

Mixed-Integer Nonlinear Programming

Leo Liberti

LIX, École Polytechnique, France

Motivating applications

Haverly's pooling problem

Description

Given an oil routing network with pools and blenders, unit prices, demands and quality requirements:

Find the input quantities minimizing the costs and satisfying the constraints: mass balance, sulphur balance, quantity and quality demands

Variables and constraints

- Variables: input quantities x, routed quantities y, percentage p of sulphur in pool
- Every variable must be ≥ 0 (physical quantities)
- ullet Bilinear terms arise to express sulphur quantities in terms of p,y
- Sulphur balance constraint: $3x_{11} + x_{21} = p(y_{11} + y_{12})$
- Quality demands:

$$py_{11} + 2y_{21} \le 2.5(y_{11} + y_{21})$$

 $py_{12} + 2y_{22} \le 1.5(y_{12} + y_{22})$

Continuous bilinear formulation ⇒ nonconvex NLP

Formulation

$$\begin{cases} &\min_{x,y,p} & 6x_{11}+16x_{21}+10x_{12}-\\ &-9(y_{11}+y_{21})-15(y_{12}+y_{22}) & cost \end{cases}$$
 s.t. $x_{11}+x_{21}-y_{11}-y_{12}=0$ mass balance
$$x_{12}-y_{21}-y_{22}=0 \quad \text{mass balance}$$

$$y_{11}+y_{21}\leq 100 \quad \text{demand}$$

$$y_{12}+y_{22}\leq 200 \quad \text{demand}$$

$$3x_{11}+x_{21}-p(y_{11}+y_{12})=0 \quad \text{sulphur balance}$$

$$py_{11}+2y_{21}\leq 2.5(y_{11}+y_{21}) \quad \text{sulphur limit}$$

$$py_{12}+2y_{22}\leq 1.5(y_{12}+y_{22}) \quad \text{sulphur limit}$$

Network design

- Decide whether to install pipes or not (0/1 decision)
- Associate a binary variable z_{ij} with each pipe

$$\begin{split} \min_{x,y,p,z} & \quad 6x_{11} + 16x_{21} + 10x_{12} + \sum_{ij} \theta_{ij} z_{ij} - \\ & \quad -9(y_{11} + y_{21}) - 15(y_{12} + y_{22}) \quad cost \\ \text{s.t.} & \quad x_{11} + x_{21} - y_{11} - y_{12} = 0 \quad \text{mass balance} \\ & \quad x_{12} - y_{21} - y_{22} = 0 \quad \text{mass balance} \\ & \quad y_{11} + y_{21} \leq 100 \quad \text{demand} \\ & \quad y_{12} + y_{22} \leq 200 \quad \text{demand} \\ \forall i,j \leq 2 & \quad y_{ij} \leq 200z_{ij} \quad \text{pipe activation: if } z_{ij} = 0 \text{, no flow} \\ & \quad 3x_{11} + x_{21} - p(y_{11} + y_{12}) = 0 \quad \text{sulphur balance} \\ & \quad py_{11} + 2y_{21} \leq 2.5(y_{11} + y_{21}) \quad \text{sulphur limit} \\ & \quad py_{12} + 2y_{22} \leq 1.5(y_{12} + y_{22}) \quad \text{sulphur limit} \end{split}$$

The optimal network

Citations

- 1. C. Haverly, Studies of the behaviour of recursion for the pooling problem, ACM SIGMAP Bulletin, 1978
- 2. Adhya, Tawarmalani, Sahinidis, *A Lagrangian approach to the pooling problem*, Ind. Eng. Chem., 1999
- 3. Audet et al., Pooling Problem: Alternate Formulations and Solution Methods, Manag. Sci., 2004
- 4. Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms, JOGO, 2006
- 5. Misener, Floudas, Advances for the pooling problem: modeling, global optimization, and computational studies, Appl. Comput. Math., 2009
- 6. D'Ambrosio, Linderoth, Luedtke, Valid inequalities for the pooling problem with binary variables, LNCS, 2011

Drawing graphs

At a glance

Which graph has most symmetries?

