

- Quantile regression by random projections
- Forecasting energy prices
- Involves statistics, probability theory, LP
- Implementation: easy
- ► Taste for theory
- Supported by grants from Siebel Energy Institute and RTE
- Could lead to CIFRE PhD with RTE
- Hurry if interested

Mixed-Integer Nonlinear Programming

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

PMA@MPRO

Mathematical Programming Formulations

ECOLE

Mathematical Programming

- MP: formal language for expressing optimization problems P
 - Parameters p = problem inputp also called an instance of P
 - Decision variables x: encode problem output
 - Objective function $\min f(p, x)$
 - Constraints $\forall i \leq m \quad g_i(p, x) \leq 0$ f, g: explicit mathematical expressions involving symbols p, x
- If an instance p is given (i.e. an assignment of numbers to the symbols in p is known), write $f(x), g_i(x)$

This excludes black-box optimization

Main optimization problem classes

Notation

- *P*: MP formulation with decision variables $x = (x_1, ..., x_n)$
- Solution: assignment of values to decision variables, i.e. a vector $v \in \mathbb{R}^n$
- $\mathcal{F}(P)$ =set of feasible solutions $x \in \mathbb{R}^n$ such that $\forall i \leq m \ (g_i(x) \leq 0)$
- $\mathcal{G}(P)$ =set of globally optimal solutions $x \in \mathbb{R}^n$ s.t. $x \in \mathcal{F}(P)$ and $\forall y \in \mathcal{F}(P) \ (f(x) \leq f(y))$

- Williams, Model building in mathematical programming, 2002
- Liberti, Cafieri, Tarissan, *Reformulations in Mathematical Programming: a computational approach*, in Abraham et al. (eds.), Foundations of Comput. Intel., 2009

Haverly's pooling problem

Description

Given an oil routing network with pools and blenders, unit prices, demands and quality requirements:

 Find the input quantities minimizing the costs and satisfying the constraints: mass balance, sulphur balance, quantity and quality demands

Variables and constraints

- Variables: input quantities x, routed quantities y, percentage p of sulphur in pool
- Every variable must be ≥ 0 (physical quantities)
- Bilinear terms arise to express sulphur quantities in terms of p, y
- Sulphur balance constraint: $3x_{11} + x_{21} = p(y_{11} + y_{12})$
- Quality demands:

 $py_{11} + 2y_{21} \leq 2.5(y_{11} + y_{21})$ $py_{12} + 2y_{22} \leq 1.5(y_{12} + y_{22})$

• Continuous bilinear formulation \Rightarrow nonconvex NLP

Formulation

$$\begin{array}{ll} \min_{x,y,p} & 6x_{11}+16x_{21}+10x_{12}-\\ & -9(y_{11}+y_{21})-15(y_{12}+y_{22}) & cost \\ \mathrm{s.t.} & x_{11}+x_{21}-y_{11}-y_{12}=0 & mass \ balance \\ & x_{12}-y_{21}-y_{22}=0 & mass \ balance \\ & y_{11}+y_{21}\leq 100 \quad demand \\ & y_{12}+y_{22}\leq 200 \quad demand \\ & 3x_{11}+x_{21}-p(y_{11}+y_{12})=0 & sulphur \ balance \\ & py_{11}+2y_{21}\leq 2.5(y_{11}+y_{21}) & sulphur \ limit \\ & py_{12}+2y_{22}\leq 1.5(y_{12}+y_{22}) & sulphur \ limit \\ \end{array}$$

Network design

- Decide whether to install pipes or not (0/1 decision)
- Associate a binary variable z_{ij} with each pipe

```
\min_{x,y,p,z} \quad 6x_{11} + 16x_{21} + 10x_{12} + \sum_{ij} \theta_{ij} z_{ij} -
                  -9(y_{11}+y_{21})-15(y_{12}+y_{22}) cost
       s.t. x_{11} + x_{21} - y_{11} - y_{12} = 0 mass balance
              y_{11} + y_{21} \le 100 demand
              y_{12} + y_{22} \le 200 demand
\forall i, j \leq 2 y_{ij} \leq 200 z_{ij} pipe activation: if z_{ij} = 0, no flow
              3x_{11} + x_{21} - p(y_{11} + y_{12}) = 0 sulphur balance
              py_{11} + 2y_{21} \le 2.5(y_{11} + y_{21}) sulphur limit
              py_{12} + 2y_{22} < 1.5(y_{12} + y_{22}) sulphur limit
```

