# Large-scale Mathematical Optimization 

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

INF580



## About the course

- Aims of lectures: theory, algorithms, some code won't repeat much of MAP557
- Aims of TD: modelling abilities in practice with AMPL and Python
- Warning:
some disconnection between lectures and TD is normal
some theoretical topics do not lend themselves to implementation
- Lectures/TD: (generally) on fri afternoon
- Exam: mini-project (individual/pairs) or oral exam http://www.lix.polytechnique.fr/~liberti/ teaching/dix/inf580


## Outline

Introduction
MP language
Solvers
MP systematics
Some applications
Decidability
Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness
MP solvability
Efficiency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations
Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap revisited

Summary
Random projections in LP
Random projection theory
Projecting LP feasibility
Projecting LP optimality
Solution retrieval
Application to quantile regression
Sparsity and $\ell_{1}$ minimization
Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again

## Outline

## Introduction

MP language
Solvers
MP systematics
Some applications
Decidability
Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness
MP solvability
Efficiency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations
Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap revisited

Summary
Random projections in LP
Random projection theory
Projecting LP feasibility
Projecting LP optimality
Solution retrieval
Application to quantile regression
Sparsity and $\ell_{1}$ minimization
Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again

## What is Mathematical Optimization?

- Mathematics of solving optimization problems
- Formal language: Mathematical Programming (MP)
- Sentences: descriptions of optimization problems
- Interpreted by solution algorithms ("solvers")
- As expressive as any imperative language
- Shifts focus from algorithmics to modelling


## Why Large-scale?

- Any process can be optimized
- Social, technical and business processes are complex
- Computer power limits model precision
- Nowadays, need to solve very precise models $\Rightarrow$ increase in model size
- $\Rightarrow$ algorithmic complexity must grow slowly with size
- Focus on LP algs and heuristics
- Investigate LP relaxations \& dimensionality reduction methods


## The syllabus

- Which optimization problems can be solved?
a tour of 20th century logic
- Complexity of optimization problems basics of theoretical computer science
- Distance geometry modern large-scale optimization and data science techniques
- Random projections
new approaches to approximately solving large-scale problems
- Sparsity and $\ell_{1}$ minimization integrality out of continuity
- Further topics
as time allows


## MP Formulations

Given functions $f, g_{1}, \ldots, g_{m}: \mathbb{Q}^{n} \rightarrow \mathbb{Q}$ and $Z \subseteq\{1, \ldots, n\}$

$$
\left.\begin{array}{rr}
\min _{x} & f(x) \\
\forall i \leq m & g_{i}(x) \\
\forall & \leq 0 \\
\forall j \in Z & x_{j}
\end{array} \in \mathbb{Z}\right\} \quad[P]
$$

- More general than it looks:
- max $f(x)=-\min -f(x)$
- $g_{i}(x)=0 \quad \Leftrightarrow \quad\left(g_{i}(x) \leq 0 \wedge-g_{i}(x) \leq 0\right)$
- $L \leq x \leq U \quad \Leftrightarrow \quad(L-x \leq 0 \wedge x-U \leq 0)$
- $f, g_{i}$ represented by expression DAGs

$$
x_{1}+\frac{x_{1} x_{2}}{\log \left(x_{2}\right)}
$$



Class of all formulations $P: \mathbb{M P}$

## Semantics of MP formulations

- $\llbracket P \rrbracket=$ optimum (or optima) of $P$
- Given $P \in \mathbb{M} \mathbb{P}$, there are three possibilities:
$\llbracket P \rrbracket$ exists, $P$ is unbounded, $P$ is infeasible
- $P$ is feasible iff $\llbracket P \rrbracket$ exists or $P$ is unbounded otherwise it is infeasible
- $P$ has an optimum iff $\llbracket P \rrbracket$ exists otherwise it is infeasible or unbounded
- Example:

$$
\left.\begin{array}{rll}
\min \quad x_{1}+2 x_{2}-\log \left(x_{1} x_{2}\right) & & \\
x_{1} x_{2}^{2} & \geq 1 \\
x_{1} & \in[0,1] \\
x_{2} & \in \mathbb{N}
\end{array}\right\}
$$

Exercise
Code this toy MP in AMPL and solve it with BARON

## Example: solution "by inspection"

$$
P \equiv \min \left\{x_{1}+2 x_{2}-\log \left(x_{1} x_{2}\right) \mid x_{1} x_{2}^{2} \geq 1 \wedge 0 \leq x_{1} \leq 1 \wedge x_{2} \in \mathbb{N}\right\}
$$



$$
\llbracket P \rrbracket=(\operatorname{opt}(P), \operatorname{val}(P)) \quad \operatorname{opt}(P)=(1,1) \quad \operatorname{val}(P)=3
$$

## Feasibility and optimality

- Feasibility problem: $[g(x) \leq 0]$ can be written as the MP $[\min \{0 \mid g(x) \leq 0]\}$
- Bounded MP $[\min \{f(x) \mid g(x) \leq 0\}]$ : bisection on $f_{0}$ in feas. prob. $\left[f(x) \leq f_{0} \wedge g(x) \leq 0\right]$
- Unbounded MP: not equivalent to feasibility in general, cannot prove unboundedness


## Bisection algorithm

- $P \equiv \min \left\{f(x) \mid \forall i \in I g_{i}(x) \leq 0 \wedge x \in X\right\}$
- Assume global opt $x^{*}$ of $P$ has value $f\left(x^{*}\right)$ between given lower/upper bounds
- Reformulate $P$ to a parametrized feasibility problem $Q\left(f_{0}\right) \equiv\left\{x \in X \mid f(x) \leq f_{0} \wedge \forall i \in I g_{i}(x) \leq 0\right\}$


## Bisection algorithm for optimal value

1: Input: lower \& upper bound for $f_{0}$
while lower and upper bounds differ by $>\epsilon$ do
3: let $f_{0}$ be midway between bounds
4: if $Q\left(f_{0}\right)$ is feasible then
5: update upper bound to $f_{0}$
6: else
7: update lower bound to $f_{0}$
8: end if
9: end while

- solve an optimization problem with calls to feasibility oracle
- need only $\left\lceil\log _{2}\left(\frac{\mathrm{UB}-\mathrm{LB}}{\epsilon}\right)\right\rceil$ calls to oracle


## Exercise

Solve the toy MP using this bisection algorithm in AMPL

## Bisection algorithm for optimum

1: Input: lower \& upper bounds for $f_{0}$, candidate global optimum $\hat{x}$
2: while lower and upper bounds differ by $>\epsilon$ do
3: let $f_{0}$ be midway between bounds
4: if $Q\left(f_{0}\right)$ is feasible then
5: $\quad$ find a feasible point $x^{\prime}$
6: $\quad$ if $f\left(x^{\prime}\right)$ better than $f(\hat{x})$ then
7: $\quad$ update $\hat{x}$ to $x^{\prime}$
8: $\quad$ update upper bound to $f(\hat{x})$
9: end if
10: else
11: update lower bound to $f_{0}$
12: end if
13: end while
Exercise
Solve the toy MP using this bisection algorithm in AMPL

## Bisection algorithm for MP (formal)

Given:

- an optimization problem in minimization form for maximization have to switch a few things: which ones?
- global optimal value approximation tolerance $\epsilon>0$
- lower bound $\underline{f}$, upper bound $\bar{f}$
- a feasibility algorithm $\mathcal{F}$ which finds an element in a set or certifies emptyness up to $\epsilon$


## Bisection algorithm for MP (formal)

1: let $(\hat{x}, \hat{f})=($ uninitialized, $\bar{f})$
2: while $f-f>\epsilon$ do
3: let $\left.f_{0}=\overline{(f}+\bar{f}\right) / 2$
4: $\quad\left(x^{\prime}, f^{\prime}\right)=\overline{\mathcal{F}}\left(Q\left(f_{0}\right)\right)$
5: $\quad$ if $\left(x^{\prime}, f^{\prime}\right) \neq(\varnothing, \varnothing)$ then
6: $\quad$ if $f^{\prime}<f$ then
7: $\quad \quad \quad \quad$ pedate $(\hat{x}, \hat{f}) \leftarrow\left(x^{\prime}, f^{\prime}\right)$
8:
update $\bar{f} \leftarrow \hat{f}$
9: end if
10: else
11: $\quad$ update $\underline{f} \leftarrow f_{0}$
12: end if
13: end while

Subsection 1
MP language

## Entities of a MP formulation

- Sets of indices
- Parameters
problem input, or instance
- Decision variables will encode the solution after solver execution
- Objective function
- Constraints


## MP Example

Linear Program (LP) in standard form

- $m, n$ : number of rows and columns
corresponding index sets $I=\{1, \ldots, m\}, J=\{1, \ldots, n\}$
- $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A$ an $m \times n$ matrix
- $x \in \mathbb{R}^{n}$
- $\min _{x} c^{\top} x$
- $A x=b \quad \wedge \quad x \geq 0$

Exercise

## Code this example in AMPL and solve it with CPLEX

## MP language implementations

- Humans model with quantifiers $\left(\forall, \sum, \ldots\right)$
e.g. $\forall i \in I \sum_{j \in J} a_{i j} x_{j} \leq b_{i}$
structured formulation
- Solution algorithms accept lists of explicit constraints e.g. $4 x_{1}+1.5 x_{2}+x_{6} \leq 2$
flat formulation
- Translation from structured to flat formulation
- MP language implementations

AMPL, GAMS, Matlab+YALMIP,
Python+amplpy/cvxpy, Julia+JuMP, ...

## Exercise

Use AMPL to derive the flat formulation from the standard form LP

## AMPL

- $\mathrm{AMPL}=$ A Mathematical Programming Language
- Syntax similar to human notation
- Bare-bone programming language e.g. no function calls
- Commercial \& closed-source
- extremely rapid prototyping
- we get free licenses for this course
- free open-source AMPL sub-dialect in GLPK glpsol
- Can also use Python+amplpy/cvxpy, or Julia+JuMP

Exercise
Formulate and solve the standard form LP using Python+amplpy

## Subsection 2

## Solvers

## Solvers

- Solver:
a solution algorithm for a whole subclass of MP examples: BARON, CPLEX
- Take formulation $P$ as input
- Output $\llbracket P \rrbracket$ and possibly other information
- Trade-off between generality and efficiency fast solvers for large MP subclasses: unlikely


## Some subclasses of MP

(i) Linear Programming (LP)
$f, g_{i}$ linear, $Z=\varnothing$
(ii) Mixed-Integer LP (MILP)
$f, g_{i}$ linear, $Z \neq \varnothing$
(iii) Nonlinear Programming
(NLP)
some nonlinearity in $f, g_{i}, Z=\varnothing$
$f, g_{i}$ convex: convex NLP (cNLP)
(iv) Mixed-Integer NLP
(MINLP)
some nonlinearity in $f, g_{i}, Z \neq \varnothing$
$f, g_{i}$ convex: convex MINLP
(cMINLP)

$$
\left.\begin{array}{rrr}
\min & f(x) & \\
\forall i \leq m & g_{i}(x) & \leq \\
\forall j \in Z & x_{j} & \in
\end{array}\right\} \quad[P]
$$

## And their solvers

(i) Linear Programming (LP)
simplex algorithm, interior point method (IPM) Implementations: CPLEX, GLPK, CLP
(ii) Mixed-Integer LP (MILP)
cutting plane alg., Branch-and-Bound (BB)
Implementations: CPLEX, GuRoBi
(iii) Nonlinear Programming (NLP)

IPM, gradient descent (cNLP), spatial BB (sBB)
Implementations: IPOPT (cNLP), Baron, Couenne
(iv) Mixed-Integer NLP (MINLP)
outer approximation (cMINLP), sBB
Implementations: Bonmin (cMINLP), Baron, Couenne

Subsection 3
MP systematics

## Types of MP

Continuous variables:

- LP (linear functions)
- QP (quadratic objective over affine sets)
- QCP (linear objective over quadratic sets)
- QCQP (quadratic objective over quadratic sets)
- cNLP (convex sets, convex objective)
- SOCP (LP over 2nd order cone)
- SDP (LP over PSD cone)
- CPP (LP over copositive cone)
- NLP (nonlinear functions)


## Types of MP

Mixed-integer variables:

- IP (integer programming), MIP (mixed-integer programming)
- extensions: MILP, MIQP, MIQCP, MIQCQP, cMINLP, MINLP
- BLP (LP over $\{0,1\}^{n}$ )
- BQP (QP over $\{0,1\}^{n}$ )

Some more "exotic" classes:

- MOP (multiple objective functions)
- BLevP (optimization constraints)
- SIP (semi-infinite programming)

Example: nonlinear constraint $y \geq x^{2}$ equivalent to infinite linear constraint set $\forall p \in \mathbb{R}\left(y \geq 2 p x-p^{2}\right)$

## Subsection 4

## Some applications

## Some application fields

- Production industry
planning, scheduling, allocation, ...
- Transportation \& logistics facility location, routing, rostering, ...
- Service industry
pricing, strategy, product placement, ...
- Energy industry
power flow optimization, monitoring smart grids, ...
- Machine Learning \& Artificial Intelligence clustering, support vector machines, ANN training, ...
- Biochemistry \& medicine protein structure, blending, tomography, ...
- Mathematics

Kissing number, packing of geometrical objects,...

## Easy example

A bank needs to invest $C$ gazillion dollars, and focuses on two types of investments: one, imaginatively called (a), guarantees a $15 \%$ return, while the other, riskier and called, surprise surprise, (b), is set to a $25 \%$. At least one fourth of the budget $C$ must be invested in (a), and the quantity invested in (b) cannot be more than double the quantity invested in (a). How do we choose how much to invest in (a) and (b) so that revenue is maximized?

## Modelling school

First question to ask oneself is: What are the decision variables?

## Easy example

- Parameters:
- budget $C$
- return on investment on (a): $15 \%$, on (b): $25 \%$
- Decision variables:
- $x_{a}=$ budget invested in (a)
- $x_{b}=$ budget invested in (b)
- Objective function: $1.15 x_{a}+1.25 x_{b}$
- Constraints:
- $x_{a}+x_{b}=C$
- $x_{a} \geq C / 4$
- $x_{b} \leq 2 x_{a}$


## Easy example: remarks

- Missing trivial constraints: verify that $x_{a}=C+1, x_{b}=-1$ satisfies constraints forgot $x \geq 0$
- No numbers in formulations: replace numbers by parameter symbols

$$
\left.\begin{array}{rl}
\max _{x_{a}, x_{b} \geq 0} & c_{a} x_{a}+c_{b} x_{b} \\
& \\
x_{a}+x_{b} & =C \\
x_{a} & \geq p C \\
d x_{a}-x_{b} & \geq 0
\end{array}\right\}
$$

- Formulation generality: extend to $n$ investments:

$$
\left.\begin{array}{rl}
\max _{x \geq 0} & \sum_{j \leq n} c_{j} x_{j} \\
\sum_{j \leq n} x_{j} & =C \\
x_{1} & \geq p C \\
d x_{1}-x_{2} & \geq 0
\end{array}\right\}
$$

## Example: monitoring an electrical grid

An electricity distribution company wants to monitor certain quantities at the lines of its grid by placing measuring devices at the buses. There are three types of buses: consumer, generator, and repeater. There are five types of devices:

- A: installed at any bus, and monitors all incident lines (cost: 0.9MEUR)
- B: installed at consumer and repeater buses, and monitors two incident lines (cost: 0.5MEUR)
- C: installed at generator buses only, and monitors one incident line (cost: 0.3MEUR)
- D: installed at repeater buses only, and monitors one incident line (cost: 0.2MEUR)
- E: installed at consumer buses only, and monitors one incident line (cost: 0.3MEUR).

Provide a least-cost installation plan for the devices at the buses, so that all lines are monitored by at least one device.

## Example: the electrical grid



## Example: formulation

- Index sets:
- $V$ : set of buses $v$
- $E$ : set of lines $\{u, v\}$
- A: set of directed lines $(u, v)$
- $\forall u \in V$ let $N_{u}=$ buses adjacent to $u$
- $D$ : set of device types
- $D_{M}$ : device types covering $>1$ line
- $D_{1}=D \backslash D_{M}$
- Parameters:
- $\forall v \in V \quad b_{v}=$ bus type
- $\forall d \in D \quad c_{d}=$ device cost


## Example: formulation

- Decision variables
- $\forall d \in D, v \in V \quad x_{d v}=1$
iff device type $d$ installed at bus $v$
- $\forall d \in D,(u, v) \in A \quad y_{d u v}=1$
iff device type $d$ installed at bus $u$ measures line $\{u, v\}$
- all variables are binary
- Objective function

$$
\min _{x, y} \sum_{d \in D} \sum_{v \in V} c_{d} x_{d v}
$$

## Example: formulation

- Constraints
- device types:

$$
\begin{aligned}
\forall v \in V \quad b_{v}=\text { gen } & \rightarrow x_{\mathrm{B} v}=0 \\
\forall v \in V & b_{v} \in\{\text { con }, \text { rep }\}
\end{aligned} \rightarrow x_{\mathrm{C} v}=0
$$

- at most one device of any type at each bus

$$
\forall v \in V \quad \sum_{d \in D} x_{d v} \leq 1
$$

## Example: formulation

- Constraints
- A: every line incident to installed device is monitored

$$
\forall u \in V, v \in N_{u} \quad y_{\mathrm{A} u v}=x_{\mathrm{A} u}
$$

- B: two monitored lines incident to installed device

$$
\forall u \in V \quad \sum_{v \in N_{u}} y_{\mathrm{B} u v}=\min \left(2,\left|N_{u}\right|\right) x_{\mathrm{B} u}
$$

- C,D,E: one monitored line incident to installed device

$$
\forall d \in D_{1}, u \in V \quad \sum_{v \in N_{u}} y_{d u v}=x_{d u}
$$

- line is monitored

$$
\forall\{u, v\} \in E \quad \sum_{d \in D} y_{d u v}+\sum_{e \in D} y_{e v u} \geq 1
$$

## Example: solution


all lines monitored, no redundancy, cost 9.2MEUR

## Outline

Introduction
MP language
Solvers
MP systematics
Some applications

## Decidability

Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness MP solvability
Efficiency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations
Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap revisited

Summary
Random projections in LP
Random projection theory
Projecting LP feasibility
Projecting LP optimality
Solution retrieval
Application to quantile regression
Sparsity and $\ell_{1}$ minimization
Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again

## Can we solve MPs?

- "Solve MPs": is there an algorithm $\mathcal{D}$ s.t.:

$$
\forall P \in \mathbb{M P} \quad \mathcal{D}(P)= \begin{cases}\text { infeasible } & P \text { is infeasible } \\ \text { unbounded } & P \text { is unbounded } \\ \llbracket P \rrbracket & \text { otherwise }\end{cases}
$$

- I.e. does there exist a single, all-powerful solver?

Subsection 1
Formal systems

## Formal systems (FS)

- A formal system consists of:
- an alphabet
- a formal grammar
allowing the determination of formulce and sentences
- a set $A$ of axioms (given sentences)
- a set $R$ of inference rules


## allowing the derivation of new sentences from old ones

- A theory $T$ is the smallest set of sentences that is obtained by recursively applying $R$ to $A$


## Examples

- Alphabets:
$\mathscr{B}=\{\nu, 0,1\}, \mathscr{N}=\mathscr{B} \cup\{2,3, \ldots\},, \mathscr{V}=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$
$\mathscr{E}=\left\{(),,+,-, \times, \div, \square^{\square}, \exp , \log , \sin \right\} \cup \mathscr{N} \cup \mathscr{V}$
$\mathscr{P} \mathscr{A}_{1}=\{\forall, \exists, \vee, \wedge, \neg,=\} \cup \mathscr{E}$,
$\mathscr{M} \mathscr{P}=\left\{\min , \max , \sum, \Pi, \leq, \geq\right\} \cup \mathscr{P} \mathscr{A}_{1}$
- An expression grammar:

| expr | $:$ term + expr $\mid$ term - expr $\mid$ term |
| ---: | :--- |
| term | $:$ |
| factor $\times$ term $\mid$ factor $\div$ term $\mid$ factor |  |
| factor | $:$ power ${ }^{\text {power }} \mid$ power |
| power | $: \log ($ unr $) \mid \exp ($ unr $) \mid \sin ($ unr $) \mid($ (tunr $) \mid$ unr |
| unr | $:(\operatorname{expr})\|\mathscr{N}\| \mathscr{V}$ |

e.g. $\left(1-\sin (x)^{2}\right)^{(1 / 2)}$ :
expr $=$ term $=$ factor $=$ power ${ }^{\text {power }}=u n r^{\text {unr }}=(\operatorname{expr})^{(\operatorname{expr})}=$ $(\text { term }-\operatorname{expr})^{(\text {term })}=(\text { factor }- \text { term })^{(\text {factor } \div \text { factor })}=\ldots$

- Axioms: see later
- Inference rules:
modus ponens, symbol replacement, $A \vdash A \wedge A, A \vdash A \vee A, \ldots$


## Example: PA1

- Theory: 1st order provable sentences about $\mathbb{N}$
- Alphabet: $+, \times, \wedge, \vee, \rightarrow, \forall, \exists, \neg,=, 0, S(\cdot)$ and variable names
- Peano's Axioms:

$$
\begin{aligned}
& \text { 1. } \forall x(0 \neq S(x)) \\
& \text { 2. } \forall x, y(S(x)=S(y) \rightarrow x=y) \\
& \text { 3. } \forall x(x+0=x) \\
& \text { 4. } \forall x(x \times 0=0) \\
& \text { 5. } \forall x, y(x+S(y)=S(x+y)) \\
& \text { 6. } \forall x, y(x \times S(y)=x \times y+x) \\
& \text { 7. axiom schema over all }(k+1) \text {-ary } \phi: \forall y=\left(y_{1}, \ldots, y_{k}\right) \\
& (\phi(0, y) \wedge \forall x(\phi(x, y) \rightarrow \phi(S(x), y))) \rightarrow \forall x \phi(x, y)
\end{aligned}
$$

- Inference: see
https://en.wikipedia.org/wiki/List_of_rules_of_inference e.g. modus ponens $(P \wedge(P \rightarrow Q)) \rightarrow Q$
- Generates ring ( $\mathbb{N},+, \times$ ) and arithmetical proofs e.g. $\exists x \in \mathbb{N}^{n} \forall i\left(p_{i}(x) \leq 0\right)$ (polynomial MINLP feasibility)


## Example of PA1 derivation

Thm.
$\forall x(x=x)$
Proof

| A3 | $\forall x$ | $x+0=x$ | $[1]$ |
| :--- | ---: | :---: | ---: |
| logic | $\forall t, r, s$ | $t=r \rightarrow(t=s \rightarrow r=s)$ | $[2]$ |
| 1,2 | $\forall x$ | $x+0=x \rightarrow(x+0=x \rightarrow x=x)$ | $[3]$ |
| $1,3, \mathrm{mp}$ | $\forall x$ | $x+0=x \rightarrow x=x$ | $[4]$ |
| $1,4, \mathrm{mp}$ | $\forall x$ | $x=x$ | QED |

Notes:

- truth tables of $A \rightarrow B$ and $(\neg A) \vee B$ are the same
- logic indicates a "logical theorem"
[equality] $(t=r \wedge t=s) \rightarrow r=s$; [truth tables] $t=r \rightarrow(t=s \rightarrow r=s)$
- mp indicates application of modus ponens
- all derivations are completely syntactical


## Example: Reals

- Theory: 1st order provable sentences about $\mathbb{R}$
- Alphabet: $+, \times, \wedge, \vee, \forall, \exists,=,<, \leq, 0,1$, variable names
- Axioms: field and order
- Inference: see https://en.wikipedia.org/wiki/List_of_rules_of_inference e.g. modus ponens $(P \wedge(P \rightarrow Q)) \rightarrow Q$
- Generates polynomial rings $\mathbb{R}\left[X_{1}, \ldots, X_{k}\right]$ (for all $k$ ) e.g. $\exists x \in \mathbb{R}^{n} \forall i\left(p_{i}(x) \leq 0\right)$ (polynomial NLP feasibility)


## Relevance of FSs to MP

Given a FS $\mathcal{F}$ :

- A decision problem is a set $P$ of sentences Decide if a given sentence $f$ belongs to $P$
- Decidability in formal systems:

$$
P \equiv \text { provable sentences }
$$

- Proof of $f$ : finite sequence of sentences ending with $f$
sentences: axioms, or derived from predecessors by inference rules
- PA1: decide if sentence $f$ about $\mathbb{N}$ has a proof e.g. $\exists x \in \mathbb{Z}^{n} \forall i p_{i}(x) \leq 0 \quad$ (polynomial $p$ )
- Reals: decide if sentence $f$ about $\mathbb{R}$ has a proof e.g. $\exists x \in \mathbb{R}^{n} \forall i p_{i}(x) \leq 0 \quad$ (polynomial $p$ )
- Formal study of MINLP/NLP feasibility


## Decidability, computability, solvability

- Decidability: applies to decision problems
- Computability: applies to function evaluation
- Is the function mapping $i$ to the $i$-th prime integer computable?
- Is the function mapping Cantor's CH to 1 if provable in ZFC axiom system and to 0 otherwise computable?
- Solvability: applies to other problems E.g. to optimization problems


## Completeness and decidability

- Complete FS $\mathcal{F}$ :
for any $f \in \mathcal{F}$, either $f$ or $\neg f$ is provable
otherwise $\mathcal{F}$ is incomplete
- Decidable FS F:
$\exists$ algorithm $\mathcal{D}$ s.t.

$$
\forall f \in \mathcal{F}\left\{\begin{array}{lr}
\mathcal{D}(f)=1 & \text { iff } f \text { is provable } \\
\mathcal{D}(f)=0 & \text { iff } f \text { is not provable }
\end{array}\right.
$$

otherwise $\mathcal{F}$ is undecidable

## Example: PA1

- Gödel's 1st incompleteness theorem: PA1 is incomplete
- Turing's theorem: PA1 is undecidable
- $\Rightarrow$ PA1 is incomplete and undecidable


## Subsection 2

## Gödel

## Gödel's 1st incompleteness theorem

- $\mathcal{F}$ : any FS extending PA1
- Thm. $\mathcal{F}$ complete iff inconsistent
- $\phi$ : sentence " $\phi$ not provable in $\mathcal{F}$ "
denoted $\mathcal{F} \nvdash \phi$; it can be constructed in $\mathcal{F}$ (hard part of thm.)
$-\vdash$ :"is provable" in PA1; $\vdash$ : in meta-language
- Assume $\mathcal{F}$ is complete: either $\mathcal{F} \vdash \phi$ or $\mathcal{F} \vdash \neg \phi$
- If $\mathcal{F} \vdash \phi$ then $\mathcal{F} \vdash(\mathcal{F} \nvdash \phi)$ i.e. $\mathcal{F} \nvdash \phi$, contradiction
- If $\mathcal{F} \vdash \neg \phi$ then $\mathcal{F} \vdash \neg(\mathcal{F} \nvdash \phi)$ i.e. $\mathcal{F} \vdash(\mathcal{F} \vdash \phi)$ this implies $\mathcal{F} \vdash \phi$, i.e. $\mathcal{F} \vdash(\phi \wedge \neg \phi), \mathcal{F}$ inconsistent
- Assume $\mathcal{F}$ is inconsistent: any sentence is provable, i.e. $\mathcal{F}$ complete
proof: $P \wedge \neg P$, hence $P$ and $\neg P$, in particular for any $Q$ we have $P \vee Q$,
whence $Q$ (since $\neg P$ and $P \vee Q$ ), implying $P \wedge \neg P \rightarrow Q$
- If we want PA1 to be consistent, it must be incomplete
- Warning: $\mathcal{F} \nvdash \phi \equiv \neg(\mathcal{F} \vdash \phi) \not \equiv \mathcal{F} \vdash \neg \phi$


## Gödel's encoding

- For $\psi \in \mathrm{PA} 1,\ulcorner\psi\urcorner \in \mathbb{N}$
an integer which encodes the sentence
called "Gödel number" of the sentence
- $\ulcorner$.$\urcorner is an injective map$
many ways to define $\ulcorner$.
- Inverse: $\langle\ulcorner\phi\urcorner\rangle=\phi$
$\phi$ is the sentence corresponding to Gödel number $\ulcorner\phi\urcorner$
- Encode/decode in $\mathbb{N}$ any sentence of a formal system


## Gödel's self-referential sentence $\phi$

- For integers $x, y \exists g \in \mathbb{N}\langle g\rangle \equiv \operatorname{proof}(x, y):$
$\langle x\rangle$ is a proof in PA1 for the sentence $\langle y\rangle$
- For integers $m, n, p \exists g \in \mathbb{N} g=\operatorname{sost}(m, n, p)=$ Gödel number of the sentence obtained by replacing in $\langle m\rangle$ the free variable symbol with Gödel number $n$ with the Gödel number $p$ (note that this operation replaces a symbol with a number)
- let y be the Gödel number of the variable symbol " $y$ "
i.e. $\mathrm{y}=\ulcorner y\urcorner \in \mathbb{N}$
- $\gamma(y) \equiv \neg \exists x \in \mathbb{N} \operatorname{proof}(x, \operatorname{sost}(y, y, y))$ :
$\gamma(y)$ : there is no proof in PA1 for the sentence obtained by replacing, in the sentence $\langle y\rangle$, every free variable symbol " $y$ " with the integer assigned to the free variable $y$
- let $q=\ulcorner\gamma(y)\urcorner$, consider $\phi \equiv \gamma(q)$
$\operatorname{note} \phi \equiv \neg \exists x \in \mathbb{N} \operatorname{proof}(x, \operatorname{sost}(q, \mathrm{y}, q))$


## Gödel's self-referential sentence $\phi$

$$
\phi \equiv \neg \exists x \in \mathbb{N} \operatorname{proof}(x, \operatorname{sost}(q, y, q))
$$

- Let $\ulcorner\psi\urcorner \equiv \operatorname{sost}(q, \mathrm{y}, q)$
$\psi$ derived by replacing the free variable symbol " $y$ " in $\langle q\rangle$ with $q$
- $\phi \equiv$ "there is no proof in PA1 for the sentence $\psi$ "
- How did we obtain $\phi$ ? Since $\phi \equiv \gamma(q)$,
$\phi$ derived by replacing the free variable symbol " $y$ " in $\gamma(y)$ with $q$
- Only difference between $\phi$ and $\psi: \quad \gamma(y)$ instead of $\langle q\rangle$
- But recall that $q=\ulcorner\gamma(y)\urcorner$, i.e. $\langle q\rangle \equiv \gamma(y)$
- So, in fact, $\psi \equiv \phi$
- Hence $\phi$ states " $\phi$ is not provable in PA1"

Note: the replacement of $y$ with $q$ in meta-language is encoded by sost() in PA1

## Subsection 3

Turing

## Turing machines

- Turing Machine (TM): computation model
- infinite tape with cells storing finite alphabet letters
- head reads/writes/skips $i$-th cell, moves left/right
- states=program (e.g. if $s$ write 0 , move left, change to state $t$ )
- initial tape content: input, final tape content: output
- final state $\perp$ : termination (nontermination denoted $\varnothing$ )
- can model PA1
- $\exists$ universal TM (UTM) $U$ s.t.
- given the "program" of a TM $T$ and an input $x$
- $U$ "simulates" $T$ running on $x$
- $\Rightarrow$ The basis of the modern computer
- Halting Problem (HP): given TM $M \&$ input $x$, is $M(x)=\perp$ ?

Does a given TM terminate on its input?