Euclidean graphs

- Graph G = (V, E), edge weight function $d : E \to \mathbb{R}_+$
- E.g. $V = \{1, 2, 3\}, E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$ $d_{12} = d_{13} = d_{23} = 1$
- Find positions $x_v = (x_{v1}, x_{v2})$ of each $v \in V$ in the plane s.t.:

$$\forall \{u, v\} \in E \quad ||x_u - x_v||_2 = d_{uv}$$

• Generalization to \mathbb{R}^K for $K \in \mathbb{N}$: $x_v = (x_{v1}, \dots, x_{vK})$

Application to proteomics

An artificial protein test set: lavor-11_7

Embedding protein data in \mathbb{R}^3

1aqr: four non-isometric embeddings

Sensor networks in 2D and 3D

Formulation

$$\min_{x,t} \sum_{\{u,v\} \in E} t_{uv}^2$$

$$\forall \{u,v\} \in E \qquad \sum_{k \le K} (x_{uk} - x_{vk})^2 = d_{uv}^2 + t_{uv}$$

Citations

- 1. Lavor, Liberti, Maculan, Mucherino, *Recent advances on the discretizable molecular distance geometry problem*, Eur. J. of Op. Res., invited survey
- 2. Liberti, Lavor, Mucherino, Maculan, *Molecular distance geometry methods: from continuous to discrete*, Int. Trans. in Op. Res., **18**:33-51, 2010
- 3. Liberti, Lavor, Maculan, Computational experience with the molecular distance geometry problem, in J. Pintér (ed.), Global Optimization: Scientific and Engineering Case Studies, Springer, Berlin, 2006

Mathematical Programming Formulations

Mathematical Programming

- MP: formal language for expressing optimization problems P
 - Parameters p =problem input p also called an instance of P
 - Decision variables x: encode problem output
 - Objective function $\min f(p, x)$
 - Constraints $\forall i \leq m \quad g_i(p,x) \leq 0$ f,g: explicit mathematical expressions involving symbols p,x
- If an instance p is given (i.e. an assignment of numbers to the symbols in p is known), write $f(x), g_i(x)$

This excludes black-box optimization

Main optimization problem classes

MPRO — PMA – p. 20

Notation

- P: MP formulation with decision variables $x = (x_1, \dots, x_n)$
- **Solution**: assignment of values to decision variables, i.e. a vector $v ∈ \mathbb{R}^n$
- $\mathcal{F}(P)$ =set of feasible solutions $x \in \mathbb{R}^n$ such that $\forall i \leq m \ (g_i(x) \leq 0)$
- $\mathcal{G}(P)$ =set of globally optimal solutions $x \in \mathbb{R}^n$ s.t. $x \in \mathcal{F}(P)$ and $\forall y \in \mathcal{F}(P) \ (f(x) \leq f(y))$

Citations

- Williams, Model building in mathematical programming, 2002
- Liberti, Cafieri, Tarissan, Reformulations in Mathematical Programming: a computational approach, in Abraham et al. (eds.), Foundations of Comput. Intel., 2009

Reformulations

Exact reformulations

ullet The formulation Q is an exact reformulation of P if

 \exists an efficiently computable surjective map $\phi: \mathcal{F}(Q) \to \mathcal{F}(P)$ s.t. $\phi|_{\mathcal{G}(Q)}$ is onto $\mathcal{G}(P)$

• Informally: any optimum of Q can be mapped easily to an optimum of P, and for any optimum of P there is a corresponding optimum of Q

• Construct Q so that it is easier to solve than P

xy when x is binary

- If \exists bilinear term xy where $x \in \{0, 1\}, y \in [0, 1]$
- We can construct an exact reformulation:
 - ullet Replace each term xy by an added variable w
 - Adjoin Fortet's reformulation constraints:

$$\begin{array}{rcl} w & \geq & 0 \\ w & \geq & x + y - 1 \\ w & \leq & x \\ w & \leq & y \end{array}$$