The optimal network

Pooling problem network

Formulation: sets and parameters

► Sets

- I: index set for input nodes
- P: index set for pool nodes
- J: index set for output nodes
- K: index set for flow attributes
- $\forall p \in P N^-(p)$: index set for inputs $\rightarrow p$
- $\forall p \in P \ N^+(p)$: index set for $p \to$ outputs

Parameters

- $\forall i \in I \ S_i =$ supply at node i
- ▶ $\forall j \in J D_i =$ max. demand at node j
- $\forall i \in I, k \in K A_{ik} =$ qty of attribute k in input flow i
- ▶ $\forall j \in J, k \in K L_{jk} = \min \operatorname{qty} \operatorname{attr} k$ at output j
- ▶ $\forall j \in J, k \in K U_{jk} = \max \operatorname{qty} \operatorname{attr} k$ at output j
- $\forall i \in I \ c_i^I =$ unit acquisition costs at input i
- ▶ $\forall j \in J c_j^J = \text{unit selling price at output } j$

Formulation: decision variables & objective

Decision variables

- $\forall i \in I, p \in P x_{ip} =$ flow in pipe (i, p)
- $\forall p \in P, j \in J \ y_{ip} =$ flow in pipe (p, j)
- ▶ $\forall p \in P, k \in K q_{pk} =$ qty attr k in pool p
- ▶ $\forall j \in J, k \in K Q_{jk} =$ qty attr k in output j
- Objective function

$$\min F(x, y) = \sum_{\substack{p \in P \\ i \in N^{-}(p)}} c_i^I x_{ip} - \sum_{\substack{p \in P \\ j \in N^{+}(p)}} c_j^J y_{pj}$$

Formulation: constraints

Mass balance for flow across pools:

$$\forall p \in P \quad \sum_{i \in N^-(p)} x_{ip} = \sum_{j \in N^+(p)} y_{pj}$$

Attr. qty balance input/pools:

$$\forall p \in P, k \in K \quad \sum_{i \in N^{-}(p)} A_{ik} x_{ip} = \sum_{i \in N^{-}(p)} q_{pk} x_{ip}$$

Attr. qty balance pools/output:

$$\forall j \in J, k \in K \quad \sum_{\substack{p \in P\\j \in N^+(p)}} q_{pk} y_{pj} = \sum_{\substack{p \in P\\j \in N^+(p)}} Q_{jk} y_{pj}$$

Generalized pooling problem

Decision variables

- $\forall i \in I, p \in P z_{ip}^{in} = 1$ iff pipe (i, p) installed, 0 othw
- ▶ $\forall p \in P, j \in J z_{pj}^{out} = 1$ iff pipe (p, j) installed, 0 othw
- Objective function

$$\min F(x, y) + \sum_{\substack{p \in P \\ i \in N^{-}(p)}} z_{ip}^{\mathsf{in}} + \sum_{\substack{p \in P \\ j \in N^{+}(p)}} z_{pj}^{\mathsf{out}}$$

- ► Constraints
 - Pipe activation:

$$\forall p \in P, i \in N^{-}(p) \quad x_{ip} \leq S_i z_{ip}^{\text{in}} \forall p \in P, j \in N^{+}(p) \quad y_{pj} \leq D_j z_{pj}^{\text{out}}$$

Classification in systematics

- Attribute constraints involve $q_{pk}x_{ip}, q_{pk}y_{pj}, Q_{jk}y_{pj}$
- Bilinear terms in equations: nonconvex $\mathcal{F}(P)$
- $\blacktriangleright \Rightarrow (nonconvex) \text{ NLP}$
- ► Generalized pooling problem: (nonconvex) MINLP

Citations

- 1. C. Haverly, *Studies of the behaviour of recursion for the pooling problem*, ACM SIGMAP Bulletin, 1978
- 2. Adhya, Tawarmalani, Sahinidis, *A Lagrangian approach to the pooling problem*, Ind. Eng. Chem., 1999
- 3. Audet et al., *Pooling Problem: Alternate Formulations and Solution Methods*, Manag. Sci., 2004
- 4. Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms, JOGO, 2006
- 5. Misener, Floudas, Advances for the pooling problem: modeling, global optimization, and computational studies, Appl. Comput. Math., 2009
- 6. D'Ambrosio, Linderoth, Luedtke, Valid inequalities for the pooling problem with binary variables, LNCS, 2011