- Turing's theorem: HP is undecidable


## Computable functions

- TM $T$ on input $x$ yielding output $y:$ write $T(x)=y$
- If a TM $T$ terminates on all input, $T(\cdot)$ is computable a.k.a. "total computable"
- If a function is not computable, then it's uncomputable
- If $T$ only terminates on some input, $T(\cdot)$ is
partial computable
denote $T(x)=\varnothing$ (undefined) if $T$ does not terminate on input $x$


## Turing's proof

- Enumerate all TMs: $\left(M_{i} \mid i \in \mathbb{N}\right)$
- Halting function halt $(i, \ell)= \begin{cases}1 & \text { if } M_{i}(\ell)=\perp \\ 0 & \text { if } M_{i}(\ell)=\varnothing\end{cases}$
- Show halt $\neq F$ for any total computable $F(i, \ell)$ :
- define $G(i)=0$ if $F(i, i)=0$ or undefined ( $\varnothing$ ) othw $G$ is partial computable because $F$ is computable
- let $M_{j}$ be the TM computing $G$ for any $i, M_{j}(i)=\perp$ iff $G(i)=0$ (since $G(i)$ undefined othw)
- consider halt $(j, j)$ :
- halt $(j, j)=1 \rightarrow M_{j}(j)=\perp \rightarrow G(j)=0 \rightarrow F(j, j)=0$
- halt $(j, j)=0 \rightarrow M_{j}(j)=\varnothing \rightarrow G(j)=\varnothing \rightarrow F(j, j) \neq 0$
- so halt $(j, j) \neq F(j, j)$ for all $j$
- halt is uncomputable


## Turing and Gödel

- Consider TM called "provable" with input $\alpha \in$ PA1: while(1) \{i=0; if proof(i, $\ulcorner\alpha\urcorner)$ return YES; else $i=i+1\}$
- provable $(\alpha)=$ YES iff PA1 $\vdash \alpha$
- termination of provable $\Rightarrow$ decidability in PA1
- Gödel's $\phi$ is not provable
$\Rightarrow$ provable $(\phi)=\varnothing$
$\Rightarrow$ PA1 is undecidable

PA1 incomplete and undecidable

## Subsection 4

## Tarski

## Example: Reals

- Tarski's theorem: Reals is complete
- Algorithm:
constructs solution sets (YES) or derives contradictions(NO)
$\Rightarrow$ provides proofs or contradictions for all sentences
- $\Rightarrow$ Reals is complete and also decidable
since every complete theory is decidable


## Completeness $\Rightarrow$ decidability

- Given $\phi \in \mathcal{F}$
$\mathrm{i}=0$
while 1 do
if $\operatorname{proof}(\mathrm{i},\ulcorner\phi\urcorner)$ then return YES
else if $\operatorname{proof}(\mathrm{i},\ulcorner\neg \phi\urcorner)$ then
return NO
end if
$\mathrm{i}=\mathrm{i}+1$
end while
- Since $\mathcal{F}$ complete, alg. terminates on all $\phi$


## Tarski's theorem

- Algorithm based on quantifier elimination
- Feasible sets of polynomial systems $p(x) \leq 0$ have finitely many connected components
- Each connected component recursively built of cylinders over points or intervals
extremities: pts., $\pm \infty$, algebraic curves at previous recursion levels
- In some sense, generalization of Reals in $\mathbb{R}^{1}$


## Dense linear orders

Given a sentence $\phi$ in DLO (similar to Reals in one dimension)

- Reduce to DNF w/clauses $\exists x_{i} q_{i}(x)$ where $q_{i}=\bigwedge q_{i j}$
- Each $q_{i j}$ has form $s=t$ or $s<t(s, t$ vars or consts)
- $s, t$ both constants:
$s<t, s=t$ verified and replaced by 1 or 0
- $s, t$ the same variable $x_{i}$ :
$s<t$ replaced by $0, s=t$ replaced by 1
- if $s$ is $x_{i}$ and $t$ is not:
$s=t$ means "replace $x_{i}$ by $t$ " (eliminate $x_{i}$ )
- remaining case:
$q_{i}$ conjunction of $s<x_{i}$ and $x_{i}<t$ :
replace by $s<t$ (eliminate $x_{i}$ )
- $q_{i}$ no longer depends on $x_{i}$, rewrite $\exists x_{i} q_{i}$ as $q_{i}$
- Repeat over vars. $x_{i}$, obtain real intervals or contradictions
Quantifier elimination!


## Subsection 5

## Completeness and incompleteness

## Decidability and completeness

- PA1 is incomplete and undecidable
- Reals is complete and decidable
- Are there FS $\mathcal{F}$ that are:
- incomplete and decidable?
- complete and undecidable?
this case already discussed, answer is NO


## Incomplete and decidable (trivial)

- Nolnference:

Any FS with $<\infty$ axiom schemata and no inference rules

- Only possible proofs: sequences of axioms
- Only provable sentences: axioms
- For any other sentence $f$ : no proof of $f$ or $\neg f$
- Trivial decision algorithm: given $f$, output YES if $f$ is a finite axiom sequence, NO otherwise
- Nolnference is incomplete and decidable


## Incomplete and decidable (nontrivial)

- ACF: Algebraically Closed Fields (e.g. $\mathbb{C}$ )
field axioms + "every polynomial splits" schema
- Theorem: ACF is incomplete
$\rightarrow \mathrm{ACF}_{p}: \mathrm{ACF} \wedge \mathrm{C}_{p} \equiv\left[\sum_{j \leq p} 1=0\right]$ (with $p$ prime)
- Claim: $\forall p$ (prime) $\mathrm{C}_{p}$ independent of ACF
- suppose proof of $\mathrm{C}_{p}$ or $\neg \mathrm{C}_{p}$ possible for $p$
- then either $\mathrm{ACF} \wedge \neg \mathrm{C}_{p}$ or $\mathrm{ACF} \wedge \mathrm{C}_{p}$ inconsistent
- but $\exists$ field of any prime characteristic $p$
- $\mathrm{ACF} \wedge \mathrm{C}_{p}$ and $\mathrm{ACF} \wedge \neg \mathrm{C}_{p}$ consistent for all $p$
- Theorem: ACF is decidable

Decision algorithm $\mathcal{D}(\psi)$ for ACF:

- if $\psi \equiv C_{p}$ or $\neg C_{p}$ for some prime $p$, return NO
- else run quantifier elimination on $\psi^{\prime}$
$\psi^{\prime}$ obtained by replacing $\sum_{j \leq p} 1$ by 0 whenever possible in $\psi$
- $\Rightarrow$ ACF is incomplete and decidable


## The two meanings of completeness

- WARNING!!!
"complete" is used in two different ways in logic

1. Gödel's 1st incompleteness theorem FS $\mathcal{F}$ complete $_{1}$ if $\phi$ or $\neg \phi$ provable $\forall \phi$
2. Gödel's completeness 2 theorem

- A: set of sentences in $\mathcal{F}$
- $M$ a model of $\mathcal{F}$ (domain of values for var symbols)
- $A^{M}$ : each var in $A$ replaced by corresp. value
- $\exists M$ s.t. $A^{M}$ is true $\Rightarrow A$ consistent partial converse: corollary of Gödel's completeness thm
- Complete $2_{2}$ FS: $\forall M\left(A^{M}\right) \Rightarrow \mathcal{F} \vdash A$
- Gödel's completeness theorem: $1^{\text {st }}$ order logic is complete ${ }_{2}$
- Note the strong assumption " $\forall M$ " incompleteness theorem only considers $M=\mathbb{N}$
- Pay attention when reading literature/websites


## Subsection 6

MP solvability

## The issue

- Proved PA1 incomplete and undecidable
- Proved Reals complete and decidable
- But MP feasibility problems are existential statements

$$
\exists x \text { s.t. } g(x) \leq 0 \text { ? }
$$

- PA1 and Reals also involve universal quantifiers $\Rightarrow$ MP feasibility provides smaller theories
- For Reals, if larger theory complete and decidable, smaller theory also complete and decidable
- For PA1, larger theory incomplete and undecidable, but smaller theory might be complete or decidable!


## Polynomial equations in integers

- Consider the feasibility-only MP

$$
\min \left\{0 \mid \forall i \leq m g_{i}(x)=0 \wedge x \in \mathbb{Z}^{n}\right\}
$$

with $g_{i}(x)$ multivariate polynomials in $x$

- Rewrite as a Diophantine equation (DE):

$$
\begin{equation*}
\exists x \in \mathbb{Z}^{n} \quad \sum_{i \leq m}\left(g_{i}(x)\right)^{2}=0 \tag{1}
\end{equation*}
$$

- Can restrict to $\mathbb{N}$ wlog, i.e. Eq. (1) $\in$ PA1 write $x_{i}=x_{i}^{+}-x_{i}^{-}$where $x_{i}^{+}, x_{i}^{-} \in \mathbb{N}^{n}$
- Formulæ of PA1 are generally undecidable but is the subclass (1) of PA1 decidable or not?


## Hilbert's 10th problem

- Hilbert:

Given a Diophantine equation with any number of unknowns and with integer coefficients: devise a process which could determine by a finite number of operations whether the equation is solvable in integers

- Davis \& Putnam: conjecture DEs are undecidable
- consider set $\mathbb{R} \mathbb{E}$ of recursively enumerable (r.e.) sets
- $R \subseteq \mathbb{N}$ is in $\mathbb{R} \mathbb{E}$ if $\exists$ TM listing all and only elements in $R$ let $\mathbb{T} \mathbb{M}=\{T: \mathbb{N} \rightarrow \mathbb{N} \mid T$ is a $T M\}$; then $\forall R \in \mathbb{R E} \exists T \in \mathbb{T M}(\operatorname{ran} T=R)$
- some $\mathbb{R E}$ sets are undecidable, e.g. $R=\{\ulcorner\phi\urcorner \mid \mathrm{PA} 1 \vdash \phi\}$ r.e.: list all proofs; undecidable: by Gödel's thm "listing elements of set" and "proving if element in set" are very different problems!
- for each $R \in \mathbb{R E}$ show $\exists$ polynomial $p(r, x)$ s.t.

$$
r \in R \leftrightarrow \exists x \in \mathbb{N}^{n} p(r, x)=0
$$

- if we can prove this, $\exists$ undecidable DEs othw for any $r \in \mathbb{N}$ can decide if $r \in R$ by finding $x \in \mathbb{N}^{n}$ s.t. $p(r, x)=0$


## Proof strategy

- Strategy: "model" r.e. sets with polynomial equations in integers
- $\mathrm{D} \& \mathrm{P}+$ Robinson: universal quantifiers removed, but eqn system involves exponentials
- Matiyasevich: exploits exponential growth of Pell's equation solutions to remove exponentials
- $\Rightarrow$ DPRM theorem, implying DE undecidable

Negative answer to Hilbert's 10th problem

## Structure of the DPRM theorem

- Gödel's proof of his 1st incompleteness thm.
r.e. sets $\equiv$ DEs with $<\infty \exists$ and bounded $\forall$ quantifiers
- Davis' normal form
one bounded quantifier suffices: $\exists x_{0} \forall a \leq x_{0} \exists x p(a, x)=0$
- (2 bnd qnt $\equiv 1$ bnd qnt on pairs) and induction
- Robinson's idea
get rid of bounded universal quant. by using exponent vars
- idea: $\left[\exists x_{0} \forall a \leq x_{0} \exists x p(a, x)=0\right]$ " $\rightarrow "\left[\exists x \prod_{a \leq x_{0}} p(a, x)=0\right]$
- precise encoding needs variables in exponents
- Matyiasevic's contribution
express $c=b^{a}$ using polynomials
- use Pell's equation $x^{2}-d y^{2}=1$
- solutions $\left(x_{n}, y_{n}\right)$ satisfy $x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}$
- $x_{n}, y_{n}$ grow exponentially with $n$


## MP is unsolvable

D We know that if $R \in \mathbb{R} \mathbb{E}$ then $\exists T \in \mathbb{T M}$ s.t. $\operatorname{ran} T=R$, we need the converse!

- Lemma: $\forall T \in \mathbb{T M} \operatorname{ran} T \in \mathbb{R E}$
- Consider list of all TMs $\left(M_{i} \mid i \in \mathbb{N}\right)$
if $M_{i}(x)=\perp$ at $t$-th execution step, write $M_{i}^{t}(x)=\perp$
$\rightarrow$ Yields all sets in $\mathbb{R} \mathbb{E}=\left(R_{i} \mid i \in \mathbb{N}\right)$ by dovetailing at $k$-th round, perform $k$-th step of $M_{i}(1),(k-1)$-st of $M_{i}(2), \ldots, 1$-st of $M_{i}(k)$
$\Rightarrow \forall k \in \mathbb{N}, \ell \leq k$ if $M_{i}^{\ell}(k-\ell+1)=\perp$ then let $R_{i} \leftarrow$ $R_{i} \cup\{k-\ell+1\}$
$\Rightarrow R_{i}=\left\{k-\ell+1 \mid \exists k \in \mathbb{N}, \ell \leq k\left(M_{i}^{\ell}(k-\ell+1)=\perp\right)\right\}$
- DPRM theorem: $\forall R \in \mathbb{R E}, R$ represented by poly eqn
- By lemma, can choose UTM $M_{i}$ with $\operatorname{ran} M_{i}=R_{i} \in \mathbb{R} \mathbb{E}$ $\Rightarrow \exists$ Universal DE (UDE), say $U(r, x)=0$
$-\min \left\{0 \mid U(r, x)=0 \wedge x \in \mathbb{N}^{n}\right\}:$
undecidable (feasibility) MP
- $\min _{x \in \mathbb{N}^{n}}(U(r, x))^{2}$ : unsolvable (optimization) MP


## Common misconception

"Since $\mathbb{N}$ is contained in $\mathbb{R}$, how is it possible that Reals is decidable but $\mathrm{DE}(=$ Reals $\cap \mathbb{N}$, right?) is not?"

After all, if a problem contains a hard subproblem, it's hard by inclusion, right?

- Can you express $\operatorname{DE} p(x)=0 \wedge x \in \mathbb{N}$ in Reals?
- $p(x)=0$ belongs to both DE and Reals, OK
- " $x \in \mathbb{N}$ " in Reals?
$\Leftarrow$ find poly $q(x)$ s.t. $\exists x q(x)=0$ iff $x \in \mathbb{N}^{n}$
- $q(x)=x(x-1) \cdots(x-a)$ only good for $\{0,1, \ldots, a\}$
$q(x)=\prod_{i \in \omega}(x-i)$ is $\infty$ ly long, invalid
- IMPOSSIBLE!
if it were possible, DE would be decidable, contradiction
- $\Rightarrow$ Reals $\nsupseteq \mathrm{DE}$


## MIQCP is undecidable

- 

$$
\left.\begin{array}{rl}
\min & c^{\top} x \\
\\
\forall i \leq m & x^{\top} Q^{i} x+a_{i}^{\top} x+b_{i} \\
x & \geq \mathbb{Z}^{n}
\end{array}\right\}
$$

is undecidable
Proof:

- Let $U(r, x)=0$ be an UDE
- $P(r) \equiv \min \left\{u \mid(1-u) U(r, x)=0 \wedge u \in\{0,1\} \wedge x \in \mathbb{Z}^{n}\right\}$
$P(r)$ describes an unsolvable problem
- Linearize every product $x_{i} x_{j}$ by $y_{i j}$ and add $y_{i j}=x_{i} x_{j}$ until only degree 1 and 2 left
- Obtain instances of MIQCP ( $\dagger$ ) for every $r$


## Some MIQCQPs are decidable

- If each $Q_{i}$ is diagonal PSD, decidable [Witzgall 1963]
- If $x$ are bounded in $\left[x^{L}, x^{U}\right] \cap \mathbb{Z}^{n}$, decidable can express $x \in\left\{\left\lceil x^{L}\right\rceil,\left\lceil x^{L}\right\rceil+1, \ldots,\left\lfloor x^{U}\right\rfloor\right\}$ by polynomial

$$
\forall i \leq m \quad \prod_{x_{i}^{L} \leq i \leq x_{i}^{U}}(x-i)=0
$$

turn into poly system in $\mathbb{R}$ (in Reals, decidable)

- $\Rightarrow$ Bounded (vars) easier than unbounded (for $\mathbb{Z}$ )
- [MIQP decision vers.] is decidable

$$
\left.\begin{array}{rlll}
x^{\top} Q x+c^{\top} x & \leq & \gamma \\
A x & \geq & b \\
\forall j \in Z & x_{j} & \in & \mathbb{Z}
\end{array}\right\}
$$

(in NP [Del Pia et al. 2014])

## NLP is undecidable

We can't represent unbounded subsets of $\mathbb{N}$ by polynomials
But we can if we allow some transcendental functions

$$
x \in \mathbb{Z} \quad \longleftrightarrow \quad \sin (\pi x)=0
$$

- Constrained NLP is undecidable:

$$
\min \left\{0 \mid U(a, x)=0 \wedge \forall j \leq n \sin \left(\pi x_{j}\right)=0\right\}
$$

- Even with just one nonlinear constraint:

$$
\min \left\{0 \mid(U(a, x))^{2}+\sum_{j \leq n}\left(\sin \left(\pi x_{j}\right)\right)^{2}=0\right\}
$$

- Unconstrained NLP is undecidable:

$$
\min (U(a, x))^{2}+\sum_{j \leq n}\left(\sin \left(\pi x_{j}\right)\right)^{2}
$$

- Box-constrained NLP is undecidable (boundedness doesn't help):

$$
\min \left\{\left(U\left(a, \tan x_{1}, \ldots, \tan x_{n}\right)\right)^{2}+\sum_{j \leq n}\left(\sin \left(\pi \tan x_{j}\right)\right)^{2} \left\lvert\,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\right.\right\}
$$

## Some NLPs are decidable

- All polynomial NLPs are decidable
by decidability of Reals
- Quadratic Programming (QP) is decidable over $\mathbb{Q}$

$$
\left.\begin{array}{rl}
\min \quad x^{\top} Q x & +c^{\top} x \\
A x & \geq b
\end{array}\right\}
$$

- Bricks of the proof
- if $Q$ is PSD, $\llbracket P \rrbracket \in \mathbb{Q}$

1. remove inactive constr., active are eqn, use to replace vars
2. work out KKT conditions, they are linear in rational coefficients
3 . $\Rightarrow$ solution is rational

- $\exists$ polytime IPM for solving $P$ [Renegar\&Shub 1992]
- unbounded case treated in [Vavasis 1990]
$\Rightarrow \Rightarrow$ [QP decision version] is in NP
$\Rightarrow$ QP is decidable over $\mathbb{Q}$


## Rationals

- [Robinson 1949]:

RT (1st ord. theory over $\mathbb{Q}$ ) is undecidable

- [Pheidas 2000]: existential theory of $\mathbb{Q}(E R T)$ is open can we decide whether $p(x)=0$ has solutions in $\mathbb{Q}$ ? Boh!
- [Matyiasevich 1993]:
- equivalence between DEH and ERT
- DEH $=$ [DE restricted to homogeneous polynomials]
- but we don't know whether DEH is decidable

Note that Diophantus solved DE in positive rationals

## Outline

Introduction
MP language
Solvers
MP systematics
Some applications
Decidability
Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness
MP solvability

## Efficiency and Hardness

Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations
Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap revisited

Summary
Random projections in LP
Random projection theory
Projecting LP feasibility
Projecting LP optimality
Solution retrieval
Application to quantile regression
Sparsity and $\ell_{1}$ minimization
Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again

## Worst-case algorithmic complexity

- Computational complexity theory:
worst-case time/space taken by an algorithm to complete
- Given an algorithm $\mathcal{A}$
- e.g. to determine whether a graph $G=(V, E)$ is connected or not
- input: $G$; size of input: $\nu=|V|+|E|$
- How does $\operatorname{cpu}(\mathcal{A})$ vary with $\nu$ ?
- $\operatorname{cpu}(\mathcal{A})=O(\log \nu):$ logarithmic (sublinear)
- $\operatorname{cpu}(\mathcal{A})=O\left(\log ^{k} \nu\right)$ for fixed $k$ : polylogarithmic
- $\operatorname{cpu}(\mathcal{A})=O(\nu)$ : linear
- $\operatorname{cpu}(\mathcal{A})=O\left(\nu^{2}\right):$ quadratic
- $\operatorname{cpu}(\mathcal{A})=O\left(\nu^{k}\right)$ for fixed $k$ : polytime
- $\operatorname{cpu}(\mathcal{A})=O\left(2^{\nu}\right)$ : exponential
- polytime $\leftrightarrow$ efficient
- exponential $\leftrightarrow$ inefficient


## The " $O(\cdot)$ " calculus

$\forall f, g: \mathbb{N} \rightarrow \mathbb{N} \quad f<_{O} g \quad \leftrightarrow \quad \exists n \in \mathbb{N} \forall \nu>n(f(\nu)<g(\nu))$
$\forall g: \mathbb{N} \rightarrow \mathbb{N} \quad O(g)=\left\{f: \mathbb{N} \rightarrow \mathbb{N} \mid \exists C \in \mathbb{N}\left(f<_{O} C g\right)\right\}$
$\forall f, g: \mathbb{N} \rightarrow \mathbb{N} \quad O(f)<O(g) \quad \leftrightarrow \quad f \in O(g) \wedge g \notin O(f)$

## Are polytime algorithms "efficient"?

- Why are polynomials special?
- Many different variants of Turing Machines (TM) more tapes, more heads, ..
- Polytime is invariant to all definitions of TM e.g. TM with $\infty$ ly many tapes: simulate with a single tape running along diagonals, similarly to dovetailing
- In practice, $O(\nu)-O\left(\nu^{3}\right)$ is an acceptable range covering most practically useful efficient algorithms
- Many exponential algorithms are also usable in practice for limited sizes
- Sublinear algorithms aren't allowed to read their whole input!


## Instances and problems

- An input to an algorithm $\mathcal{A}$ : instance
- Collection of all inputs for $\mathcal{A}$ : problem in general, a problem $P$ is an infinite set of instances
- $\mathcal{A}$ solves $P$ if $\mathcal{A}$ solves every instance of $P$
- There are problems which no algorithm can solve
- A problem can be solved by different algorithms
- Given $P$ find complexity of best alg. $\mathcal{A}$ solving $P$

$$
\min _{<_{0}}\{\operatorname{cpu}(\mathcal{A}) \mid \mathcal{A} \text { solves } P\}
$$

- We (generally) don't know how to search over all algs for $P$ sometimes we can find complexity bounds


## Complexity classes: P, NP

- Focus on decision problems
- If $\exists$ polytime algorithm for $P$, then $P \in \mathbf{P}$
- If there is a polytime checkable certificate for all YES instances of $P$, then $P \in \mathbf{N P}$
e.g. problem: shortest $s-t$ path with fewer than $K$ edges in a graph; path itself is a certificate: it can be checked whether it has fewer than $K$ edges in time proportional to $K$, which is smaller than the size of the graph
- No-one knows whether $\mathbf{P}=\mathbf{N P}$ : we think not NO instances of some probs in NP don't seem to have polytime certificates
- NP includes problems for which we don't think a polytime algorithm exists
e.g. $k$-CLIQUE, SUBSET-SUM, KNAPSACK, HAMILTONIAN

CYCLE, SAT, ...

## Equivalent definition of NP

- NP: problems solved by nondeterministic polytime TM

nondeterministic: follow all paths concurrently, stop at first YES
- Equivalence with previous definition
- $(\Rightarrow)$ Assume $\exists$ polysized certificate for every YES instance.

Nondeterministic polytime algorithm: concurrently explore all possible polysized certificates, call verification oracle for each, determine YES/NO.

- $(\Leftarrow)$ Run nondeterministic polytime algorithm: trace will look like a tree (branchings at tests, loops unrolled) with polytime depth. If YES there will be a terminating polysized sequence of steps from start to termination, serving as a polysized certificate


## Subsection 1

## Some combinatorial problems in NP

## $k$-STABLE

- Instance: $(G=(V, E), k)$
- Problem: determine if $G$ has a stable set of size $k$
- A subset $U \subseteq V$ is stable if $G[U]$ is empty
- For $G=(V, E)$ and $U \subseteq V$, the subgraph of $G$ induced by $U$ is

$$
G[U]=(U,\{\{u, v\} \in E \mid u, v \in U\})
$$

- $G=(V, E)$ is empty if $E=\varnothing$

- 1-STABLE? YES (every graph with $\geq 1$ vertices is YES)
- 2-STABLE? YES (every non-complete graph is YES)
- 3-STABLE? NO
polytime certificate for the absence of a $k$-stable?

MP formulations for STABLE

Variables? Objective? Constraints?

## MP formulations for STABLE

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_{j}= \begin{cases}1 & j \in k \text {-stable } \\ 0 & \text { otherwise }\end{cases}$


## MP formulations for STABLE

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_{j}= \begin{cases}1 & j \in k \text {-stable } \\ 0 & \text { otherwise }\end{cases}$
- no objective (pure feasibility MP)


## MP formulations for STABLE

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_{j}= \begin{cases}1 & j \in k \text {-stable } \\ 0 & \text { otherwise }\end{cases}$
- no objective (pure feasibility MP)
- "if $\{i, j\} \in E$, then $x_{i}=1$ or $x_{j}=1$ or neither but not both"


## MP formulations for STABLE

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_{j}= \begin{cases}1 & j \in k \text {-stable } \\ 0 & \text { otherwise }\end{cases}$
- no objective (pure feasibility MP)
- "if $\{i, j\} \in E$, then $x_{i}=1$ or $x_{j}=1$ or neither but not both"

$$
\forall\{i, j\} \in E \quad x_{i}+x_{j} \leq 1
$$

## MP formulations for STABLE

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_{j}= \begin{cases}1 & j \in k \text {-stable } \\ 0 & \text { otherwise }\end{cases}$
- no objective (pure feasibility MP)
- "if $\{i, j\} \in E$, then $x_{i}=1$ or $x_{j}=1$ or neither but not both"

$$
\forall\{i, j\} \in E \quad x_{i}+x_{j} \leq 1
$$

- " $\exists$ a $k$-stable"


## MP formulations for STABLE

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_{j}= \begin{cases}1 & j \in k \text {-stable } \\ 0 & \text { otherwise }\end{cases}$
- no objective (pure feasibility MP)
- "if $\{i, j\} \in E$, then $x_{i}=1$ or $x_{j}=1$ or neither but not both"

$$
\forall\{i, j\} \in E \quad x_{i}+x_{j} \leq 1
$$

- " $\exists$ a $k$-stable"

$$
\sum_{i \in V} x_{i}=k
$$

## MP formulations for STABLE

- Pure feasibility problem:

$$
\left.\begin{array}{rl}
\sum_{i \in V} x_{i} & =k \\
\forall\{i, j\} \in E \quad & x_{i}+x_{j}
\end{array}\right\} 1
$$

## MP formulations for STABLE

- Pure feasibility problem:

$$
\left.\begin{array}{rl}
\sum_{i \in V} x_{i} & =k \\
\forall\{i, j\} \in E & x_{i}+x_{j}
\end{array}\right\} 1
$$

- Max Stable:

$$
\left.\begin{array}{rrl}
\max & \sum_{i \in V} x_{i} & \\
\forall\{i, j\} \in E & x_{i}+x_{j} & \leq 1 \\
& x & \in\{0,1\}^{n}
\end{array}\right\}
$$

## $k$-CLIQUE

- Instance: $(G=(V, E), k)$
- Problem: determine whether $G$ has a clique of size $k$

- 1-CLIQUE? YES (every graph with $\geq 1$ vertices is YES)
- 2-CLIQUE? YES (every non-empty graph is YES)
- 3-CLIQUE? YES (triangle $\{1,2,4\}$ is a certificate) certificate can be checked in $O\left(k^{2}\right)<O\left(n^{2}\right)$ ( $k$ fixed)
- > 4-CLIQUE? NO
polytime certificate for the absence of a $k$-clique?

MP formulations for CLIQUE
Variables? Objective? Constraints?

MP formulations for CLIQUE
Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_{j}= \begin{cases}1 & j \in k \text {-clique } \\ 0 & \text { otherwise }\end{cases}$

MP formulations for CLIQUE
Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_{j}= \begin{cases}1 & j \in k \text {-clique } \\ 0 & \text { otherwise }\end{cases}$
- no objective (pure feasibility MP)

MP formulations for CLIQUE
Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_{j}= \begin{cases}1 & j \in k \text {-clique } \\ 0 & \text { otherwise }\end{cases}$
- no objective (pure feasibility MP)
- Constraints:
- " $\exists$ a $k$-clique"

$$
\sum_{i \in V} x_{i}=k
$$

## MP formulations for CLIQUE

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_{j}= \begin{cases}1 & j \in k \text {-clique } \\ 0 & \text { otherwise }\end{cases}$
- no objective (pure feasibility MP)
- Constraints:
- " $\exists$ a $k$-clique"

$$
\sum_{i \in V} x_{i}=k
$$

- for $G=(V, E)$, the complement graph $\bar{G}=(V, \bar{E})$ has

$$
\bar{E}=\{\{u, v\} \mid\{u, v\} \notin E\}
$$

- Prop.: $C$ clique in $G \Leftrightarrow C$ stable in $\bar{G}$


## MP formulations for CLIQUE

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_{j}= \begin{cases}1 & j \in k \text {-clique } \\ 0 & \text { otherwise }\end{cases}$
- no objective (pure feasibility MP)
- Constraints:
- " $\exists$ a $k$-clique"

$$
\sum_{i \in V} x_{i}=k
$$

- for $G=(V, E)$, the complement graph $\bar{G}=(V, \bar{E})$ has

$$
\bar{E}=\{\{u, v\} \mid\{u, v\} \notin E\}
$$

- Prop.: $C$ clique in $G \Leftrightarrow C$ stable in $\bar{G}$
- $\Rightarrow$ use constraints for $k$-stable in $\bar{G}$ :
"if $\{i, j\} \in \bar{E}$ then $\neg\left(x_{i}=x_{j}=1\right)$ "

$$
\forall\{i, j\} \notin E \quad x_{i}+x_{j} \leq 1
$$

## MP formulations for CLIQUE

- Pure feasibility problem:

$$
\left.\left.\begin{array}{rl}
\sum_{i \in V} x_{i} & =k \\
\forall\{i, j\} \notin E & x_{i}+x_{j}
\end{array}\right)=1,1\right\}
$$

## MP formulations for CLIQUE

- Pure feasibility problem:

$$
\left.\left.\begin{array}{rl}
\sum_{i \in V} x_{i} & =k \\
\forall\{i, j\} \notin E & x_{i}+x_{j}
\end{array}\right)=1,1\right\}
$$

- Max Clique:

$$
\left.\begin{array}{rrl}
\max & \sum_{i \in V} x_{i} & \\
\forall\{i, j\} \notin E & x_{i}+x_{j} & \leq 1 \\
& x & \in\{0,1\}^{n}
\end{array}\right\}
$$

Notice the tiny difference with stable

## AMPL code for MAX CLIQUE

File clique.mod
\# clique.mod
param n integer, > 0;
set $V$ := 1..n;
set E within \{V,V\};
var $x\{V\}$ binary;
maximize clique_card: sum\{j in V\} x[j];
subject to notstable\{i in $V$, $j$ in $V: i<j$ and ( $i, j$ ) not in $E\}$ : $\mathrm{x}[\mathrm{i}]+\mathrm{x}[\mathrm{j}]<=1$;

File clique.dat
\# clique.dat
param n := 5;
set $\mathrm{E}:=(1,2)(1,4)(2,4)(2,5)(3,5)$;

## AMPL code for MAX Clique

File clique.run:
\# clique.run
model clique.mod;
data clique.dat;
option solver cplex;
solve;
printf "C =";
for $\{j$ in $V$ : $x[j]>0\}$ \{
printf " \%d", j;
\}
printf "\n";
Run with "ampl clique.run" on command line
CPLEX 12.8.0.0: optimal integer solution; objective 3
0 MIP simplex iterations
0 branch-and-bound nodes
C = 124

## SUBSET-SUM

- Instance: list $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ and $b \in \mathbb{N}$
- Problem: is there $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} a_{j}=b$ ?
- $a=(1,1,1,4,5), b=3:$ YES with $J=\{1,2,3\}$
all $b \in\{0, \ldots, 12\}$ yield $Y E S$ instances
- $a=(3,6,9,12), b=20$ : NO

MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

## MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

- Pure feasibility problem:

$$
\left.\begin{array}{rl}
\sum_{j \leq n} a_{j} x_{j} & =b \\
x & \in\{0,1\}^{n}
\end{array}\right\}
$$

## AMPL code for SUBSET-SUM

File subsetsum.mod
\# subsetsum.mod
param $n$ integer, > 0 ;
set $N$ := 1..n;
param a\{N\} integer, >= 0;
param b integer, >= 0;
var $x\{N\}$ binary;
subject to subsetsum: $\operatorname{sum}\{j$ in $N\} a[j] * x[j]=b ;$
File subsetsum.dat
\# subsetsum.dat
param n := 5;
param a :=
11
21
31
44
55
;
param b := 3;
Code your own subsetsum.run!

