TD \#4

 Large-scale Mathematical Programming

 Large-scale Mathematical Programming}

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

INF580

Universal Isometric Embedding

- Given metric space X with $|X|=n$ and distance matrix (DM) D
- UIE: finds embedding in ℓ_{∞}^{n}
- Define $x_{i k}=D_{i k}$ for all $i, k \leq n$
- Thm.: the DM of x is D
proof seen in lecture
- Every graph $G=(V, E)$ gives rise to a metric space take $X=V$ and $d(u, v)=$ length of shortest path $u \rightarrow v$

Universal Isometric Embedding

Exercises (use AMPL and Python):

1. Generate random weighted biconnected graph G with $|V|=50$ output to AMPL .dat
2. Verify its connectedness using Floyd-Warshall's all-shortest-paths algorithm
3. Construct the DM \bar{G} of the metric space induced by G
4. Find the UIE x of \bar{G} in ℓ_{∞}
5. Verify the DM of x in ℓ_{∞} is \bar{G}
6. Reduce the dimensionality of x to $K \in\{2,3\}$ and draw the realization see below for PCA details

Principal Component Analysis

- PCA involves finding eigenvalues and eigenvectors
- AMPL can do it, but it's painful and inefficient
- Let's use Python instead

PCA: dist2Gram

```
## convert a distance matrix to a Gram matrix
```

def dist2Gram(D):
$\mathrm{n}=\mathrm{D}$. shape[0]
$\mathrm{J}=\mathrm{np} . \operatorname{identity}(\mathrm{n})-(1.0 / \mathrm{n}) * \mathrm{np}$. ones $(\mathrm{n}, \mathrm{n}))$
$G=-0.5 * \operatorname{np} . \operatorname{dot}(J, n p . \operatorname{dot}(n p . s q u a r e(D), J))$
return G

PCA: factor

```
## factor a square matrix
def factor(A):
    n = A.shape [0]
    (evals,evecs) = np.linalg.eigh(A)
    evals[evals < 0] = 0 # closest SDP matrix
    X = evecs
    sqrootdiag = np.eye(n)
    for i in range(n):
    sqrootdiag[i,i] = math.sqrt(evals[i])
    X = X.dot(sqrootdiag)
    # because default eig order is small->large
    return np.fliplr(X)
```


PCA: pca

```
## principal component analysis
def PCA(B,K):
    x = factor(B)
    # only first K columns
    x = x[:,0:K]
    return x
```


PCA: main

```
import sys
import numpy as np
import math
import types
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
myZero = 1e-9
K = 3 # can be 2 or 3
f = sys.argv[1] # read input filename from command line
lines = [line.rstrip('\n').split()[2:] for line in open(f) if line[0] == 'x']
n = len(lines)
# turn into float array
X = np.array([[float(lines[i][j]) for j in range(n)] for i in range(n)])
G = dist2Gram(X) # if X produced by UIE, X = its own dist matrix
x = PCA (G,K)
if K == 2:
    plt.scatter(x[:,0], x[:, 1])
elif K == 3:
    fig = plt.figure()
    ax = Axes3D(fig)
    ax.scatter(x[:,0], x[:,1], x[:, 2])
plt.show()
```


PCA: exercise

Use Python code to display UIE of 50-vtx rnd graph in 3D

Distance Geometry Problem

Use AMPL to implement 4 DGP MP formulations

1. System of quadratic equations (sqp)):
$\forall\{u, v\} \in E \quad\left\|x_{u}-x_{v}\right\|_{2}^{2}=d_{u v}^{2}$
2. Slack/surplus variables (ssv):
$\min \left\{\sum_{\{u, v\} \in E} s_{u v}^{2} \mid \forall\{u, v\} \in E\left\|x_{u}-x_{v}\right\|_{2}^{2}=d_{u v}^{2}+s_{u v}\right\}$
3. Unconstrained quartic polynomial (uqp): $\min \sum_{\{u, v\} \in E}\left(\left\|x_{u}-x_{v}\right\|_{2}^{2}-d_{u v}^{2}\right)^{2}$
4. Pull-and-push (p\&p):
$\max \left\{\sum_{\{u, v\} \in E}\left\|x_{u}-x_{v}\right\|_{2}^{2} \mid \forall\{u, v\} \in E\left\|x_{u}-x_{v}\right\|_{2}^{2} \leq d_{u v}^{2}\right\}$
and test them with the protein graph tiny_gph.dat

DGP: the tiny_gph instance

Distance Geometry Problem

- Use Python to draw the 4 realizations in 3D

are they similar?
- Compute the UIE of tiny_gph.dat are there high values in UIE? Why?
- Use PCA to display it in 3D with high values (left) / replace high values by -1.00 (right)

