Mixed-Integer Nonlinear Programming

Leo Liberti
LIX, École Polytechnique, France

Motivating applications

Haverly's pooling problem

Description

- Given an oil routing network with pools and blenders, unit prices, demands and quality requirements:

- Find the input quantities minimizing the costs and satisfying the constraints: mass balance, sulphur balance, quantity and quality demands

Variables and constraints

- Variables: input quantities x, routed quantities y, percentage p of sulphur in pool
- Every variable must be ≥ 0 (physical quantities)
- Bilinear terms arise to express sulphur quantities in terms of p, y
- Sulphur balance constraint: $3 x_{11}+x_{21}=p\left(y_{11}+y_{12}\right)$
- Quality demands:

$$
\begin{aligned}
& p y_{11}+2 y_{21} \leq 2.5\left(y_{11}+y_{21}\right) \\
& p y_{12}+2 y_{22} \leq 1.5\left(y_{12}+y_{22}\right)
\end{aligned}
$$

- Continuous bilinear formulation \Rightarrow nonconvex NLP

Formulation

$$
\left\{\begin{array}{rl}
\min _{x, y, p} & 6 x_{11}+16 x_{21}+10 x_{12}- \\
& \quad-9\left(y_{11}+y_{21}\right)-15\left(y_{12}+y_{22}\right) \quad \text { cost } \\
\text { s.t. } & x_{11}+x_{21}-y_{11}-y_{12}=0 \quad \text { mass balance } \\
& x_{12}-y_{21}-y_{22}=0 \quad \text { mass balance } \\
& y_{11}+y_{21} \leq 100 \quad \text { demand } \\
& y_{12}+y_{22} \leq 200 \quad \text { demand } \\
& 3 x_{11}+x_{21}-p\left(y_{11}+y_{12}\right)=0 \quad \text { sulphur balance } \\
& p y_{11}+2 y_{21} \leq 2.5\left(y_{11}+y_{21}\right) \quad \text { sulphur limit } \\
& p y_{12}+2 y_{22} \leq 1.5\left(y_{12}+y_{22}\right) \quad \text { sulphur limit }
\end{array}\right.
$$

Network design

- Decide whether to install pipes or not (0/1 decision)
- Associate a binary variable $z_{i j}$ with each pipe

$$
\begin{array}{ll}
\min _{x, y, p, z} \quad & 6 x_{11}+16 x_{21}+10 x_{12}+\sum_{i j} \theta_{i j} z_{i j}- \\
& -9\left(y_{11}+y_{21}\right)-15\left(y_{12}+y_{22}\right) \quad \text { cost } \\
\text { s.t. } \quad & x_{11}+x_{21}-y_{11}-y_{12}=0 \quad \text { mass balance } \\
& x_{12}-y_{21}-y_{22}=0 \text { mass balance } \\
& y_{11}+y_{21} \leq 100 \text { demand } \\
& y_{12}+y_{22} \leq 200 \quad \text { demand } \\
\forall i, j \leq 2 \quad & y_{i j} \leq 200 z_{i j} \quad \text { pipe activation: if } z_{i j}=0, \text { no flow } \\
& 3 x_{11}+x_{21}-p\left(y_{11}+y_{12}\right)=0 \quad \text { sulphur balance } \\
& p y_{11}+2 y_{21} \leq 2.5\left(y_{11}+y_{21}\right) \quad \text { sulphur limit } \\
& p y_{12}+2 y_{22} \leq 1.5\left(y_{12}+y_{22}\right) \quad \text { sulphur limit }
\end{array}
$$

The optimal network

- $z_{11}=0, z_{21}=0$
- $z_{12}=1, z_{22}=1$

Citations

1. C. Haverly, Studies of the behaviour of recursion for the pooling problem, ACM SIGMAP Bulletin, 1978
2. Adhya, Tawarmalani, Sahinidis, A Lagrangian approach to the pooling problem, Ind. Eng. Chem., 1999
3. Audet et al., Pooling Problem: Alternate Formulations and Solution Methods, Manag. Sci., 2004
4. Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms, JOGO, 2006
5. Misener, Floudas, Advances for the pooling problem: modeling, global optimization, and computational studies, Appl. Comput. Math., 2009
6. D'Ambrosio, Linderoth, Luedtke, Valid inequalities for the pooling problem with binary variables, LNCS, 2011

Drawing graphs

At a glance

Which graph has most symmetries?