Drawing graphs

Euclidean graphs

- Graph G = (V, E), edge weight function $d : E \to \mathbb{R}_+$
- E.g. $V = \{1, 2, 3\}, E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$ $d_{12} = d_{13} = d_{23} = 1$
- Find positions $x_v = (x_{v1}, x_{v2})$ of each $v \in V$ in the plane s.t.:

$$\forall \{u, v\} \in E \quad \|x_u - x_v\|_2 = d_{uv}$$

• Generalization to \mathbb{R}^K for $K \in \mathbb{N}$: $x_v = (x_{v1}, \ldots, x_{vK})$

Application to proteomics

An artificial protein test set: lavor-11_7

Embedding protein data in \mathbb{R}^3

1aqr: four non-isometric embeddings

Sensor networks in 2D and 3D

Formulation

$$\min_{x,t} \sum_{\{u,v\} \in E} t_{uv}^2$$
$$\forall \{u,v\} \in E \quad \sum_{k \le K} (x_{uk} - x_{vk})^2 = d_{uv}^2 + t_{uv}$$

Citations

- 1. Lavor, Liberti, Maculan, Mucherino, *Recent advances on the discretizable molecular distance geometry problem*, Eur. J. of Op. Res., invited survey
- 2. Liberti, Lavor, Mucherino, Maculan, *Molecular distance* geometry methods: from continuous to discrete, Int. Trans. in Op. Res., **18**:33-51, 2010
- 3. Liberti, Lavor, Maculan, *Computational experience with the molecular distance geometry problem*, in J. Pintér (ed.), *Global Optimization: Scientific and Engineering Case Studies*, Springer, Berlin, 2006

Reformulations

Exact reformulations

- The formulation Q is an exact reformulation of P if \exists an efficiently computable surjective map $\phi : \mathcal{F}(Q) \to \mathcal{F}(P)$ s.t. $\phi|_{\mathcal{G}(Q)}$ is onto $\mathcal{G}(P)$
- Informally: any optimum of Q can be mapped easily to an optimum of P, and for any optimum of P there is a corresponding optimum of Q

Construct Q so that it is easier to solve than P

xy when x is binary

- If \exists bilinear term xy where $x \in \{0, 1\}$, $y \in [0, 1]$
- We can construct an exact reformulation:
 - Replace each term xy by an added variable w
 - Adjoin Fortet's reformulation constraints:

$$w \geq 0$$

$$w \geq x + y - 1$$

$$w \leq x$$

$$w \leq y$$

- Get a MILP reformulation
- Solve reformulation using CPLEX: more effective than solving MINLP

Relaxations

- The formulation Q is a relaxation of P if $\min f_Q(y) \le \min f_P(x)$ (*)
- Relaxations are used to compute worst-case bounds to the optimum value of the original formulation
- Construct Q so that it is easy to solve
- Proving (*) may not be easy in general
- The usual strategy:
 - Make sure $y \supset x$ and $\mathcal{F}(Q) \supseteq \mathcal{F}(P)$
 - Make sure $\forall x \in \mathcal{F}(P) \ (f_Q(y) \leq f_P(x))$
 - Then it follows that Q is a relaxation of P
- **Section** Example: *convex relaxation*
 - $\mathcal{F}(Q)$ a convex set containing $\mathcal{F}(P)$
 - f_Q a convex underestimator of f_P
 - Then Q is a cNLP and can be solve efficiently

ECOLE

xy when x, y continuous

- Get bilinear term xy where $x \in [x^L, x^U]$, $y \in [y^L, y^U]$
- We can construct a relaxation:
 - Replace each term xy by an added variable w
 - Adjoin following constraints:

$$\begin{array}{rcl} w & \geq & x^L y + y^L x - x^L y^L \\ w & \geq & x^U y + y^U x - x^U y^U \\ w & \leq & x^U y + y^L x - x^U y^L \\ w & \leq & x^L y + y^U x - x^L y^U \end{array}$$

