucherenko, Comparison of deterministic and

stochastic approaches to global optimization, ITOR 2005
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Section 2

Variable Neighbourhood Search

10 / 16



Variable Neighbourhood Search

◮ Applicable to discrete and continuous problems
◮ Uses any local search as a black-box
◮ In its basic form, easy to implement
◮ Few con�gurable parameters
◮ Structure of the problem dealt with by local search
◮ Few lines of code around LS black-box
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Variable Neighbourhood Search
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Variable Neighbourhood Search

1: Input: max no. kmax of neighbourhoods
2: loop
3: k ← 1, sample rnd. pt. x̃, LocSearch(x̃) = x∗

4: while k ≤ kmax do
5: Nk(x

∗) neighb. of x∗ s.t.Nk(x
∗) ⊃ Nk−1(x

∗)
6: sample rnd. pt. x̃ fromNk(x

∗)
7: LocSearch(x̃) = x′

8: if x′ better than x∗ then
9: x∗ ← x′, k ← 0
10: end if
11: k ← k + 1
12: if termination condition, then exit
13: end while
14: end loop
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Neighbourhood structure (continuous vars)
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Neighbourhood structure (binary vars)

◮ y ∈ {0, 1}p binary vars
◮ current incumbent y∗ ∈ {0, 1}p

◮ “neighbourhood” centered at y∗ of radius k ∈ N:
∑

i≤p

y∗
i
=0

yi +
∑

i≤p

y∗
i
=1

(1− yi) ≤ k

◮ Local Branching constraint
allows at most k �ips on p bin vars
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Citations
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�nding good solutions to MINLPs, Mathematical
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spatial Branch-and-Bound (sBB)
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Generalities

Tree-like search

Explores search space exhaustively but implicitly

Builds a sequence of decreasing upper bounds and
increasing lower bounds to the global optimum

Exponential worst-case

Only general-purpose “exact” algorithm for MINLP

Since continuous vars are involved, should say “ε-approximate”

Like BB for MILP, but may branch on continuous vars

Done whenever one is involved in a nonconvex term
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Example

xL xU

Original problem P

MPRO — PMA – p. 38



Example

�
�
�
�

xL xU

x′

Starting point x′
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Example

localSolve

�
�
�
�

��
��
��
��

xL xU

x′ x∗

Local (upper bounding) solution x∗
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Example

����

����

xL xU

x′ x∗ x̄

f∗

f̄

Convex relaxation (lower) bound f̄ with |f∗ − f̄ | > ε
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Example

����

xL xU

x′ x∗ x̄

f∗

C1 C2

Branch at x = x̄ into C1, C2
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Example

�
�
�
�

��
��
��
��

xL xU

x∗ x̄

f∗

f̄

C1 C2

Convex relaxation on C1: lower bounding solution x̄
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Example

localSolve

��
��
��
��

��

xL xU

x∗x̄

f∗

f̄

C1 C2

localSolve. from x̄: new upper bounding solution x∗
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Example

��

xL xU

x∗x̄

f∗

f̄

C2C3C4

|f∗ − f̄ | > ε: branch at x = x̄
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Example

��

xL xU
x∗ = x̄

f∗ = f̄

C2C3C4

Repeat on C3: get x̄ = x∗ and |f∗ − f̄ | < ε, no more branching
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Example

��
��
��
��

xL xU

x∗ x̄

f∗

f̄

C2C4

Repeat on C2: f̄ > f∗ (can’t improve x∗ in C2)
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Example

��
��
��
��

xL xU

x∗ x̄

f∗

f̄

C4

Repeat on C4: f̄ > f∗ (can’t improve x∗ in C4)
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Example

��
��
��
��

xL xU

x∗

f∗

No more subproblems left, return x∗ and terminate
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Pruning

1. P was branched into C1, C2

2. C1 was branched into C3, C4

3. C3 was pruned by optimality

(x∗ ∈ G(C3) was found)