Euclidean graphs

- Graph $G=(V, E)$, edge weight function $d: E \rightarrow \mathbb{R}_{+}$
- E.g. $V=\{1,2,3\}, E=\{\{1,2\},\{1,3\},\{2,3\}\}$ $d_{12}=d_{13}=d_{23}=1$
- Find positions $x_{v}=\left(x_{v 1}, x_{v 2}\right)$ of each $v \in V$ in the plane s.t.:

$$
\forall\{u, v\} \in E \quad\left\|x_{u}-x_{v}\right\|_{2}=d_{u v}
$$

- Generalization to \mathbb{R}^{K} for $K \in \mathbb{N}: x_{v}=\left(x_{v 1}, \ldots, x_{v K}\right)$

Application to proteomics

An artificial protein test set: lavor-11_7

Sensor networks in 2D and 3D

Formulation

$$
\begin{gathered}
\min _{x, t} \sum_{\{u, v\} \in E} t_{u v}^{2} \\
\forall\{u, v\} \in E \quad \sum_{k \leq K}\left(x_{u k}-x_{v k}\right)^{2}=d_{u v}^{2}+t_{u v}
\end{gathered}
$$

Citations

1. Lavor, Liberti, Maculan, Mucherino, Recent advances on the discretizable molecular distance geometry problem, Eur. J. of Op. Res., invited survey
2. Liberti, Lavor, Mucherino, Maculan, Molecular distance geometry methods: from continuous to discrete, Int. Trans. in Op. Res., 18:33-51, 2010
3. Liberti, Lavor, Maculan, Computational experience with the molecular distance geometry problem, in J. Pintér (ed.), Global Optimization: Scientific and Engineering Case Studies, Springer, Berlin, 2006

Mathematical Programming Formulations

Mathematical Programming

- MP: formal language for expressing optimization problems P
- Parameters $p=$ problem input p also called an instance of P
- Decision variables x : encode problem output
- Objective function $\min f(p, x)$
- Constraints $\forall i \leq m \quad g_{i}(p, x) \leq 0$
f, g : explicit mathematical expressions involving symbols p, x
- If an instance p is given (i.e. an assignment of numbers to the symbols in p is known), write $f(x), g_{i}(x)$

This excludes black-box optimization

Main optimization problem classes

Notation

- $P: \mathrm{MP}$ formulation with decision variables $x=\left(x_{1}, \ldots, x_{n}\right)$
- Solution: assignment of values to decision variables, i.e. a vector $v \in \mathbb{R}^{n}$
- $\mathcal{F}(P)=$ set of feasible solutions $x \in \mathbb{R}^{n}$ such that $\forall i \leq m\left(g_{i}(x) \leq 0\right)$
- $\mathcal{G}(P)=$ set of globally optimal solutions $x \in \mathbb{R}^{n}$ s.t. $x \in \mathcal{F}(P)$ and $\forall y \in \mathcal{F}(P)(f(x) \leq f(y))$

Citations

- Williams, Model building in mathematical programming, 2002
- Liberti, Cafieri, Tarissan, Reformulations in Mathematical Programming: a computational approach, in Abraham et al. (eds.), Foundations of Comput. Intel., 2009

Reformulations

Exact reformulations

- The formulation Q is an exact reformulation of P if \exists an efficiently computable surjective map $\phi: \mathcal{F}(Q) \rightarrow \mathcal{F}(P)$ s.t. $\left.\phi\right|_{\mathcal{G}(Q)}$ is onto $\mathcal{G}(P)$
- Informally: any optimum of Q can be mapped easily to an optimum of P, and for any optimum of P there is a corresponding optimum of Q