- These are called McCormick's envelopes
- Get an LP relaxation (solvable in polynomial time)

ROSE (https://projects.coin-or.org/ROSE)

- McCormick, Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems, Math. Prog. 1976
- Liberti, Reformulations in Mathematical Programming: definitions and systematics, RAIRO-RO 2009

Global Optimization methods

Deterministic / Stochastic

Exact = Deterministic

- "Exact" in continuous space: ε-approximate (find solution within pre-determined ε distance from optimum in obj. fun. value)
- For some problems, finite convergence to optimum ($\varepsilon = 0$)

Heuristic = Stochastic

Find solution with probability 1 in infinite time

Multistart

The easiest GO method

1:
$$f^* = \infty$$

2: $x^* = (\infty, ..., \infty)$
3: while \neg termination do
4: $x' = (random(), ..., random())$
5: $x = localSolve(P, x')$
6: if $f_P(x) < f^*$ then
7: $f^* \leftarrow f_P(x)$
8: $x^* \leftarrow x$
9: end if

10: end while

● Termination condition: e.g. repeat k times

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

Global optimum (COUENNE)

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

- Schoen, Two-Phase Methods for Global Optimization, in Pardalos et al. (eds.), Handbook of Global Optimization 2, 2002
- Liberti, Kucherenko, Comparison of deterministic and stochastic approaches to global optimization, ITOR 2005

Section 2

Variable Neighbourhood Search

Variable Neighbourhood Search

- Applicable to discrete and continuous problems
- Uses any local search as a black-box
- In its basic form, easy to implement
- ► Few configurable parameters
- Structure of the problem dealt with by local search
- ► Few lines of code around LS black-box

Variable Neighbourhood Search

Variable Neighbourhood Search

- 1: Input: max no. k_{max} of neighbourhoods
- 2: **loop**
- 3: $k \leftarrow 1$, sample rnd. pt. \tilde{x} , LocSearch $(\tilde{x}) = x^*$
- 4: while $k \leq \bar{k}_{\max} \operatorname{do}$
- 5: $N_k(x^*)$ neighb. of x^* s.t. $N_k(x^*) \supset N_{k-1}(x^*)$
- 6: sample rnd. pt. \tilde{x} from $N_k(x^*)$
- 7: **LocSearch** $(\tilde{x}) = x'$
- 8: if x' better than x^* then

9:
$$x^* \leftarrow x', k \leftarrow 0$$

- 10: **end if**
- 11: $k \leftarrow k+1$
- 12: if termination condition, then exit
- 13: end while

14: end loop

Neighbourhood structure (continuous vars)

original domain (variable ranges)

Neighbourhood structure (binary vars)

- ▶ $y \in \{0,1\}^p$ binary vars
- current incumbent $y^* \in \{0, 1\}^p$
- "neighbourhood" centered at y^* of radius $k \in \mathbb{N}$:

$$\sum_{\substack{i\leq p\\y_i^*=0}} y_i + \sum_{\substack{i\leq p\\y_i^*=1}} (1-y_i) \leq k$$

 Local Branching constraint allows at most k flips on p bin vars

Citations

- L. Liberti, M. Dražić, Variable Neighbourhood Search for the Global Optimization of Constrained NLPs, Proc. of the Global Optimization Workshop, Almeria, Spain, 18-22 September 2005
- 2. L. Liberti, N. Mladenović, G. Nannicini, *A recipe for finding good solutions to MINLPs*, Mathematical Programming Computation, **3**:349-390, 2011

spatial Branch-and-Bound (sBB)

Generalities

- Tree-like search
- Explores search space exhaustively but implicitly
- Builds a sequence of decreasing upper bounds and increasing lower bounds to the global optimum
- Exponential worst-case
- Only general-purpose "exact" algorithm for MINLP
 Since continuous vars are involved, should say "ε-approximate"
- Like BB for MILP, but may branch on continuous vars Done whenever one is involved in a nonconvex term