- Get a MILP reformulation
- Solve reformulation using CPLEX: more effective than solving MINLP

"Proof"

ÉCOLE

Relaxations

- The formulation Q is a relaxation of P if $\min f_Q(y) \leq \min f_P(x)$ (*)
- Relaxations are used to compute worst-case bounds to the optimum value of the original formulation
- Construct Q so that it is easy to solve
- Proving (*) may not be easy in general
- The usual strategy:
 - Make sure $y \supset x$ and $\mathcal{F}(Q) \supseteq \mathcal{F}(P)$
 - Make sure $\forall x \in \mathcal{F}(P) \ (f_Q(y) \leq f_P(x))$
 - Then it follows that Q is a relaxation of P
- Example: convex relaxation
 - $\mathcal{F}(Q)$ a convex set containing $\mathcal{F}(P)$
 - f_Q a convex underestimator of f_P
 - Then Q is a cNLP and can be solve efficiently

xy when x, y continuous

- Get bilinear term xy where $x \in [x^L, x^U]$, $y \in [y^L, y^U]$
- We can construct a relaxation:
 - ullet Replace each term xy by an added variable w
 - Adjoin following constraints:

$$w \geq x^{L}y + y^{L}x - x^{L}y^{L}$$

$$w \geq x^{U}y + y^{U}x - x^{U}y^{U}$$

$$w \leq x^{U}y + y^{L}x - x^{U}y^{L}$$

$$w \leq x^{L}y + y^{U}x - x^{L}y^{U}$$

- These are called McCormick's envelopes
- Get an LP relaxation (solvable in polynomial time)

Software

■ ROSE (https://projects.coin-or.org/ROSE)

Citations

- McCormick, Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems, Math. Prog. 1976
- Liberti, Reformulations in Mathematical Programming: definitions and systematics, RAIRO-RO 2009

Global Optimization methods

Deterministic / Stochastic

Exact = Deterministic

- "Exact" in continuous space: ε -approximate (find solution within pre-determined ε distance from optimum in obj. fun. value)
- For some problems, finite convergence to optimum ($\varepsilon = 0$)

Heuristic = Stochastic

Find solution with probability 1 in infinite time

ÉCOLE POLYTECHNIQUE

Multistart

The easiest GO method

```
1: f^* = \infty

2: x^* = (\infty, ..., \infty)

3: while ¬ termination do

4: x' = (\text{random}(), ..., \text{random}())

5: x = \text{localSolve}(P, x')

6: if f_P(x) < f^* then

7: f^* \leftarrow f_P(x)

8: x^* \leftarrow x

9: end if

10: end while
```

■ Termination condition: e.g. repeat k times

Six-hump camelback function

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

Global optimum (COUENNE)

Six-hump camelback function

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

Multistart with IPOPT, k=5

Six-hump camelback function

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

Multistart with IPOPT, k = 10

Six-hump camelback function

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

Multistart with IPOPT, k = 20

Six-hump camelback function

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

Multistart with IPOPT, k = 50

Six-hump camelback function

$$f(x,y) = 4x^2 - 2.1x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4$$

Multistart with SNOPT, k = 20

Citations

- Schoen, Two-Phase Methods for Global Optimization, in Pardalos et al. (eds.), Handbook of Global Optimization 2, 2002
- Liberti, Kucherenko, Comparison of deterministic and stochastic approaches to global optimization, ITOR 2005

spatial Branch-and-Bound (sBB)

Generalities

- Tree-like search
- Explores search space exhaustively but implicitly
- Builds a sequence of decreasing upper bounds and increasing lower bounds to the global optimum
- Exponential worst-case
- Only general-purpose "exact" algorithm for MINLP Since continuous vars are involved, should say "ε-approximate"
- Like BB for MILP, but may branch on continuous vars
 Done whenever one is involved in a nonconvex term