- Construct Q so that it is easier to solve than P

$x y$ when x is binary

- If \exists bilinear term $x y$ where $x \in\{0,1\}, y \in[0,1]$
- We can construct an exact reformulation:
- Replace each term $x y$ by an added variable w
- Adjoin Fortet's reformulation constraints:

$$
\begin{aligned}
w & \geq 0 \\
w & \geq x+y-1 \\
w & \leq x \\
w & \leq y
\end{aligned}
$$

- Get a MILP reformulation
- Solve reformulation using CPLEX: more effective than solving MINLP

"Proof"

Relaxations

- The formulation Q is a relaxation of P if $\min f_{Q}(y) \leq \min f_{P}(x) \quad(*)$
- Relaxations are used to compute worst-case bounds to the optimum value of the original formulation
- Construct Q so that it is easy to solve
- Proving $(*)$ may not be easy in general
- The usual strategy:
- Make sure $y \supset x$ and $\mathcal{F}(Q) \supseteq \mathcal{F}(P)$
- Make sure $\forall x \in \mathcal{F}(P)\left(f_{Q}(y) \leq f_{P}(x)\right)$
- Then it follows that Q is a relaxation of P
- Example: convex relaxation
- $\mathcal{F}(Q)$ a convex set containing $\mathcal{F}(P)$
- f_{Q} a convex underestimator of f_{P}
- Then Q is a cNLP and can be solve efficiently

$x y$ when x, y continuous

- Get bilinear term $x y$ where $x \in\left[x^{L}, x^{U}\right], y \in\left[y^{L}, y^{U}\right]$
- We can construct a relaxation:
- Replace each term $x y$ by an added variable w
- Adjoin following constraints:

$$
\begin{aligned}
w & \geq x^{L} y+y^{L} x-x^{L} y^{L} \\
w & \geq x^{U} y+y^{U} x-x^{U} y^{U} \\
w & \leq x^{U} y+y^{L} x-x^{U} y^{L} \\
w & \leq x^{L} y+y^{U} x-x^{L} y^{U}
\end{aligned}
$$

- These are called McCormick's envelopes
- Get an LP relaxation (solvable in polynomial time)

Software

ROSE (https://projects.coin-or.org/ROSE)

Citations

- McCormick, Computability of global solutions to factorable nonconvex programs: Part I - Convex underestimating problems, Math. Prog. 1976
- Liberti, Reformulations in Mathematical Programming: definitions and systematics, RAIRO-RO 2009

Global Optimization methods

Deterministic / Stochastic

objective function
a: solution of convex relaxation in whole space
Exact $=$ Deterministic

- "Exact" in continuous space: ε-approximate (find solution within pre-determined ε distance from optimum in obj. fun. value)
- For some problems, finite convergence to opti-
- mum ($\varepsilon=0$)

Heuristic = Stochastic

- Find solution with probability 1 in infinite time

Multistart

- The easiest GO method

```
1: f* = m
2: }\mp@subsup{x}{}{*}=(\infty,\ldots,\infty
3: while }\neg\mathrm{ termination do
4: }\mp@subsup{x}{}{\prime}=(\operatorname{random}(),\ldots,random()
5: }\quadx=\operatorname{locaISolve(P, 和)
6: if }\mp@subsup{f}{P}{}(x)<\mp@subsup{f}{}{*}\mathrm{ then
7: }\mp@subsup{f}{}{*}\leftarrow\mp@subsup{f}{P}{}(x
8: }\mp@subsup{x}{}{*}\leftarrow
9: end if
10: end while
```

- Termination condition: e.g. repeat k times

Six-hump camelback function

$$
f(x, y)=4 x^{2}-2.1 x^{4}+\frac{1}{3} x^{6}+x y-4 y^{2}+4 y^{4}
$$

Global optimum (Couenne)