## KNAPSACK

- Instance: $c, w \in \mathbb{N}^{n}, K \in \mathbb{N}$
- Problem:
find $J \subseteq\{1, \ldots, n\}$ s.t. $c(J) \leq K$ and $w(J)$ is maximum
- notation: $c(J)=\sum_{j \in J} c_{j}$ (similarly for $w(J)$ )
- natively expressed as an optimization problem
- $n=3, c=(5,6,7), w=(3,4,5), K=11$
- $c(J) \leq 11$ feasible for $J$ in $\varnothing,\{j\},\{1,2\}$
- $w(\varnothing)=0, w(\{1,2\})=3+4=7, w(\{j\}) \leq 5$ for $j \leq 3$
$\Rightarrow J_{\text {max }}=\{1,2\}$
- $K=4$ : trivial solution $(J=\varnothing)$

MP formulation for KNAPSACK

Variables? Objective? Constraints?

## MP formulation for KNAPSACK

Variables? Objective? Constraints?

$$
\left.\max \begin{array}{rl}
\sum_{j \leq n} w_{j} x_{j} & \\
\sum_{j \leq n} c_{j} x_{j} & \leq K \\
x & \in\{0,1\}^{n}
\end{array}\right\}
$$

## AMPL code for KNAPSACK

File knapsack.mod
\# knapsack.mod
param n integer, > 0;
set N := 1..n;
param $c\{N\}$ integer;
param w\{N\} integer;
param K integer, >= 0;
var $x\{N\}$ binary;
maximize value: sum\{j in N$\} \mathrm{w}[\mathrm{j}] * \mathrm{x}[\mathrm{j}]$;
subject to knapsack: sum\{j in N$\} \mathrm{c}[\mathrm{j}] * \mathrm{x}[\mathrm{j}]$ <= K ;
File knapsack.dat
\# knapsack.dat
param n := 3;
param : c w :=
153
264
375 ;
param K := 11;
Code your own knapsack.run!

## Hamiltonian Cycle

- Instance: $G=(V, E)$
- Problem: does $G$ have a Hamiltonian cycle?
cycle covering every $v \in V$ exactly once

NO


YES (cert. $1 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 1$ )


MP formulation for Hamiltonian Cycle

Variables? Objective? Constraints?

## MP formulation for Hamiltonian Cycle

Variables? Objective? Constraints?

$$
\begin{array}{r}
\forall i \in V \quad \sum_{\substack{j \in V \\
\{i, j\} \in E}} x_{i j}=1 \\
\forall j \in V \quad \sum_{\substack{i \in V \\
\{i, j\} \in E}} x_{i j}=1 \\
\forall \varnothing \subsetneq S \subsetneq V \quad \sum_{\substack{i \in S, j \notin S \\
\{i, j\} \in E}} x_{i j} \geq 1 \tag{4}
\end{array}
$$

WARNING: Eq. (4) is a second order statement!
quantified over sets
yields exponentially large set of constraints

## AMPL code for Hamiltonian Cycle

File hamiltonian.mod

```
# hamiltonian.mod
```

param $n$ integer, > 0 ;
set $V$ default 1..n, ordered;
set E within $\{\mathrm{V}, \mathrm{V}\}$;
set $A:=E$ union $\{i$ in $V, j$ in $V:(j, i)$ in $E\}$;
\# index set for nontrivial subsets of $V$
set PV := $1 . .2 * * \mathrm{n}-2$;
\# nontrivial subsets of V
set $S\{k$ in $P V\}:=\{i$ in $V:(k$ div $2 * *(\operatorname{ord}(i)-1)) \bmod 2=1\}$;
var $x\{A\}$ binary;
subject to successor\{i in $V\}$ :
$\operatorname{sum}\{j$ in $V$ : ( $i, j$ ) in $A\} x[i, j]=1$;
subject to predecessor\{j in V$\}$ :
$\operatorname{sum}\{i \operatorname{in~} V:(i, j)$ in $A\} x[i, j]=1$;
\# breaking non-hamiltonian cycles
subject to breakcycles\{k in PV :
$\operatorname{sum}\{i \operatorname{in~} S[k], j$ in $V$ diff $S[k]:(i, j)$ in $A\} x[i, j]>=1$;
Code your own .dat and .run files!

## SATISFIABILITY (SAT)

- Instance: boolean logic sentence $f$ in CNF

$$
\bigwedge_{i \leq m} \bigvee_{j \in C_{i}} \ell_{j}
$$

where $\ell_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}$ for $j \leq n$

- Problem: is there $\phi: x \rightarrow\{0,1\}^{n}$ s.t. $\phi(f)=1$ ?
-f $\equiv\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right)$
$x_{1}=x_{2}=1, x_{3}=0$ is a YES certificate
- $f \equiv\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$

| $\phi$ | $x=(1,1)$ | $x=(0,0)$ | $x=(1,0)$ | $x=(0,1)$ |
| ---: | :--- | :--- | :--- | :--- |
| false | $C_{2}$ | $C_{1}$ | $C_{3}$ | $C_{4}$ |

MP formulation for SAT
Variables? Objective? Constraints?

MP formulation for SAT
Variables? Objective? Constraints?
Algorithm $\hat{\rho}$ to generate MP from given SAT sentence $\bigwedge_{i \leq m} \bigvee_{j \in C_{i}} \ell_{j}$ :

## MP formulation for SAT

Variables? Objective? Constraints?
Algorithm $\hat{\rho}$ to generate MP from given sat sentence $\bigwedge_{i \leq m} \bigvee_{j \in C_{i}} \ell_{j}$ :

- Literals $\ell_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}:$ decision variables in $\{0,1\}$

$$
\hat{\rho}\left(\ell_{j}\right) \longmapsto\left\{\begin{aligned}
x_{j} & \text { if } \ell_{j} \equiv x_{j} \\
1-x_{j} & \text { if } \ell_{j} \equiv \bar{x}_{j}
\end{aligned}\right.
$$

- Clauses $\Gamma_{i} \equiv \bigvee_{j \in C_{i}} \ell_{j}$ : constraints

$$
\hat{\rho}\left(\Gamma_{i}\right) \longmapsto \quad \sum_{j \in C_{i}} \hat{\rho}\left(\ell_{j}\right) \geq 1
$$

- Conjunction: feasibility-only ILP

$$
\hat{\rho}\left(\bigwedge_{i} \Gamma_{i}\right) \quad \longmapsto \quad \forall i \leq m \quad \hat{\rho}\left(\Gamma_{i}\right)
$$

## MP formulation for SAT

Prop.: SAT instance $q$ is YES iff ILP instance $\hat{\rho}(q)$ is YES

- Proof: Let $L=\left(\ell_{1}^{\prime}, \ldots, \ell_{n}^{\prime}\right)$ be a solution of SAT. Then $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ where $x_{j}^{*}=1$ iff $\ell_{j}^{\prime}=x_{j}=$ true and $x_{j}^{*}=0$ iff $\ell_{j}^{\prime}=\bar{x}_{j}=$ true is a feasible solution of ILP (satisfies each clause constraint by definition of $\hat{\rho}$ ).
Conversely: if $x$ solves ILP, then form solution $L$ of SAT by mapping $x_{j}^{*}=1$ to true and $x_{j}^{*}=0$ to false, result follows again by defn of $\hat{\rho}$.


## AMPL code for SAT?

Using $\hat{\rho}$ we can only obtain flat formulations Example: file sat.run (flat formulation) for instance $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right)$
\# sat.run
var $x\{1 . .3\}$ binary;
subject to con1: $x[1]+(1-x[2])+x[3]>=1$;
subject to con2: (1-x[1])+ $x[2]>=1$;
option solver cplex;
solve;
display x, solve_result;

## Subsection 2

NP-hardness

## NP-Hardness

- Do hard problems exist? Depends on $\mathbf{P} \neq \mathbf{N P}$
- Next best thing: define hardest problem in NP
- Defn.: Problem $P$ is NP-hard if $\forall Q \in \mathbf{N P} \exists$ polytime alg. $\rho_{Q}$ :
$q \in Q \mapsto \rho_{Q}(q) \in P$ with $q$ YES iff $\rho_{Q}(q)$ YES
$\rho_{Q}: Q \rightarrow P$ is called a polynomial reduction from $Q$ to $P$
- Prop.: $P$ is hardest for NP

1. run best alg. for $P$ on $\rho_{Q}(q)$, get answer $\alpha \in\{\mathrm{YES}, \mathrm{NO}\}$
2. return $\alpha$ as answer for $q$
3. so $Q$ cannot be harder than $P$
4. $\forall Q \in \mathbf{N P} \Rightarrow$ no problem in NP is harder than $P$

- If $P$ is in NP and is NP-hard, it is called NP-complete
- Reduction: "model" $Q$ using "language" of $P$
- Every problem in NP reduces to SAT [Cook 1971]


## Cook's theorem

> Theorem 1: If a set $S$ of strings is accepted by some nondeterministic Turing machine within polynomial time, then $S$ is $P$-reducible to \{DNF tautologies\}.

Boolean decision variables store $T M$ dy-
namics
Proposition symbols:

$$
\mathrm{P}_{\mathrm{s}, \mathrm{t}}^{\mathrm{i}} \text { for } 1 \leq i \leq \ell, \quad 1 \leq \mathrm{s}, \mathrm{t} \leq \mathrm{T}
$$

$\mathrm{P}_{\mathrm{s}, \mathrm{t}}^{\mathrm{i}}$ is true iff tape square number s at step $t$ contains the symbol $\sigma_{i}$. $Q_{t}^{i}$ for $1 \leq i \leq r, \quad 1 \leq t \leq T, \quad Q_{t}^{i}$ is
true iff at step $t$ the machine is in
state $\quad q_{i}$.
$S_{S, t}$ for $I \leq s, t \leq T$ is true iff at
time $t$ square number $s$ is scanned
by the tape head.

$$
\begin{aligned}
& \text { Definition of TM dynamics in } C N F \\
& \mathrm{~B}_{\mathrm{t}} \text { asserts that at time } \mathrm{t} \text { one and } \\
& \text { only one square is scanned: } \\
& \mathrm{B}_{\mathrm{t}}=\left(\mathrm{S}_{1, \mathrm{t}} \vee \mathrm{~S}_{2, \mathrm{t}} \vee \ldots \vee \mathrm{~S}_{\mathrm{T}, \mathrm{t}}\right) \& \\
& {\left[\underset{1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{T}}{\mathrm{G}}\left(\neg \mathrm{~S}_{\mathrm{i}, \mathrm{t}} \vee \neg \mathrm{~S}_{\mathrm{j}, \mathrm{t}}\right)\right]} \\
& \text { that if at time } \mathrm{t} \text { the machine is in }
\end{aligned}
$$

that if at time $t$ the machine is in state $q_{i}$ scanning symbol $\sigma_{j}$, then at time $t+1$ the machine is in state $q_{k}$, where $q_{k}$ is the state given by the transition function for $M$.


Description of a dynamical system using a declarative programming language (SAT) - what MP is all about!

## The MP version of Cook's theorem

Thm.
Any problem $P$ in NP can be polynomially reduced to a MILP
Proof
Since $P \in \mathbf{N P}$, every YES instance $\pi \in P$ must have a polynomial-time (say $\left.p^{P}(|\pi|)\right)$ verifiable certificate $c_{\pi}$ (wlog assume it is a $\{0,1\}$ string), with length bounded by a polynomial (say $\left.q^{P}(|\pi|)\right)$. This means that a deterministic TM $M_{P}$ verifying $c_{\pi}$ will reach termination in polytime $p^{P}(\pi)$. Let $\kappa$ be such that $p^{P}, q^{P} \in O\left(n^{\kappa}\right)$. We define a MILP on binary variables holding the content of the tape of $M_{P}$ as it changes according to the transition function of $M_{P}$, such that the tape contains: (i) "NO" in the first cell, and $\pi$ in the subsequent $|\pi|$ cells, at the initial step $k=0$; (ii) "YES" in the first cell at the final step $k=n^{\kappa}$. Then the MILP is feasible iff $\pi$ is a YES instance of $P$. This provides a polytime reduction from $P$ to MILP.

## Cook's theorem: sets and params

- Model a deterministic TM dynamics using MILP
- $M_{P}$ is a 5 -tuple $(Q, \Sigma, s, F, \delta)$ : states, alphabet, initial, final, transition
- Transition function $\delta: Q \backslash F \times \Sigma \rightarrow Q \times \Sigma \times\{-1,1\}$ $\delta$ : state $\ell$, symbol $j \mapsto$ state $\ell^{\prime}$, symbol $j^{\prime}$, direction $d$
- $M_{P}$ polytime: terminates in $n^{\kappa}$, where $n=|\pi|$
- Index sets:
states $Q$, characters $\Sigma$, tape cells $I$, steps $K$
- Parameters:
initial tape string ( $\mathrm{NO}, \pi$ )
YES written in cell 1 when $M_{P}$ in final state


## Cook's theorem: decision vars

- $\forall i \in I, j \in \Sigma, k \in K$
$t_{i j k}=1$ iff tape cell $i$ contains symbol $j$ at step $k$
- $\forall i \in I, k \in K$
$h_{i k}=1$ iff head is at tape cell $i$ at step $k$
- $\forall \ell \in Q, k \in K$
$q_{\ell k}=1$ iff $M_{P}$ is in state $\ell$ at step $k$


## Cook's theorem: constraints (informal)

1. Initialization:
1.1 initial string ( $\mathrm{NO}, \pi$ ) on tape at step $k=0$
1.2 $M_{P}$ in initial state $s$ at step $k=0$
1.3 initial head position on cell $i=0$ at $k=0$
2. Execution:
2.1 $\forall i, k$ : cell $i$ has exactly one symbol $j$ at step $k$
$2.2 \forall k: M_{P}$ is in exactly one state $\ell$
$2.3 \forall k$ : tape head $M_{P}$ is at exactly one cell $i$
$2.4 \forall i, k$ : if cell $i$ changes symbol between steps $k$ and $k+1$, head must be on cell $i$ at step $k$
$2.5 \forall k, i, j$ : cell $i$ and symbol $j$ in state $k$ lead to cells, symbol and states given by transition function $\delta$
3. Termination:
3.1 $M_{P}$ terminates at step $k \leq n^{k} \mathrm{w} / \mathrm{YES}$ written in cell 1

## Cook's theorem: constraints

1. Initialization:

$$
\begin{array}{ll}
1.1 & \left(t_{1, \mathrm{NO}, 0}=1\right) \wedge\left(\forall i>1 \quad t_{i, \pi_{i}, 0}=1\right) \\
1.2 & q_{s, 0}=1 \\
1.3 & h_{0,0}=1
\end{array}
$$

2. Execution:

$$
\begin{aligned}
& 2.1 \quad \forall i, k \quad \sum_{j} t_{i j k}=1 \\
& 2.2 \forall k \quad \sum_{\ell} q_{\ell k}=1 \\
& 2.3 \forall k \quad \sum_{i} h_{i k}=1 \\
& 2.4 \forall i, j \neq j^{\prime}, k<n^{\kappa} \quad t_{i j k} t_{i, j^{\prime}, k+1} \leq h_{i k} \\
& 2.5 \forall i, \ell, \ell^{\prime}, j, j^{\prime}, k, d \text { s.t. }\left(\ell^{\prime}, j^{\prime}, d\right)=\delta(\ell, j) \\
& \quad h_{i k} q_{\ell k} t_{i j k}=h_{i+d, k+1} q_{\ell^{\prime}, k+1} t_{i, j^{\prime}, k+1}
\end{aligned}
$$

3. Termination:

$$
3.1\left(t_{1, \mathrm{YES}, n^{\kappa}}=1\right) \wedge\left(\sum_{f \in F, k} q_{f k}=1\right)
$$

## Cook's theorem: linearization

- MP in previous slide: MINLP not MILP
- Fortet's inequalities for products of binary vars:

For $x, y \in\{0,1\}$ and $z \in[0,1]$

$$
z=x y \Leftrightarrow z \leq x \wedge z \leq y \wedge z \geq x+y-1
$$



- MILP is feasibility only
- MILP has polynomial size
- $\Rightarrow$ MILP is NP-hard


## Reduction graph

After Cook's theorem
To prove NP-hardness of a new problem $P$, pick a known NP-hard problem $Q$ that "looks similar enough" to $P$ and find a polynomial reduction $\rho_{Q}$ from $Q$ to $P$ [Karp 1972]
Why it works: suppose $P$ easier than $Q$, solve $Q$ by calling
$\operatorname{Alg}_{P} \circ \rho_{Q}$, conclude $Q$ as easy as $P$, contradiction since $Q$ hardest in NP


## Example of polynomial reduction

- STABLE: given $G=(V, E)$ and $k \in \mathbb{N}$, does it contain a stable set of size $k$ ?
- Assuming $k$-CLIQUE is NP-complete, reduce from it
- Given instance ( $G, k$ ) of CLIQUE consider the complement graph (computable in polytime)

$$
\bar{G}=(V, \bar{E}=\{\{i, j\} \mid i, j \in V \wedge\{i, j\} \notin E\})
$$

Prop.: $G$ has a clique of size $k$ iff $\bar{G}$ has a stable set of size $k$

- $\rho(G)=G$ a polynomial reduction CLIQUE $\rightarrow$ STABLE
- $\Rightarrow$ STABLE is NP-hard
- stable is also in NP $U \subseteq V$ is a stable set iff $E(G[U])=\varnothing$ (polytime verification)
- $\Rightarrow$ STABLE is NP-complete


## Subsection 3

Complexity of solving MP formulations

## LP is in P

- Khachian's algorithm (Ellipsoid method)
- Karmarkar's algorithm
- IPM with crossover

IPM: penalize $x \geq 0$ by $-\beta \log (x)$, polysized sequence of subproblems crossover: polytime number of simplex pivots get to opt

- No known pivot rule makes simplex alg. polytime! greedy pivot has exponential complexity on Klee-Minty cube


## (Recall) MILP is NP-hard

- SAT NP-hard by Cook's theorem, reduce from SAT

$$
\bigwedge_{i \leq m} \bigvee_{j \in C_{i}} \ell_{j}
$$

where $\ell_{j}$ is either $x_{j}$ or $\bar{x}_{j} \equiv \neg x_{j}$

- Polynomial reduction $\hat{\rho}$

| SAT | $x_{j}$ | $\bar{x}_{j}$ | $\vee$ | $\wedge$ |
| :---: | :---: | :---: | :---: | :---: |
| MILP | $x_{j}$ | $1-x_{j}$ | + | $\geq 1$ |

- E.g. $\hat{\rho}$ maps $\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right)$ to

$$
\min \left\{0 \mid x_{1}+x_{2} \geq 1 \wedge x_{3}-x_{2} \geq 0 \wedge x \in\{0,1\}^{3}\right\}
$$

- sAT is YES iff MILP is feasible


## Complexity of Quadratic Programming (QP)

$$
\left.\begin{array}{rl}
\min \begin{array}{c}
x^{\top} Q x
\end{array}+c^{\top} x \\
A x & \geq b
\end{array}\right\}
$$

- Quadratic obj, linear constrs, continuous vars
- Many applications (e.g. portfolio selection)
- If $Q$ has at least one negative eigenvalue, NP-hard
- Decision problem: "is the min. obj. fun. value $\leq 0$ ?"
- If $Q$ PSD then objective is convex, problem is in $\mathbf{P}$ KKT conditions become linear system, data in $\mathbb{Q} \Rightarrow \operatorname{soln}$ in $\mathbb{Q}$


## QP is NP-hard

- By reduction from SAT, let $\sigma$ be an instance of SAT
- $\hat{\rho}(\sigma, x) \geq 1$ : linear constraints of (SAT $\rightarrow$ MILP) reduction
- Consider QP subclass

$$
\begin{align*}
\min & f(x)=\sum_{j \leq n} x_{j}\left(1-x_{j}\right) \\
& \hat{\rho}(\sigma, x) \geq 1 \\
& 0 \leq x \leq 1
\end{align*}
$$

- Claim: $\sigma$ is YES iff $\operatorname{val}(\dagger) \equiv$ opt. obj. fun. val. of $(\dagger)=0$
- Proof:
- assume $\sigma$ YES with soln. $x^{*}$, then $x^{*} \in\{0,1\}^{n}$, hence $f\left(x^{*}\right)=0$, since $f(x) \geq 0$ for all $x, \operatorname{val}(\dagger)=0$
- assume $\sigma$ NO, suppose $\operatorname{val}(\dagger)=0$, then $(\dagger)$ feasible with soln. $x^{\prime}$, since $f\left(x^{\prime}\right)=0$ then $x^{\prime} \in\{0,1\}$, feasible in SAT hence $\sigma$ is YES, contradiction


## Box-constrained QP is NP-hard

$$
\left.\min _{\left.x \in\left[x^{\nu}, x^{0}\right]\right]} x^{\top} Q x+c^{\top} x\right\}
$$

- Add surplus vars $v$ to SAT $\rightarrow$ MILP constraints:

$$
\hat{\rho}(\sigma, x)-1-v=0
$$

(denote by $\forall i \leq m\left(a_{i}^{\top} x-b_{i}-v_{i}=0\right)$ )

- Consider special QP subclass

$$
\left.\begin{array}{ll}
\min & \sum_{j \leq n} x_{j}\left(1-x_{j}\right)+\sum_{i \leq m}\left(a_{i}^{\top} x-b_{i}-v_{i}\right)^{2} \\
& 0 \leq x \leq 1, v \geq 0
\end{array}\right\}
$$

- Issue: v not bounded above
- Reduce from 3SAT, get $\leq 3$ literals per clause

$$
\Rightarrow \text { can consider } 0 \leq v \leq 2
$$

## cQKP is NP-hard

- continuous Quadratic Knapsack Problem (cQKP)

$$
\left.\begin{array}{rl}
\min \quad f(x)=x^{\top} Q x & +c^{\top} x \\
\sum_{j \leq n} a_{j} x_{j} & =\gamma \\
x & \in[0,1]^{n},
\end{array}\right\}
$$

- Reduction from subset-Sum
given list $a \in \mathbb{Q}^{n}$ and $\gamma$, is there $J \subseteq\{1, \ldots, n\}$ s.t. $\sum_{j \in J} a_{j}=\gamma$ ?
reduce to cQKP subclass with $f(x)=\sum_{j} x_{j}\left(1-x_{j}\right)$
- $\sigma$ is a YES instance of SUBSET-SUM
let $x_{j}^{*}=1$ iff $j \in J, x_{j}^{*}=0$ otherwise
- feasible by construction
- $f$ is non-negative on $[0,1]^{n}$ and $f\left(x^{*}\right)=0$ : optimum
$-\sigma$ is a NO instance of SUBSET-SUM
- suppose opt $(\mathrm{cQKP})=x^{*}$ with $f\left(x^{*}\right)=0$
- then $x^{*} \in\{0,1\}^{n}$ because $f\left(x^{*}\right)=0$
- feasibility of $x^{*} \Rightarrow J=\operatorname{supp}\left(x^{*}\right)$ solves $\sigma$, contradiction $\Rightarrow f\left(x^{*}\right)>0$


## QP on a simplex is NP-hard

$$
\left.\min \begin{array}{rl}
f(x)=x^{\top} Q x & +c^{\top} x \\
\sum_{j \leq n} x_{j} & =1 \\
\forall j \leq n
\end{array}\right\}
$$

- Reduce max clique to subclass with $f(x)=-\sum_{\{i, j\} \in E} x_{i} x_{j}$ Motzkin-Straus formulation (MSF):

$$
\max \left\{\sum_{\{i, j\} \in E} x_{i} x_{j} \mid \sum_{j \in V} x_{j}=1 \wedge x \geq 0\right\}
$$

- Theorem [Motzkin\& Straus 1964]

Let $C$ be the maximum clique of the instance $G=(V, E)$ of max CLIQUE
$\exists x^{*} \in \mathrm{opt}(\mathrm{MSF})$ with $f^{*}=f\left(x^{*}\right)=\frac{1}{2}-\frac{1}{2 \omega(G)}$
$\forall j \in V \quad x_{j}^{*}= \begin{cases}\frac{1}{\omega(G)} & \text { if } j \in C \\ 0 & \text { otherwise }\end{cases}$

- $\omega(G)$ : size of max clique in $G$


## Proof of the Motzkin-Straus theorem

$x^{*} \in \arg \left(\max _{\substack{\sum_{j} x_{j}=1 \\ x \geq 0}} \sum_{i j \in E} x_{i} x_{j}\right)$ s.t. $\left|C=\left\{j \in V \mid x_{j}^{*}>0\right\}\right|$ smallest $(\ddagger)$

1. $C$ is a clique

- Suppose $1,2 \in C$ but $\{1,2\} \notin E$, then $x_{1}^{*}, x_{2}^{*}>0$, can perturb $x^{*}$ by $\epsilon \in\left[-x_{1}^{*}, x_{2}^{*}\right]$, get $x^{\epsilon}=\left(x_{1}^{*}+\epsilon, x_{2}^{*}-\epsilon, x_{3}^{*}, x_{4}^{*}, \ldots\right)$, feasible w.r.t. simplex and bound constraints
- $\{1,2\} \notin E \Rightarrow x_{1} x_{2}$ does not appear in $f(x) \Rightarrow f\left(x^{\epsilon}\right)$ depends at worst linearly on $\epsilon$; by local optimality of $x^{*}, f$ achieves max for $\epsilon=0$, in interior of its range $\Rightarrow f\left(x^{\epsilon}\right)$ constant w.r.t. $\epsilon$. Hence $f\left(x^{\epsilon}\right)$ is globally optimal for all $\epsilon$
- setting $\epsilon=-x_{1}^{*}$ or $=x_{2}^{*}$ yields global optima with more zero components than $x^{*}$, against assumption ( $\ddagger$ ), hence $\{1,2\} \in E[C]$; by relabeling $C$ is a clique


## Proof of the Motzkin-Straus theorem

$$
x^{*} \in \arg \left(\max _{\substack{\Sigma_{j} x_{j}=1 \\ x \geq 0}} \sum_{i j \in E} x_{i} x_{j}\right) \text { s.t. }\left|C=\left\{j \in V \mid x_{j}^{*}>0\right\}\right| \text { smallest }(\ddagger)
$$

2. $|C|=\omega(G)$
square the simplex constraint $\sum_{j} x_{j}=1$, get

$$
\psi(x) \equiv \sum_{j \in V} x_{j}^{2}+2 \sum_{i<j \in V} x_{i} x_{j}=1
$$

by construction $x_{j}^{*}=0$ for $j \notin C \Rightarrow$

$$
\psi\left(x^{*}\right)=\sum_{j \in C}\left(x_{j}^{*}\right)^{2}+2 \sum_{i<j \in C} x_{i}^{*} x_{j}^{*}=\sum_{j \in C}\left(x_{j}^{*}\right)^{2}+2 f\left(x^{*}\right)=1
$$

$\psi(x)=1$ for all feasible $x$, so $f(x)$ achieves maximum when $\sum_{j \in C}\left(x_{j}^{*}\right)^{2}$ is minimum, i.e. $x_{j}^{*}=\frac{1}{|C|}$ for all $j \in C$
again by simplex constraint

$$
2 f\left(x^{*}\right)=1-\sum_{j \in C}\left(x_{j}^{*}\right)^{2}=1-|C| \frac{1}{|C|^{2}}=1-\frac{1}{|C|} \leq 1-\frac{1}{\omega(G)}
$$

so $f\left(x^{*}\right)$ attains max $\left(\frac{1}{2}-\frac{1}{2|C|}\right)$ when $|C|=\omega(G) \Rightarrow \forall j \in C x_{j}=\frac{1}{\omega(G)}$

## Copositive programming

- STQP: $\min x^{\top} Q x: \sum_{j} x_{j}=1 \wedge x \geq 0$

NP-hard by Motzkin-Straus

- Linearize: $X=x x^{\top}$
replace $x_{i} x_{j}$ by $X_{i j}$ and add constraints $X_{i j}=x_{i} x_{j}$
- Define $A \bullet B=\operatorname{tr}\left(A^{\top} B\right)=\sum_{i, j} A_{i j} B_{i j}$ write StQP (linearized) objective as $\min Q \bullet X$
- Let $C=\left\{X \mid X=x x^{\top} \wedge x \geq 0\right\}, \bar{C}=\operatorname{conv}(C)$
- $\sum_{j} x_{j}=1 \Leftrightarrow\left(\sum_{j} x_{j}\right)^{2}=1^{2} \Leftrightarrow 1 \bullet X=1$
- $\operatorname{STQP} \equiv \min Q \bullet X: 1 \bullet X=1 \wedge X \in C$ linear obj. $\Rightarrow$ optima attained at extrema of feas. set $\Rightarrow$ can replace $C$ by its convex hull $\bar{C}$
$\bar{C}$ is a completely positive cone
- Dual $\equiv \max y: Q-y \mathbf{1} \in \bar{C}^{*}=\left\{A \mid \forall x \geq 0\left(x^{\top} A x \geq 0\right)\right\}$ $\bar{C}^{*}$ is a copositive cone
- $\Rightarrow$ Pair of NP-hard cNLPs!


## An exercise and a project idea

> You, a private investment banker, are seeing a customer. She tells you "I have 3,450,000\$ I don't need in the next three years. Invest them in low-risk assets so I get at least 2.5\% return per year."