Original problem P

Starting point x'

Local (upper bounding) solution x^*

Convex relaxation (lower) bound \bar{f} with $|f^* - \bar{f}| > \varepsilon$

Branch at $x = \bar{x}$ into C_1, C_2

Convex relaxation on C_1 : lower bounding solution \bar{x}

localSolve. from \bar{x} : new upper bounding solution x^*

 $|f^* - \bar{f}| > \varepsilon$: branch at $x = \bar{x}$

Repeat on C_3 : get $\bar{x}=x^*$ and $|f^*-\bar{f}|<\varepsilon$, no more branching

Repeat on C_2 : $\overline{f} > f^*$ (can't improve x^* in C_2)

Repeat on C_4 : $\bar{f} > f^*$ (can't improve x^* in C_4)

No more subproblems left, return x^* and terminate

ÉCOLE POLYTECHNIQUE

Pruning

- 1. P was branched into C_1, C_2
- 2. C_1 was branched into C_3, C_4
- 3. C_3 Was pruned by optimality $(x^* \in \mathcal{G}(C_3) \text{ was found})$
- 4. C_2, C_4 were pruned by bound (lower bound for C_2 worse than f^*)
- 5. No more nodes: whole space explored, $x^* \in \mathcal{G}(P)$
- Search generates a tree
- Suproblems are nodes
- Nodes can be pruned by optimality, bound or infeasibility (when subproblem is infeasible)
- Otherwise, they are branched

Logical flow

Notation:

- ullet $C = P[x^L, x^U]$ is P restricted to $x \in [x^L, x^U]$
- x^* : best optimum so far (start with $x^* = \infty$)
- C could be feasible or infeasible
 - If C is feasible, we might find a glob. opt. x' of C or not
 - If we find glob. opt. x' improving x^* , update $x^* \leftarrow x'$
 - Else, try and show no point in $\mathcal{F}(C)$ improves x^*
 - \cdot Else **branch** C into two suproblems and recurse on each
 - subproblems have smaller feasible regions ⇒ "easier"
 - ullet Else C is infeasible, discard

Correctness

- Look at <u>else</u> cases:
 - C infeasible \Rightarrow can discard C
 - C feasible and no point $\mathcal{F}(C)$ improves $x^* \Rightarrow \operatorname{can}$ discard C
- Branching \Rightarrow any subproblem that we're NOT sure could improve x^* is considered again later
- \Rightarrow If process terminates, we'll have explored all those parts of $\mathcal{F}(P)$ that can contain an optimum better than x^*
 - If $x^* = \infty$, P infeasible, otherwise $x^* \in \mathcal{G}(P)$
 - Might fail to terminate if $\varepsilon = 0$

A recursive version

processSubProblem $_{\varepsilon}(C)$:

```
1: if is Feasible(C) then
 2: x' = globalOpt(C)
 3: if x' \neq \infty then
 4: if f_P(x') < f_P(x^*) then
 5:
             update x^* \leftarrow x' // improvement
 6:
          end if
 7:
        else
 8:
          if lowerBound(C) < f_P(x^*) - \varepsilon then
 9:
             Split [x^L, x^U] into two hyperrectangles [x^L, \tilde{x}], [\underline{x}, x^U]
10:
             processSubProblem_{\varepsilon}(C[x^L, \tilde{x}])
11:
             processSubProblem<sub>\varepsilon</sub>(C[\underline{x}, x^U])
12:
          end if
13:
        end if
14: end if
```


Bad news

- 1. If globalOpt(C) works on any problem, why not call globalOpt(P) and be done with it?
- 2. For arbitrary C, is Feasible (C) is undecidable
- 3. How do we compute lowerBound(C)?

