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Radial Distribution Load Flow Using Conic Programming
Rabih A. Jabr, Member, IEEE

Abstract—This paper shows that the load flow problem of a ra-
dial distribution system can be modeled as a convex optimization
problem, particularly a conic program. The implications of the
conic programming formulation are threefold. First, the solution
of the distribution load flow problem can be obtained in polyno-
mial time using interior-point methods. Second, numerical ill-con-
ditioning can be automatically alleviated by the use of scaling in
the interior-point algorithm. Third, the conic formulation facili-
tates the inclusion of the distribution power flow equations in ra-
dial system optimization problems. A state-of-the-art implementa-
tion of an interior-point method for conic programming is used to
obtain the solution of nine different distribution systems. Compar-
isons are carried out with a previously published radial load flow
program by R. Cespedes.

Index Terms—Load flow control, nonlinear programming, opti-
mization methods.

I. INTRODUCTION

HE LOAD flow program is an essential tool for the
Tefﬁcient operation and control of power distribution
networks. The distribution systems are characterized by their
prevailing radial nature and high R/X ratio. This renders the
load flow problem ill-conditioned. Early research indicated that
standard load flow methods fail to converge for ill-conditioned
test systems [1]. Methods for radial distribution have therefore
been predominantly based on forward/backward sweeping of
the network tree representation [2]. An efficient radial load
flow technique that employs in the forward sweep the solution
to a biquadratic equation was developed by Cespedes [3]. The
biquadratic equation in [3] relates the voltage magnitudes at the
sending and receiving ends of each branch to the power flow
at the receiving end. Cespedes’ approach has been accepted
by many power system researchers. In fact, minor variants
of this method have been applied in [4] and [5]. Moreover,
Cespedes’ load flow has been generalized in [6] to cater for
exponential load models. It has been also applied in voltage
stability analysis of radial distribution networks [7].

This letter presents a radial load flow solution based on conic
programming. Section II formulates the load flow problem as
a set of linear constraints and active rotated quadratic cones.
The formulation as a conic program together with a summary of
numerical results is given in Section III. This paper is concluded
in Section IV.

II. DISTRIBUTION LOAD FLOW

Consider the single-line equivalent circuit shown in Fig. 1 (all
relevant quantities are in per-unit). The line model without shunt
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Fig. 1. Distribution line model.

connections is sufficient to describe fully the concepts in this
paper.
The real/reactive power flows from node ¢ to node j are
PL']' :Gij‘/l-z — GUV:V; COSG,L']' —I—BLJK‘/] sin 91']', (1)
Qij = BijV;? — ByjViVjcos bij — Gi;ViVjsinby;,  (2)
where 6;; = 6; — 6;. By defining u; = V?/V2, Rij =
ViVjcos by, and I;; = V;Vjsin 65, (1) and (2) become
P = \/EGijui - Gy R + Bijli, 3)
Qij = \/EBijUi — BijRi; — Gy 1;;. “)

In (3) and (4), R;; and I;; are constrained such that

2uiu; = R + I, 3)

Equations (3)—(5) can be used to define the radial load flow
problem. Let N be the number of nodes in the distribution
system with node 1 being connected to the power substation.
It is assumed that the magnitude of the voltage at this node
is specified. The power injection constraints at each of the
(N — 1) remaining nodes (i = 2,...,N) are

— Z Pij = — \/§UZ Z Gij + Z (Ginij — Bij[ij)

FER(9) JER() JER()
= Pr;, (6)
- Z Qij = —V2u; Z Bij + Z (BijRij + Gijlij)
JEk() JEk(4) JEk(i)
=QuLi. (N

In (6) and (7), k(%) denotes the set of nodes connected to node
i, and Pr;/Qr; denote the real/reactive power loads at node .
Equations (6) and (7), when evaluated fors = 2, ..., IV, define a
linear system with 2 x (N — 1) equations. Note that the number
of lines in a radial network is (N — 1). Because R;; = R;;
and I;; = —I;, the total number of variables is 3 x (N — 1).
Therefore, (N — 1) additional equations are required to solve
for the variables. These equations result from (5) enforced for
all 75 lines.