Model the problem of determining the required portfolio. Missing data are part of the fun (and of real life).
[What are the decision varis, objective, constraints? What data are missing?]
Project idea 1: Consider the MILP formulation for Max Clique and the Motzkin-Straus formulation. Can the latter have multiple global optima? If so, do they all characterize a maximum clique? What do local optima characterize? Pursue a computational study to answer these questions, then check [Gibbons et al., Mathematics of Operations Research, 22:754-768, 1997] and [Pelillo \& Jagota, J. Artif. Neural Networks, 2:411-420, 1995]

## Outline

Introduction
MP language
Solvers
MP systematics
Some applications
Decidability
Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness
MP solvability
Emiciency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations
Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap revisited

Summary
Random projections in LP
Random projection theory
Projecting LP feasibility
Projecting LP optimality
Solution retrieval
Application to quantile regression
Sparsity and $\ell_{1}$ minimization
Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again

## A gem in Distance Geometry

- Heron's theorem
- Heron lived around year 0
- Hung out at Alexandria's library


$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

- $A=$ area of triangle
- $s=\frac{1}{2}(a+b+c)$

Useful to measure areas of agricultural land

## Heron's theorem: Proof $[\mathrm{M}$. Edvaras, high seshool student, 2007]

$$
\text { A. } 2 \alpha+2 \beta+2 \gamma=2 \pi \Rightarrow \alpha+\beta+\gamma=\pi
$$



$$
\begin{aligned}
r+i x & =u e^{i \alpha} \\
r+i y & =v e^{i \beta} \\
r+i z & =w e^{i \gamma}
\end{aligned}
$$

$$
\Rightarrow(r+i x)(r+i y)(r+i z)=(u v w) e^{i(\alpha+\beta+\gamma)}=
$$

$$
u v w e^{i \pi}=-u v w \in \mathbb{R}
$$

$$
\Rightarrow \operatorname{Im}((r+i x)(r+i y)(r+i z))=0
$$

$$
\Rightarrow r^{2}(x+y+z)=x y z \Rightarrow r=\sqrt{\frac{x y z}{x+y+z}}
$$

B. $s=\frac{1}{2}(a+b+c)=\frac{1}{2}(2 x+2 y+2 z)=x+y+z$

$$
\begin{aligned}
s-a & =x+y+z-y-z=x \\
s-b & =x+y+z-x-z=y \\
s-c & =x+y+z-x-y=z \\
\Rightarrow \quad \mathcal{A}=\frac{1}{2}(r a+r b+r c) & =r \frac{a+b+c}{2}=r s=\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
$$

## Subsection 1

The universal isometric embedding

## Representing metric spaces in $\mathbb{R}^{n}$

- Given metric space $(X, d)$ with dist. matrix (DM) $D=\left(d_{i j}\right)$, embed $X$ in some $\mathbb{R}^{K}$ so it has the same DM
- Consider $i$-th row $x_{i}=\left(d_{i 1}, \ldots, d_{i n}\right)$ of $D$
- Embed $i \in X$ by vector $U^{D}(i)=x_{i} \in \mathbb{R}^{n}$ define $U^{D}:\{1, \ldots, n\} \rightarrow \mathbb{R}^{n}$ s.t. $U^{D}(i)=x_{i}$
- Thm.: $\left(U^{D}, \ell_{\infty}\right)$ is a metric space with DM $D$ i.e. $\forall i, j \leq n\left\|x_{i}-x_{j}\right\|_{\infty}=d_{i j}$
- $U^{D}$ is called Universal Isometric Embedding (UIE)
- Practical issue: embedding is high-dimensional $\left(\mathbb{R}^{n}\right)$


## Proof

- Consider $i, j \in X$ with distance $d(i, j)=d_{i j}$
- Then

$$
\left\|x_{i}-x_{j}\right\|_{\infty}=\max _{k \leq n}\left|d_{i k}-d_{j k}\right| \leq \max _{k \leq n}\left|d_{i j}\right|=d_{i j}
$$

ineq. $\leq$ above from triangular inequalities in metric space:

$$
\begin{aligned}
\forall k & d_{i k} \leq d_{i j}+d_{j k} \wedge d_{j k} \leq d_{i j}+d_{i k} \\
\Rightarrow & d_{i k}-d_{j k} \leq d_{i j} \wedge \quad d_{j k}-d_{i k} \leq d_{i j} \\
\Rightarrow & \left|d_{i k}-d_{j k}\right| \leq d_{i j}
\end{aligned}
$$

If valid $\forall k$ then valid for $\max _{k}$

- max $\left|d_{i k}-d_{j k}\right|$ over $k \leq n$ achieved when $k \in\{i, j\}$

$$
\Rightarrow\left\|x_{i}-x_{j}\right\|_{\infty}=d_{i j}
$$

## Subsection 2

## Dimension reduction

## Schoenberg's theorem

- [I. Schoenberg, Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espace de Hilbert", Ann. Math., 1935]
- Question: Given $n \times n$ symmetric matrix $D$, what are necessary and sufficient conditions s.t. $D$ is a Euclidean DM (EDM) corresponding to $n$ points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{K}$ with $K$ minimum?
- Necessary and sufficient conditions for an EDM Thm.

$$
\begin{aligned}
& D=\left(d_{i j}\right) \text { is an EDM iff } \frac{1}{2}\left(d_{1 i}^{2}+d_{1 j}^{2}-d_{i j}^{2} \mid 2 \leq i, j \leq n\right) \text { is } \\
& \text { PSD (of rank } K \text { ) }
\end{aligned}
$$

- Yields important result in data science:

Classic Multidimensional Scaling

## Gram matrices and EDMs

- Realization: $n \times K$ matrix $x=\left(x_{1}, \ldots, x_{n}\right) \subseteq \mathbb{R}^{K}$
- Gram matrix of $x: G=x x^{\top}=\left(x_{i} \cdot x_{j}\right)$ Lemma: (i) $G \succeq 0$; (i) each $M \succeq 0$ is a Gram matrix of some x
- Theorem: given rlz $x$, Gram matrix $G$ and EDM $D$ satisfy

$$
G=-\frac{1}{2} J D^{2} J
$$

- In the theorem, $D^{2}=\left(d_{i j}^{2}\right)$ and

$$
J=I_{n}-\frac{1}{n} \mathbf{1 1} \mathbf{1}^{\top}=\left(\begin{array}{cccc}
1-\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\
-\frac{1}{n} & 1-\frac{1}{n} & \cdots & -\frac{1}{n} \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{1}{n} & -\frac{1}{n} & \cdots & 1-\frac{1}{n}
\end{array}\right)
$$

- This is a variant of Schoenberg's theorem


## Multidimensional scaling (MDS)

- Often get approximate EDMs $\tilde{D}$ from raw data (i.e. matrices that are not EDMs, but they are "not too far") (they measure dissimilarities, discrepancies, differences)
- $\tilde{G}=-\frac{1}{2} J \tilde{D}^{2} J$ is an approximate Gram matrix
- Approximate Gram $\Rightarrow$ spectral decomposition $P \tilde{\Lambda} P^{\top}$ has $\tilde{\Lambda} \nsupseteq 0$
- Let $\Lambda$ be a PSD diagonal matrix closest to $\tilde{\Lambda}$ :
^ obtained from $\tilde{\Lambda}$ by zeroing negative components
- $x=P \sqrt{\Lambda}$ is an "approximate realization" of $\tilde{D}$
- Denote $x=\operatorname{MDS}(D)$


## Classic MDS: Main result

1. Prove lemma: matrix is Gram iff it is PSD
2. Prove theorem: $G=-\frac{1}{2} J D^{2} J$

## Proof of lemma

- $\operatorname{Gram} \subseteq P S D$
- $x$ is an $n \times K$ real matrix
- $G=x x^{\top}$ its Gram matrix
- For each $y \in \mathbb{R}^{n}$ we have

$$
\begin{aligned}
& y G y^{\top}=y\left(x x^{\top}\right) y^{\top}=(y x)\left(x^{\top} y^{\top}\right)=(y x)(y x)^{\top}=\|y x\|_{2}^{2} \geq 0 \\
& \Rightarrow G \succeq 0
\end{aligned}
$$

- PSD $\subseteq$ Gram
- Let $G \succeq 0$ be $n \times n$
- Spectral decomposition: $G=P \Lambda P^{\top}$
(P orthogonal, $\Lambda \geq 0$ diagonal)
- $\Lambda \geq 0 \Rightarrow \sqrt{\Lambda} \in \mathbb{R}^{n \times n}$
- $G=P \Lambda P^{\top}=(P \sqrt{\Lambda})\left(\sqrt{\Lambda}^{\top} P^{\top}\right)=(P \sqrt{\Lambda})(P \sqrt{\Lambda})^{\top}$
- Let $x=P \sqrt{\Lambda}$, then $G$ is the Gram matrix of $x$


## Proof of theorem $(1 / 2)$

- Let $G=x x^{\top}$, translate $x$ so that centroid $\frac{1}{n} \sum_{j} x_{j}=0$
- Expand: $d_{i j}^{2}=\left\|x_{i}-x_{j}\right\|_{2}^{2}=\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)=x_{i} x_{i}+x_{j} x_{j}-2 x_{i} x_{j}$
- Aim at "inverting" $(*)$ to express $x_{i} x_{j}$ in function of $d_{i j}^{2}$

- Similarly for $j$ and divide by $n$, get:

$$
\begin{align*}
& \frac{1}{n} \sum_{i \leq n} d_{i j}^{2}=\frac{1}{n} \sum_{i \leq n} x_{i} x_{i}+x_{j} x_{j} \\
& \frac{1}{n} \sum_{j \leq n} d_{i j}^{2}=x_{i} x_{i}+\frac{1}{n} \sum_{j \leq n} x_{j} x_{j}
\end{align*}
$$

- Sum $(\dagger)$ over $j$, get:

$$
\frac{1}{n} \sum_{i, j} d_{i j}^{2}=n \frac{1}{n} \sum_{i} x_{i} x_{i}+\sum_{j} x_{j} x_{j}=2 \sum_{i} x_{i} x_{i}
$$

- Divide by $n$, get:

$$
\frac{1}{n^{2}} \sum_{i, j} d_{i j}^{2}=\frac{2}{n} \sum_{i} x_{i} x_{i}
$$

## Proof of theorem $(2 / 2)$

- Rearrange $(*),(\dagger),(\ddagger)$ as follows:

$$
\begin{align*}
2 x_{i} x_{j} & =x_{i} x_{i}+x_{j} x_{j}-d_{i j}^{2}  \tag{5}\\
x_{i} x_{i} & =\frac{1}{n} \sum_{j} d_{i j}^{2}-\frac{1}{n} \sum_{j} x_{j} x_{j}  \tag{6}\\
x_{j} x_{j} & =\frac{1}{n} \sum_{i} d_{i j}^{2}-\frac{1}{n} \sum_{i} x_{i} x_{i} \tag{7}
\end{align*}
$$

- Replace LHS of Eq. (6)-(7) in RHS of Eq. (5), get

$$
2 x_{i} x_{j}=\frac{1}{n} \sum_{k} d_{i k}^{2}+\frac{1}{n} \sum_{k} d_{k j}^{2}-d_{i j}^{2}-\frac{2}{n} \sum_{k} x_{k} x_{k}
$$

- By ( $* *)$ replace $\frac{2}{n} \sum_{i} x_{i} x_{i}$ with $\frac{1}{n^{2}} \sum_{i, j} d_{i j}^{2}$, get

$$
\begin{equation*}
2 x_{i} x_{j}=\frac{1}{n} \sum_{k}\left(d_{i k}^{2}+d_{k j}^{2}\right)-d_{i j}^{2}-\frac{1}{n^{2}} \sum_{h, k} d_{h k}^{2} \tag{§}
\end{equation*}
$$

which expresses $x_{i} x_{j}$ in function of $D$

- Finally, show RHS of $(\S)$ is $(i, j)$-th entry of $-J D^{2} J$

See lecture notes, Thm. 10.3.5

## Principal Component Analysis (PCA)

- Given an approximate EDM $D$
- find $x=\operatorname{MDS}(D)$
- However, you want $x=P \sqrt{\Lambda}$ in $K$ dimensions but $\operatorname{rank}(\Lambda)>K$
- Only keep $K$ largest components of $\Lambda$ zero the rest
- Get realization in desired space
- Denote $x=\operatorname{PCA}(D, K)$


## Example 1/3

Mathematical genealogy skeleton


## Example 2/3

A partial view

|  | Euler | Thibaut | Pfaff | Lagrange | Laplace | Möbius | Gudermann | Dirksen |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kästner | 10 | 1 | 1 | 9 | 8 | 2 | 2 | 2 |
| Euler |  | 11 | 9 | 1 | 3 | 10 | 12 | 12 |
| Thibaut |  |  | 2 | 10 | 10 | 3 | 1 | 1 |
| Pfaff |  |  |  | 8 | 8 | 1 | 3 | 3 |
| Lagrange |  |  |  |  | 2 | 9 | 11 | 11 |
| Laplace |  |  |  |  |  | 9 | 11 | 11 |
| Möbius |  |  |  |  |  | 4 | 4 |  |
| Gudermann |  |  |  |  |  |  | 2 |  |

$$
D=\left(\begin{array}{cccccccccc}
0 & 10 & 1 & 1 & 9 & 8 & 2 & 2 & 2 & 2 \\
10 & 0 & 11 & 9 & 1 & 3 & 10 & 12 & 12 & 8 \\
1 & 11 & 0 & 2 & 10 & 10 & 3 & 1 & 1 & 3 \\
1 & 9 & 2 & 0 & 8 & 8 & 1 & 3 & 3 & 1 \\
9 & 1 & 10 & 8 & 0 & 2 & 9 & 11 & 11 & 7 \\
8 & 3 & 10 & 8 & 2 & 0 & 9 & 11 & 11 & 7 \\
2 & 10 & 3 & 1 & 9 & 9 & 0 & 4 & 4 & 2 \\
2 & 12 & 1 & 3 & 11 & 11 & 4 & 0 & 2 & 4 \\
2 & 12 & 1 & 3 & 11 & 11 & 4 & 2 & 0 & 4 \\
2 & 8 & 3 & 1 & 7 & 7 & 2 & 4 & 4 & 0
\end{array}\right)
$$

## Example 3/3

In 2 D



## Subsection 3

Dealing with incomplete metrics

## Partial metrics

- If your metric space is missing some distances
- Get incomplete EDM $D$
- Cannot define vectors $U^{D}(i)$ in UIE
- Note: $D$ defines a graph


$$
D=\left(\begin{array}{cccc}
0 & 1 & \sqrt{2} & 1 \\
1 & 0 & 1 & ? \\
\sqrt{2} & 1 & 0 & 1 \\
1 & \boxed{?} & 1 & 0
\end{array}\right)
$$

- Complete graph with shortest path (SP) distances: $d_{24}=2$


## Floyd-Warshall algorithm $1 / 2$

- Given $n \times n$ partial matrix $D$ computes all shortest path lengths
- For each triplet $z, u, v$ of vertices in the graph, test: when going $u \rightarrow v$, is it convenient to pass through $z$ ?

- If so, then change the path length
- Complete missing entries $d_{u v}$ in $D$ shortest path lengths $u \rightarrow v$
- Denote $\bar{D}=$ FloydWarshall $(D)$


## Floyd-Warshall algorithm $2 / 2$

## \# initialization

for $u \leq n, v \leq n$ do
if $d_{u v}=$ ? then
$d_{u v} \leftarrow \infty$
end if
end for
\# main loop (outter loop must be on triangulation vertex)
for $z \leq n$ do
for $u \leq n$ do
for $v \leq n$ do
if $d_{u v}>d_{u z}+d_{z v}$ then
$d_{u v} \leftarrow d_{u z}+d_{z v}$
end if
end for
end for
end for

## Subsection 4

The Isomap heuristic

## Isomap embedding in $\mathbb{R}^{K}$

- Given a partial EDM $D$

1. $\bar{D}=\operatorname{FloydWarshall}(D)$
2. $x=\operatorname{PCA}(\bar{D}, K)$

- Intuition of why it works well:

- Denote $x=\operatorname{Isomap}(D, K)$


## Subsection 5

Distance geometry problem

## The Distance Geometry Problem (DGP)

Given $K \in \mathbb{N}$ and $G=(V, E, d)$ with $d: E \rightarrow \mathbb{R}_{+}$, find $x: V \rightarrow \mathbb{R}^{K}$ s.t.

$$
\forall\{i, j\} \in E \quad\left\|x_{i}-x_{j}\right\|_{2}^{2}=d_{i j}^{2}
$$



## Some applications

- clock synchronization $(K=1)$
- sensor network localization $(K=2)$
- molecular structure from distance data $(K=3)$
- autonomous underwater vehicles $(K=3)$
- EDM completion (whatever $K$ )
- finding graph embeddings (whatever $K$ )


## Clock synchronization

## From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial measurements of their time differences

- $K=1$
- $V$ : timestamps
- $\{u, v\} \in E$ if known time difference between $u, v$
- $d$ : values of the time differences


## Clock synchronization



## Sensor network localization

## From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to locate a set of geographically distributed objects using measurements of the distances between some object pairs

- $K=2$
- $V$ : (mobile) sensors
- $\{u, v\} \in E$ iff distance between $u, v$ is measured
- $d$ : distance values

```
Used whenever GPS not viable (e.g. underwater)
duv}\propto~\mathrm{ battery consumption in P2P communication betw. u,v
```


## Sensor network localization



## Molecular structure from distance data

From [Liberti et al., SIAM Rev., 2014]


- $K=3$
- $V$ : atoms
- $\{u, v\} \in E$ iff distance between $u, v$ is known
- $d$ : distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances $\lesssim 5.5$ measured approximately by NMR

## Graph embeddings

- Relational knowledge best represented by graphs
- We have fast algorithms for clustering vectors
- Task: represent a graph in $\mathbb{R}^{n}$
- "Graph embeddings" and "distance geometry":
almost synonyms
- Used in Natural Language Processing (NLP) obtain "word vectors" © "sentence vectors"

Project idea 2: create a graph-of-words from a sentence, enrich it with semantic distances, then use the DG methods in these lectures to embed the graph in a low-dimensional space; then evaluate sentence similarity using vector angles

## Complexity

- $\mathrm{DGP}_{1}$ with $d: E \rightarrow \mathbb{Q}_{+}$is in NP
- if instance YES $\exists$ realization $x \in \mathbb{R}^{n \times 1}$
- if some component $x_{i} \notin \mathbb{Q}$ translate $x$ so $x_{i} \in \mathbb{Q}$
- consider some other $x_{j}$
- let $\ell=\mid$ sh. path $p: i \rightarrow j \mid=\sum_{\{u, v\} \in p}(-1)^{s_{u v}} d_{u v} \in \mathbb{Q}$
for some $s_{u v} \in\{0,1\}$
- then $x_{j}=x_{i} \pm \ell \rightarrow x_{j} \in \mathbb{Q}(\forall j)$
- $\Rightarrow$ polytime verification of

$$
\forall\{i, j\} \in E \quad\left|x_{i}-x_{j}\right|=d_{i j}
$$

- $\mathrm{DGP}_{K}$ may not be in NP for $K>1$
don't know how to polytime check $\left\|x_{i}-x_{j}\right\|_{2}=d_{i j}$ for $x \notin \mathbb{Q}^{n K}$


## Hardness

Partition is NP-hard
Given $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}, \exists I \subseteq\{1, \ldots, n\}$ s.t. $\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i} ?$

- Reduce Partition to $\mathrm{DGP}_{1}$ on single-cycle graphs
- $a \longrightarrow$ cycle $C$

$$
V(C)=\{1, \ldots, n\}, E(C)=\{\{1,2\}, \ldots,\{n, 1\}\}
$$

- For $i<n$ let $d_{i, i+1}=a_{i}$

For $i=n$, let $d_{n, n+1}=d_{n 1}=a_{n}$

- E.g. for $a=(1,4,1,3,3)$, get cycle graph:



## Partition is $Y E S \Rightarrow \mathrm{DGP}_{1}$ is YES

- Given: $I \subset\{1, \ldots, n\}$ s.t. $\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}$
- Construct: realization $x$ of $C$ in $\mathbb{R}$

1. $x_{1}=0 \quad / /$ start
2. induction step: suppose $x_{i}$ known
if $i \in I$

$$
\text { let } x_{i+1}=x_{i}+d_{i, i+1} \quad / / \text { go right }
$$

else

$$
\text { let } x_{i+1}=x_{i}-d_{i, i+1} \quad \text { // go left }
$$

- Correctness proof: by the same induction but careful when $i=n$ : have to show $x_{n+1}=x_{1}$


## Partition is $Y E S \Rightarrow \mathrm{DGP}_{1}$ is YES

Proof that $x_{n+1}=x_{1}$ :

$$
\begin{aligned}
&(1)=\sum_{i \in I}\left(x_{i+1}-x_{i}\right)=\sum_{i \in I} d_{i, i+1}= \\
&=\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}= \\
&=\sum_{i \notin I} d_{i, i+1}=\sum_{i \notin I}\left(x_{i}-x_{i+1}\right)=(2) \\
&(1)=(2) \Rightarrow \sum_{i \in I}\left(x_{i+1}-x_{i}\right)=\sum_{i \notin I}\left(x_{i}-x_{i+1}\right) \Rightarrow \sum_{i \leq n}\left(x_{i+1}-x_{i}\right)=0 \\
& \Rightarrow\left(x_{n+1}-x_{n}\right)+\left(x_{n}-x_{n-1}\right)+\cdots+\left(x_{3}-x_{2}\right)+\left(x_{2}-x_{1}\right)=0 \\
& \Rightarrow x_{n+1}=x_{1}
\end{aligned}
$$

## Partition is $\mathrm{NO} \Rightarrow \mathrm{DGP}_{1}$ is NO

- By contradiction: suppose $\mathrm{DGP}_{1}$ is YES, $x$ realization of $C$
- $F=\left\{\{u, v\} \in E(C) \mid x_{u} \leq x_{v}\right\}$,
$E(C) \backslash F=\left\{\{u, v\} \in E(C) \mid x_{u}>x_{v}\right\}$
- Trace $x_{1}, \ldots, x_{n}$ : follow edges in $F(\rightarrow)$ and in $E(C) \backslash F(\leftarrow)$

- Let $J=\{i<n \mid\{i, i+1\} \in F\} \cup\{n \mid\{n, 1\} \in F\}$

$$
\Rightarrow \quad \sum_{i \in J} a_{i}=\sum_{i \notin J} a_{i}
$$

- So $J$ solves Partition instance, contradiction
- $\Rightarrow$ DGP is NP-hard, DGP $_{1}$ is NP-complete


## Number of solutions

- $(G, K)$ : DGP instance
- $\tilde{X} \subseteq \mathbb{R}^{K n}:$ set of solutions
- Congruence: composition of translations, rotations, reflections
- $C=$ set of congruences in $\mathbb{R}^{K}$
- $x \sim y$ means $\exists \rho \in C(y=\rho x)$ :
distances in $x$ are preserved in $y$ through $\rho$
- $\Rightarrow$ if $|\tilde{X}|>0,|\tilde{X}|=2^{\aleph_{0}}$


## Number of solutions modulo congruences

- Congruence is an equivalence relation $\sim$ on $\tilde{X}$ (reflexive, symmetric, transitive)

- Partitions $\tilde{X}$ into equivalence classes
- $X=\tilde{X} / \sim$
sets of representatives of equivalence classes
- Focus on $|X|$ rather than $|\tilde{X}|$


## Rigidity, flexibility and $|X|$

- infeasible $\Leftrightarrow|X|=0$
- rigid graph $\Leftrightarrow|X|<\aleph_{0}$
- globally rigid graph $\Leftrightarrow|X|=1$
- flexible graph $\Leftrightarrow|X|=2^{\aleph_{0}}$
- $|X|=\aleph_{0}$ : impossible by Milnor's theorem


## Milnor's theorem implies $|X| \neq \aleph_{0}$

- System $S$ of polynomial equations of degree 2

$$
\forall i \leq m \quad p_{i}\left(x_{1}, \ldots, x_{n K}\right)=0
$$

- Let $X$ be the set of $x \in \mathbb{R}^{n K}$ satisfying $S$
- Number of connected components of $X$ is $O\left(3^{n K}\right)$ [Milnor 1964]
- Assume $|X|$ is countable; then $G$ cannot be flexible $\Rightarrow$ each incongruent rlz is in a separate component $\Rightarrow$ by Milnor's theorem, there's finitely many of them


## Examples

$$
\begin{aligned}
& V^{1}=\{1,2,3\} \\
& E^{1}=\{\{u, v\} \mid u<v\} \\
& d^{1}=1
\end{aligned}
$$

$$
V^{2}=V^{1} \cup\{4\}
$$

$$
E^{2}=E^{1} \cup\{\{1,4\},\{2,4\}\}
$$

$$
d^{2}=1 \wedge d_{14}=\sqrt{2}
$$

$$
V^{3}=V^{2}
$$

$$
E^{3}=\{\{u, u+1\} \mid u \leq 3\} \cup\{1,4\}
$$

$$
d^{1}=1
$$


$\rho$ congruence in $\mathbb{R}^{2}$
$\Rightarrow \rho x$ valid realization $|X|=1$
$\rho$ reflects $x_{4}$ wrt $\overline{x_{1}, x_{2}}$
$\Rightarrow \rho x$ valid realization $|X|=2(\Delta, \forall)$
$\rho$ rotates $\overline{x_{2} x_{3}}, \overline{x_{1} x_{4}}$ by $\theta$
$\Rightarrow \rho x$ valid realization
$|X|$ is uncountable
$(\square, \square, \square, \square, \ldots$ )

## Subsection 6

Distance geometry in MP

## DGP formulations and methods

- System of equations
- Unconstrained global optimization (GO)
- Constrained global optimization
- SDP relaxations and their properties
- Diagonal dominance
- Concentration of measure in SDP
- Isomap for DGP


## System of quadratic equations

$$
\begin{equation*}
\forall\{u, v\} \in E \quad\left\|x_{u}-x_{v}\right\|^{2}=d_{u v}^{2} \tag{8}
\end{equation*}
$$

Computationally: useless reformulate using slacks:

$$
\begin{equation*}
\min _{x, s}\left\{\sum_{\{u, v\} \in E} s_{u v}^{2} \mid \forall\{u, v\} \in E \quad\left\|x_{u}-x_{v}\right\|^{2}=d_{u v}^{2}+s_{u v}\right\} \tag{9}
\end{equation*}
$$

## Unconstrained Global Optimization

$$
\begin{equation*}
\min _{x} \sum_{\{u, v\} \in E}\left(\left\|x_{u}-x_{v}\right\|^{2}-d_{u v}^{2}\right)^{2} \tag{10}
\end{equation*}
$$

Globally optimal obj. fun. value of (10) is 0 iff $x$ solves (8)

Computational experiments in [Liberti et al., 2006]:

- GO solvers from $>15$ years ago
- randomly generated protein data: $\leq 50$ atoms
- cubic crystallographic grids: $\leq 64$ atoms


## Constrained global optimization

- $\min _{x} \sum_{\{u, v\} \in E}\left|\left\|x_{u}-x_{v}\right\|^{2}-d_{u v}^{2}\right|$ exactly reformulates (8)
- Relax objective $f$ to concave part, remove constant term, rewrite $\min -f$ as $-\max f$

$$
\min _{x} \sum_{u v}\left(d_{u v}^{2}-\left\|x_{u}-x_{v}\right\|_{2}^{2}\right)=\sum_{u v} d_{u v}^{2}-\max _{x} \sum_{u v}\left\|x_{u}-x_{v}\right\|_{2}^{2}
$$

- Reformulate convex part of obj. fun. to convex constraints

$$
\forall\{u, v\} \in E\left\|x_{u}-x_{v}\right\|_{2}^{2} \leq d_{u v}^{2}
$$

- Exact reformulation ("push-and-pull")

$$
\left.\begin{array}{rc}
\max _{x} & \sum_{\{u, v\} \in E}\left\|x_{u}-x_{v}\right\|^{2}  \tag{11}\\
v\} \in E & \left\|x_{u}-x_{v}\right\|^{2} \leq d_{u v}^{2}
\end{array}\right\}
$$

Theorem (Activity)
At a glob. opt. $x^{*}$ of a YES instance, all constraints of (11) are active

## Push-and-pull linearization

Linearization of nonlinear terms $\left\|x_{i}-x_{j}\right\|_{2}^{2}$ for all $\{i, j\} \in E$ :

$$
\begin{aligned}
& \Rightarrow \quad \forall\{i, j\} \in E \quad\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i} \cdot x_{j}=d_{i j}^{2} \\
& \Rightarrow\left\{\begin{aligned}
\forall\{i, j\} \in E \quad X_{i i}+X_{j j}-2 X_{i j} & =d_{i j}^{2} \\
X & =x x^{\top}
\end{aligned}\right.
\end{aligned}
$$

## Relaxation

$$
\begin{aligned}
X & =x x^{\top} \\
\Rightarrow \quad X-x x^{\top} & =0 \\
\text { (relax) } \Rightarrow \quad X-x x^{\top} & \succeq 0 \\
\operatorname{Schur}(X, x)=\left(\begin{array}{cc}
I_{K} & x^{\top} \\
x & X
\end{array}\right) & \succeq 0
\end{aligned}
$$

If $x$ does not appear elsewhere $\Rightarrow$ get rid of it (e.g. choose $x=0$ ):
replace $\operatorname{Schur}(X, x) \succeq 0$ by $X \succeq 0$

## SDP relaxation

- Relaxation:

$$
\begin{array}{rlrl}
\min F \bullet X & \\
\forall\{i, j\} \in E & X_{i i}+X_{j j}-2 X_{i j} & =d_{i j}^{2} \\
X & \succeq 0
\end{array}
$$

- Note SDP $\equiv$ linear obj. s.t. linear constrs $\wedge$ PSD cone
- DGP linearization/relaxation only defines feasible set
- Note $F \bullet X=\operatorname{tr}\left(F^{\top} X\right)=\sum_{i j} F_{i j} X_{i j}$
- Can we choose a "good" objective function $F$ ?


## Some possible objective functions

- For protein conformation:

$$
\min \sum_{\{i, j\} \in E}\left(X_{i i}+X_{j j}-2 X_{i j}\right)
$$

with $=$ changed to $\geq$ in constraints (or max and $\leq$ )
"push-and-pull" relaxation

- [Ye, 2003], application to wireless sensors localization

$$
\begin{aligned}
& \min \operatorname{tr}(X) \\
& \operatorname{tr}(X)=\operatorname{tr}\left(P^{-1} \Lambda P\right)=\operatorname{tr}\left(P^{-1} P \Lambda\right)=\operatorname{tr}(\Lambda)=\sum_{i} \lambda_{i} \\
& \Rightarrow \text { hope to minimize rank }
\end{aligned}
$$

- How about "just random"?


## How do you choose?

for want of some better criterion. . .

## TEST!

- Download protein files from Protein Data Bank (PDB)
they contain atom realizations
- Mimick a Nuclear Magnetic Resonance experiment Keep only pairwise distances $<5.5$
- Try and reconstruct the protein shape from those weighted graphs
- Quality evaluation of results:
- $\operatorname{LDE}(x)=\max _{\{i, j\} \in E}\left|\left\|x_{i}-x_{j}\right\|-d_{i j}\right|$
- $\operatorname{MDE}(x)=\frac{1}{|E|} \sum_{\{i, j\} \in E}\left|\left\|x_{i}-x_{j}\right\|-d_{i j}\right|$


## Empirical choice

- Ye faster but often imprecise
- Random good but nondeterministic
- Push-and-Pull: can relax $X_{i i}+X_{j j}-2 X_{i j}=d_{i j}^{2}$ to $X_{i i}+X_{j j}-2 X_{i j} \geq d_{i j}^{2}$
easier to satisfy feasibility, useful later on
- Heuristic: add $+\eta \operatorname{tr}(X)$ to objective, with $\eta \ll 1$ might help minimize solution rank
- min $\sum_{\{i, j\} \in E}\left(X_{i i}+X_{j j}-2 X_{i j}\right)+\eta \operatorname{tr}(X)$ appears to be a good objective function

When solving real problems maths may not be enough use common sense too

## Retrieving realizations in $\mathbb{R}^{K}$

- SDP relaxation yields $n \times n$ PSD matrix $X^{*}$
- We need $n \times K$ realization matrix $x^{*}$
- Recall $P S D \Leftrightarrow$ Gram
- Apply PCA to $X^{*}$, keep $K$ largest comps, get $x^{\prime}$
- This yields solutions with errors
- Use $x^{\prime}$ as starting pt for local NLP solver

Later on: Barvinok's Naive Algorithm, an SDP-specific alternative to $P C A$

## When SDP solvers hit their size limit

- SDP solver: technological bottleneck
- Can we use an LP solver instead?
- Diagonally Dominant (DD) matrices are PSD
- Not vice versa: inner approximate PSD cone $Y \succeq 0$
- Idea by A.A. Ahmadi [Ahmadi \& Hall 2015]


## Diagonally dominant matrices

$n \times n$ symmetric matrix $X$ is DD if

$$
\forall i \leq n \quad X_{i i} \geq \sum_{j \neq i}\left|X_{i j}\right|
$$

$$
\text { E.g. } \quad\left(\begin{array}{cccccc}
1 & 0.1 & -0.2 & 0 & 0.04 & 0 \\
0.1 & 1 & -0.05 & 0.1 & 0 & 0 \\
-0.2 & -0.05 & 1 & 0.1 & 0.01 & 0 \\
0 & 0.1 & 0.1 & 1 & 0.2 & 0.3 \\
0.04 & 0 & 0.01 & 0.2 & 1 & -0.3 \\
0 & 0 & 0 & 0.3 & -0.3 & 1
\end{array}\right)
$$



## Gershgorin's circle theorem

- Let $A$ be symmetric $n \times n$
- $\forall i \leq n$ let $R_{i}=\sum_{j \neq i}\left|A_{i j}\right|$ and $I_{i}=\left[A_{i i}-R_{i}, A_{i i}+R_{i}\right]$
- Then $\forall \lambda$ eigenvalue of $A \quad \exists i \leq n$ s.t. $\lambda \in I_{i}$

Proof

- Let $\lambda$ be an eigenvalue of $A$ with eigenvector $y$
- Normalize $y$ s.t. $\exists i \leq n y_{i}=1$ and $\forall j \neq i\left|y_{j}\right| \leq 1$ let $i=\arg \max _{j}\left|y_{j}\right|$, divide $y$ by $\operatorname{sgn}\left(y_{i}\right)\left|y_{i}\right|$
- $A y=\lambda y \Rightarrow \sum_{j \leq n: j \neq i} A_{i j} y_{j}+A_{i i} y_{i}=\sum_{j \leq n: j \neq i} A_{i j} y_{j}+A_{i i}=\lambda y_{i}=\lambda$
- Hence $\sum_{j \leq n: j \neq i} A_{i j} y_{j}=\lambda-A_{i i}$
- Triangle+Cauchy-Schwarz inequalities \& $\forall j \neq i\left|y_{j}\right| \leq 1 \Rightarrow$ $\left|\lambda-A_{i i}\right|=\left|\sum_{j \leq n: j \neq i} A_{i j} y_{j}\right| \leq \sum_{j \leq n: j \neq i}\left|A_{i j}\right|\left|y_{j}\right| \leq \sum_{j \leq n: j \neq i}\left|A_{i j}\right|=R_{i}$ hence $\lambda \in I_{i}$


## $\mathrm{DD} \Rightarrow \mathrm{PSD}$

- Assume $A$ is $\mathrm{DD}, \lambda$ an eigenvalue of $A$
- $\Rightarrow \forall i \leq n \quad A_{i i} \geq \sum_{j \neq i}\left|A_{i j}\right|=R_{i}$
- $\Rightarrow \forall i \leq n \quad A_{i i}-R_{i} \geq 0$
- By Gershgorin's circle theorem $\lambda \geq 0$
- $\Rightarrow A$ is PSD


## DD Linearization

$$
\begin{equation*}
\forall i \leq n \quad X_{i i} \geq \sum_{j \neq i}\left|X_{i j}\right| \tag{*}
\end{equation*}
$$

- linearize $|\cdot|$ by additional matrix var $T$
$\Rightarrow$ write $|X|$ as $T$
- $\Rightarrow$ (*) becomes

$$
X_{i i} \geq \sum_{j \neq i} T_{i j}
$$

- add "sandwich" constraints $-T \leq X \leq T$
- Can easily prove (*) in case $X \geq 0$ or $X \leq 0$ :

$$
\begin{aligned}
X_{i i} & \geq \sum_{j \neq i} T_{i j} \geq \sum_{j \neq i} X_{i j} \\
X_{i i} & \geq \sum_{j \neq i} T_{i j} \geq \sum_{j \neq i}-X_{i j}
\end{aligned}
$$

- General case requires polyhedral analysis


## DD Programming (DDP)

$$
\left.\begin{array}{r}
\forall\{i, j\} \in E \quad X_{i i}+X_{j j}-2 X_{i j}= \\
X \quad \text { is }
\end{array} \begin{array}{l}
\text { DD }
\end{array}\right\}
$$

## The issue with inner approximations



DDP could be infeasible!