Example

No more subproblems left, return x^* and terminate

Pruning

- 1. *P* was branched into C_1, C_2
- 2. C_1 was branched into C_3, C_4
- 3. C_3 was pruned by optimality ($x^* \in \mathcal{G}(C_3)$) was found)
- 4. C_2, C_4 Were pruned by bound (lower bound for C_2 worse than f^*)
- 5. No more nodes: whole space explored, $x^* \in \mathcal{G}(P)$
- Search generates a tree
- Suproblems are nodes
- Nodes can be pruned by optimality, bound or infeasibility (when subproblem is infeasible)
- Otherwise, they are branched

Logical flow

Notation:

- $C = P[x^L, x^U]$ is *P* restricted to $x \in [x^L, x^U]$
- x^* : best optimum so far (start with $x^* = \infty$)
- C could be feasible or infeasible
 - If C is feasible, we might find a glob. opt. x' of C or not
 - If we find glob. opt. x' improving x^* , update $x^* \leftarrow x'$
 - ${\scriptstyle {\rm S}}{\scriptstyle {\rm S}}$ Else, try and show no point in ${\cal F}(C)$ improves x^*
 - $\cdot\,$ Else branch C into two suproblems and recurse on each

subproblems have smaller feasible regions \Rightarrow "easier"

• Else C is infeasible, discard

Correctness

- Look at <u>else</u> cases:
 - C infeasible \Rightarrow can discard C
 - C feasible and no point $\mathcal{F}(C)$ improves $x^* \Rightarrow \operatorname{can}$ discard C
- Branching ⇒ any subproblem that we're NOT sure could improve x* is considered again later
- ⇒ If process terminates, we'll have explored all those parts of $\mathcal{F}(P)$ that can contain an optimum better than x^*
 - If $x^* = \infty$, *P* infeasible, otherwise $x^* \in \mathcal{G}(P)$
 - Might fail to terminate if $\varepsilon = 0$

A recursive version

processSubProblem_{ε}(C):

- 1: if $\mathsf{isFeasible}(C)$ then
- **2:** x' = globalOpt(C)
- **3:** if $x' \neq \infty$ then

4: if
$$f_P(x') < f_P(x^*)$$
 then

5: update
$$x^* \leftarrow x' / /$$
 improvement

- 6: end if
- 7: else

8: **if** lowerBound(
$$C$$
) < $f_P(x^*) - \varepsilon$ **then**

9: Split
$$[x^L, x^U]$$
 into two hyperrectangles $[x^L, \tilde{x}], [\underline{x}, x^U]$

10: processSubProblem
$$_{\varepsilon}(C[x^L, \tilde{x}])$$

11: processSubProblem
$$_{\varepsilon}(C[\underline{x}, x^U])$$

- 12: end if
- 13: end if
- 14: end if

Bad news

- 1. If globalOpt(C) works on any problem, why not call globalOpt(P) and be done with it?
- 2. For arbitrary $C, \, {\rm isFeasible}(C)$ is undecidable
- 3. How do we compute lowerBound(C)?

Upper bounds

Upper bounds: x^* can only decrease

- Computing the global optima for each subproblem yields candidates for updating x*
- As long as we only update x* when x' improves it, we don't need x' to be a global optimum
- Any "good feasible point" will do
- Specifically, use feasible local optima
- $\textbf{ } \Rightarrow \textbf{Replace } globalOpt() \textbf{ by } localSolve()$

Lower bound

Lower bounds: increase over \supset -chains

- Let R_P be a relaxation of P such that:
 - *R_P* also involves the decision variables of *P* (and perhaps some others)

2. for any range
$$I = [x^L, x^U]$$
,
 $R_P[I]$ is a relaxation of $P[I]$

3. if I, I' are two ranges

 $I \supseteq I' \to \min R_P[I] \le \min R_P[I']$

- 4. For any subproblem *C* of *P*, finding $x \in \mathcal{G}(R_C)$ or showing $\mathcal{F}(R_C) = \emptyset$ is efficient Specifically, $\bar{x} = \text{localSolve}(R_C) \in \mathcal{G}(R_C)$
- **Define** lowerBound(C) = $f_{R_C}(\bar{x})$

A decidable feasibility test

- Processing C when it's infeasible will make sBB slower but not incorrect
- ${oldsymbol{\$}} \,\, \Rightarrow {f sBB}$ still works if we simply never discard a potentially feasible C
- Use a "partial feasibility test" is Evidently Infeasible (P)
 - If isEvidentlyInfeasible(C) is true, then C is guaranteed to be infeasible, and we can discard it
 - Otherwise, we simply don't know, and we shall process it
- **•** Thm: If R_C is infeasible then C is infeasible