The system of equations defined by (5)—(7) can be solved to
obtain the radial load flow solution. The original variables can
be easily deduced once the new adopted variables are computed.
In fact, Expdsito and Ramos [8] have proposed a radial load flow
technique based on solving a very similar system of equations
using the Newton approach. In the accompanying discussion of
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[8], the authors pointed out that when using single precision
arithmetic, the ill-conditioning resulting from the existence of
very short line sections along with longer ones can be allevi-
ated by the use of block arithmetic and symbolic computations.
For an increase in the numerical reliability of the method, the
authors in [8] strongly recommend the use of double precision
arithmetic.

III. CoNIC PROGRAMMING FORMULATION

The radial load flow solution satisfying (5)—(7) can be ob-
tained by solving the following second-order cone program:

maximize Z R;; subject to

ij lines
equations (6) and (7) fori =2,... N (8)
2u;u; > R}; + I7; for all ij lines 9)
up = V2/V2, uy >0fori=2,...N (10)
R;; > 0 for all ¢j lines. (11

The above optimization problem calls for increasing the values
of R;; until all inequality constraints in (9) become active. It
should be noted that because the load flow solution of a prac-
tical radial distribution system is unique [7], the solution to the
optimization problem converges to the true load flow solution.
This has been numerically confirmed on nine different distribu-
tion systems.

The second-order cone program differs from the standard
linear program by the inclusion of rotated quadratic cones (9).
Nevertheless, it has been shown that primal-dual interior-point
methods developed for linear optimization can be generalized
to the conic quadratic case while maintaining their efficiency
[9]. In this letter, the conic programs were solved using the
MOSEK implementation [10], which is based on one of the
best known theoretical algorithms. Note that MOSEK requires
introducing additional variables and linear constraints such
that no variable belongs to two different cones. On the positive
side, the choice of a commercial solver implies that one can
benefit from the time and effort that has been put into the
development of high-powered software tools. In particular,
MOSEK insures accurate results, even in the presence of
ill-conditioned problems, by scaling the problem appropriately
so that the search direction is well defined [9]. This has been
confirmed by comparing the load flow results obtained from
solving the conic optimization problem with those computed
using an implementation of the Cespedes radial load flow [3].
Table I shows a summary of the results obtained for several
ill-conditioned radial networks gathered from the literature. The
fourth column of Table I gives the maximum voltage difference
between the conic optimization solution and Cespedes’ radial
load flow solution (the error values designated by an asterisk
sign are in p.u.). It is evident that for practical purposes, the
solutions are almost identical.

The computational effort in columns 5 and 6 of Table I was
obtained with MOSEK running on a Pentium IV, 1.89-GHz PC,
with 256 Mbytes of RAM. The termination criteria were set to
their default values [10]. In all cases, the CPU time was less
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TABLE I
SOLUTION STATISTICS

N Data from | Base voltage Error MOSEK | MOSEK

Ref. (kV) (V) time (s.) | iterations
12 [4] 11 7.30E-4 0.16 16
15 [5] 11 1.42E-3 0.16 15
28 [4] 11 1.93E-3 0.20 21
30 [3] - 1.31E-6* 0.21 22
30 [6] - 1.47E-7* 0.19 18
33 [2] 12.66 4.44E-3 0.20 19
43 [1] - 4.23E-T* 0.24 29
69 [7] 12.66 2.80E-2 0.26 30
85 [5] 11 6.83E-2 0.29 27

than 0.3 s. As the optimizer technology improves, solution time
would continue to improve.

In case the radial load flow problem has no solution, the conic
optimization software gives a reliable certificate of infeasibility
[9]. This is unlike other radial load flow algorithms ([1], [3], and
[8], for example), which would diverge and terminate because of
exceeding the maximum allowed number of iterations. In addi-
tion, the proposed implementation of the distribution load flow
is more amenable to integration within an optimization function,
such as optimal capacitor placement for loss reduction.

IV. CONCLUSION

This letter has shown that the radial distribution load flow can
be formulated as a conic quadratic optimization problem. Such
problems can be solved efficiently using interior-point methods
[9]. Numerical results indicate that even ill-conditioned systems
can be solved by a commercial interior-point conic optimizer.
The formulation can be extended to unbalanced three-phase
networks.
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