Six-hump camelback function

$$
f(x, y)=4 x^{2}-2.1 x^{4}+\frac{1}{3} x^{6}+x y-4 y^{2}+4 y^{4}
$$

Multistart with IPOPT, $k=5$

Six-hump camelback function

$$
f(x, y)=4 x^{2}-2.1 x^{4}+\frac{1}{3} x^{6}+x y-4 y^{2}+4 y^{4}
$$

Multistart with IPOPT, $k=10$

Six-hump camelback function

$$
f(x, y)=4 x^{2}-2.1 x^{4}+\frac{1}{3} x^{6}+x y-4 y^{2}+4 y^{4}
$$

Multistart with IPOPT, $k=20$

Six-hump camelback function

$$
f(x, y)=4 x^{2}-2.1 x^{4}+\frac{1}{3} x^{6}+x y-4 y^{2}+4 y^{4}
$$

Multistart with IPOPT, $k=50$

Six-hump camelback function

$$
f(x, y)=4 x^{2}-2.1 x^{4}+\frac{1}{3} x^{6}+x y-4 y^{2}+4 y^{4}
$$

Multistart with SNOPT, $k=20$

Citations

- Schoen, Two-Phase Methods for Global Optimization, in Pardalos et al. (eds.), Handbook of Global Optimization 2, 2002
- Liberti, Kucherenko, Comparison of deterministic and stochastic approaches to global optimization, ITOR 2005

spatial Branch-and-Bound (sBB)

Generalities

- Tree-like search
- Explores search space exhaustively but implicitly
- Builds a sequence of decreasing upper bounds and increasing lower bounds to the global optimum
- Exponential worst-case
- Only general-purpose "exact" algorithm for MINLP

Since continuous vars are involved, should say " ε-approximate"

- Like BB for MILP, but may branch on continuous vars

Done whenever one is involved in a nonconvex term

Example

Original problem P

Example

Starting point x^{\prime}

Example

Local (upper bounding) solution x^{*}

Example

Convex relaxation (lower) bound \bar{f} with $\left|f^{*}-\bar{f}\right|>\varepsilon$

Example

Branch at $x=\bar{x}$ into C_{1}, C_{2}

Example

Convex relaxation on C_{1} : Iower bounding solution \bar{x}

Example

localSolve. from \bar{x} : new upper bounding solution x^{*}

Example

$$
\left|f^{*}-\bar{f}\right|>\varepsilon: \text { branch at } x=\bar{x}
$$

Example

Repeat on C_{3} : get $\bar{x}=x^{*}$ and $\left|f^{*}-\bar{f}\right|<\varepsilon$, no more branching

Example

Repeat on $C_{2}: \bar{f}>f^{*}$ (can't improve x^{*} in C_{2})

Example

Repeat on $C_{4}: \bar{f}>f^{*}$ (can't improve x^{*} in C_{4})

Example

No more subproblems left, return x^{*} and terminate

Pruning

1. P was branched into C_{1}, C_{2}
2. C_{1} was branched into C_{3}, C_{4}
3. C_{3} was pruned by optimality
($x^{*} \in \mathcal{G}\left(C_{3}\right)$ was found)
4. C_{2}, C_{4} were pruned by bound (lower bound for C_{2} worse than f^{*})
5. No more nodes: whole space explored, $x^{*} \in \mathcal{G}(P)$

- Search generates a tree
- Suproblems are nodes
- Nodes can be pruned by optimality, bound or infeasibility (when subproblem is infeasible)
- Otherwise, they are branched

Logical flow

Notation:

- $C=P\left[x^{L}, x^{U}\right]$ is P restricted to $x \in\left[x^{L}, x^{U}\right]$
- x^{*} : best optimum so far (start with $x^{*}=\infty$)
- C could be feasible or infeasible
- If C is feasible, we might find a glob. opt. x^{\prime} of C or not
- If we find glob. opt. x^{\prime} improving x^{*}, update $x^{*} \leftarrow x^{\prime}$
- Else, try and show no point in $\mathcal{F}(C)$ improves x^{*}
- Else branch C into two suproblems and recurse on each subproblems have smaller feasible regions \Rightarrow "easier"
- Else C is infeasible, discard

Correctness

- Look at else cases:
- C infeasible \Rightarrow can discard C
- C feasible and no point $\mathcal{F}(C)$ improves $x^{*} \Rightarrow$ can discard C
- Branching \Rightarrow any subproblem that we're NOT sure could improve x^{*} is considered again later
- \Rightarrow If process terminates, we'll have explored all those parts of $\mathcal{F}(P)$ that can contain an optimum better than x^{*}
- If $x^{*}=\infty, P$ infeasible, otherwise $x^{*} \in \mathcal{G}(P)$
- Might fail to terminate if $\varepsilon=0$