4. C2, C4 were pruned by bound

(lower bound for C2 worse than f∗)

5. No more nodes: whole space explored, x∗ ∈ G(P )

Search generates a tree

Suproblems are nodes

Nodes can be pruned by optimality, bound or
infeasibility (when subproblem is infeasible)

Otherwise, they are branched
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Logical flow

Notation:

C = P [xL, xU ] is P restricted to x ∈ [xL, xU ]

x∗: best optimum so far (start with x∗ =∞)

C could be feasible or infeasible

If C is feasible, we might find a glob. opt. x′ of C or not

If we find glob. opt. x′ improving x∗, update x∗ ← x′

Else, try and show no point in F(C) improves x∗

· Else branch C into two suproblems and recurse
on each
subproblems have smaller feasible regions⇒ “easier”

Else C is infeasible, discard
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Correctness

Look at else cases:

C infeasible⇒ can discard C

C feasible and no point F(C) improves x∗ ⇒ can
discard C

Branching⇒ any subproblem that we’re NOT sure
could improve x∗ is considered again later

⇒ If process terminates, we’ll have explored all those
parts of F(P ) that can contain an optimum better
than x∗

If x∗ =∞, P infeasible, otherwise x∗ ∈ G(P )

Might fail to terminate if ε = 0
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A recursive version

processSubProblemε(C):

1: if isFeasible(C) then

2: x′ = globalOpt(C)

3: if x′ 6=∞ then

4: if fP (x
′) < fP (x

∗) then

5: update x∗ ← x′ // improvement

6: end if

7: else

8: if lowerBound(C) < fP (x
∗)− ε then

9: Split [xL, xU ] into two hyperrectangles [xL, x̃], [x, xU ]

10: processSubProblemε(C[xL, x̃])

11: processSubProblemε(C[x, xU ])

12: end if

13: end if

14: end if
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Bad news

1. If globalOpt(C) works on any problem, why not call
globalOpt(P ) and be done with it?

2. For arbitrary C, isFeasible(C) is undecidable

3. How do we compute lowerBound(C)?
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Upper bounds

Upper bounds: x∗ can only decrease

Computing the global optima for each subproblem
yields candidates for updating x∗

As long as we only update x∗ when x′ improves it, we
don’t need x′ to be a global optimum

Any “good feasible point” will do

Specifically, use feasible local optima

⇒ Replace globalOpt() by localSolve()
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Lower bound

Lower bounds: increase over ⊃-chains

Let RP be a relaxation of P such that:

1. RP also involves the decision variables of P

(and perhaps some others)

2. for any range I = [xL, xU ],

RP [I] is a relaxation of P [I]

3. if I, I ′ are two ranges

I ⊇ I ′ → minRP [I] ≤ minRP [I
′]

4. For any subproblem C of P ,

finding x ∈ G(RC) or showing F(RC) = ∅ is efficient

Specifically, x̄ = localSolve(RC) ∈ G(RC)

Define lowerBound(C) = fRC
(x̄)
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A decidable feasibility test

Processing C when it’s infeasible will make sBB slower but not

incorrect

⇒ sBB still works if we simply never discard a potentially feasible C

Use a “partial feasibility test” isEvidentlyInfeasible(P )

If isEvidentlyInfeasible(C) is true, then C is guaranteed to be

infeasible, and we can discard it

Otherwise, we simply don’t know, and we shall process it

Thm: If RC is infeasible then C is infeasible

Proof: ∅ = F(RC) ⊇ F(C) = ∅

isEvidentlyInfeasible(C) =







true if localSolve(RC) =∞

false otherwise
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Choice of best next node

Instead recursion order, process first nodes which are
more likely to yield a glob. opt.