Upper bounds

Upper bounds: x^* can only decrease

- Computing the global optima for each subproblem yields candidates for updating x^*
- As long as we only update x^* when x' improves it, we don't need x' to be a *global* optimum
- Any "good feasible point" will do
- Specifically, use feasible local optima
- Replace globalOpt() by localSolve()

Lower bound

Lower bounds: increase over ⊃-chains

- Let R_P be a relaxation of P such that:
 - 1. R_P also involves the decision variables of P (and perhaps some others)
 - 2. for any range $I = [x^L, x^U]$, $R_P[I]$ is a relaxation of P[I]
 - 3. if I, I' are two ranges $I \supseteq I' \to \min R_P[I] \le \min R_P[I']$
 - 4. For any subproblem C of P, finding $x \in \mathcal{G}(R_C)$ or showing $\mathcal{F}(R_C) = \varnothing$ is efficient Specifically, $\bar{x} = \text{localSolve}(R_C) \in \mathcal{G}(R_C)$
- Define lowerBound $(C) = f_{R_C}(\bar{x})$

A decidable feasibility test

- Processing C when it's infeasible will make sBB slower but not incorrect
- ightharpoonup ightharpoonup sBB still works if we simply never discard a potentially feasible C
- ullet Use a "partial feasibility test" is Evidently Infeasible (P)
 - If isEvidentlyInfeasible(C) is true, then C is guaranteed to be infeasible, and we can discard it
 - Otherwise, we simply don't know, and we shall process it
- \blacksquare Thm: If R_C is infeasible then C is infeasible

Choice of best next node

Instead recursion order, process first nodes which are more likely to yield a glob. opt.

Advantages

- Glob. opt. of P found early
 - \Rightarrow easier to prune by bound
- If sBB stopped early, more chance that $x^* \in \mathcal{G}(P)$
- Indication of a "good subproblem": if lower bound is lowest
- Store subproblems in a min-priority queue Q, where priority(C) is given by a lower bound for C

Software

- Couenne (open source, AMPL interface)
 (projects.coin-or.org/Couenne)
- GlobSol (open source, interval arithmetic bounds) (http://interval.louisiana.edu/GLOBSOL/)
- BARON (commercial, GAMS interface)
- LGO (commercial, Lipschitz constant bounds)
- LINDOGLOBAL (commercial)
- Some research codes (αBB, ooOPS, LaGO, GLOP, Coconut)

Citations

- Falk, Soland, An algorithm for separable nonconvex programming problems, Manag. Sci. 1969
- Horst, Tuy, Global Optimization, Springer 1990
- Adjiman, Floudas et al., A global optimization method, αBB, for general twice-differentiable nonconvex NLPs, Comp. Chem. Eng. 1998
- Pyoo, Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design, Comp. Chem. Eng. 1995
- Smith, Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Comp. Chem. Eng. 1999
- Nowak, Relaxation and decomposition methods for Mixed Integer Nonlinear Programming, Birkhäuser, 2005
- Belotti, Liberti et al., Branching and bounds tightening techniques for nonconvex MINLP, Opt. Meth. Softw., 2009

To make an sBB work efficiently, you need further tricks

Expression trees

Representation of objective f and constraints g Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1x_2$$
:

Standard form

- Identify all nonlinear terms $x_i \otimes x_j$, replace them with a linearizing variable w_{ij}
- Add a defining constraint $w_{ij} = x_i \otimes x_j$ to the formulation
- Standard form:

$$\min \quad c^{\top}(x,w)$$
 $\text{s.t.} \quad A(x,w) \leqslant b$
 $w_{ij} = x_i \otimes_{ij} x_j \text{ for suitable } i,j$
 $\text{bounds} \quad \& \quad \text{integrality constraints}$

$$x_1^2 + x_1 x_2 \Rightarrow \begin{cases} w_{11} + w_{12} & + \\ w_{11} = x_1^2 & \vdots & \times \\ w_{12} = x_1 x_2 & x_1 & 2 & x_1 & x_2 \end{cases} \rightarrow \begin{cases} + \\ x_1 & + \\ x_1 & x_2 & x_1 & x_2 \end{cases}$$