## Exploit push-and-pull

- Enlarge the feasible region
- From

$$
\forall\{i, j\} \in E \quad X_{i i}+X_{j j}-2 X_{i j}=d_{i j}^{2}
$$

- Use "push" objective min $\sum_{i j \in E} X_{i i}+X_{j j}-2 X_{i j}$
- Relax to

$$
\forall\{i, j\} \in E \quad X_{i i}+X_{j j}-2 X_{i j} \geq d_{i j}^{2}
$$

## Hope to achieve LP feasibility



## DDP formulation for the DGP

$$
\left.\begin{array}{rrl}
\min & \sum_{\{i, j\} \in E}\left(X_{i i}+X_{j j}-2 X_{i j}\right) & \\
\forall\{i, j\} \in E & X_{i i}+X_{j j}-2 X_{i j} & \geq d_{i j}^{2} \\
\forall i \leq n & \sum_{\substack{j \leq n \\
j \neq i}} T_{i j} & \leq X_{i i} \\
-T \leq X & \leq T \\
& \geq 0
\end{array}\right\}
$$

Solve, then retrieve solution in $\mathbb{R}^{K}$ with PCA

## Subsection 7

## DGP cones

## Cones

- Set $C$ is a cone if:

$$
\forall A, B \in C, \alpha, \beta \geq 0 \quad \alpha A+\beta B \in C
$$

- If $C$ is a cone, the dual cone is

$$
C^{*}=\{y \mid \forall x \in C\langle x, y\rangle \geq 0\}
$$

vectors making acute angles with all elements of $C$

- If $C \subset \mathbb{S}_{n}$ (set $n \times n$ symmetric matrices)

$$
C^{*}=\{Y \mid \forall X \in C(Y \bullet X \geq 0)\}
$$

- A $n \times n$ matrix cone $C$ is finitely generated by $\mathcal{X} \subset \mathbb{R}^{n}$ if

$$
\mathcal{X}=\left\{x_{1}, \ldots, x_{p}\right\} \wedge \quad \forall X \in C \exists \delta \in \mathbb{R}_{+}^{p} X=\sum_{\ell \leq p} \delta_{\ell} x_{\ell} x_{\ell}^{\top}
$$

## Representations of $\mathbb{D D}$

- Consider $E_{i i}, E_{i j}^{+}, E_{i j}^{-}$in $\mathbb{S}_{n}$

Define $\mathcal{E}_{0}=\left\{E_{i i} \mid i \leq n\right\}, \mathcal{E}_{1}=\left\{E_{i j}^{ \pm} \mid i<j\right\}, \mathcal{E}=\mathcal{E}_{0} \cup \mathcal{E}_{1}$

- $E_{i i}=\operatorname{diag}\left(0, \ldots, 0,1_{i}, 0, \ldots, 0\right)$
- $E_{i j}^{+}$has minor $\left(\begin{array}{ll}1_{i i} & 1_{i j} \\ 1_{j i} & 1_{j j}\end{array}\right), 0$ elsewhere
- $E_{i j}^{-}$has minor $\left(\begin{array}{rr}1_{i i} & -1_{i j} \\ -1_{j i} & 1_{j j}\end{array}\right), 0$ elsewhere
- Thm. $\mathbb{D D D}=$ cone generated by $\mathcal{E}{ }_{\text {[Barker } \& \text { Carlson 1975] }}$ Pf. Rays in $\mathcal{E}$ are extreme, all DD matrices generated by $\mathcal{E}$
- Cor. $\mathbb{D D}$ finitely gen. by $\mathcal{X}_{\mathbb{D D}}=\left\{e_{i} \mid i \leq n\right\} \cup\left\{\left(e_{i} \pm e_{j}\right) \mid i<j \leq n\right\}$ Pf. Verify $E_{i i}=e_{i} e_{i}^{\top}, E_{i j}^{ \pm}=\left(e_{i} \pm e_{j}\right)\left(e_{i} \pm e_{j}\right)^{\top}$, where $e_{i}$ is the $i$-th std basis element of $\mathbb{R}^{n}$


## Finitely generated dual cone representation

Thm. If $C$ finitely gen. by $\mathcal{X}$, then

$$
C^{*}=\left\{Y \in \mathbb{S}^{n} \mid \forall x \in \mathcal{X}\left(Y \bullet x x^{\top} \geq 0\right)\right\}
$$

recall $C^{*} \triangleq\left\{Y \in \mathbb{S}^{n} \mid \forall X \in C \quad Y \bullet X \geq 0\right\}$

- (卫) Let $Y$ s.t. $\forall x \in \mathcal{X}\left(Y \bullet x x^{\top} \geq 0\right)$
- $\forall X \in C, X=\sum_{x \in \mathcal{X}} \delta_{x} x x^{\top}$ (by fin. gen.)
- hence $Y \bullet X=\sum_{x} \delta_{x} Y \bullet x x^{\top} \geq 0$ (by defn. of $Y$ )
- whence $Y \in C^{*}$ (by defn. of $C^{*}$ )
- ( $\subseteq)$ Suppose $Z \in C^{*} \backslash\left\{Y \mid \forall x \in \mathcal{X}\left(Y \bullet x x^{\top} \geq 0\right)\right\}$
- then $\exists \mathcal{X}^{\prime} \subset \mathcal{X}$ s.t. $\forall x \in \mathcal{X}^{\prime}\left(Z \bullet x x^{\top}<0\right)$
- consider any $Y=\sum_{x \in \mathcal{X}^{\prime}} \delta_{x} x x^{\top} \in C$ with $\delta \geq 0$
- then $Z \bullet Y=\sum_{x \in \mathcal{X}^{\prime}} \delta_{x} Z \bullet x x^{\top}<0$ so $Z \notin C^{*}$
- contradiction $\Rightarrow C^{*}=\left\{Y \mid \forall x \in \mathcal{X}\left(Y \bullet x x^{\top} \geq 0\right)\right\}$


## Dual cone constraints

- Remark: for $v \in \mathbb{R}^{n}, X \bullet v v^{\top}=v^{\top} X v$
- Use finitely generated dual cone theorem
- Decision variable matrix $X$
- Constraints:

$$
\forall v \in \mathcal{X} \quad v^{\top} X v \geq 0
$$

- Cor. $\mathbb{D D}^{*} \supset \mathbb{P S D}$

Pf. $X \in \mathbb{P S S}$ iff $\forall v \in \mathbb{R}^{n} v X v \geq 0$, so certainly valid $\forall v \in \mathcal{X}$

- If $|\mathcal{X}|$ polysized, get compact formulation otherwise use column generation
- $\left|\mathcal{X}_{\mathbb{D D}}\right|=|\mathcal{E}|=O\left(n^{2}\right)$


## Dual cone DDP formulation for DGP

$$
\left.\begin{array}{rr}
\min & \sum_{\{i, j\} \in E}\left(X_{i i}+X_{j j}-2 X_{i j}\right) \\
\forall\{i, j\} \in E & X_{i i}+X_{j j}-2 X_{i j}=d_{i j}^{2} \\
\forall v \in \mathcal{X}_{\mathbb{D D}} & v^{\top} X v \geq 0
\end{array}\right\}
$$

- $v^{\top} X v \geq 0$ for $v \in \mathcal{X}_{\mathbb{D} \mathbb{D}}$ equivalent to:

$$
\begin{array}{rc}
\forall i \leq n \quad X_{i i} & \geq 0 \\
\forall\{i, j\} \notin E & X_{i i}+X_{j j}-2 X_{i j}
\end{array} \frac{\geq 0}{\forall i<j} \quad X_{i i}+X_{j j}+2 X_{i j} \geq 0
$$

Note we went back to equality "pull" constraints (why?)
Quantifier $\forall\{i, j\} \notin E$ should be $\forall i<j$ but we already have those constraints $\forall\{i, j\} \in E$

## Properties

- SDP relaxes original problem
- DualDDP relaxes SDP
hence also relaxes original problem
- Yields tight obj fun bounds w.r.t. SDP
- Solutions may have large negative rank in some applications, retrieving feasible solutions may be difficult

Project idea 3: Apply the DG methods seen in these lectures in order to control a fleet of submarine robots (for each time instant $t \in T$ they define a different distance graph)

## Subsection 8

## Barvinok's Naive Algorithm

## Concentration of measure

From [Barvinok, 1997]
The value of a "well behaved" function at a random point of a "big" probability space $X$ is "very close" to the mean value of the function.
and
In a sense, measure concentration can be considered as an extension of the law of large numbers.

## Concentration of measure

Given Lipschitz function $f: X \rightarrow \mathbb{R}$ s.t.

$$
\forall x, y \in X \quad|f(x)-f(y)| \leq L\|x-y\|_{2}
$$

for some $L \geq 0$, there is concentration of measure if $\exists$ constants $c, C$ s.t.

$$
\forall \varepsilon>0 \quad \mathrm{P}_{x}(|f(x)-\mathrm{E}(f)|>\varepsilon) \leq c e^{-C \varepsilon^{2} / L^{2}}
$$

where $\mathrm{E}(\cdot)$ is w.r.t. given Borel measure $\mu$ over $X$
三"discrepancy from mean is unlikely"

## Barvinok's theorem

## Consider:

- for each $k \leq m$, manifolds $\mathcal{X}_{k}=\left\{x \in \mathbb{R}^{n} \mid x^{\top} Q^{k} x=a_{k}\right\}$ where $m \leq \operatorname{poly}(n)$
- feasibility problem $F \equiv\left[\bigcap_{k \leq m} \mathcal{X}_{k} \stackrel{?}{\neq \varnothing}\right]$
- SDP relaxation $\forall k \leq m\left(Q^{k} \bullet X=a_{k}\right) \wedge X \succeq 0$ with soln. $\bar{X}$
- Algorithm: $T \leftarrow \operatorname{factor}(\bar{X}) ; \quad y \sim \mathrm{~N}^{n}(0,1) ; \quad x^{\prime} \leftarrow T y$

Then:

- $\exists c>0, n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0}$

$$
\operatorname{Prob}\left(\forall k \leq m \quad \operatorname{dist}\left(x^{\prime}, \mathcal{X}_{k}\right) \leq c \sqrt{\|\bar{X}\|_{2} \ln n}\right) \geq 0.9
$$

## Algorithmic application

- $x^{\prime}$ is "close" to each $\mathcal{X}_{k}$ : try local descent from $x^{\prime}$
- $\Rightarrow$ Feasible QP solution from an SDP relaxation


## Elements of Barvinok's formula

$\operatorname{Prob}\left(\forall k \leq m \quad \operatorname{dist}\left(x^{\prime}, \mathcal{X}_{k}\right) \leq c \sqrt{\|\bar{X}\|_{2} \ln n}\right) \geq 0.9$.

- $\sqrt{\|\bar{X}\|_{2}}$ arises from $T$ (a factor of $\bar{X}$ )
- $\sqrt{\ln n}$ arises from concentration of measure
- 0.9 follows by adjusting parameter values in "union bound"


## Application to the DGP

- $\forall\{i, j\} \in E \quad \mathcal{X}_{i j}=\left\{x \mid\left\|x_{i}-x_{j}\right\|_{2}^{2}=d_{i j}^{2}\right\}$
- DGP can be written as $\bigcap_{\{i, j\} \in E} \mathcal{X}_{i j} \stackrel{?}{\neq \varnothing}$
- SDP relaxation $X_{i i}+X_{j j}-2 X_{i j}=d_{i j}^{2} \wedge X \succeq 0$ with soln. $\bar{X}$
- Difference with Barvinok: $x \in \mathbb{R}^{K n}, \operatorname{rk}(\bar{X}) \leq K$
- IDEA: sample $y \sim \mathrm{~N}^{n K}\left(0, \frac{1}{\sqrt{K}}\right)$
- Thm. Barvinok's theorem works in rank K


## Proof structure

- Show that, on average, $\forall k \leq m \operatorname{tr}\left((T y)^{\top} Q^{k}(T y)\right)=Q^{k} \bullet \bar{X}=a_{k}$
- compute multivariate integrals
- bilinear terms disappear because $y$ normally distributed
$\rightarrow$ decompose multivariate int. to a sum of univariate int.
- Exploit concentration of measure to show errors happen rarely
- a couple of technical lemmata yielding bounds
- $\Rightarrow$ bound Gaussian measure $\mu$ of $\varepsilon$-neighbourhoods of

$$
\begin{aligned}
A_{i}^{-} & =\left\{y \in \mathbb{R}^{n \times K} \mid \mathcal{Q}^{i}(T y) \leq Q^{i} \bullet \bar{X}\right\} \\
A_{i}^{+} & =\left\{y \in \mathbb{R}^{n \times K} \mid \mathcal{Q}^{i}(T y) \geq Q^{i} \bullet \bar{X}\right\} \\
A_{i} & =\left\{y \in \mathbb{R}^{n \times K} \mid \mathcal{Q}^{i}(T y)=Q^{i} \bullet \bar{X}\right\} .
\end{aligned}
$$

- use "union bound" for measure of $A_{i}^{-}(\varepsilon) \cap A_{i}^{+}(\varepsilon)$
- show $A_{i}^{-}(\varepsilon) \cap A_{i}^{+}(\varepsilon)=A_{i}(\varepsilon)$
- use "union bound" to measure intersections of $A_{i}(\varepsilon)$
- appropriate values for some parameters $\Rightarrow$ result


## The heuristic

1. Solve SDP relaxation of DGP, get soln. $\bar{X}$ use $D D P+L P$ if $S D P+I P M$ too slow
2. a. $T=\operatorname{factor}(\bar{X})$
b. $y \sim \mathrm{~N}^{n K}\left(0, \frac{1}{\sqrt{K}}\right)$
c. $x^{\prime}=T y$
3. Use $x^{\prime}$ as starting point for a local NLP solver on formulation

$$
\min _{x} \sum_{\{i, j\} \in E}\left(\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}
$$

and return improved solution $x$

## Subsection 9

## Isomap revisited

## Isomap for the DGP

- Given DGP instance $(K, G=(V, E, d))$ :

1. $D=$ square weighted adjacency matrix of $G$
2. $\bar{D}=$ completion of $D$
3. $x^{\prime}=\mathrm{PCA}(\bar{D}, K)$
4. $x=$ locally optimal solution closest to $x$


- Step 4 is the "refinement step"
calls a local solver for the DGP with starting point $x^{\prime}$
- Vary Step 2 to generate Isomap-based heuristics


## Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm on $G$ (classic Isomap)
B. Find a spanning tree (SPT) of $G$ and compute a random realization in $\bar{x} \in \mathbb{R}^{K}$, use its sqEDM
C. Solve a push-and-pull SDP/DDP/DualDDP to find a realization $x^{\prime} \in \mathbb{R}^{n}$, use its sqEDM

Project idea 4: implement and test at least 6 different variants of Isomap for DGP: the three above, and at least three new ones of your own conception

# Subsection 10 

Summary

## Matrix reformulations

- Quadratic nonconvex too difficult?
- Solve SDP relaxation
- SDP relaxation too large?
- Solve DDP approximation
- Get $n \times n$ matrix solution, need $K \times n$ !


## Solution rank reduction methods

- Multidimensional Scaling (MDS)
- Principal Component Analysis (PCA)
- Barvinok's naive algorithm (BNA)
- Isomap

All provide good starting points for local solvers

Can also use them for general dimensionality reduction: they map $n$ vectors in $\mathbb{R}^{n} \longrightarrow n$ vectors in $\mathbb{R}^{K}$

## Outline

Introduction
MP language
Solvers
MP systematics
Some applications
Decidability
Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness
MP solvability
Efficiency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations
Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap revisited

Summary
Random projections in LP
Random projection theory
Projecting LP feasibility
Projecting LP optimality
Solution retrieval
Application to quantile regression
Sparsity and $\ell_{1}$ minimization
Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again

## The gist of random projections (RP)

- Let $A$ be a $m \times n$ data matrix (columns in $\mathbb{R}^{m}, m \gg 1$ )
- $T$ short \& fat, normally sampled componentwise

$$
\underbrace{\left(\begin{array}{cc}
\vdots: & \vdots: \\
\vdots
\end{array}\right)}_{T} \underbrace{\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots
\end{array}\right)}_{A}=\underbrace{\left(\begin{array}{ccc}
\vdots & \vdots & \vdots
\end{array}\right)}_{T A}
$$

- Then $\forall i<j\left\|A_{i}-A_{j}\right\|_{2} \approx\left\|T A_{i}-T A_{j}\right\|_{2}$ "wahp"
"wahp" = "with arbitrarily high probability" the probability of $E_{k}$ (depending on some parameter $k$ ) approaches 1 "exponentially fast" as $k$ increases

$$
\mathbf{P}\left(E_{k}\right) \geq 1-O\left(e^{-k}\right)
$$



## Johnson-Lindenstrauss Lemma (JLL)

Thm.
Given $A \subseteq \mathbb{R}^{m}$ with $|A|=n$ and $\varepsilon>0$ there is $k=O\left(\frac{1}{\varepsilon^{2}} \ln n\right)$ and a $k \times m$ matrix $T$ s.t.

$$
\forall x, y \in A \quad(1-\varepsilon)\|x-y\| \leq\|T x-T y\| \leq(1+\varepsilon)\|x-y\|
$$

If $k \times m$ matrix $T$ is sampled componentwise from $\mathrm{N}\left(0, \frac{1}{\sqrt{k}}\right)$, then

$$
\mathbf{P}(A \text { and } T A \text { approximately congruent }) \geq \frac{1}{n}
$$

(nontrivial) — result follows by probabilistic method

## In practice

- $\mathbf{P}(A$ and $T A$ approximately congruent $) \geq \frac{1}{n}$
- re-sampling sufficiently many times gives wahp
- Empirically, sample $T$ few times (once will do) $\mathbb{E}_{T}(\|T x-T y\|)=\|x-y\|$ probability of error decreases wahp


## Surprising fact:

$k$ is independent of the original number of dimensions $m$

## Clustering Google images


[L. \& Lavor, 2017]

## Clustering without RPs


$\mathrm{VHcl}=$ Timing[ClusteringComponents[VHimg, 3, 1]]
Out [29] = \{0.405908, \{1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3\}\}

Too slow!

## Clustering with RPs

```
Get["Projection.m"];
VKimg = JohnsonLindenstrauss[VHimg, 0.1];
VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]
Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}
```

$$
\begin{gathered}
\text { From } 0.405 \mathrm{~s} C P U \text { time to } 0.00232 \mathrm{~s} \\
\text { Same clustering }
\end{gathered}
$$

## Projecting formulations

- Given:
- $F(p, x)$ : MP formulation with params $p \&$ vars $x$
- $\operatorname{sol}(F)$ : solution of $F$
- $\mathscr{C}$ : formulation class (e.g. LP, NLP, MILP, MINLP)
- Given RP $T$, define $T F(p, x)$ as

$$
F(T p, x) \text { or } F(T p, T x)
$$

- Want to show: $\forall F \in \mathscr{C} \operatorname{sol}(F) \approx \operatorname{sol}(T F)$ wahp
- Issues:
- RPs project points not vars/constrs
- approximate congruence $\neq$ feasibility/optimality
- JLL applies to finite pt sets, vars encode $\infty$ pts
- Today we see this for $\mathscr{C}=\mathrm{LP}$
- Can also be applied to QP, SDP, QCQP, and more


## Subsection 1

## Random projection theory

## The shape of a set of points

- Lose dimensions but not too much accuracy Given $A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}$ find $k \ll m$ and $A_{1}^{\prime}, \ldots, A_{n}^{\prime} \in \mathbb{R}^{k}$ s.t. $A$ and $A^{\prime}$ "have almost the same shape"
- What is the shape of a set of points?

congruence $\Leftrightarrow$ same shape: $\left\|A_{i}-A_{j}\right\|=\left\|A_{i}^{\prime}-A_{j}^{\prime}\right\|$
- Approximate congruence $\equiv$ small distortion:
$A, A^{\prime}$ have almost the same shape if

$$
\forall i<j \leq n \quad(1-\varepsilon)\left\|A_{i}-A_{j}\right\| \leq\left\|A_{i}^{\prime}-A_{j}^{\prime}\right\| \leq(1+\varepsilon)\left\|A_{i}-A_{j}\right\|
$$

for some small $\varepsilon>0$

## Losing dimensions $=$ "projection"

In the plane, hopeless


In 3D: no better

## Recall the JLL

Thm.
Given $A \subseteq \mathbb{R}^{m}$ with $|A|=n$ and $\varepsilon>0$ there is $k=O\left(\frac{1}{\varepsilon^{2}} \ln n\right)$ and a $k \times m$ matrix $T$ s.t.
$\forall x, y \in A \quad(1-\varepsilon)\|x-y\| \leq\|T x-T y\| \leq(1+\varepsilon)\|x-y\|$

## Approximate congruence: proof sketch



## The.

Let $T$ be a $k \times m$ RP sampled from $\mathrm{N}\left(0, \frac{1}{\sqrt{k}}\right)$, and $u \in \mathbb{R}^{m}$ s.t. $\|u\|=1$. Then $\mathbb{E}\left(\|T u\|^{2}\right)=\|u\|^{2}$


## RPs preserve norms on average

## The.

Let $T$ be a $k \times m$ rectangular matrix with each component sampled from $\mathrm{N}\left(0, \frac{1}{\sqrt{k}}\right)$, and $u \in \mathbb{R}^{m}$ s.t. $\|u\|=1$. Then $\mathbb{E}\left(\|T u\|^{2}\right)=1$

## Proof

- Let $v=T u$, i.e. $\forall i \leq k$ let $v_{i}=\sum_{j \leq n} T_{i j} u_{j}$
- $\mathbb{E}\left(v_{i}\right)=\mathbb{E}\left(\sum_{j \leq m} T_{i j} u_{j}\right)=\sum_{j \leq m} \mathbb{E}\left(T_{i j}\right) u_{j}=0$
- $\operatorname{Var}\left(v_{i}\right)=\sum_{j \leq m} \operatorname{Var}\left(T_{i j} u_{j}\right)=\sum_{j \leq m} \operatorname{Var}\left(T_{i j}\right) u_{j}^{2}=\sum_{j \leq m} \frac{u_{j}^{2}}{k}=\frac{1}{k}\|u\|^{2}=\frac{1}{k}$
- $\frac{1}{k}=\operatorname{Var}\left(v_{i}\right)=\mathbb{E}\left(v_{i}^{2}-\left(\mathbb{E}\left(v_{i}\right)\right)^{2}\right)=\mathbb{E}\left(v_{i}^{2}-0\right)=\mathbb{E}\left(v_{i}^{2}\right)$
- $\mathbb{E}\left(\|T u\|^{2}\right)=\mathbb{E}\left(\|v\|^{2}\right)=\mathbb{E}\left(\sum_{i \leq k} v_{i}^{2}\right)=\sum_{i \leq k} \mathbb{E}\left(v_{i}^{2}\right)=\sum_{i \leq k} \frac{1}{k}=1$

Can we argue that the variance decreases wahp?

## Surface area of a slice of hypersphere

$\bar{S}_{m}(r)$ : surface of $m$-dimensional sphere of radius $r$

$$
\bar{S}_{m}(r)=\frac{2 \pi^{m / 2} r^{m-1}}{\Gamma(m / 2)} \quad S_{m} \triangleq \bar{S}_{m}(1)
$$

Lateral surface of infinitesimally high hypercylinder

$$
d \bar{S}_{m}(t)=S_{m-1}\left(1-t^{2}\right)^{\frac{m-2}{2}} d t
$$



## Area of polar caps

$$
\begin{gathered}
\mathcal{A}^{\mathrm{pc}}=2 \int_{t}^{1} d \bar{S}_{m}(s)=2 S_{m-1} \int_{t}^{1}\left(1-s^{2}\right)^{\frac{m-2}{2}} d s \\
1+x \leq e^{x} \text { for all } x \quad \text { and } \quad \int_{t}^{1} f(s) d s \leq \int_{t}^{\infty} f(s) d s \text { for } f \geq 0 \\
\Rightarrow \mathcal{A}^{\mathrm{pc}} \leq 2 S_{m-1} \int_{t}^{\infty} e^{-\frac{m-2}{2} s^{2}} d s=\frac{2 S_{m-1}}{\sqrt{m-2}} \sqrt{\frac{\pi}{2}} \operatorname{erfc}\left(\frac{\sqrt{m-2} t}{\sqrt{2}}\right) " \approx " O\left(e^{-t^{2}}\right) \\
\\
\begin{array}{l}
\text { Polar caps area } \\
\text { decreases as } m \rightarrow \infty \\
\text { with } t \text { fixed }
\end{array} \\
\begin{array}{l}
\text { Concentration of } \\
\text { measure of the } \\
\text { equatorial band }
\end{array}
\end{gathered}
$$

## An intuitive explanation

$\rightarrow$ Polar caps area $\mu\left(\mathcal{A}_{t}^{m}\right)=\mu\left(\left\{u \in \mathbb{S}^{m-1}| | u_{m} \mid>t\right\}\right)$ decreases with $t$ fixed as $m \rightarrow \infty \Rightarrow$ area of equatorial band $\overline{\mathcal{A}}_{t}^{m}$ increases with same conditions
$>T \overline{\mathcal{A}}_{t}^{m}=\left\{u \in \mathbb{S}^{m-1}| |\|T u\|^{2}-1 \mid \leq t\right\}$ has concentration of measure (if $T$ is stereographic)


## Intermezzo: The union bound

- Events $E_{1}, \ldots, E_{k}$ such that $\mathbf{P}\left(E_{i}\right) \geq 1-p$ for each $i \leq k$
- What is $\mathbf{P}\left(\right.$ all $\left.E_{i}\right)$ ?
- $\mathbf{P}\left(\right.$ all $\left.E_{i}\right)=1-\mathbf{P}\left(\right.$ at least one $\left.\neg E_{i}\right) \Rightarrow$

$$
\begin{gathered}
\mathbf{P}\left(\bigwedge_{i \leq k} E_{i}\right)=1-\mathbf{P}\left(\bigvee_{i \leq k}\left(\neg E_{i}\right)\right) \geq \\
\geq 1-\sum_{i=1}^{k} \mathbf{P}\left(\neg E_{i}\right) \geq 1-\sum_{i=1}^{k}(1-(1-p))=1-k p
\end{gathered}
$$

- So $\mathbf{P}\left(\right.$ all $\left.E_{i}\right) \geq 1-k p$


## A syntactical explanation for $k=O\left(\varepsilon^{-2} \ln n\right)$

- $B=$ set of unit vectors; by "intuitive explanation" $\Rightarrow \forall u \in B \exists C>0$ s.t. $\mathbf{P}(1-t \leq\|T u\| \leq 1+t) \geq 1-e^{-C t^{2}}$
- By union bound:

$$
\Rightarrow \mathbf{P}(\forall u \in B 1-t \leq\|T u\| \leq 1+t) \geq 1-|B| e^{-C t^{2}}
$$

- Prob. $\in[0,1] \Rightarrow$ require $1-|B| e^{-C t^{2}}>0$ :

$$
\Rightarrow|B| e^{-C t^{2}}<1
$$

- (arbitrarily) Let $t=\varepsilon \sqrt{k}$ :
$\Rightarrow|B| e^{-C \varepsilon^{2} k}<1$
- $\Rightarrow k>C \varepsilon^{-2} \ln (|B|)$


## Apply to vector differences

- Let $A \subset \mathbb{R}^{m},|A|=n$
- $\forall x, y \in A$ we have

$$
\|T x-T y\|^{2}=\|T(x-y)\|^{2}=\|x-y\|^{2}\left\|T \frac{x-y}{\|x-y\|}\right\|^{2}=\|x-y\|^{2}\|T u\|^{2}
$$

where $\|u\|_{2}=1$

- $\mathbb{E}\left(\|T u\|^{2}\right)=\|u\|=1 \Rightarrow \mathbb{E}\left(\|T x-T y\|^{2}\right)=\|x-y\|^{2}$
- Let $B=\left\{\left.\frac{x-y}{\|x-y\|} \right\rvert\, x, y \in A\right\}$
$|B|=O\left(n^{2}\right) \Rightarrow k=C \varepsilon^{-2} \ln (n)$ for some constant $C$
- By concentration of measure on $T \overline{\mathcal{A}}^{m}, \exists \varepsilon \in(0,1)$ s.t.

$$
\begin{equation*}
(1-\varepsilon)\|x-y\|^{2} \leq\|T x-T y\|^{2} \leq(1+\varepsilon)\|x-y\|^{2} \tag{*}
\end{equation*}
$$

holds with positive probability

- Probabilistic method: $\exists T$ such that (*) holds
$\Rightarrow$ JLL follows


## Randomized algorithm

- Distortion has low probability [Gupta 02]:

$$
\begin{array}{ll}
\forall x, y \in A & \mathbf{P}(\|T x-T y\| \leq(1-\varepsilon)\|x-y\|) \\
\forall x, y \in A & \mathbf{P}(\|T x-T y\| \geq(1+\varepsilon)\|x-y\|) \\
\leq 1 / n^{2}
\end{array}
$$

- Probability $\exists$ pair $x, y \in A$ distorting Euclidean distance: union bound over $\binom{n}{2}$ pairs

$$
\begin{aligned}
\mathbf{P}(\neg(A \text { and } T A \text { have almost the same shape })) & \leq\binom{ n}{2} \frac{2}{n^{2}}=1-\frac{1}{n} \\
\mathbf{P}(A \text { and } T A \text { have almost the same shape }) & \geq 1 / n
\end{aligned}
$$

- Algorithm:
- $\mathbf{P}(\exists x, y \in A$ with large JLL discrepancy $) \leq 1-1 / n$
- Consider $t>1$ independent samplings of random RP $T$
- Probability that all have large discrepancy: $\leq(1-1 / n)^{t}$
- Choose $t$ so at least one $T$ will be good with prob. $\geq 0.99$ : $(1-1 / n)^{t} \leq 1-0.99=0.01$ yields $t \geq \ln (0.01) / \ln (1-1 / n)$ if $n=100$, get $t \geq 459$


## Subsection 2

## Projecting LP feasibility

## Pure feasibility LP: easy cases

Thm.
$T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ a RP , and $b, A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}$. For any given vector $x \in X$, we have:
(i) If $b=\sum_{i=1}^{n} x_{i} A_{i}$ then $T b=\sum_{i=1}^{n} x_{i} T A_{i}$
by linearity of $T$
(ii) If $b \neq \sum_{i=1}^{n} x_{i} A_{i}$ then $\mathbf{P}\left(T b \neq \sum_{i=1}^{n} x_{i} T A_{i}\right) \geq 1-2 e^{-\mathcal{C} k}$
by JLL applied to $\left\|b-\sum_{i} x_{i} A_{i}\right\|$
(iii) If $b \neq \sum_{i=1}^{n} y_{i} A_{i}$ for all $y \in X \subseteq \mathbb{R}^{n}$, where $|X|$ is finite, then

$$
\mathbf{P}\left(\forall y \in X T b \neq \sum_{i=1}^{n} y_{i} T A_{i}\right) \geq 1-2|X| e^{-\mathcal{C} k}
$$

for some constant $\mathcal{C}>0$ (independent of $n, k$ )
by union bound

## Separating hyperplanes

When $|X|$ is large, project separating hyperplanes instead

- Convex $C \subseteq \mathbb{R}^{m}, x \notin C$ : then $\exists$ hyperplane $c$ separating $x$ from $C$
- In particular, true if $C=\operatorname{cone}\left(A_{1}, \ldots, A_{n}\right)$ for $A \subseteq \mathbb{R}^{m}$
- Can show $x \in C \Leftrightarrow T x \in T C$ with high probability
- As above, if $x \in C$ then $T x \in T C$ by linearity of $T$ Difficult part is proving the converse
- Can also project point-to-cone distances


## Projection of separating hyperplanes

Thm.
Given $c, b, A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}$ of unit norm s.t. $b \notin \operatorname{cone}\left\{A_{1}, \ldots, A_{n}\right\}$ pointed, $\varepsilon>0$, $c \in \mathbb{R}^{m}$ s.t. $c^{\top} b<-\varepsilon, c^{\top} A_{i} \geq \varepsilon(i \leq n)$, and $T$ a RP:

$$
\mathbf{P}\left[T b \notin \operatorname{cone}\left\{T A_{1}, \ldots, T A_{n}\right\}\right] \geq 1-4(n+1) e^{-\mathcal{C}\left(\varepsilon^{2}-\varepsilon^{3}\right) k}
$$

for some constant $\mathcal{C}$.