Advantages

Glob. opt. of P found early
⇒ easier to prune by bound

If sBB stopped early, more chance that x∗ ∈ G(P )

Indication of a “good subproblem”: if lower bound is lowest

Store subproblems in a min-priority queue Q, where
priority(C) is given by a lower bound for C
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Software

COUENNE (open source, AMPL interface)
(projects.coin-or.org/Couenne)

GlobSol (open source, interval arithmetic bounds)
(http://interval.louisiana.edu/GLOBSOL/)

BARON (commercial, GAMS interface)

LGO (commercial, Lipschitz constant bounds)

LINDOGLOBAL (commercial)

Some research codes (αBB, ooOPS, LaGO, GLOP,
Coconut)
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To make an sBB work efficiently, you
need further tricks
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Expression trees

Representation of objective f and constraints g
Encode mathematical expressions in trees or DAGs

E.g. x21 + x1x2:

^ ×

+

2 x1x1 x2
tree

^ ×

+

2x1 x2
DAG
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Standard form

Identify all nonlinear terms xi ⊗ xj, replace them with a

linearizing variable wij

Add a defining constraint wij = xi ⊗ xj to the formulation

Standard form:

min c⊤(x,w)

s.t. A(x,w) S b

wij = xi ⊗ij xj for suitable i, j

bounds & integrality constraints



























x2

1
+ x1x2 ⇒















w11 + w12

w11 = x2

1

w12 = x1x2

: ^ ×

+

2 x1x1 x2

→

+

w11 w12
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Convex relaxation

Standard form: all nonlinearities in defining constraints

Each defining constraint wij = xi ⊗ xj is replaced by two convex

inequalities:

wij ≤ overestimator(xi ⊗ xj)

wij ≥ underestimator(xi ⊗ xj)

E.g. convex/concave over-, under-estimators for products xixj where

x ∈ [−1, 1] (McCormick’s envelope):

A

B

C

D

−1
−0.5

 0
 0.5

 1 −1

−0.5

 0

 0.5

 1

−1

−0.5

 0

 0.5

 1

Convex relaxation is not the tightest possible, but it can be

constructed automatically
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Summary

ORIGINAL MINLP

minx f(x)

g(x) ≤ 0

xL ≤ x ≤ xU

STANDARD FORM

minw1

Aw = b

wi = wjwk ∀(i, j, k) ∈ Tblt

wi =
wj

wk
∀(i, j, k) ∈ Tlft

wi = hij(wj) ∀(i, j) ∈ Tuf

wL ≤ w ≤ wU

CONVEX RELAXATION

minw1

Aw = b

McCormick’s relaxation

Secant relaxation

wL ≤ w ≤ wU

Some variables may

be integral

Easier to perform symbolic

algorithms

Linearizes nonlinear terms

Adds linearizing variables

and defining constraints

Each defining constraint

replaced by convex

under- and concave

over-estimators
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Eg: conv. rel. of pooling problem

Pool

Blend 1

Blend 2

x11
3% Sulphur
$ 6

x21
1% Sulphur

$ 16

x12
2% Sulphur

$ 10

y11

y12
y21

y22

≤ 2.5% Sulphur
$ 9

≤ 100

≤ 1.5% Sulphur
$ 15

≤ 200



















































































min
x,y,p

6x11 + 16x21 + 10x12−

−9(y11 + y21)− 15(y12 + y22)

s.t. x11 + x21 − y11 − y12 = 0 linear

x12 − y21 − y22 = 0 linear

y11 + y21 ≤ 100 linear

y12 + y22 ≤ 200 linear

3x11 + x21 − p(y11 + y12) = 0

py11 + 2y21 ≤ 2.5(y11 + y21)

py12 + 2y22 ≤ 1.5(y12 + y22)



















































































min cost

s.t. linear constraints

3x11 + x21 − w1 = 0

w3 + 2y21 ≤ 2.5(y11 + y21)

w4 + 2y22 ≤ 1.5(y12 + y22)

w2 = y11 + y12

w1 = pw2

w3 = py11

w4 = py12

Replace nonconvex constr. w = uv by McCormick’s envelopes:

w ≥ max{uLv + vLu− uLvL, uUv + vUu− uUvU},

w ≤ min{uUv + vLu− uUvL, uLv + vUu− uLvU}
A

B

C

D

−1
−0.5

 0
 0.5

 1 −1

−0.5

 0

 0.5

 1

−1

−0.5

 0

 0.5

 1
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Variable ranges

Crucial property for sBB convergence: convex relaxation

tightens as variable range widths decrease

convex/concave under/over-estimator constraints are
(convex) functions of xL, xU

it makes sense to tighten xL, xU at the sBB root node
(trading off speed for efficiency) and at each other node
(trading off efficiency for speed)

MPRO — PMA – p. 56



OBBT and FBBT
In sBB we need to tighten variable bounds at each node

Two methods: Optimization Based Bounds Tightening (OBBT) and Feasibility Based

Bounds Tightening (FBBT)

OBBT: for each variable x in P compute min and

max{x | conv. rel. constr.}, see e.g. [Caprara et al., MP 2009]

FBBT:
propagation of intervals up and down constraint

expression trees, with tightening at the root node

Example: 5x1 − x2 = 0.

Up: ×©:[5, 5]×[0, 1]=[0, 5]; −©:[0, 5]−[0, 1]=[−1, 5].

Root node tightening: [−1, 5] ∩ [0, 0] = [0, 0].

Downwards: ×©:[0, 0]+[0, 1]=[0, 1];

x1:[0, 1]/[5, 5]=[0, 1

5
]

−

×

5 x1

x2

[5, 5]

[0, 0]

[0, 1]

[0, 1]

Iterating (up/tighten/down) k times yields [0, 1

52k−1 ]
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Quadratic problems

All nonlinear terms are quadratic monomials

Aim to reduce gap betwen the problem and its convex
relaxation

⇒ replace quadratic terms with suitable linear
constraints (fewer nonlinear terms to relax)

Can be obtained by considering linear relations (called
reduced RLT constraints) between original and linearizing
variables
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Reduced RLT Constraints I

For each k ≤ n, let wk = (wk1, . . . , wkn)

Multiply Ax = b by each xk, substitute linearizing variables wk, get

reduced RLT constraint system (RRCS)

∀k ≤ n (Awk = bxk)

∀ i, k ≤ n define zki = wki − xixk, let zk = (zk1, . . . , zkn)

Substitute b = Ax in RRCS, get ∀k ≤ n(A(wk − xkx) = 0), i.e.

∀k ≤ n(Azk = 0). Let B,N be the sets of basic and nonbasic

variables of this system

Setting zki = 0 for each nonbasic variable implies that the RRCS is

satisfied⇒ It suffices to enforce quadratic constraints wki = xixk for

(i, k) ∈ N (replace those for (i, k) ∈ B with the linear RRCS)
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Reduced RLT Constraints II
10

5

0

-5

-10

y

4
2

0
-2

-4

x

2
1.8

1.6
1.4

1.2
1

0.8
0.6

0.4
0.2

0

F (P ) = {(x, y, w) | w = xy∧ x = 1}
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y

4
2

0
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-4

x

2
1.8

1.6
1.4

1.2
1

0.8
0.6

0.4
0.2

0

McCormick’s rel.
10

5

0
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-10

y

4
2

0
-2

-4

x

2
1.8

1.6
1.4

1.2
1

0.8
0.6

0.4
0.2

0

rRLT constraint:
multiply x = 1 by y, get xy = y,
replace xy by w, get w = y

F (P ) described linearly
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Reduced RLT Constraints III

If |E| = 1
2n(n+ 1) (all possible quadratic terms), get |B|

fewer quadratic terms in reformulation

Otherwise, judicious choice of multiplier variable set
{xk | k ∈ K} and multiplied linear equation constraint
subsystem must be performed.
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The end
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