Convex relaxation

- Standard form: all nonlinearities in defining constraints
- Each defining constraint $w_{ij} = x_i \otimes x_j$ is replaced by two convex inequalities:

$$w_{ij} \leq \text{overestimator}(x_i \otimes x_j)$$

$$w_{ij} \geq \text{underestimator}(x_i \otimes x_j)$$

• E.g. convex/concave over-, under-estimators for products $x_i x_j$ where $x \in [-1, 1]$ (McCormick's envelope):

Convex relaxation is not the tightest possible, but it can be constructed automatically

Summary

ORIGINAL MINLP

 $\min_{x} f(x)$

$$g(x) \leq 0$$

$$x^L \le x \le x^U$$

STANDARD FORM

 $\min w_1$

$$Aw = b$$

$$w_i = w_j w_k \ \forall (i, j, k) \in \mathcal{T}_{blt}$$

$$w_i = \frac{w_j}{w_k} \ \forall (i, j, k) \in \mathcal{T}_{lft}$$

$$w_i = h_{ij}(w_j) \ \forall (i,j) \in \mathcal{T}_{uf}$$

$$w^L \le w \le w^U$$

CONVEX RELAXATION

 $\min w_1$

$$Aw = b$$

McCormick's relaxation $w_i = rac{w_j}{w_k} \ orall (i,j,k) \in \mathcal{T}_{lft}$ Secant relaxation $w_i = h_{ij}(w_j) \ orall (i,j) \in \mathcal{T}_{uf}$ $w^L \leq w \leq w^U$

$$w^L \le w \le w^U$$

Some variables may be integral

Easier to perform symbolic algorithms

Linearizes nonlinear terms

linearizing Adds variables and defining constraints

Each defining constraint replaced by convex underand concave over-estimators

Eg: conv. rel. of pooling problem

$$\begin{array}{llll} \min\limits_{x,y,p} & 6x_{11}+16x_{21}+10x_{12}-\\ & -9(y_{11}+y_{21})-15(y_{12}+y_{22})\\ \text{s.t.} & x_{11}+x_{21}-y_{11}-y_{12}=0 \text{ linear}\\ & x_{12}-y_{21}-y_{22}=0 \text{ linear}\\ & y_{11}+y_{21}\leq 100 \text{ linear}\\ & y_{12}+y_{22}\leq 200 \text{ linear}\\ & 3x_{11}+x_{21}-p(y_{11}+y_{12})=0\\ & py_{11}+2y_{21}\leq 2.5(y_{11}+y_{21})\\ & py_{12}+2y_{22}\leq 1.5(y_{12}+y_{22}) \end{array} \qquad \begin{array}{ll} \min\limits_{\text{s.t.}} & \cos t\\ \text{s.t.} & \text{linear constraints}\\ & 3x_{11}+x_{21}-w_{1}=0\\ & w_{3}+2y_{21}\leq 2.5(y_{11}+y_{21})\\ & w_{4}+2y_{22}\leq 1.5(y_{12}+y_{22})\\ & w_{1}=pw_{2}\\ & w_{3}=py_{11}\\ & w_{4}=py_{12} \end{array}$$

Replace nonconvex constr. w=uv by McCormick's envelopes: $w\geq \max\{u^Lv+v^Lu-u^Lv^L,u^Uv+v^Uu-u^Uv^U\},\\ w\leq \min\{u^Uv+v^Lu-u^Uv^L,u^Lv+v^Uu-u^Lv^U\}.$

Variable ranges

- Crucial property for sBB convergence: convex relaxation tightens as variable range widths decrease
- convex/concave under/over-estimator constraints are (convex) functions of x^L, x^U
- it makes sense to **tighten** x^L, x^U at the sBB root node (trading off speed for efficiency) and at each other node (trading off efficiency for speed)

OBBT and **FBBT**

- In sBB we need to tighten variable bounds at each node
- Two methods: Optimization Based Bounds Tightening (OBBT) and Feasibility Based Bounds Tightening (FBBT)
- OBBT: for each variable x in P compute \min and $\max\{x \mid \text{conv. rel. constr.}\}$, see e.g. [Caprara et al., MP 2009]
- FBBT: propagation of intervals up and down constraint expression trees, with tightening at the root node

Example: $5x_1 - x_2 = 0$.