## Proof

Let $\mathscr{A}$ be the event that $T$ approximately preserves $\|c-\chi\|^{2}$ and $\|c+\chi\|^{2}$ for all $\chi \in\left\{b, A_{1}, \ldots, A_{n}\right\}$. Since $\mathscr{A}$ consists of $2(n+1)$ events, by the JLL ("squared variant") and the union bound, we get

$$
\mathbf{P}(\mathscr{A}) \geq 1-4(n+1) e^{-\mathcal{C}\left(\varepsilon^{2}-\varepsilon^{3}\right) k}
$$

Now consider $\chi=b$

$$
\begin{aligned}
\langle T c, T b\rangle & =\frac{1}{4}\left(\|T(c+b)\|^{2}-\|T(c-b)\|^{2}\right) \\
\text { by JLL } & \leq \frac{1}{4}\left(\|c+b\|^{2}-\|c-b\|^{2}\right)+\frac{\varepsilon}{4}\left(\|c+b\|^{2}+\|c-b\|^{2}\right) \\
& =c^{\top} b+\varepsilon<0
\end{aligned}
$$

and similarly $\left\langle T c, T A_{i}\right\rangle \geq 0$
[Vu et al., Math. OR, 2018]

## The feasibility projection theorem

Thm.
Given $\delta>0, \exists$ sufficiently large $m \leq n$ such that: for any LFP input $A, b$ where $A$ is $m \times n$ we can sample a random $k \times m$ matrix $T$ with $k \ll m$ and
$\mathbf{P}$ (orig. LFP feasible $\Longleftrightarrow$ proj. LFP feasible) $\geq 1-\delta$

Subsection 3

## Projecting LP optimality

## Notation

- $P \equiv \min \{c x \mid A x=b \wedge x \geq 0\}$ (original problem)
- $T P \equiv \min \{c x \mid T A x=T b \wedge x \geq 0\}$ (projected problem)
- $v(P)=$ optimal objective function value of $P$
- $v(T P)=$ optimal objective function value of $T P$


## The optimality projection theorem

- Assume feas $(P)$ is bounded
- Assume all optima of $P$ satisfy $\sum_{j} x_{j} \leq \theta$ for some given $\theta>0$
(prevents unboundedness)
Thm.
Given $\gamma>0$,

$$
\begin{equation*}
v(P)-\gamma \leq v(T P) \leq v(P) \tag{*}
\end{equation*}
$$

holds with arbitrarily high probability (w.a.h.p.)
more precisely, $(*)$ holds with prob. $1-4 n e^{-\mathcal{C}\left(\varepsilon^{2}-\varepsilon^{3}\right) k}$ where $\varepsilon=\gamma /(2(\theta+1) \eta)$ and $\eta=O\left(\|y\|_{2}\right)$ where $y$ is a dual optimal solution of $P$ having minimum norm

## The easy part

Show $v(T P) \leq v(P)$ :

- Constraints of $P: A x=b \wedge x \geq 0$
- Constraints of $T P: T A x=T b \wedge x \geq 0$
- $\Rightarrow$ constraints of $T P$ are lin. comb. of constraints of $P$
- $\Rightarrow$ any solution of $P$ is feasible in $T P$
(btw, the converse holds almost never)
- $P$ and TP have the same objective function
- $\Rightarrow T P$ is a relaxation of $P \Rightarrow v(T P) \leq v(P)$


## The hard part (sketch)

- Eq. (12) equivalent to $P$ for $\gamma=0$

$$
\left.\begin{array}{rl}
c x & \leq v(P)-\gamma  \tag{12}\\
A x & =b \\
x & \geq 0
\end{array}\right\}
$$

Note: for $\gamma>0$, Eq. (12) is infeasible

- By feasibility projection theorem,

$$
\left.\begin{array}{rl}
c x & \leq v(P)-\gamma \\
T A x & =T b \\
x & \geq 0
\end{array}\right\}
$$

is infeasible w.a.h.p. for $\gamma>0$

- Re-state: $c x<v(P)-\gamma \wedge T A x=T b \wedge x \geq 0$ infeasible w.a.h.p.
- $\Rightarrow c x \geq v(P)-\gamma$ holds w.a.h.p. for $x \in$ feas $(T P)$
- $\Rightarrow v(P)-\gamma \leq v(T P)$


## Subsection 4

## Solution retrieval

## Projected solutions are infeasible in $P$

- $A x=b \Rightarrow T A x=T b$ by linearity
- However,

Thm.
For $x \geq 0$ s.t. $T A x=T b, A x=b$ with probability zero
if not, an $x$ belonging to $(n-k)$-dim. subspace would belong to an ( $n-m$ )-dim. subspace (with $k \ll m$ ) with positive probability

- Can't get solution for original LFP using projected LFP!


## Solution retrieval by duality

- Primal $\min \left\{c^{\top} x \mid A x=b \wedge x \geq 0\right\} \Rightarrow$ dual $\max \left\{b^{\top} y \mid A^{\top} y \leq c\right\}$
- Let $x^{\prime}=\operatorname{sol}(T P)$ and $y^{\prime}=\operatorname{sol}(\operatorname{dual}(T P))$
- $\Rightarrow(T A)^{\top} y^{\prime}=\left(A^{\top} T^{\top}\right) y^{\prime}=A^{\top}\left(T^{\top} y^{\prime}\right) \leq c$
- $\Rightarrow T^{\top} y^{\prime}$ is a solution of $\operatorname{dual}(P)$
- $\Rightarrow$ we can compute an optimal basis $J$ for $P$
- Solve $A_{J} x_{J}=b$, get $x_{J}$, obtain a solution $x^{*}$ of $P$
- Won't work in practice: errors in computing $J$


## Solution retrieval by projected basis

- H: optimal basis of TP we can trust that - given by solver
- $|H|=k \Rightarrow A_{H}$ is $m \times k$ (tall and slim)
- Pseudoinverse: solve $k \times k$ system $A_{H}^{\top} A_{H} x_{H}=A_{H}^{\top} b$ $\Rightarrow x_{H}=\left(A_{H}^{\top} A_{H}\right)^{-1} A_{H}^{\top} b$
- let $x=\left(x_{H}, 0\right)$
- Can prove small feasibility error wahp
- ISSUE: may be slightly infeasible
empirically: $x \not \geq 0$ but $x^{-}=\min (0, x) \rightarrow 0$ as $k \rightarrow \infty$
Project idea 5: Test the output of duality and projected basis retrieval methods on a set of 50 random large feasible standard-form LPs: you should find that the duality method is worse than the projected basis method. Formulate a reasoned hypothesis about the reason why this happens


## Projected LP duals

- The dual of $\mathrm{P} \equiv \min \{c x \mid A x=b \wedge x \geq 0\}$ is $\mathrm{D} \equiv \max \{y b \mid y A \leq c\}$
- A projected dual on $y \in \mathbb{R}^{m}$ can be derived as follows: $\max \left\{\left(y T^{\top}\right) T b \mid\left(y T^{\top}\right) T A \leq c\right\}$
- Replacing $u=y T^{\top} \in \mathbb{R}^{k}$, we obtain $T \mathrm{D} \equiv \max \{u \bar{b} \mid u \bar{A} \leq c\}$ where $\bar{b}=T b, \bar{A}=T A$
- Theory [D'Ambrosio et al. MPB 2020]:
- if original dual is feasible, projected dual is feasible
- approximation guarantees on projected dual objective function
- retrieval: if $\bar{u} \in \arg \operatorname{opt}(T \mathrm{D})$, let $\tilde{y}=\bar{u} T, \tilde{y}$ is feasible in $D$

Project idea 6: Develop an algorithm for finding a candidate solution $x^{\prime}$ of P from $\tilde{y}$. Sample 50 random large standard form LP instances, solve P, TP, TD for each instance. Collect soln. $x^{*}$ from P , $\tilde{x}$ from $T \mathrm{P}, x^{\prime}$ from $T \mathrm{D}$, then compute objective function value and feasibility error w.r.t. P of $x^{*}, \tilde{x}, x^{\prime}$. Plot all this data in function of the number of rows of $A$ and $\varepsilon$

## Subsection 5

## Application to quantile regression

## Conditional random variables

- random variable $B$ conditional on $A_{1}, \ldots, A_{p}$
- assume $B$ depends linearly on $\left\{A_{j} \mid j \leq p\right\}$
- want to find $x_{1}, \ldots, x_{n} \in \mathbb{R}$ s.t.

$$
B=\sum_{j \leq p} x_{j} A_{j}
$$

- use samples $b, a_{1}, \ldots, a_{p} \in \mathbb{R}^{m}$ to find estimates
- $a^{i}=$ row, $a_{j}=$ column


## Sample statistics

- expectation:

$$
\hat{\mu}=\underset{\mu \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left(b_{i}-\mu\right)^{2}
$$

- conditional expectation (linear regression):

$$
\hat{\nu}=\underset{\nu \in \mathbb{R}^{p}}{\arg \min } \sum_{i \leq m}\left(b_{i}-\nu a^{i}\right)^{2}
$$

- sample median:

$$
\begin{aligned}
\hat{\xi} & =\underset{\xi \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left|b_{i}-\xi\right| \\
& =\underset{\xi \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left(\frac{1}{2} \max \left(b_{i}-\xi, 0\right)-\frac{1}{2} \min \left(b_{i}-\xi, 0\right)\right)
\end{aligned}
$$

- conditional sample median: similarly


## Quantile regression

- sample $\tau$-quantile:

$$
\hat{\xi}=\underset{\xi \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left(\tau \max \left(b_{i}-\xi, 0\right)-(1-\tau) \min \left(b_{i}-\xi, 0\right)\right)
$$

- conditional sample $\tau$-quantile (quantile regression):

$$
\hat{\beta}=\underset{\beta \in \mathbb{R}^{p}}{\arg \min } \sum_{i \leq m}\left(\tau \max \left(b_{i}-\beta a^{i}, 0\right)-(1-\tau) \min \left(b_{i}-\beta a^{i}, 0\right)\right)
$$

## Linear Programming formulation

Let $A=\left(a_{j} \mid j \leq n\right)$; then

$$
\left.\left.\hat{\beta}=\arg \min \begin{array}{r}
\tau u^{+}+(1-\tau) u^{-} \\
\\
\end{array} \begin{array}{r} 
\\
A\left(\beta^{+}-\beta^{-}\right)+u^{+}-u^{-}
\end{array}\right\} b \begin{array}{l}
\beta, u \geq 0
\end{array}\right\}
$$

- parameters: $A$ is $m \times p, b \in \mathbb{R}^{m}, \tau \in \mathbb{R}$
- decision variables: $\beta^{+}, \beta^{-} \in \mathbb{R}^{p}, u^{+}, u^{-} \in \mathbb{R}^{m}$
- LP constraint matrix is $m \times(2 p+2 m)$ density: $p /(p+m)$ - can be high

Project idea 7: Test the application of RPs on at 50 large random MultiCommodity Flow (MCF) problems. Plot the ratio of projected to original objective, retrieved to original objective, and infeasibility errors in function of the number of rows of the equality system $A x=b$ and $\varepsilon$. Is MCF a good application testbed for RP?

## Large datasets

- Russia Longitudinal Monitoring Survey hh1995f
- $m=3783, p=855$
- $A=\operatorname{hf} 1995 \mathrm{f}, b=\log \operatorname{avg}(A)$
- $18.5 \%$ dense
- poorly scaled data, CPLEX yields infeasible (!!!) after around 70s CPU
- quantreg in R fails
- 14596 RGB photos on my HD, scaled to $90 \times 90$ pixels
- $m=14596, p=24300$
- each row of $A$ is an image vector, $b=\sum A$
- $62.4 \%$ dense
- CPLEX killed by OS after $\approx 30 \mathrm{~min}$ (presumably for lack of RAM) on 16GB
- could not load dataset in R


## Electricity prices

- Every hour over 365 days in 2015 (8760 rows)
- From 22 countries (columns) from the European zone

|  | orig | proj |
| :---: | :---: | :---: |
| 1 | $5.82 \mathrm{e}-01$ | $5.69 \mathrm{e}-01$ |
| 2 | $9.46 \mathrm{e}-02$ | 0 |
| 3 | 0 | 0 |
| 4 | $1.06-01$ | $1.18 \mathrm{e}-01$ |
| 5 | $2.73 \mathrm{e}-04$ | $6.92 \mathrm{e}-05$ |
| 6 | $-4.81 \mathrm{e}-06$ | $-2.07 \mathrm{e}-05$ |
| 7 | $1.32 \mathrm{e}-01$ | $1.36 \mathrm{e}-01$ |
| 8 | 0 | 0 |
| 9 | 0 | 0 |
| 10 | 0 | 0 |
| 11 | $-3.46 \mathrm{e}-08$ | $-2.45 \mathrm{e}-05$ |
| 12 | 0 | 0 |
| 13 | $5.66 \mathrm{e}-02$ | $5.49 \mathrm{e}-02$ |
| 14 | $-2.50 \mathrm{e}-04$ | $2.91 \mathrm{e}-03$ |
| 15 | $2.86 \mathrm{e}-02$ | $2.81 \mathrm{e}-02$ |
| 16 | 0 | 0 |
| 17 | 0 | 0 |
| 18 | 0 | $9.35 \mathrm{e}-02$ |
| 19 | 0 | 0 |
| 20 | $2.23 \mathrm{e}-09$ | 0 |
| 21 | 0 | $-7.99 \mathrm{e}-06$ |

- Permutation $(18,2)(21,20)$ applied to proj gives same nonzero pattern and reduces $\ell_{2}$ error from 0.13 to 0.01
- For every proj solution I found I could always find a permutation with this property!!
- ...On closer inspection, many columns reported equal data
- Small numerical error
- Approximate solutions respect Nonzero pattern
- LP too small for approximation to have an impact on CPU time


## Outline

Introduction
MP language
Solvers
MP systematics
Some applications
Decidability
Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness
MP solvability
Efficiency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations
Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap revisited

Summary
Random projections in LP
Random projection theory
Projecting LP feasibility
Projecting LP optimality
Solution retrieval
Application to quantile regression

## Sparsity and $\ell_{1}$ minimization

Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again

## Subsection 1

Motivation

## Coding problem for costly channels

- Task:
send long sparse vector $y \in \mathbb{R}^{n}$ on costly channel

1. construct $m \times n$ encoding matrix $A$ with $m \leq n$ both parties know $A$
2. encode $b=A y \in \mathbb{R}^{m}$
3. send $b$

- Decode by finding sparsest $x$ s.t. $A x=b$ can we expect $x \approx y$, i.e. small $\|x-y\|$ ?
- Summary:

1. given long sparse vector $y$
2. shorten it to $b$, send $b$
3. upon receiveing $b$, recover long sparse vector $y$

## Coding problem for noisy channels

- Task: send vector $w \in \mathbb{R}^{d}$ on a noisy channel
- Encoding: $n \times d$ matrix $Q$ with $n>d$, send $z=Q w \in \mathbb{R}^{n}$ both parties know $Q$
- Error prob. e: en components of $z$ sent wrong
- Receive (wrong) vector $\bar{z}=z+x$ where $x$ is sparse
- Can we recover $z$ ?

- Recover $w^{\prime}=\left(Q^{\top} Q\right)^{-1} Q^{\top} z^{\prime}$ (pseudoinverse)

What is the likelihood of getting small $\left\|w-w^{\prime}\right\|$ ?

> Summary: 1. given short dense vector $w, 2$. lengthen it to $z$ for redundancy; 3. send $z$ and receive $\bar{z}=z+x ; \quad 4$. find long sparse error vector $x$ using short vector $b=A \bar{z} ; \quad 5$. recover $z^{\prime}$ then $w^{\prime}$

## What these tasks have in common

- Given matrix $A$ with fewer rows than columns
- Given vector $b$
- Find sparsest solution $x^{*}$ of $A x=b$
- Note: $A x=b$ feasible iff $\operatorname{rank}(A)=\operatorname{rank}(A \mid b)$

Subsection 2
Basis pursuit

## Sparsest solution of a linear system

- Problem $P^{0}(A, b) \equiv \min \left\{\|x\|_{0} \mid A x=b\right\}$ is NP-hard Reduction from Exact Cover By 3-Sets [Garey\&Johnson 1979, A6[MP5]] MILP: $\min \left\{\sum_{j} y_{j} \mid \forall j-M y_{j} \leq x_{j} \leq M y_{j} \wedge A x=b \wedge y \in\{0,1\}^{n}\right\}$
- $P^{1}(A, b) \equiv \min \left\{\|x\|_{1} \mid A x=b\right\}$ is a relaxation
- Reformulate to LP:

$$
\left.\begin{array}{rrll}
\min & \sum_{j \leq n} & s_{j} & \\
\forall j \leq n & -s_{j} \leq & x_{j} & \leq s_{j} \\
& A x & = & b
\end{array}\right\}
$$

- Empirical observation: $P^{1}$ often finds optimum of $P^{0}$ Too often for this to be a coincidence
- Theoretical justification by Candès, Tao, Donoho Mathematics of sparsity, Compressed sensing, Compressive sampling
- Note: we always assume $b \neq 0$ in $P^{0}(A, b)$ and $P^{1}(A, b)$


## Graphical intuition 1



- Wouldn't work with $\ell_{2}, \ell_{\infty}$ norms

$$
A x=b \text { flat at poles - "zero probability of sparse solution" }
$$

[^0]
## Graphical intuition 2



$$
p=1
$$


$p=2$

$p=\infty$

$p=\frac{1}{2}$

- $\hat{x}$ such that $A \hat{x}=b$ approximates $x$ in $\ell_{p}$ norms
- $p=1$ only convex case zeroing some components


## Phase transition in sparse recovery

For $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}:$ consider $P^{1}(A, A x)$ and its opt. $x^{*}$

$s$ : Number of nonzeros in $x$

$s$ : Number of nonzeros in $\boldsymbol{x}$

Pixel grayscale: avg density of $x^{*}$ over many samplings of $A$; white $=$ sparse, black $=$ dense
$\operatorname{Prob}\left(x^{*}\right.$ has sparsity $\left.s\right)$ undergoes a phase transition For a given $n$, if $m$ is too small $P^{1}$ fails to find the optimum of $P^{0}$

## Subsection 3

## Theoretical results

## Main theorem and proof structure

Defn. (i) Given a small $\epsilon \geq 0$, a scalar $\alpha$ is near-zero if $|\alpha|<\epsilon$; (ii) a vector is $s$-sparse if it has $\leq s$ nonzero components

- Thm. Let:

1. $A \sim \mathrm{~N}(0,1)^{m n}$ with $m<n$ but $m$ "not too small"
2. $\hat{x} \in \mathbb{R}^{n}$ have $s$ nonzeros and $n-s$ zeros or near-zeros
3. $\bar{x}$ be the best approx of $\hat{x}$ with exactly $s$ nonzeros
4. $\hat{b}=A \hat{x}$ and $x^{*}$ be the unique $s$-sparse min of $P^{1}(A, \hat{b})$
then $x^{*}$ is a "good approximation" of $\bar{x} \quad(\star)$

- Proof sketch:
- Prop. $A$ has the null space property (NSP) $\Rightarrow(\star)$
- Prop. $A$ has restricted isometry prop. (RIP) $\Rightarrow A$ has NSP
- Prop. $A \sim \mathrm{~N}(0,1)^{m n} \Rightarrow A$ has RIP
- adapt to near-zeros by modifying NSP


## Some notation

Defn. (i) For any $n \in \mathbb{N}$ define $[n]=\{1, \ldots, n\}$;
(ii) for $z \in \mathbb{R}^{n}$ and $S \subseteq[n]$ let $z[S]=\left(\left(z_{j}\right.\right.$ iff $\left.j \in S\right)$ xor $\left.0 \mid j \leq n\right)$ be the restriction of $z$ to $S$

- Consider $A x=b$ where $A$ is $m \times n$ with $m<n$ $\Rightarrow \quad$ if feasible it has uncountably many solutions
- Let $x \in \mathbb{R}^{n}$ s.t. $A x=b, \mathrm{~N}_{A}=\operatorname{null}(A), \mathrm{N}_{A}^{0}=\mathrm{N}_{A} \backslash\{0\}$ $\Rightarrow \forall y \in \mathrm{~N}_{A}$ we have $A(x+y)=A x+A y=A x+0=b$
- For $S \subseteq[n]$ let $\bar{S}=[n] \backslash S$
- Note that $\forall z \in \mathbb{R}^{n}$ we have $z=z[S]+z[\bar{S}]$


## Null space property

Defn. For $x \in \mathbb{R}^{n}$ let $\operatorname{supp}(x)=\left\{j \leq n \mid x_{j} \neq 0\right\}$

- Defn. $\operatorname{NSP}_{s}(A) \equiv$

$$
\begin{array}{|l}
\hline \forall S \subseteq[n]\left(|S|=s \rightarrow \forall y \in \mathrm{~N}_{A}^{0} \quad\|y[S]\|_{1}<\|y[\bar{S}]\|_{1}\right) \\
A \text { has the null space property of order } s
\end{array}
$$

- $A$ has the NSP of order $s$ iff each $s$-sparse solution of $A x=b$ is the unique optimun of $P^{1}(A, b)$
- Prop. $\forall x^{*} \in \mathbb{R}^{n}$ with $\left|\operatorname{supp}\left(x^{*}\right)\right| \leq s$ and $b=A x^{*}$

$$
\left[x^{*} \text { unique min of } P^{1}(A, b)\right] \quad \Leftrightarrow \quad \operatorname{NSP}_{s}(A)
$$

the "NSP proposition"

## Strength of $\mathrm{NSP}_{t}$ as $t$ grows

NSP Prop. states $\left|\operatorname{supp}\left(x^{*}\right)\right| \leq s$ but $\operatorname{NSP}_{s}(A)$ assumes $|S|=s:$ why?

## Lemma

$\forall A \in \mathbb{R}^{m \times n}, t<s \leq n \quad \operatorname{NSP}_{s}(A) \Rightarrow \operatorname{NSP}_{t}(A)$

## Proof

$\operatorname{NSP}_{s}(A) \equiv \forall S \subseteq[n]\left(|S|=s \rightarrow \forall y \in \mathrm{~N}_{A}^{0}\|y[S]\|_{1}<\|y[\bar{S}]\|_{1}\right)$, hence: given $T, U \subseteq[n]$ with $T, U$ nontrivial disjoint, $|T|=t$ and $|T \cup U|=s$,

- $\forall y \in \mathrm{~N}_{A}^{0}\|y[T \cup U]\|_{1}<\|y[\overline{T \cup U}]\|_{1}=\|y[[n] \backslash(T \cup U)]\|_{1} \Rightarrow$
$(\dagger) \forall y \in \mathrm{~N}_{A}^{0}\|y[T]\|_{1}+\|y[U]\|_{1}<\|y\|_{1}-\|y[T]\|_{1}-\|y[U]\|_{1} \Rightarrow$
(军) $\forall y \in \mathrm{~N}_{A}^{0}\|y[T]\|_{1}<\|y[\bar{T}]\|_{1}-2\|y[U]\|_{1}$
- whence $\forall T \subseteq[n]\left(|T|=t \rightarrow \forall y \in \mathrm{~N}_{A}^{0}\|y[T]\|_{1}<\|y[\bar{T}]\|_{1}\right)$ since $\|y[U]\|_{1}>0$, and so $\operatorname{NSP}_{t}(A)$
$(\dagger) \quad\|y[T \cup U]\|_{1}=\sum_{j \in T \cup U}\left|y_{j}\right|=\sum_{j \in T}\left|y_{j}\right|+\sum_{j \in U}\left|y_{j}\right|=\|y[T]\|_{1}+\|y[U]\|_{1}$ $\|y[[n] \backslash V]\|_{1}=\sum_{j \in[n] \backslash V}\left|y_{j}\right|=\sum_{j \in[n]}\left|y_{j}\right|-\sum_{j \in V}\left|y_{j}\right|=\|y\|_{1}-\|y[V]\|_{1}$
( $\ddagger) \quad\|y\|_{1}-\|y[T]\|_{1}=\sum_{j \leq n}\left|y_{j}\right|-\sum_{j \in T}\left|y_{j}\right|=\sum_{j \notin T}\left|y_{j}\right|=\sum_{j \in \bar{T}}\left|y_{j}\right|=\left\|y_{j}[\bar{T}]\right\|_{1}$


## Proof of the NSP proposition $(\Rightarrow)$

$\forall x\left(x\right.$ uniq min of $\left.P^{1}(A, A x) \wedge|\operatorname{supp}(x)|=s\right) \Rightarrow \operatorname{NSP}_{s}(A)$

- Claim $\forall y \in \mathrm{~N}_{A}^{0} \exists S \subseteq[n]$ with $|S|=s$ such that $A y[S] \neq 0$

Pf. $|\operatorname{supp}(y[S])|=|S|=s$ by definition
$\Rightarrow$ by hypothesis $y[S]$ unique $\min$ of $P^{1}(A, A y[S])$
$\Rightarrow$ by assumption (rhs vector $\neq 0$ ) $A y[S] \neq 0$

- $\forall y \in \mathbb{R}^{n}$ and $S \subseteq[n]$ we have $y=y[S]+y[\bar{S}]$
- $\Rightarrow$ for any $y \in \mathrm{~N}_{A}^{0}$ we have $A y=A y[S]+A y[\bar{S}]=0$ $\Rightarrow A(-y[\bar{S}])=A y[S] \neq 0$ by claim
- Moreover, $-y[\bar{S}]$ is feasible in $P^{1}(A, A y[S])$
- $y[S] \neq-y[\bar{S}]$ othw by $y=y[S]+y[\bar{S}]$ both would be scalings of $y$ and hence both in $\mathrm{N}_{A}^{0}$, which cannot happen as $A y[S] \neq 0$
- $\|y[S]\|_{1}$ uniq min value and $-y[\bar{S}]$ feas in $P^{1}(A, A y[S]) \Rightarrow$ $\|-y[\bar{S}]\|_{1}=\|y[\bar{S}]\|_{1}>\|y[S]\|_{1} \Rightarrow \operatorname{NSP}_{s}(A)$


## Proof of the NSP proposition $(\Leftarrow)$

$\operatorname{NSP}_{s}(A) \Rightarrow \forall x^{*}\left(x^{*}\right.$ uniq min $\left.P^{1}\left(A, A x^{*}\right) \wedge\left|\operatorname{supp}\left(x^{*}\right)\right|=s\right)$

- Let $x^{*} \in \mathbb{R}^{n}, b=A x^{*}, S=\operatorname{supp}\left(x^{*}\right)$ and $|S|=s$
- Let $\bar{x}$ soln. of $A x=b$, then $\bar{x}=x^{*}-y$ with $y \in \mathbf{N}_{A}^{0}$ [add and subtract same qty] $\left\|x^{*}\right\|_{1}=\left\|\left(x^{*}-\bar{x}[S]\right)+\bar{x}[S]\right\|_{1}$

$$
\begin{aligned}
\text { [by triangle inequality] } & \leq\left\|x^{*}-\bar{x}[S]\right\|_{1}+\|\bar{x}[S]\|_{1} \\
{\left[S=\operatorname{supp}\left(x^{*}\right) \Rightarrow x^{*}=x^{*}[S]\right] } & =\left\|x^{*}[S]-\bar{x}[S]\right\|_{1}+\|\bar{x}[S]\|_{1} \\
{\left[\text { since } x^{*}-\bar{x}=y\right] } & =\|y[S]\|_{1}+\|\bar{x}[S]\|_{1} \\
{\left[\text { since } y \in \mathcal{N}_{A}^{0} \text { and } \operatorname{NSP}_{s}(A) \text { holds }\right] } & <\|y[\bar{S}]\|_{1}+\|\bar{x}[S]\|_{1} \\
{\left[\text { since } y=x^{*}-\bar{x} \text { and } x^{*}[\bar{S}]=0\right] } & =\|-\bar{x}[\bar{S}]\|_{1}+\|\bar{x}[S]\|_{1} \\
{\left[\text { since }\|-z\|_{1}=\|z\|_{1} \wedge z[S]+z[\bar{S}]=z\right] } & =\|\bar{x}\|_{1} \\
\Rightarrow\left\|x^{*}\right\|_{1} & <\|\bar{x}\|_{1}
\end{aligned}
$$

so $x^{*}$ is a min of $P^{1}\left(A, A x^{*}\right) ; \ell_{1}$ norm strictly convex $\Rightarrow x^{*}$ uniq min

## A variant of the null space property

- Motivation: "almost sparse solutions" given $\hat{x}$ with $|\operatorname{supp}(\hat{x})|>s$ and $b=A \hat{x}$ let $S=\underset{T \subseteq[n]:|T|=s}{\arg \max }\|\hat{x}[T]\|_{1}$ and $\bar{x}=\hat{x}[S](\Rightarrow|\operatorname{supp}(\bar{x})|=s)$
- Assume $\|\hat{x}[\bar{S}]\|_{1} \ll\|\hat{x}[S]\|_{1}$ and $\epsilon=\max _{j \in \bar{S}}\left|\hat{x}_{j}\right|$ is small i.e. $\hat{x}$ "almost" has support size s (up to $\epsilon$ )
- Show min $x^{*}$ of $P^{1}(A, A \hat{x})$ is $s$-sparse and close to $\hat{x}$
- Generalize NSP with $\rho \in(0,1): \operatorname{NSP}_{s}^{\rho}(A) \Leftrightarrow$
$\forall S \subseteq[n]\left(|S|=s \rightarrow \forall y \in \mathbf{N}_{A}^{0}\|y[S]\|_{1} \leq \rho\|y[\bar{S}]\|_{1}\right)$
- Prop. $\operatorname{NSP}_{s}^{\rho}(A) \Rightarrow$ if $x^{*}$ min of $P^{1}(A, A \hat{x})$ then

$$
\left\|x^{*}-\hat{x}\right\|_{1} \leq 2 \frac{1+\rho}{1-\rho}\|\bar{x}-\hat{x}\|_{1} \leq(n-s) \epsilon
$$

i.e. $x^{*}$ is a good approximation of $\bar{x}$

- Moreover, if $|\operatorname{supp}(\hat{x})|=s$ then $x^{*}=\hat{x}=\bar{x}$


## Proof of the $\mathrm{NSP}_{s}^{\rho}$ proposition

- $x^{*}$ feasible in $A x=A \hat{x}$ so $\exists!y \in \mathrm{~N}_{A}\left(x^{*}=\hat{x}+y\right)$
- $\Rightarrow\left\|x^{*}\right\|_{1}=\|\hat{x}+y\|_{1} \leq\|\hat{x}\|_{1}$ since $x^{*} \min$ of $P^{1}(A, A \hat{x})$
- $\|\hat{x}+y\|_{1}=\sum_{j \in S}\left|\hat{x}_{j}+y_{j}\right|+\sum_{j \in \bar{S}}\left|\hat{x}_{j}+y_{j}\right|$
$\geq \sum_{j \in S}\left(\left|\hat{x}_{j}\right|-\left|y_{j}\right|\right)+\sum_{j \in \bar{S}}\left(\left|y_{j}\right|-\left|\hat{x}_{j}\right|\right)$ by triangle ineq
- $=\|\hat{x}[S]\|_{1}-\|y[S]\|_{1}+\|y[\bar{S}]\|_{1}-\|\hat{x}[\bar{S}]\|_{1} \quad$ (add and subtract $\|\hat{x}[\bar{S}]\|_{1} \Rightarrow$ )
$=\|\hat{x}\|_{1}+\|y[\bar{S}]\|_{1}-2\|\hat{x}[\bar{S}]\|_{1}-\|y[S]\|_{1} \quad($ since $\bar{x}=\hat{x}[S] \Rightarrow)$
$=\|x\|_{1}-2\|\hat{x}-\bar{x}\|_{1}+\|y[\bar{S}]\|_{1}-\|y[S]\|_{1}$
- Therefore $(*) \leq\|\hat{x}+y\|_{1} \leq\|\hat{x}\|_{1}$, whence
$\|\hat{x}\|_{1} \geq\|\hat{x}\|_{1}-2\|\hat{x}-\bar{x}\|_{1}+\|y[\bar{S}]\|_{1}-\|y[S]\|_{1} \quad\left(\right.$ cancel $\left.\|\hat{x}\|_{1} \Rightarrow\right)$
$2\|\hat{x}-\bar{x}\|_{1} \geq\|y[\bar{S}]\|_{1}-\|y[S]\|_{1}$
- By NSP ${ }_{s}^{\rho},-\|y[S]\|_{1} \geq-\rho\|y[\bar{S}]\|_{1}$, so
$2\|\hat{x}-\bar{x}\|_{1} \geq(1-\rho)\|y[\bar{S}]\|_{1}$ whence $\|y[\bar{S}]\|_{1} \leq \frac{2}{1-\rho}\|\hat{x}-\bar{x}\|_{1}$
- $x^{*}=\hat{x}+y \Rightarrow\left\|x^{*}-\hat{x}\right\|_{1}=\|y\|_{1}=\|y[S]\|_{1}+\|y[\bar{S}]\|_{1}$ by $\operatorname{NSP}_{s}^{\rho}\|y[S]\|_{1} \leq \rho\|y[\bar{S}]\|_{1}$ hence $\left\|x^{*}-\hat{x}\right\|_{1} \leq(1+\rho)\|y[\bar{S}]\|_{1}$ by $(\dagger)\left\|x^{*}-\hat{x}\right\|_{1} \leq 2 \frac{1+\rho}{1-\rho}\|\hat{x}-\bar{x}\|_{1}$
- Further, $\|\hat{x}-\bar{x}\|_{1}=\|\hat{x}-\hat{x}[S]\|_{1}=\|\hat{x}[\bar{S}]\| \leq|\bar{S}| \epsilon=(n-s) \epsilon$