A recursive version

$\operatorname{processSubProblem}_{\varepsilon}(C)$:
1: if isFeasible (C) then
2: $\quad x^{\prime}=$ globalOpt (C)
3: if $x^{\prime} \neq \infty$ then
4: if $f_{P}\left(x^{\prime}\right)<f_{P}\left(x^{*}\right)$ then
5: update $x^{*} \leftarrow x^{\prime} / /$ improvement
6: end if
7: else
8: if lowerBound $(C)<f_{P}\left(x^{*}\right)-\varepsilon$ then
9: \quad Split $\left[x^{L}, x^{U}\right]$ into two hyperrectangles $\left[x^{L}, \tilde{x}\right],\left[\underline{x}, x^{U}\right]$
10: $\quad \operatorname{processSubProblem}_{\varepsilon}\left(C\left[x^{L}, \tilde{x}\right]\right)$
11: $\quad \operatorname{process}^{2}$ SubProblem ${ }_{\varepsilon}\left(C\left[\underline{x}, x^{U}\right]\right)$
12: end if
13: end if
14: end if

Bad news

1. If globalOpt (C) works on any problem, why not call globalopt (P) and be done with it?
2. For arbitrary C, isFeasible (C) is undecidable
3. How do we compute lowerBound (C) ?

Upper bounds

Upper bounds: x^{*} can only decrease

- Computing the global optima for each subproblem yields candidates for updating x^{*}
- As long as we only update x^{*} when x^{\prime} improves it, we don't need x^{\prime} to be a global optimum
- Any "good feasible point" will do
- Specifically, use feasible local optima
- \Rightarrow Replace globalOpt() by localSolve()

Lower bound

Lower bounds: increase over \supset-chains

- Let R_{P} be a relaxation of P such that:

1. R_{P} also involves the decision variables of P
(and perhaps some others)
2. for any range $I=\left[x^{L}, x^{U}\right]$,
$R_{P}[I]$ is a relaxation of $P[I]$
3. if I, I^{\prime} are two ranges
$I \supseteq I^{\prime} \rightarrow \min R_{P}[I] \leq \min R_{P}\left[I^{\prime}\right]$
4. For any subproblem C of P,
finding $x \in \mathcal{G}\left(R_{C}\right)$ or showing $\mathcal{F}\left(R_{C}\right)=\varnothing$ is efficient
Specifically, $\bar{x}=$ localSolve $\left(R_{C}\right) \in \mathcal{G}\left(R_{C}\right)$

- Define lowerBound $(C)=f_{R_{C}}(\bar{x})$

A decidable feasibility test

- Processing C when it's infeasible will make sBB slower but not incorrect
- $\Rightarrow \mathrm{sBB}$ still works if we simply never discard a potentially feasible C
- Use a "partial feasibility test" isEvidentlyInfeasible (P)
- If isEvidentlyInfeasible (C) is true, then C is guaranteed to be infeasible, and we can discard it
- Otherwise, we simply don't know, and we shall process it
- Thm: If R_{C} is infeasible then C is infeasible
- Proof: $\varnothing=\mathcal{F}\left(R_{C}\right) \supseteq \mathcal{F}(C)=\varnothing$
- isEvidentlyInfeasible $(C)=\left\{\begin{aligned} \text { true } & \text { if localSolve }\left(R_{C}\right)=\infty \\ \text { false } & \text { otherwise }\end{aligned}\right.$

Choice of best next node

- Instead recursion order, process first nodes which are more likely to yield a glob. opt.
- Advantages
- Glob. opt. of P found early
\Rightarrow easier to prune by bound
- If sBB stopped early, more chance that $x^{*} \in \mathcal{G}(P)$
- Indication of a "good subproblem": if lower bound is lowest
- Store subproblems in a min-priority queue \mathcal{Q}, where priority (C) is given by a lower bound for C