Proof:
$$\varnothing = \mathcal{F}(R_C) \supseteq \mathcal{F}(C) = \varnothing$$

$$\mathbf{f} \text{ isEvidentlyInfeasible}(C) = \left\{ \begin{array}{ll} \texttt{true} & \texttt{if localSolve}(R_C) = \infty \\ \texttt{false} & \texttt{otherwise} \end{array} \right.$$

Choice of best next node

- Instead recursion order, process first nodes which are more likely to yield a glob. opt.
- Advantages
 - Glob. opt. of P found early \Rightarrow easier to prune by bound
 - If sBB stopped early, more chance that $x^* \in \mathcal{G}(P)$
- Indication of a "good subproblem": if lower bound is lowest
- Store subproblems in a min-priority queue Q, where priority(C) is given by a lower bound for C

Software

- COUENNE (open source, AMPL interface) (projects.coin-or.org/Couenne)
- GlobSol (open source, interval arithmetic bounds) (http://interval.louisiana.edu/GLOBSOL/)
- BARON (commercial, GAMS interface)
- LGO (commercial, Lipschitz constant bounds)
- LINDOGLOBAL (commercial)
- Some research codes (αBB, ooOPS, LaGO, GLOP, Coconut)

Citations

- Falk, Soland, An algorithm for separable nonconvex programming problems, Manag. Sci. 1969
- Horst, Tuy, Global Optimization, Springer 1990
- Adjiman, Floudas et al., A global optimization method, αBB, for general twice-differentiable nonconvex NLPs, Comp. Chem. Eng. 1998
- Ryoo, Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design, Comp. Chem. Eng. 1995
- Smith, Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Comp. Chem. Eng. 1999
- Nowak, Relaxation and decomposition methods for Mixed Integer Nonlinear Programming, Birkhäuser, 2005
- Belotti, Liberti et al., Branching and bounds tightening techniques for nonconvex MINLP, Opt. Meth. Softw., 2009

To make an sBB work efficiently, you need further tricks

Representation of objective f and constraints gEncode mathematical expressions in trees or DAGs

E.g. $x_1^2 + x_1 x_2$:

Standard form

- Identify all nonlinear terms $x_i \otimes x_j$, replace them with a linearizing variable w_{ij}
- Add a defining constraint $w_{ij} = x_i \otimes x_j$ to the formulation
- Standard form:

$$\begin{array}{cccc} \min & c^{\top}(x,w) \\ \textbf{s.t.} & A(x,w) & \leqq & b \\ & w_{ij} &= & x_i \otimes_{ij} x_j \text{ for suitable } i,j \\ & \textbf{bounds } \& & \textbf{integrality constraints} \end{array} \right\} \\ x_1^2 + x_1 x_2 \Rightarrow \left\{ \begin{array}{cccc} w_{11} + w_{12} & & + \\ w_{11} = x_1^2 & \vdots & & + \\ w_{12} = x_1 x_2 & & & & \\ w_{12} = x_1 x_2 & & & & \\ & x_1 & 2 & x_1 & x_2 & & \\ \end{array} \right\}$$

Convex relaxation

- Standard form: all nonlinearities in defining constraints
- Each defining constraint $w_{ij} = x_i \otimes x_j$ is replaced by two convex inequalities:
 - $w_{ij} \leq \text{overestimator}(x_i \otimes x_j)$
 - $w_{ij} \geq \text{underestimator}(x_i \otimes x_j)$
- E.g. convex/concave over-, under-estimators for products $x_i x_j$ where $x \in [-1, 1]$ (McCormick's envelope):

 Convex relaxation is not the tightest possible, but it can be constructed automatically

ORIGINAL MINLP	STANDARD FORM	CONVEX RELAXATION
$\min_x f(x)$	$\min w_1$	$\min w_1$
$g(x) \le 0$	Aw = b	Aw = b
$x^L \leq x \leq x^U$	$w_i = w_j w_k \; \forall (i, j, k) \in \mathcal{T}_{blt}$	McCormick's relaxation
	$w_i = \frac{w_j}{w_k} \forall (i, j, k) \in \mathcal{T}_{lft}$	Secant relaxation
	$w_i = h_{ij}(w_j) \; \forall (i,j) \in \mathcal{T}_{uf}$	$w^L \leq w \leq w^U$
	$w^L \leq w \leq w^U$	