## Restricted isometry property

- $A$ is an $m \times n$ matrix, $\delta \in(0,1), s \in \mathbb{N}$
- $\operatorname{RIP}_{s}^{\delta}(A) \quad \Leftrightarrow \quad \forall x \in \mathbb{R}^{n}$ s.t. $|\operatorname{supp}(x)|=s$ we have

$$
(1-\delta)\|x\|_{2}^{2} \quad \leq\|A x\|_{2}^{2} \quad \leq \quad(1+\delta)\|x\|_{2}^{2}
$$

- Prop. $\operatorname{RIP}_{2 s}^{\delta}(A) \wedge \rho=\frac{\sqrt{2} \delta}{1-\delta}<1 \quad \Rightarrow \quad \operatorname{NSP}_{s}^{\rho}(A)$ See Thm. 5.12 in [Damelin \& Miller 2012] for a proof
- It suffices that $\delta<\sqrt{2}-1 \approx 0.4142$


## RIP and $P^{0}(A, b)$

- Recall $P^{0}(A, b) \equiv \min \left\{\|x\|_{0} \mid A x=b\right\}$ is NP-hard find solution to $A x=b$ with smallest support size
- Thm. Let $\hat{x} \in \mathbb{R}^{n}$ with $|\operatorname{supp}(\hat{x})|=s, \delta<1, A$ a matrix s.t. $\operatorname{RIP}_{2 s}^{\delta}(A), x^{*}=\arg P^{0}(A, A \hat{x})$; then $x^{*}=\hat{x}$

Pf. Suppose false, let $y=x^{*}-\hat{x} \neq 0$; by defn of $x^{*}$ we have $\left\|x^{*}\right\|_{0} \leq\|\hat{x}\|_{0} \leq s$, hence $\|y\|_{0} \leq 2 s$; since $A$ has RIP get $\|A y\|_{2}^{2} \in(1 \pm \delta)\|y\|_{2}^{2}$, but $A y=A x^{*}-A \hat{x}=0$ while $y \neq 0$, and $\delta \in(0,1) \rightarrow 1 \pm \delta>0$, hence $0 \in(\alpha, \beta)$ where $\alpha, \beta>0$, contradiction
Thm. 23.6 [Shwartz \& Ben-David, 2014]

- Result of limited scope, since we don't know if $P^{0}(A, b)$ can be solved efficiently if $A$ has the RIP


## Sufficient eigenvalue conditions for RIP

- Recall $\operatorname{RIP}_{s}^{\delta}(A): \forall x$ with $S=\operatorname{supp}(x)$ and $|S|=s$

$$
(1-\delta)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2}
$$

- Let $A^{J}=\left(A^{j} \mid j \in J\right)$, where $A^{j}$ is the $j$-th col. of $A$
- $\|A x\|_{2}^{2}=\langle A x, A x\rangle=\left\langle A^{S} x[S], A^{S} x[S]\right\rangle=\left\langle B_{S} x[S], x[S]\right\rangle$
where $B_{S}=\left(A^{S}\right)^{\top} A^{S}$ is $s \times s$ and PSD, and consider $x[S]$ as a vector in $\mathbb{R}^{s}$
- $\Rightarrow 0 \leq \lambda_{\min }\left(B_{S}\right)\|x\|_{2}^{2} \leq\left\langle B_{S} x, x\right\rangle \leq \lambda_{\max }\left(B_{S}\right)\|x\|_{2}^{2}$
replace $B_{S}$ by its spectral decomp $P \Lambda P^{\top}$, note $\Lambda=\operatorname{diag}\left(\lambda_{\text {min }}, \ldots, \lambda_{\text {max }}\right)$
- Let $\lambda^{L}=\min _{|S|=s} \lambda_{\min }\left(B_{S}\right), \lambda^{U}=\max _{|S|=s} \lambda_{\max }\left(B_{S}\right)$
- $\Leftarrow \exists \delta>0$ s.t. $1-\delta \leq \lambda^{L} \leq \lambda^{U} \leq 1+\delta$
i.e. all eigenvalues of $B(S)$ close to 1 for all $S \subset[n]$ with $|S|=s$


## Construction of $A$ s.t. $\operatorname{RIP}_{s}^{\delta}(A)$

- Need $\lambda \approx 1$ for each eigenvalue $\lambda$ of $B_{S}$
- $\Rightarrow$ Need $\quad \forall S \subseteq N \quad|S|=s \rightarrow\left(A^{S}\right)^{\top} A^{S} \approx I_{s}$
- $\Rightarrow$ Need

$$
\begin{array}{r}
\forall i<j \leq n \quad\left(A^{i}\right)^{\top} A^{j} \quad \approx 0 \\
\forall i \leq n \quad\left(A^{i}\right)^{\top} A^{i}=\left\|A^{i}\right\|_{2}^{2} \quad \approx 1
\end{array}
$$

- Sufficient condition: $A$ sampled from $\mathbf{N}\left(0, \frac{1}{\sqrt{m}}\right)^{m n}$
- Difference with JLL

RIP holds for uncountably many vectors $x$ with $|\operatorname{supp}(x)|=s$
JLL holds for given sets of finitely many vectors with any support
Project idea 8: What other types of rectangular matrices $M$ have the property $M^{\top} M=I$ or $\approx I$ ? Can they be used to prove the main theorem? How do they work, computationally, compared with matrices sampled from normal distributions? Compare on at least 50 random instances of $P^{1}(A, b)$

## Isotropic vectors

1. Defn. Rnd vect $a \in \mathbb{R}^{m}$ is isotropic iff $\operatorname{cov}(a)=I_{m}$
remark: (a) $\operatorname{cov}(a)=\mathrm{E}\left(a a^{\top}\right)$; (b) if $a \sim \mathrm{~N}(0,1)^{m}$ then $a$ isotropic
2. If rnd vect $a$ isotropic, then $\forall x \in \mathbb{R}^{m} \mathrm{E}\left(\langle a, x\rangle^{2}\right)=\|x\|_{2}^{2}$

For two sq. symm. matrices $B, C$ we have $B=C$ iff $\forall x\left(x^{\top} B x=x^{\top} C x\right)$; hence $\mathrm{E}\left(\langle a, x\rangle^{2}\right)=x^{\top} \mathrm{E}\left(a a^{\top}\right) x=x^{\top} I_{m} x=\|x\|_{2}^{2}$
3. If rnd vect $a \in \mathbb{R}^{m}$ isotropic, then $\mathrm{E}\left(\|a\|_{2}^{2}\right)=m$
$\mathrm{E}\left(\|a\|_{2}^{2}\right)=\mathrm{E}\left(a^{\top} a\right)=\mathrm{E}\left(\operatorname{tr}\left(a^{\top} a\right)\right)=\mathrm{E}\left(\operatorname{tr}\left(a a^{\top}\right)\right)=\operatorname{tr}\left(\mathrm{E}\left(a a^{\top}\right)\right)=\operatorname{tr}\left(I_{m}\right)=m$
4. If rnd vect $a, c \in \mathbb{R}^{m}$ indep. isotropic, then $\mathrm{E}\left(\langle a, c\rangle^{2}\right)=m$

By conditional expectation $\mathrm{E}\left(\langle a, c\rangle^{2}\right)=\mathrm{E}_{c}\left(\mathrm{E}_{a}\left(\langle a, c\rangle^{2} \mid c\right)\right)$; by Item 2 inner expectation is $\|c\|_{2}^{2}$, by Item 3 outer is $m$
5. If $a \sim \mathrm{~N}(0,1)^{m},\|a\|_{2}=O(\sqrt{m})$ wahp
by Thm. 3.1.1 in [Vershynin, 2018]
6. Independent rnd vectors are almost orthogonal

Results above $\Rightarrow\|a\|_{2},\|c\|_{2},\langle a, c\rangle=O(\sqrt{m})$, normalize $a, c$ to $\bar{a}, \bar{c}$ to get $\langle\bar{a}, \bar{c}\rangle=O(1 / \sqrt{m}) \Rightarrow$ for $m$ large $\langle\bar{a}, \bar{c}\rangle \approx 0$

## Construction of $A$ s.t. $\operatorname{RIP}_{s}^{\delta}(A)$

- Thm. For $A \sim \mathbf{N}(0,1)^{m \times n}$ and $\delta \in(0,1) \exists C_{1}, C_{2}>0$ depending on $\delta$ s.t.

$$
\forall s<m\left(m \geq \frac{s \ln (n / s)}{C_{1}} \rightarrow \operatorname{Prob}\left(\operatorname{RIP}_{s}^{\delta}(A)\right) \geq 1-e^{-C_{2} m}\right)
$$

Pf. see Thm. 5.17 in [Damelin \& Miller, 2012]
Remark: extra $\sqrt{m}$ factor in $A$ comes from $\|\cdot\|_{2} \leq\|\cdot\|_{1} \leq \sqrt{m}\|\cdot\|_{2}$

- In practice:
- $\operatorname{Prob}\left(\operatorname{RIP}_{s}^{\delta}(A)\right)=0$ for $m$ too small w.r.t. $s$ fixed
- as $m$ increases $\operatorname{Prob}\left(\operatorname{RIP}_{s}^{\delta}(A)\right)>0$
- as $m$ increases even more $\operatorname{Prob}\left(\operatorname{RIP}_{s}^{\delta}(A)\right) \rightarrow 1$ wahp
- achieve logarithmic compression for large $n$ and fixed $s$
- $A \sim \mathrm{~N}(0,1)^{m n} \wedge m \geq 10 s \ln \frac{n}{s} \Rightarrow \operatorname{RIP}_{s}^{1 / 3}(A)$ wahp, Lem. 5.5.2 [Moitra 2018]
- works better than worst case bounds ensured by theory


## Some literature

1. Damelin \& Miller, The mathematics of signal processing, CUP, 2012
2. Vershynin, High-dimensional probability, CUP, 2018
3. Moitra, Algorithmic aspects of machine learning, CUP, 2018
4. Shwartz \& Ben-David, Understanding machine learning, CUP, 2014
5. Hand \& Voroninski, arxiv.org/pdf/1611.03935v1.pdf
6. Candès \& Tao
statweb.stanford.edu/~candes/papers/DecodingLP.pdf
7. Candès
statweb.stanford.edu/~candes/papers/ICM2014.pdf
8. Davenport et al., statweb.stanford.edu1/markad/publications/ddek-chapter1-2011.pdf
9. Lustig et al., people.eecs.berkeley.edu/~mlustig/CS/CSMRI.pdf and many more (look for "compressed sensing")

## Subsection 4

## Application to noisy channel encoding

## Noisy channel encoding procedure

Algorithm:

1. message: character string $\mu$
2. $w=$ string2bitlist $(\mu) \in\{0,1\}^{d}$
3. send $z=Q w$, receive $\bar{z}=z+\hat{x}$, let $b=A \bar{z}$
$\Delta=s / n=$ density of $\hat{x}, \quad Q$ is $n \times d$ full rank with $n>d$
4. $x^{*}=$ optimum of $P^{1}(A, b)$
5. $z^{*}=\bar{z}-x^{*}$
6. $w^{*}=\operatorname{cap}\left(\operatorname{round}\left(\left(Q^{\top} Q\right)^{-1} Q^{\top} z^{*}\right),[0,1]\right)$
$\operatorname{cap}(t,[\alpha, \beta])=(\alpha$ if $t<\alpha)$ xor ( $\beta$ if $t>\beta$ ) xor ( $t$ othw)
7. $\mu^{*}=\operatorname{bitlist2string}\left(w^{*}\right)$
8. evaluate $\mu_{\mathrm{err}}=\left\|\mu-\mu^{*}\right\|$

Parameter choice [Matousek]:

- noise $\Delta=0.08$
- redundancy $n=R d$, where $R=4$


## Finding orthogonal $A, Q$

- [Matousek, Gärtner 2007]:
- sample $A$ componentwise from $\mathrm{N}(0,1)$
- then "find $Q$ s.t. $Q A=0$ "
- Gaussian elim. on underdet. system $A Q=0$
- Faster:
- sample $n \times n$ matrix $M$ from uniform distr full rank with probability 1
- find eigenvector matrix of $M^{\top} M$ (orthonormal basis) random rotation of standard basis (used in original JLL proof)
- Concatenate $d$ eigenvectors to make $Q$ Concatenate $m=n-d$ eigenvectors to make $A$ $A Q=0$ by construction!


## Subsection 5

## Improvements

## LP size reduction

- Motivation
- Reduce CPU time spent on LP
- $R=4$ redundancy for $\Delta=0.08$ noise seems excessive
- Size of basis pursuit LP
- $A x=b$ is an $m \times n$ system where $m=n-d$
- If $n=R d \gg d, m$ "relatively close" to $n$
- Recall random projections for LP: use them!


## Computational results

| $d$ | $n$ | $\Delta$ | $\epsilon$ | $\alpha$ | $\mu_{\text {err }}^{\text {org }}$ | $\mu_{\text {err }}^{\text {prj }}$ | CPU ${ }^{\text {org }}$ | CPU ${ }^{\text {prj }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 80 | 320 | 0.08 | 0.20 | 0.02 | 0 | 0 | 1.05 | 0.56 |
| 128 | 512 |  |  |  | 0 | 0 | 2.72 | 1.10 |
| 216 | 864 |  |  |  | 0 | 0 | 8.83 | 2.12 |
| 248 | 992 |  |  |  | 0 | 0 | 12.53 | 2.53 |
| 320 | 1280 |  |  |  | 0 | 0 | 23.70 | 3.35 |
| 408 | 1632 |  |  |  | 0 | 0 | 43.80 | 4.75 |

- $d=|\mu|, n=4 d, \Delta=0.08, \epsilon=0.2$
- $\alpha=$ Achlioptas density
$\mathrm{P}\left(T_{i j}=-1\right)=\mathrm{P}\left(T_{i j}=1\right)=\frac{\alpha}{2}$
$\mathrm{P}\left(T_{i j}=0\right)=1-\alpha$
- $\mu_{\mathrm{err}}=$ number of different characters
- CPU: seconds of elapsed time

- 1 sampling of $A, Q, T$

Sentence: Conticuere omnes intentique ora tenebant, inde toro [...]

## Reducing redundancy in $n$

- How about taking $n=(1+\Delta) d$ ?
- $m=n-d \approx \Delta d$ is very small
- Makes $A x=b$ very short and fat
- Prevents compressed sensing from working correctly not enough constraints
- Would need both $m$ and $d$ to be $\approx n$ and $A Q=0$ : impossible
$\mathbb{R}^{n}$ too small to host $m+d \approx 2 n$ orthogonal vectors
- Relax to $A Q \approx 0$ ?


## Almost orthogonality by the JLL

## Aim at $A^{\top}, Q$ with $m+d \approx 2 n$ and $A Q \approx 0$

- JLL Corollary: $\exists O\left(e^{k}\right)$ approx orthog vectors in $\mathbb{R}^{k}$ Pf. Let $T$ be a $k \times p$ RP, use concentration of measure on $\|z\|_{2}^{2}$

$$
\operatorname{Prob}\left((1-\varepsilon)\|z\|_{2}^{2} \leq\|T z\|_{2}^{2} \leq(1+\varepsilon)\|z\|_{2}^{2}\right) \geq 1-2 e^{-\mathcal{C}\left(\varepsilon^{2}-\varepsilon^{3}\right) k}
$$

given $x, y \in \mathbb{R}^{p}$ apply to $x+y, x-y$ and union bound:

$$
\begin{aligned}
|\langle T x, T y\rangle-\langle x, y\rangle| & =\frac{1}{4}\left|\|T(x+y)\|^{2}-\|T(x-y)\|^{2}-\|x+y\|^{2}+\|x-y\|^{2}\right| \\
& \leq \frac{1}{4}\left|\|T(x+y)\|^{2}-\|x+y\|^{2}\right|+\frac{1}{4}\left|\|T(x-y)\|^{2}-\|x-y\|^{2}\right| \\
& \leq \frac{\varepsilon}{4}\left(\|x+y\|^{2}+\|x-y\|^{2}\right)=\frac{\varepsilon}{2}\left(\|x\|^{2}+\|y\|^{2}\right)
\end{aligned}
$$

with prob $\geq 1-4 e^{-\mathcal{C}\left(\varepsilon^{2}-\varepsilon^{3}\right) k}$; apply to std basis matrix $I_{p}$, get

$$
-\varepsilon \leq\left\langle T \mathbf{e}_{i}, T \mathbf{e}_{j}\right\rangle-\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle \leq \varepsilon
$$

$\Rightarrow \exists p$ almost orthogonal vectors in $\mathbb{R}^{k}$, and $k=O\left(\frac{1}{\varepsilon^{2}} \ln p\right) \Rightarrow p=O\left(e^{k}\right)$

- Algorithm: $k=n, p=\left\lceil e^{n}\right\rceil$, get $2 k$ columns from $T I_{p}$


## Almost orthogonality by the JLL

- Aim at $m \times n A$ and $n \times m Q$ s.t. $A Q \approx 0$ with $n=\left(1+\Delta^{\prime}\right) m$ and $\Delta^{\prime}$ "small" (say $\left.\Delta^{\prime}<1\right)$
- Need $2 m$ approx orthog vectors in $\mathbb{R}^{n}$ with $n<2 m$
- Computationally: get large errors on $\|A Q\|_{2}$ JLL theory requires exceedingly large sizes
- In fact, we only need $A Q=0$ !
can accept non-orthogonality in rows of $A \mathcal{B}$ cols of $Q$


## Almost orthogonality by LP

- Sample $Q$ and compute $A$ using an LP
- max $\sum_{\substack{i \leq m \\ j \leq n}} \operatorname{Uniform}(-1,1) A_{i j}$
- subject to $A Q=0$ and $A \in[-1,1]$
- for $m=328$ and $n=590$ (i.e. $\Delta^{\prime}=0.8$ ):
- error: $\sum A_{i} Q^{j}=O\left(10^{-10}\right)$
- rank: full up to error precision (not really though)
- CPU: 688s (meh)
- for $m=328$ and $n=492$ (i.e. $\Delta^{\prime}=0.5$ ): the same
- for $m=328$ and $n=426$ (i.e. $\Delta^{\prime}=0.3$ ): $C P U 470 s$
- Reduce CPU time by solving $m$ LPs deciding $A_{i}$
for all $i \leq m$


## Computational results

| $m$ | $n$ | $\Delta^{\prime}$ | $\mu_{\text {err }}^{\text {org }}$ | $\mu_{\text {err }}^{\text {prj }}$ | CPU $^{\text {org }}$ | CPU $^{\text {prj }}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 328 | 426 | 0.3 | 182 | 15 | 2.45 | 1.87 |
| 328 | 426 | 0.3 | 154 | 0 | 2.20 | 1.49 |
| 328 | 459 | 0.4 | 0 | 1 | 4.47 | 2.45 |
| 328 | 45 | 0 | 5 | 17 | 2.86 | 1.46 |
| 328 | 492 | 0.5 | 60 | 0 | 4.53 | 1.18 |
| 328 | 492 | 0.5 | 34 | 0 | 5.38 | 1.18 |
| 328 | 590 | 0.8 | 14 | 0 | 8.30 | 1.41 |
| 328 | 590 | 0.8 | 107 | 4 | 6.76 | 1.43 |

- CPU for computing $A, Q$ not counted: precomputation is possible
- Approximate beats precise!


## In summary

- If $\mu$ is short, set $\Delta^{\prime}=\Delta$ and use compressed sensing (CS)
- If $\mu$ is longer, try increasing $\Delta^{\prime}$ and use CS
- If $\mu$ is very long, use $J L L$-projected $C S$
- Can use approximately orthogonal $A, Q$ too

Conticuere omnes, intentique ora tenebant.
Inde toro pater Aeneas sic orsus ab alto:
Infandum, regina, iubes renovare dolorem.
Troianas ut opes et lamentabile regnum eruerint Danai Quaequae ipse miserrima vidi et quorum pars magna fui.
[Virgil, Aeneid, Cantus II]
$m=1896, n=2465$
$\Delta^{\prime}=0.3:$ min s.t. CS is accurate

| method | error | $C P U$ |
| :--- | ---: | ---: |
| CS | 0 | 29.67 s |
| JLL-CS | 2 | 17.13 s |

These results are consistent over
3 samplings

Project idea 9: Implement and test RPs applied to CS, as described in the last slides. Aim at setting the redundancy $n$ equal to the noise $(1+\Delta) d$, and use CPLEX to compute $A$ such that $A Q \approx 0$. Test your code on at least 10 different texts of various lengths, up to around 500 characters. How does decoding quality depend on $\|A Q\|_{2}$ ?

## Outline

Introduction
MP language
Solvers
MP systematics
Some applications
Decidability
Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness
MP solvability
Efficiency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations
Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap revisited

```
    Summary
Random projections in LP
    Random projection theory
    Projecting LP feasibility
    Projecting LP optimality
    Solution retrieval
    Application to quantile regression
Sparsity and \ell \ell minimization
    Motivation
    Basis pursuit
    Theoretical results
    Application to noisy channel encoding
    Improvements
```


## Kissing Number Problem

```
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again
```


## Definition

- Optimization version. Given $K \in \mathbb{N}$, determine the maximum number $\mathrm{kn}(K)$ of unit spheres that can be placed adjacent to a central unit sphere so their interiors do not overlap
- Decision version. Given $n, K \in \mathbb{N}$, is $\mathrm{kn}(K) \leq n$ ? in other words, determine whether $n$ unit spheres can be placed adjacent to a central unit sphere so that their interiors do not overlap

Funny story: Newton and Gregory went down the pub...

## Some examples

$n=6, K=2 \quad n=12, K=3$


more dimensions

| $n$ | $\tau$ (lattice) | $\tau$ (nonlattice) |
| ---: | ---: | :--- |
| 0 | 0 |  |
| 1 | 2 |  |
| 2 | 6 |  |
| 3 | 12 |  |
| 4 | 24 |  |
| 5 | 40 |  |
| 6 | 72 |  |
| 7 | 126 |  |
| 8 | 240 |  |
| 9 | 272 | $(306)^{*}$ |
| 10 | 336 | $(500)^{*}$ |
| 11 | 438 | $(582)^{*}$ |
| 12 | 756 | $(840)^{*}$ |
| 13 | 918 | $(1130)^{*}$ |
| 14 | 1422 | $(1582)^{*}$ |
| 15 | 2340 |  |
| 16 | 4320 |  |
| 17 | 5346 |  |
| 18 | 7398 |  |
| 19 | 10668 |  |
| 20 | 17400 |  |
| 21 | 27720 |  |
| 22 | 49896 |  |

## Radius formulation

Given $n, K \in \mathbb{N}$, determine whether there exist $n$ vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{K}$ such that:

$$
\begin{aligned}
\forall i \leq n \quad\left\|x_{i}\right\|_{2}^{2} & =4 \\
\forall i<j \leq n \quad\left\|x_{i}-x_{j}\right\|_{2}^{2} & \geq 4
\end{aligned}
$$



## Contact point formulation

Given $n, K \in \mathbb{N}$, determine whether there exist $n$ vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{K}$ such that:

$$
\begin{aligned}
\forall i \leq n \quad\left\|x_{i}\right\|_{2}^{2} & =1 \\
\forall i<j \leq n \quad\left\|x_{i}-x_{j}\right\|_{2}^{2} & \geq 1
\end{aligned}
$$



## Spherical codes

- $S^{K-1} \subset \mathbb{R}^{K}$ unit sphere centered at origin
- $K$-dimensional spherical z-code:
- (finite) subset $\mathcal{C} \subset S^{K-1}$
- $\forall x \neq y \in \mathcal{C} \quad x \cdot y \leq z$
- non-overlapping interiors:

$$
\begin{aligned}
\forall i<j\left\|x_{i}-x_{j}\right\|_{2}^{2} & \geq 1 \\
\Leftrightarrow \quad\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i} \cdot x_{j} & \geq 1 \\
\Leftrightarrow 1+1-2 x_{i} \cdot x_{j} & \geq 1 \\
\Leftrightarrow 2 x_{i} \cdot x_{j} & \leq 1 \\
\Leftrightarrow x_{i} \cdot x_{j} & \leq \frac{1}{2}=\cos \left(\frac{\pi}{3}\right)=z
\end{aligned}
$$

- we aim at maximizing $\mathrm{kn}_{z}(K) \triangleq|\mathcal{C}|$ let $\mathrm{kn}(K)=\mathrm{kn}_{\frac{1}{2}}(K)$


## Subsection 1

## Lower bounds

## Lower bounds

- Construct spherical $\frac{1}{2}$-code $\mathcal{C}$ with $|\mathcal{C}|$ large
- Nonconvex NLP formulations
- SDP relaxations
- Combination of the two techniques


## MINLP formulation

## Maculan, Michelon, Smith 1995

## Parameters:

- $K$ : space dimension
- $n$ : upper bound to $\mathrm{kn}(K)$


## Variables:

- $x_{i} \in \mathbb{R}^{K}$ : contact pt. of $i$-th surrounding sphere
- $\alpha_{i}=1$ iff sphere $i$ in configuration

$$
\left.\begin{array}{rrll}
\max & \sum_{i=1} \alpha_{i} & & \\
\forall i \leq n & \left\|x_{i}\right\|^{2} & = & \alpha_{i} \\
\forall i<j \leq n & \left\|x_{i}-x_{j}\right\|^{2} & \geq & \alpha_{i} \alpha_{j} \\
\forall i \leq n & x_{i} & \in & {[-1,1]^{K}} \\
\forall i \leq n & \alpha_{i} & \in\{0,1\}
\end{array}\right\}
$$

## Reformulating the binary products

- Additional variables: $\beta_{i j}=1$ iff vectors $i, j$ in configuration
- Linearize $\alpha_{i} \alpha_{j}$ by $\beta_{i j}$
- Add constraints:

$$
\begin{array}{ll}
\forall i<j \leq n & \beta_{i j} \leq \alpha_{i} \\
\forall i<j \leq n & \beta_{i j} \leq \alpha_{j} \\
\forall i<j \leq n & \beta_{i j} \geq \alpha_{i}+\alpha_{j}-1
\end{array}
$$

## Computational experiments

AMPL and Baron

- Certifying YES
- $n=6, K=2:$ OK, 0.60 s
- $n=12, K=3:$ OK, 0.07 s
- $n=24, K=4$ : FAIL, CPU time limit (100s)
- Certifying NO
- $n=7, K=2$ : FAIL, CPU time limit (100s)
- $n=13, K=3$ : FAIL, CPU time limit (100s)
- $n=25, K=4$ : FAIL, CPU time limit (100s)

Almost useless

## Modelling the decision problem

$$
\begin{aligned}
\max _{x, \alpha} & \alpha & \\
\forall i \leq n & \left\|x_{i}\right\|^{2} & =1 \\
\forall i<j \leq n & \left\|x_{i}-x_{j}\right\|^{2} & \geq \alpha \\
\forall i \leq n & x_{i} & \in[-1,1]^{K} \\
& \alpha & \geq 0
\end{aligned}
$$

- Feasible solution $\left(x^{*}, \alpha^{*}\right)$
- KNP instance is YES iff $\alpha^{*} \geq 1$
[Kucherenko, Belotti, Liberti, Maculan, Discr. Appl. Math. 2007]


## Computational experiments

AMPL and Baron

- Certifying YES
- $n=6, K=2$ : FAIL, CPU time limit (100s)
- $n=12, K=3:$ FAIL, CPU time limit (100s)
- $n=24, K=4$ : FAIL, CPU time limit (100s)
- Certifying NO
- $n=7, K=2$ : FAIL, CPU time limit (100s)
- $n=13, K=3$ : FAIL, CPU time limit (100s)
- $n=25, K=4$ : FAIL, CPU time limit (100s)

Apparently even more useless
But more informative ( $\arccos \alpha=\min$. angular sep)
Certifying YES by $\alpha \geq 1$

- $n=6, K=2$ : OK, 0.06 s
- $n=12, K=3:$ OK, 0.05 s
- $n=24, K=4:$ OK, 1.48 s
- $n=40, K=5:$ FAIL, CPU time limit (100s)


## What about polar coordinates?

- $\forall i \leq n \quad x_{i}=\left(x_{i 1}, \ldots, x_{i K}\right) \mapsto\left(\vartheta_{i 1}, \ldots, \vartheta_{i, K-1}\right)$
- Formulation

$$
\begin{aligned}
(\dagger) \quad \forall k \leq K \quad \rho \sin \vartheta_{i, k-1} \prod_{h=k}^{K-1} \cos \vartheta_{i h} & =x_{i k} \\
(\ddagger) \quad \forall i<j \leq n \quad\left\|x_{i}-x_{j}\right\|_{2}^{2} & \geq \rho^{2} \\
\forall i \leq n, k \leq K \quad\left(\sin \left(\vartheta_{i k}\right)\right)^{2}+\left(\cos \left(\vartheta_{i k}\right)\right)^{2} & =1 \\
(\text { optional }) \quad \rho & =1
\end{aligned}
$$

- Only need to decide $s_{i k}=\sin \vartheta_{i k}$ and $c_{i k}=\cos \vartheta_{i k}$
- Replace $x$ in ( $\ddagger$ ) using ( $\dagger$ ): get polyprog in $s, c$
- Numerically more challenging to solve (polydeg 2K)
- OPEN QUESTION: useful for bounds?