Software

- Couenne (open source, AMPL interface) (projects.coin-or.org/Couenne)
- GlobSol (open source, interval arithmetic bounds) (http://interval.louisiana.edu/GLOBSOL/)
- BARON (commercial, GAMS interface)
- LGO (commercial, Lipschitz constant bounds)
- LINDOGLOBAL (commercial)
- Some research codes (α BB, ooOPS, LaGO, GLOP, Coconut)

Citations

- Falk, Soland, An algorithm for separable nonconvex programming problems, Manag. Sci. 1969
- Horst, Tuy, Global Optimization, Springer 1990
- Adjiman, Floudas et al., A global optimization method, $\alpha B B$, for general twice-differentiable nonconvex NLPs, Comp. Chem. Eng. 1998
- Ryoo, Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design, Comp. Chem. Eng. 1995
- Smith, Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Comp. Chem. Eng. 1999
- Nowak, Relaxation and decomposition methods for Mixed Integer Nonlinear Programming, Birkhäuser, 2005
- Belotti, Liberti et al., Branching and bounds tightening techniques for nonconvex MINLP, Opt. Meth. Softw., 2009

To make an sBB work efficiently, you need further tricks

Expression trees

Representation of objective f and constraints g Encode mathematical expressions in trees or DAGs

$$
\text { E.g. } x_{1}^{2}+x_{1} x_{2} \text { : }
$$

Standard form

- Identify all nonlinear terms $x_{i} \otimes x_{j}$, replace them with a linearizing variable $w_{i j}$
- Add a defining constraint $w_{i j}=x_{i} \otimes x_{j}$ to the formulation
- Standard form:

$$
\left.\begin{array}{rrll}
\min & c^{\top}(x, w) & & \\
\text { s.t. } & A(x, w) & \lesseqgtr b \\
& w_{i j} & =x_{i} \otimes_{i j} x_{j} \text { for suitable } i, j \\
& \text { bounds } & \& \text { integrality constraints }
\end{array}\right\}
$$

Convex relaxation

- Standard form: all nonlinearities in defining constraints
- Each defining constraint $w_{i j}=x_{i} \otimes x_{j}$ is replaced by two convex inequalities:

$$
\begin{aligned}
w_{i j} & \leq \text { overestimator }\left(x_{i} \otimes x_{j}\right) \\
w_{i j} & \geq \text { underestimator }\left(x_{i} \otimes x_{j}\right)
\end{aligned}
$$

- E.g. convex/concave over-, under-estimators for products $x_{i} x_{j}$ where $x \in[-1,1]$ (McCormick's envelope):

- Convex relaxation is not the tightest possible, but it can be constructed automatically

ORIGINAL MINLP
$\min _{x} f(x)$
$g(x) \leq 0$
$x^{L} \leq x \leq x^{U}$

Some variables may be integral

STANDARD FORM
$\min w_{1}$
$A w=b$
$w_{i}=w_{j} w_{k} \forall(i, j, k) \in \mathcal{T}_{b l t}$
$w_{i}=\frac{w_{j}}{w_{k}} \forall(i, j, k) \in \mathcal{T}_{l f t}$
$w_{i}=h_{i j}\left(w_{j}\right) \forall(i, j) \in \mathcal{T}_{u f}$
$w^{L} \leq w \leq w^{U}$

- Easier to perform symbolic algorithms
- Linearizes nonlinear terms
- Adds linearizing variables and defining constraints

Convex Relaxation
$\min w_{1}$
$A w=b$
McCormick's relaxation
Secant relaxation
$w^{L} \leq w \leq w^{U}$

Each defining constraint replaced by convex under- and concave over-estimators

Eg: conv. rel. of pooling problem

Replace nonconvex constr. $w=u v$ by McCormick's envelopes:
$w \geq \max \left\{u^{L} v+v^{L} u-u^{L} v^{L}, u^{U} v+v^{U} u-u^{U} v^{U}\right\}$,
$w \leq \min \left\{u^{U} v+v^{L} u-u^{U} v^{L}, u^{L} v+v^{U} u-u^{L} v^{U}\right\}$

Variable ranges

- Crucial property for sBB convergence: convex relaxation tightens as variable range widths decrease
- convex/concave under/over-estimator constraints are (convex) functions of x^{L}, x^{U}
- it makes sense to tighten x^{L}, x^{U} at the sBB root node (trading off speed for efficiency) and at each other node (trading off efficiency for speed)