Up: $\otimes : [5, 5] \times [0, 1] = [0, 5]; \ominus : [0, 5] - [0, 1] = [-1, 5].$

Root node tightening: $[-1, 5] \cap [0, 0] = [0, 0]$.

Downwards: $\otimes : [0, 0] + [0, 1] = [0, 1];$

 $x_1:[0,1]/[5,5]=[0,\frac{1}{5}]$

■ Iterating (up/tighten/down) k times yields $[0, \frac{1}{5^{2k-1}}]$

Quadratic problems

- All nonlinear terms are quadratic monomials
- Aim to reduce gap betwen the problem and its convex relaxation
- replace quadratic terms with suitable linear constraints (fewer nonlinear terms to relax)
- Can be obtained by considering linear relations (called reduced RLT constraints) between original and linearizing variables

Reduced RLT Constraints I

- lacksquare For each $k \leq n$, let $w_k = (w_{k1}, \dots, w_{kn})$
- Multiply Ax = b by each x_k , substitute linearizing variables w_k , get reduced RLT constraint system (RRCS)

$$\forall k \leq n \ (Aw_k = bx_k)$$

- \blacktriangleright $\forall i, k \leq n \text{ define } z_{ki} = w_{ki} x_i x_k, \text{ let } z_k = (z_{k1}, \dots, z_{kn})$
- Substitute b=Ax in RRCS, get $\forall k \leq n(A(w_k-x_kx)=0)$, i.e. $\forall k \leq n(Az_k=0)$. Let B,N be the sets of basic and nonbasic variables of this system
- Setting $z_{ki}=0$ for each nonbasic variable implies that the RRCS is satisfied \Rightarrow It suffices to enforce quadratic constraints $w_{ki}=x_ix_k$ for $(i,k)\in N$ (replace those for $(i,k)\in B$ with the linear RRCS)

Reduced RLT Constraints II

$$F(P) = \{(x, y, w) \mid w = xy \land x = 1\}$$

McCormick's rel.

rRLT constraint: multiply x = 1 by y, get xy = y, replace xy by w, get w = yF(P) described *linearly*

Reduced RLT Constraints III

- If $|E| = \frac{1}{2}n(n+1)$ (all possible quadratic terms), get |B| fewer quadratic terms in reformulation
- Otherwise, judicious choice of multiplier variable set $\{x_k \mid k \in K\}$ and multiplied linear equation constraint subsystem must be performed.

Citations

- Sherali, Alameddine, A new reformulation-linearization technique for bilinear programming problems, JOGO, 1991
- Smith, Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Comp. Chem. Eng. 1999
- Liberti, Reduction Constraints for the Global Optimization of NLPs, ITOR, 2004
- Liberti, Linearity embedded in nonconvex programs, JOGO, 2005
- Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms, JOGO, 2006
- Belotti, Liberti et al., Branching and bounds tightening techniques for nonconvex MINLP, Opt. Meth. Softw., 2009
- Sherali, Dalkiran, Liberti, Reduced RLT representations for nonconvex polynomial programming problems, JOGO (to appear)

Other methods

- Simplified sBB
 - if MP is cMINLP, localSolve finds glob. opt. of *continuous* relaxation R_C , no need for lower bound
 - simply applying same strategy to MINLPs can yield a good local optimum (heuristic)
 - See bonmin [Bonami]
- Outer approximation [Grossmann]
- αECP [Westerlund]
- RECIPE [Liberti, Nannicini]

The end