- Some variables may be integral
- Easier to perform symbolic algorithms
 Linearizes nonlinear terms
 Adds linearizing variables and defining constraints
 Each defining constraint replaced by convex under- and concave over-estimators

Variable ranges

- Crucial property for sBB convergence: convex relaxation tightens as variable range widths decrease
- convex/concave under/over-estimator constraints are (convex) functions of x^L, x^U
- it makes sense to tighten x^L, x^U at the sBB root node (trading off speed for efficiency) and at each other node (trading off efficiency for speed)

OBBT and FBBT

In sBB we need to tighten variable bounds at each node

- Two methods: Optimization Based Bounds Tightening (OBBT) and Feasibility Based Bounds Tightening (FBBT)
- OBBT: for each variable x in P compute min and max{x | conv. rel. constr.}, see e.g. [Caprara et al., MP 2009]
- FBBT: propagation of intervals up and down constraint expression trees, with tightening at the root node Example: $5x_1 - x_2 = 0$.

Up: \otimes : [5, 5] × [0, 1] = [0, 5]; \ominus : [0, 5] - [0, 1] = [-1, 5]. Root node tightening: [-1, 5] \cap [0, 0] = [0, 0]. Downwards: \otimes : [0, 0] + [0, 1] = [0, 1]; x_1 : [0, 1]/[5, 5] = [0, $\frac{1}{5}$]

Iterating (up/tighten/down) k times yields $[0, \frac{1}{5^{2k-1}}]$

Quadratic problems

- All nonlinear terms are quadratic monomials
- Aim to reduce gap betwen the problem and its convex relaxation
- replace quadratic terms with suitable linear constraints (fewer nonlinear terms to relax)
- Can be obtained by considering linear relations (called reduced RLT constraints) between original and linearizing variables

ECOLE

Reduced RLT Constraints I

- For each $k \leq n$, let $w_k = (w_{k1}, \ldots, w_{kn})$
- Multiply Ax = b by each x_k , substitute linearizing variables w_k , get reduced RLT constraint system (RRCS)

$$\forall k \le n \ (Aw_k = bx_k)$$

$$\forall i,k \le n \text{ define } z_{ki} = w_{ki} - x_i x_k, \text{ let } z_k = (z_{k1}, \dots, z_{kn})$$

- Substitute b = Ax in RRCS, get ∀k ≤ n(A(w_k − x_kx) = 0), i.e. ∀k ≤ n(Az_k = 0). Let B, N be the sets of basic and nonbasic variables of this system
- Setting z_{ki} = 0 for each nonbasic variable implies that the RRCS is satisfied ⇒ It suffices to enforce quadratic constraints w_{ki} = x_ix_k for (i, k) ∈ N (replace those for (i, k) ∈ B with the linear RRCS)

Reduced RLT Constraints II

 $F(P) = \{(x, y, w) \mid w = xy \land x = 1\}$

McCormick's rel.

rRLT constraint: multiply x = 1 by y, get xy = y, replace xy by w, get w = yF(P) described *linearly*

ECOLE

Reduced RLT Constraints III

- If $|E| = \frac{1}{2}n(n+1)$ (all possible quadratic terms), get |B| fewer quadratic terms in reformulation
- Otherwise, judicious choice of multiplier variable set {x_k | k ∈ K} and multiplied linear equation constraint subsystem must be performed.

Citations

- Sherali, Alameddine, A new reformulation-linearization technique for bilinear programming problems, JOGO, 1991
- Smith, Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Comp. Chem. Eng. 1999
- Liberti, Reduction Constraints for the Global Optimization of NLPs, ITOR, 2004
- Liberti, Linearity embedded in nonconvex programs, JOGO, 2005
- Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms, JOGO, 2006
- Belotti, Liberti et al., Branching and bounds tightening techniques for nonconvex MINLP, Opt. Meth. Softw., 2009
- Sherali, Dalkiran, Liberti, Reduced RLT representations for nonconvex polynomial programming problems, JOGO (to appear)

The end