OBBT and FBBT

- In sBB we need to tighten variable bounds at each node

- Two methods: Optimization Based Bounds Tightening (OBBT) and Feasibility Based Bounds Tightening (FBBT)
- OBBT: for each variable x in P compute min and $\max \{x \mid$ conv. rel. constr. $\}$, see e.g. [Caprara et al., MP 2009]
- FBBT:
propagation of intervals up and down constraint expression trees, with tightening at the root node Example: $5 x_{1}-x_{2}=0$.
Up: $\otimes:[5,5] \times[0,1]=[0,5] ; \ominus:[0,5]-[0,1]=[-1,5]$.
Root node tightening: $[-1,5] \cap[0,0]=[0,0]$.
Downwards: $\otimes:[0,0]+[0,1]=[0,1]$;
$x_{1}:[0,1] /[5,5]=\left[0, \frac{1}{5}\right]$

- Iterating (up/tighten/down) k times yields $\left[0, \frac{1}{5^{2 k-1}}\right]$

Quadratic problems

- All nonlinear terms are quadratic monomials
- Aim to reduce gap betwen the problem and its convex relaxation
- \Rightarrow replace quadratic terms with suitable linear constraints (fewer nonlinear terms to relax)
- Can be obtained by considering linear relations (called reduced RLT constraints) between original and linearizing variables

Reduced RLT Constraints I

- For each $k \leq n$, let $w_{k}=\left(w_{k 1}, \ldots, w_{k n}\right)$
- Multiply $A x=b$ by each x_{k}, substitute linearizing variables w_{k}, get reduced RLT constraint system (RRCS)

$$
\forall k \leq n\left(A w_{k}=b x_{k}\right)
$$

- $\forall i, k \leq n$ define $z_{k i}=w_{k i}-x_{i} x_{k}$, let $z_{k}=\left(z_{k 1}, \ldots, z_{k n}\right)$
- Substitute $b=A x$ in RRCS, get $\forall k \leq n\left(A\left(w_{k}-x_{k} x\right)=0\right)$, i.e. $\forall k \leq n\left(A z_{k}=0\right)$. Let B, N be the sets of basic and nonbasic variables of this system
- Setting $z_{k i}=0$ for each nonbasic variable implies that the RRCS is satisfied \Rightarrow It suffices to enforce quadratic constraints $w_{k i}=x_{i} x_{k}$ for $(i, k) \in N$ (replace those for $(i, k) \in B$ with the linear RRCS)

Reduced RLT Constraints II

McCormick's rel.
rRLT constraint: multiply $x=1$ by y, get $x y=y$, replace $x y$ by w, get $w=y$
$F(P)$ described linearly

Reduced RLT Constraints III

- If $|E|=\frac{1}{2} n(n+1)$ (all possible quadratic terms), get $|B|$ fewer quadratic terms in reformulation
- Otherwise, judicious choice of multiplier variable set $\left\{x_{k} \mid k \in K\right\}$ and multiplied linear equation constraint subsystem must be performed.

Citations

- Sherali, Alameddine, A new reformulation-linearization technique for bilinear programming problems, JOGO, 1991
- Smith, Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Comp. Chem. Eng. 1999
- Liberti, Reduction Constraints for the Global Optimization of NLPs, ITOR, 2004
- Liberti, Linearity embedded in nonconvex programs, JOGO, 2005
- Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms, JOGO, 2006
- Belotti, Liberti et al., Branching and bounds tightening techniques for nonconvex MINLP, Opt. Meth. Softw., 2009
- Sherali, Dalkiran, Liberti, Reduced RLT representations for nonconvex polynomial programming problems, JOGO (to appear)

Other methods

- Simplified sBB
- if MP is cMINLP, localSolve finds glob. opt. of continuous relaxation R_{C}, no need for lower bound
- simply applying same strategy to MINLPs can yield a good local optimum (heuristic)
- See bonmin [Bonami]
- Outer approximation [Grossmann]
- α ECP [Westerlund]
- RECIPE [Liberti, Nannicini]

The end