## Subsection 2

## Upper bounds from SDP?

## SDP relaxation of Euclidean distances

- Linearization of scalar products

$$
\forall i, j \leq n \quad x_{i} \cdot x_{j} \longrightarrow X_{i j}
$$

where $X$ is an $n \times n$ symmetric matrix

- $\left\|x_{i}\right\|_{2}^{2}=x_{i} \cdot x_{i}=X_{i i}$
- $\left\|x_{i}-x_{j}\right\|_{2}^{2}=\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i} \cdot x_{j}=X_{i i}+X_{j j}-2 X_{i j}$
- $X=x x^{\top} \Rightarrow X-x x^{\top}=0$ makes linearization exact
- Relaxation:

$$
X-x x^{\top} \succeq 0 \Rightarrow \operatorname{Schur}(X, x)=\left(\begin{array}{cc}
I_{K} & x^{\top} \\
x & X
\end{array}\right) \succeq 0
$$

## SDP relaxation of binary constraints

- $\forall i \leq n \quad \alpha_{i} \in\{0,1\} \Leftrightarrow \alpha_{i}^{2}=\alpha_{i}$
- Let $A$ be an $n \times n$ symmetric matrix
- Linearize $\alpha_{i} \alpha_{j}$ by $A_{i j}$ (hence $\alpha_{i}^{2}$ by $A_{i i}$ )
- $A=\alpha \alpha^{\top}$ makes linearization exact
- Relaxation: $\operatorname{Schur}(A, \alpha) \succeq 0$


## SDP relaxation of [MMS95]

$$
\begin{aligned}
& \sum_{i=1}^{n} \alpha_{i} \\
& \forall i \leq n \quad X_{i i}=\alpha_{i} \\
& \forall i<j \leq n \quad X_{i i}+X_{j j}-2 X_{i j} \geq A_{i j} \\
& \forall i \leq n \quad A_{i i}=\alpha_{i} \\
& \forall i<j \leq n \\
& \forall i<j \leq n \\
& \forall i<j \leq n \\
& \forall i \leq n \\
& \operatorname{Schur}(X, x) \succeq 0 \\
& \operatorname{Schur}(A, \alpha) \succeq 0 \\
& x_{i} \in[-1,1]^{K} \\
& \alpha \in[0,1]^{n} \\
& X \in[-1,1]^{n^{2}} \\
& A \in[0,1]^{n^{2}}
\end{aligned}
$$

## Computational experiments

- Python, PICOS and Mosek or Octave and SDPT3
- bound always equal to $n$
- prominent failure :-(
- Why?
- can combine inequalities to remove $A$ from SDP

$$
\begin{aligned}
\forall i<j X_{i i}+X_{j j}-2 X_{i j} & \geq A_{i j} \geq \alpha_{i}+\alpha_{i}-1 \\
\quad \Rightarrow X_{i i}+X_{j j}-2 X_{i j} & \geq \alpha_{i}+\alpha_{i}-1
\end{aligned}
$$

(then eliminate all constraints in A)

- integrality of $\alpha$ completely lost


## SDP relaxation of [KBLM07]

$$
\begin{aligned}
& \max \alpha \\
& \\
& \forall i \leq n X_{i i}
\end{aligned}=1
$$

## Computational experiments

With $K=2$

| $n$ | $\alpha^{*}$ |
| ---: | :---: |
| 2 | 4.00 |
| 3 | 3.00 |
| 4 | 2.66 |
| 5 | 2.50 |
| 6 | 2.40 |
| 7 | 2.33 |
| 8 | 2.28 |
| 9 | 2.25 |
| 10 | 2.22 |
| 11 | 2.20 |
| 12 | 2.18 |
| 13 | 2.16 |
| 14 | 2.15 |
| 15 | 2.14 |



## Computational experiments

With $K=3$


Always $\longrightarrow 2$ ?

## An SDP-based heuristic?

1. $X^{*} \in \mathbb{R}^{n^{2}}:$ SDP relaxation solution of [KBLM07]
2. Perform PCA, get $\bar{x} \in \mathbb{R}^{n K}$
3. Local NLP solver on [KBLM07] with starting point $\bar{x}$

However. . .

## The Uselessness Theorem

## Thm.

1. The SDP relaxation of [KBLM07] is useless
2. In fact, it is extremely useless
3. Part 1: Uselessness

- Independent of $K$ : no useful bounds in function of $K$

2. Part 2: Extreme uselessness
(a) For all n, the bound is $\frac{2 n}{n-1}$
(b) $\exists$ opt. $X^{*}$ with eigenvalues $0, \frac{n}{n-1}, \ldots, \frac{n}{n-1}$

By 2(b), applying MDS/PCA makes no sense

## Proof of extreme uselessness

Strategy:

- Pull a simple matrix solution out of a hat
- Write primal and dual SDP of [KBLM07]
- Show it is feasible in both
- Hence it is optimal
- Analyse solution:
- all $n-1$ positive eigenvalues are equal
- its objective function value is $2 n /(n-1)$


## Primal SDP

$$
\forall 1 \leq i \leq j \leq n \text { let } B_{i j}=\left(1_{i j}\right) \text { and } 0 \text { elsewhere }
$$

| quantifier | natural form | standard form | dual var |
| :--- | :--- | :--- | :--- |
| $\forall$ | $\max \alpha$ | $\max \alpha$ |  |
|  | $X_{i i}=1$ | $E_{i i} \bullet X=1$ | $u_{i}$ |
|  | $A_{i j} \bullet X+\alpha \leq 0$ | $w_{i j}$ |  |
| $\forall i<j \leq n$ | $X_{i j} \leq 1$ | $\left(E_{i j}-E_{i i}-E_{j j}+E_{i j}+E_{j i}\right.$ |  |
| $\forall i<j \leq n$ | $X_{i j} \geq-1$ | $\left(-E_{i j}-E_{j i}\right) \bullet X \leq 2$ | $y_{i j}$ |
|  | $X \succeq 0$ | $X \succeq 0$ | $z_{i j}$ |
|  | $\alpha \geq 0$ | $\alpha \geq 0$ |  |

## Dual SDP

$$
\begin{aligned}
\min \sum_{i} u_{i}+2 \sum_{i<j}\left(y_{i j}+z_{i j}\right) & \\
\sum_{i} u_{i} E_{i i}+\sum_{i<j}\left(\left(y_{i j}-z_{i j}\right)\left(E_{i j}-E_{j i}\right)+w_{i j} A_{i j}\right) & \succeq 0 \\
\sum_{i<j} w_{i j} & \geq 1 \\
w, y, z \geq 0 &
\end{aligned}
$$

Simplify $|v|=y+z, v=y-z$ :

$$
\begin{aligned}
\min \sum_{i} u_{i}+2 \sum_{i<j}\left|v_{i j}\right| & \\
\sum_{i} u_{i} E_{i i}+\sum_{i<j}\left(v_{i j}\left(E_{i j}-E_{j i}\right)+w_{i j} A_{i j}\right) & \succeq 0 \\
\sum_{i<j} w_{i j} & \geq 1 \\
w, v \geq 0 &
\end{aligned}
$$

## Pulling a solution out of a hat

$$
\begin{aligned}
\alpha^{*} & =\frac{2 n}{n-1} \\
X^{*} & =\frac{n}{n-1} I_{n}-\frac{1}{n-1} \mathbf{1}_{n} \\
u^{*} & =\frac{2}{n-1} \\
w^{*} & =\frac{1}{n(n-1)} \\
v^{*} & =0
\end{aligned}
$$

where $\mathbf{1}_{n}=$ all-one $n \times n$ matrix

## Solution verification

- linear constraints: by inspection
- $X \succeq 0$ : eigenvalues of $X^{*}$ are $0, \frac{n}{n-1}, \ldots, \frac{n}{n-1}$
- $\sum_{i} u_{i} E_{i i}+\sum_{i<j}\left(v_{i j}\left(E_{i j}-E_{j i}\right)+w_{i j} A_{i j}\right) \succeq 0$ :

$$
\begin{aligned}
& \sum_{i} u_{i}^{*} E_{i i}+\sum_{i<j} w_{i j}^{*} A_{i j} \\
= & \frac{2}{n-1} \sum_{i} E_{i i}+\frac{1}{n(n-1)} \sum_{i<j} A_{i j} \\
= & \frac{2}{n-1} I_{n}+\frac{1}{n(n-1)}\left(-(n-1) I_{n}+\left(\mathbf{1}_{n}-I_{n}\right)\right) \\
= & \frac{1}{n(n-1)} \mathbf{1}_{n} \succeq 0
\end{aligned}
$$

## Corollary

$$
\lim _{n \rightarrow \infty} \mathrm{v}(n,[\text { KBLM07 }])=\lim _{n \rightarrow \infty} \frac{2 n}{n-1}=2
$$

as observed in computational experiments

## Subsection 3

## Gregory's upper bound

## Surface upper bound

Gregory 1694, Szpiro 2003
Consider a kn(3) configuration inscribed into a super-sphere of radius 3 . Imagine a lamp at the centre of the central sphere that casts shadows of the surrounding balls onto the inside surface of the super-sphere. Each shadow has a surface area of 7.6 ; the total surface of the super-ball is 113.1. So $\frac{113.1}{7.6}=14.9$ is an up-
 per bound to $\mathrm{kn}(3)$.

## At end of XVII century, yielded Newton/Gregory dispute

## Subsection 4

Delsarte's upper bound

## Pair distribution on sphere surface

- Spherical z-code $\mathcal{C}$ has $x_{i} \cdot x_{j} \leq z(i<j \leq n=|\mathcal{C}|)$

$$
\forall t \in[-1,1] \quad \sigma_{t}=\frac{1}{n}\left|\left\{(i, j) \mid i, j \leq n \wedge x_{i} \cdot x_{j}=t\right\}\right|
$$

- $z$-code: let $\sigma_{t}=0$ for $t \in(z, 1)(z=1 / 2$ for $K N P)$
- $|\mathcal{C}|=n<\infty$ : only finitely many $\sigma_{t} \neq 0$

$$
\begin{aligned}
\left.\int_{[-1,1]} \sigma_{t} d t=\sum_{\substack{t \in[-1,1] \\
\sigma_{t} \neq 0}} \sigma_{t}=\frac{1}{n} \right\rvert\, \text { all pairs } \left\lvert\,=\frac{n^{2}}{n}\right. & =n \\
\sigma_{1}=\frac{1}{n} n & =1 \\
\forall t \in(z, 1) \quad \sigma_{t} & =0 \\
\forall t \in[-1,1] \quad \sigma_{t} & \geq 0 \\
\left|\left\{\sigma_{t}>0 \mid t \in[-1,1]\right\}\right| & <\infty
\end{aligned}
$$

## Growing Delsarte's LP

- Decision variables: $\sigma_{t}$, for $t \in[-1,1]$
- Objective function:

$$
\begin{aligned}
& \max |\mathcal{C}|=\max n=\max _{\sigma} \sum_{\substack{t \in[-1,1] \\
\sigma_{t} \neq 0}} \sigma_{t} \\
&=\sigma_{1}+\max _{\sigma} \sum_{\substack{t \in[-1, z] \\
\sigma_{t} \neq 0}} \sigma_{t}=1+\max _{\sigma} \sum_{\substack{t \in[-1, z] \\
\sigma_{t} \neq 0}} \sigma_{t}
\end{aligned}
$$

Note $n$ not a parameter in this formulation

- Constraints:

$$
\forall t \in[-1, z] \quad \sigma_{t} \geq 0
$$

- LP unbounded! - need more constraints


## The general approach

- We need $\sigma$ to encode the fact that

$$
\forall t \in[-1,1] \quad \sigma_{t}=\frac{1}{n}\left|\left\{(i, j) \mid i, j \leq n \wedge x_{i} \cdot x_{j}=t\right\}\right|
$$

- We use the algebraic theory in [Delsarte et al., "Spherical codes and designs", Geometrice Dedicata 6:363-388, 1977]
- It involves the expression of a non-negative polynomial by means of a linear combination of Gegenbauer polynomials weighted by the $\sigma_{t}$
I will skip over the details
- You can also see the proof in [Odlyzko, Sloane, "New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions", J. of Comb. Theory A, 26:210-214, 1979]


## Gegenbauer cuts

- Look for function family $\mathscr{F}:[-1,1] \rightarrow \mathbb{R}$ s.t.

$$
\forall \phi \in \mathscr{F} \sum_{\substack{t \in[-1, z] \\ \sigma_{t} \neq 0}} \phi(t) \sigma_{t} \geq 0
$$

- Most popular $\mathscr{F}:$ Gegenbauer polynomials $G_{h}^{K}$
- Special case $G_{h}^{K}=P_{h}^{\gamma, \gamma}$ of Jacobi polynomials (where $\left.\gamma=(K-2) / 2\right)$

$$
P_{h}^{\alpha, \beta}(t)=\frac{1}{2^{h}} \sum_{i=0}^{h}\binom{h+\alpha}{i}\binom{h+\beta}{h-1}(t+1)^{i}(t-1)^{h-i}
$$

- Matlab knows them: $G_{h}^{K}(t)=$ gegenbauerC $(h,(K-2) / 2, t)$
- Octave knows them: $G_{h}^{K}(t)=$ gsl_sf_gegenpoly_n $\left(h, \frac{K-2}{2}, t\right)$ need command pkg load gsl before function call
- They encode dependence on $K$


## Delsarte's LP

- Primal: (given some Gegenbauer polynomial index set $H$ )

$$
\left.\begin{array}{cc}
1+\max & \sum_{t \in\left[-1, \frac{1}{2}\right]} \sigma_{t} \\
\forall h \in H & \sum_{\substack{t \in\left[-1, \frac{1}{2}\right] \\
\sigma_{t} \neq 0}} G_{h}^{K}(t) \sigma_{t} \geq-G_{h}^{K}(1) \\
\in[-1, z] & \sigma_{t} \geq 0 .
\end{array}\right\}[\mathrm{DelP}]
$$

MP syntax error: decision variables $\sigma$ in sum quantifier!

- Dual:

$$
\left.\begin{array}{rr}
1+\min & \sum_{h \in H}\left(-G_{h}^{K}(1)\right) d_{h} \\
\\
\forall t \in[-1, z] & \sum_{h \in H} G_{h}^{K}(t) d_{h} \\
\geq 1 \\
\forall h \in H & d_{h} \leq 0
\end{array}\right\}[\mathrm{DelD}]
$$

## Delsarte's theorem

- [Delsarte et al., 1977; Odlyzko \& Sloane, 1979]

Theorem
Let $d_{0}>0$ and $F:[-1,1] \rightarrow \mathbb{R}$ such that:
(i) $\exists H \subseteq(\mathbb{N} \cup\{0\})$ and $d \in \mathbb{R}_{+}^{|H|} \geq 0$
s.t. $F(t)=\sum_{h \in H} d_{h} G_{h}^{K}(t)$
(ii) $\quad \forall t \in[-1, z] F(t) \leq 0$

Then $\mathrm{kn}_{z}(K) \leq \frac{F(1)}{d_{0}}$

- Proof based on properties of Gegenbauer polynomials
- Best upper bound: $\min F(1) / d_{0} \Rightarrow \min _{d_{0}=1} F(1) \Rightarrow[$ DelD $]$
- [DelD] "models" Delsarte's theorem


## Delsarte's normalized LP $\left(G_{h}^{K}(1)=1\right)$

- Primal:

$$
\left.\begin{array}{cc}
1+\max & \sum_{\substack{t \in\left[-1, \frac{1}{t}\right] \\
\sigma_{t} \neq 0}} \sigma_{t} \\
\forall h \in H & \sum_{\substack{t \in\left[-1, \frac{1}{2}\right] \\
\sigma_{t} \neq 0}}^{G_{h}^{K}(t) \sigma_{t}} \geq-1 \\
\in\left[-1, \frac{1}{2}\right] & \sigma_{t} \geq 0
\end{array}\right\}[\mathrm{DelP}]
$$

- Dual:

$$
\left.\begin{array}{rll}
1+\min & \sum_{h \in H}(-1) d_{h} & \\
\forall t \in\left[-1, \frac{1}{2}\right] & \sum_{h \in H} G_{h}^{K}(t) d_{h} & \geq 1 \\
\forall h \in H & d_{h} & \leq 0
\end{array}\right\}[\mathrm{DelD}]
$$

- $d_{0}=1 \Rightarrow$ remove 0 from $H$


## Focus on normalized [DelD]

Rewrite $-d_{h}$ as $d_{h}$ :

$$
\left.\begin{array}{rrl}
1+\min & \sum_{h \in H} d_{h} & \\
\forall t \in\left[-1, \frac{1}{2}\right] & \sum_{h \in H} G_{h}^{K}(t) d_{h} & \leq-1 \\
\forall h \in H & d_{h} & \geq 0
\end{array}\right\}[\text { DelD }]
$$

Issue: semi-infinite $L P$ (SILP) (how do we solve it?)

## Approximate SILP solution

- Only keep finitely many constraints
- Discretize $[-1,1]$ with a finite $T \subset[-1,1]$
- Obtain relaxation $[\mathrm{DelD}]_{T}$ :

$$
\operatorname{val}\left([\mathrm{DelD}]_{T}\right) \leq \operatorname{val}([\mathrm{DelD}])
$$

- Risk: $\operatorname{val}\left([\operatorname{DelD}]_{T}\right)<\min F(1) / d_{0}$ not a valid upper bound to $\mathrm{kn}_{z}(K)$
- Happens if soln. of $[\mathrm{DelD}]_{T}$ infeasible in [DelD]
i.e. infeasible w.r.t. some of the $\infty$ ly many removed constraints


## SILP feasibility

- Given SILP $\bar{S} \equiv \min \left\{c^{\top} x \mid \forall t \in \bar{T} a^{\top}(t) x \leq b(t)\right\}$
- Relax to LP $S \equiv \min \left\{c^{\top} x \mid \forall t \in T a^{\top}(t) x \leq b(t)\right\}$ with $T \subsetneq \bar{T}$ and $|T|<\infty$
- Solve $S$, get solution $x^{*}$
- Let $\epsilon=\max _{t}\left\{a^{\top}(t) x^{*}-b(t) \mid t \in \bar{T}\right\}$
continuous optimization w.r.t. single var. $t$
- If $\epsilon \leq 0$ then $x^{*}$ feasible in $\bar{S}$
$\Rightarrow \operatorname{val}(\bar{S}) \leq c^{\top} x^{*}$
- If $\epsilon>0$ refine $S$ and repeat
- Apply to $[\mathrm{DelD}]_{T}$, get solution $d^{*}$ feasible in [DelD]


## [DelD] feasibility

1. Choose discretization $T$ of $[-1, z]$
2. Solve

$$
\left.\begin{array}{rll}
1+\min & \sum_{h \in H} d_{h} & \\
\forall t \in T & \sum_{h \in H} G_{h}^{K}(t) d_{h} & \leq-1 \\
\forall h \in H & d_{h} & \geq 0
\end{array}\right\}[\mathrm{DelD}]_{T}
$$

get solution $d^{*}$
3. Solve PP $\epsilon=\max _{t}\left\{1+\sum_{h \in H} G_{h}^{K}(t) d_{h}^{*} \mid t \in[-1, z]\right\}$
4. If $\epsilon \leq 0$ then $d^{*}$ feasible in [DelD]

$$
\Rightarrow \mathrm{kn}_{z}(K) \leq 1+\sum_{h \in H} d_{h}^{*}
$$

5. Else refine $T$ and repeat from Step 2

## Subsection 5

## Pfender's upper bound

## Pfender's upper bound theorem

## Thy.

Let $\mathcal{C}_{z}=\left\{x_{i} \in \mathbb{S}^{K-1} \mid i \leq n \wedge \forall j \neq i\left(x_{i} \cdot x_{j} \leq z\right)\right\} ; c_{0}>0 ; f:[-1,1] \rightarrow \mathbb{R}$ s.t.:
(i) $\sum_{i, j \leq n} f\left(x_{i} \cdot x_{j}\right) \geq 0$
(ii) $f(t)+c_{0} \leq 0$ for $t \in[-1, z]$
(iii) $f(1)+c_{0} \leq 1$

Then $\mathrm{kn}_{z}(K)=n \leq \frac{1}{c_{0}}$
([Pfender 2006])
Let $g(t)=f(t)+c_{0}$

$$
\begin{aligned}
n^{2} c_{0} & \leq n^{2} c_{0}+\sum_{i, j \leq n} f\left(x_{i} \cdot x_{j}\right) \quad \text { by (i) } \\
& =\sum_{i, j \leq n}\left(f\left(x_{i} \cdot x_{j}\right)+c_{0}\right)=\sum_{i, j \leq n} g\left(x_{i} \cdot x_{j}\right) \\
& \leq \sum_{i \leq n} g\left(x_{i} \cdot x_{i}\right) \quad \text { since } g(t) \leq 0 \text { for } t \leq z \text { and } x_{i} \in \mathcal{C}_{z} \text { for } i \leq n \\
& =n g(1) \quad \text { since }\left\|x_{i}\right\|_{2}=1 \text { for } i \leq n \\
& \leq n \quad \text { since } g(1) \leq 1 .
\end{aligned}
$$

## Pfender's LP

- Condition (i) of Theorem valid for conic combinations of suitable functions $\mathcal{F}$ :

$$
f(t)=\sum_{h \in H} c_{h} f_{h}(t) \quad \text { for some } c_{h} \geq 0
$$

## e.g. $\mathcal{F}=$ Gegenbauer polynomials (again)

- Get SILP
$\begin{array}{rlll}\max _{c \in \mathbb{R}|H|} & c_{0} & & \left.\text { (minimize } 1 / c_{0} \geq n\right) \\ \forall t \in[-1, z]\end{array} \sum_{h \in H} c_{h} G_{h}^{K}(t)+c_{0} \leq 0 \quad$ (ii) $)$
- Discretize $[-1, z]$ by finite $T$, solve LP, check validity (again)


## Delsarte's and Pfender's theorem compared

- Delsarte \& Pfender's theorem look similar:

| Delsarte | Pfender |
| :--- | :--- |
| (i) $F(t)$ G. poly comb | (i) $f(t)$ G. poly comb |
| (ii) $\forall t \in[-1, z] F(t) \leq 0$ | (ii) $\forall t \in[-1, z] f(t)+c_{0} \leq 0$ |
|  | (iii) $f(1)+c_{0} \leq 1$ |
| $\Rightarrow \mathrm{kn}_{z}(K) \leq \frac{F(1)}{d_{0}}$ | $\Rightarrow \mathrm{kn}_{z}(K) \leq \frac{1}{c_{0}}$ |

- Try setting $F(t)=f(t)+c_{0}$ : condition (ii) is the same
- By condition (iii) in Pfender's theorem

$$
\mathrm{kn}_{z}(K) \leq \frac{F(1)}{d_{0}}=\frac{f(1)+c_{0}}{c_{0}} \leq \frac{1}{c_{0}}
$$

$\Rightarrow$ Delsarte bound at least as tight as Pfender's
$\rightarrow$ Delsarte (i) $\Rightarrow \int_{[-1,1]} F(t) d t \geq 0 \Rightarrow \int_{[-1,1]}\left(f(t)+c_{0}\right) d t \geq 0$
Pfender (i) $\Rightarrow \int_{[-1,1]} f(t) d t \geq 0$ more stringent

> If $\mathcal{F}$ are Gegenbauer polynomials, Delsarte requires weaker condition and yields tighter bound; but Pfender allows for more general $\mathcal{F}$, can get improved results see [Pfender, "Improved Delsarte bounds for spherical codes in small dimensions", J. Comb. Theory A, 114:1133-1147, 2007]

## The final, easy improvement

- However you compute your upper bound $B$ :
- The number of surrounding balls is integer
- If $\mathrm{kn}_{z}(K) \leq B$, then in fact $\mathrm{kn}_{z}(K) \leq\lfloor B\rfloor$


## Outline

Introduction
MP language
Solvers
MP systematics
Some applications
Decidability
Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness
MP solvability
Efficiency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations
Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap revisited

Summary
Random projections in LP
Random projection theory
Projecting LP feasibility
Projecting LP optimality
Solution retrieval
Application to quantile regression
Sparsity and $\ell_{1}$ minimization
Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again

## Job offers

Optimisation / Operations Senior Manager
VINEI:
VINCI Airports
Rueil-Malmaison, Île-de-France, France
...for the delivery of the various optimization projects... to the success of each optimization project...

Pricing Data Scientist/Actuary - Price Optimization Specialist(H-F)
AXA Global Direct
Région de Paris, France
...optimization. The senior price optimization... Optimization and Innovation team, and will be part...

Growth Data scientist - Product Features Team
Deezer
Paris, FR
OverviewPress play on your next adventure! Music... to join the Product Performance \& Optimization team... www.deezer.com

Analystes et Consultants - Banque -Optimisation des opérations financières... Accenture
Région de Paris, France
Nous recherchons des analystes jeunes diplômés et des consultants H/F désireux de travailler sur des problématiques d'optimisation des opérations bancaires (optimisation des modèles opérationnels et des processus) en France et au Benelux. Les postes sont à pourvoir en CDI, sur base d'un rattachement...

## Electronic Health Record (EHR) Coordinator (Remote)

Aledade, Inc. - Bethesda, MD
Must have previous implementation or optimization experience with ambulatory EHRs and practice management software, preferably with expertise in Greenway,...

## Operations Research Scientist

Ford Motor Company -
Strong knowledge of optimization techniques (e.g. Develop optimization frameworks to support models related to mobility solution, routing problem, pricing and...

## IS\&T Controller

ALSTOM
Alstom
Saint-Ouen, FR
The Railway industry today is characterized... reviews, software deployment optimization, running.... obsearch.alstom.com

Fares Specialist / Spécialiste Optimisation des Tarifs Aériens
Egencia, an Expedia company
Courbevoie - FR
EgenciaChaque année, Egencia accompagne des milliers de sociétés réparties dans plus de 60 pays à mieux gérer leurs programmes de voyage. Nous proposons des solutions modernes et des services d'exception à des millions de voyageurs, de la planification à la finalisation de leur voyage. Nous répondons...

Automotive HMI Software Experts or Software Engineers
Elektrobit (EB)
Paris Area, France
Elektrobit Automotive offers in Paris interesting... performances and optimization area, and/or software...

Deployment Engineer, Professional Services, Google Cloud
Google
Paris, France
Note: By applying to this position your... migration, network optimization, security best...

## Operations Research Scientist

Marriott International, Inc - An
Analyzes data and builds optimization,. Programming models and familiarity with optimization software (CPLEX, Gurobi)....

## Research Scientist - AWS New Artificial Intelligence Team!

/Research Scientist - AWS New Artificial Intelligence Team! ?views - Palo Alto, CA
We are pioneers in areas such as recommendation engines, product search, eCommerce
fraud detection, and large-scale optimization of fulfillment center...

## A typical job offer

Under the responsibility of the Commercial Director, the Optimisation / Operations Senior Manager will have the responsibility to optimise and develop operational aspects for VINCI Airports current and future portfolio of airports. They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. As part of the exercise of its function, the Optimisation Manager will undertake the following: Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives of the various technical services agreements, the strategy of the individual airports and the Group. This function will include: Participation in the definition of airport strategy. Definition of this airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various technical services agreements with our airports by developing specific technical competences from the Head Office level. Oversee the management and definition of all optimisation projects. Identification, overview and management of the project managers responsible for the delivery of the various optimization projects at each asset. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Development and implementation of the Group optimisation plan. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the strategies, trends and best practices of the airport industry and other reference industries in terms of the applicability to the optimization plan. Study of the needs and preferences of the passengers, through a continuous process of marketing research at all of the airports within the VINCI Airports portfolio. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Development and participation in the expansion or refurbishment projects of the airports, to assure a correct configuration and positioning of the operational and commercial area that can allow the optimization of the revenues and operational efficiency. Support the Director Business Development through the analysis and opportunity assessment of areas of optimization for all target assets in all bids and the preparation and implementation of the strategic plan once the assets are acquired. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports [...]


## Rationalizing the application process

- You collect many offers
- Don't have time to tailor application to each offer
- Partition offers into groups: clustering
- Need a similarity relation given two offers, do they describe "similar jobs"?
- Try Natural Language Processing (NatLangProc):
- Automated summary
- Relation Extraction
- Named Entity Recognition (NER)
- Keywords


## Automated summary ./summarize.py job01.txt

They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports. You have a diverse range of experiences working at or with airports across various disciplines such as operations, ground handling, commercial, etc. Demonstrated high level conceptual thinking, creativity and analytical skills.

## Does it help? hard to say

## Relation Extraction

```
./relextr-mitie.py job01.txt
======= RELATIONS =======
Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES_EVENT ] Head Office
Head Office [ INFLUENCED_BY ] Self
Head Office [ INTERRED_HERE ] Self
VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self
Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office
Self [ ORGANIZATIONS_WITH_THIS_SCOPE ] Head Office
Self [ PEOPLE_INVOLVED ] Head Office
Self [ PLACE_OF_DEATH ] Head Office
Head Office [ RELIGION ] Self
VINCI Airports [ RELIGION ] Optimisation Strategy
Does it help? hardly
```


## Named Entity Recognition

./ner-mitie.py job01.txt
==== NAMED ENTITIES =====
English MISC
French MISC
Head Office ORGANIZATION
Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON
Technical Services Agreements MISC
VINCI Airports ORGANIZATION
Does it help? ... maybe
For a document $D$, let $\operatorname{NER}(D)=$ named entity words

## Subsection 1

Clustering on graphs

## Constructing the graph

1. Recognize named entities from all documents
2. Use them to compute similarities among documents
3. Use modularity clustering

## The named entities

1. Operations Head Airports Office VINCI Technical Self French / Strategy Agreements English Services Optimisation
2. Europe and PGGC Work Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate International English
3. Scientist Product Analyze Java Features \& Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press Performance Deezer Data Computer
4. Lean6Sigma Lean-type Office Banking Paris CDI France RPA Middle Accenture English Front Benelux
5. Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance market develop Finance $\mathcal{G}$ IS\&T Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
6. Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia English Fares with Company Inc
7. Paris Integration France Automation Automotive French . Linux/Genivi HMI UI Software EB Architecture Elektrobit technologies GUIDE Engineers German Technology SW well-structured Experts Tools
8. Product Google Managers Python JavaScript AWS JSON BigQuery Java Platform Engineering HTML MySQL Services Professional Googles Ruby Cloud OAuth
9. EHR Aledades Provide Wellness Perform ACO Visits EHR-system-specific Coordinator Aledade Medicare Greenway Allscripts
10. Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata $\mathcal{G}$ Python Company GDIA Ford Visa SPARK Data Applied Science Work $C++R$ Unix/Linux Physics Microsoft Operations Monte JAVA Mobility Insight Analytics Engineering Computer Motor SQL Operation Carlo PowerPoint
11. Management Java CANDIDATE Application Statistics Gurobi Provides Provider Mathematics Service Maintains Deliver SMEGGSAS/HPF SAS Data Science Economics Marriott PROFILE Providers $O R$ Engineering Computer $S Q L$ Education
12. Alto Statistics Java Sunnyvale Research ML Learning Science Operational Machine Amazon Computer $C++$ Palo Internet $R$ Seattle
13. LLamasoft Work Fortune Chain Supply C\# Top Guru What Impactful Team LLamasofts Makes Gartner Gain
14. Worldwide Customer Java Mosel Service Python Energy Familiarity CPLEX Research Partnering Amazon $R$ SQL CS Operations
15. Operations Science Research Engineering Computer Systems or Build
16. Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain Economics Experience $R$ Research US Scientist UK SQL Japan Economist
17. Competency Statistics Knowledge Employer communication Research Machine EEO United ORMA Way OFCCP Corporation Mining 85 C\# Python Visual Studio Opportunity Excellent Modeling Data Jacksonville Arena Talent Skills Science Florida Life Equal AnyLogic Facebook CSX Oracb 665 Th 413 Strateau Vision Onerations Industrial Stream of States Analutics Enaineprina Comnuter Frameuprk

## Word similarity: WordNet



## WordNet: hyponyms of "boat"



## Wu-Palmer word similarity

Semantic WordNet similarity between words $w_{1}, w_{2}$ :

$$
\operatorname{wup}\left(w_{1}, w_{2}\right)=\frac{2 \operatorname{depth}\left(\operatorname{lca}\left(w_{1}, w_{2}\right)\right)}{\operatorname{len}\left(\operatorname{shpath}\left(w_{1}, w_{2}\right)\right)+2 \operatorname{depth}\left(\operatorname{lca}\left(w_{1}, w_{2}\right)\right)}
$$

- lca: lowest common ancestor
earliest common word in paths from both words to WordNet root
- depth: length of path from root to word

Example: wup(dog, boat)?
lca( dog, boat $)=$ whole; depth ( whole $)=4$
18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate
-> chordate -> animal -> organism -> living_thing -> whole -> artifact
-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat
13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat

$$
\text { wup }(\operatorname{dog}, \text { boat })=8 / 21=0.380952380952
$$

## Extensions of Wu-Palmer similarity

- to lists of words $H, L$ :

$$
\operatorname{wup}(H, L)=\frac{1}{|H||L|} \sum_{v \in H} \sum_{w \in L} \operatorname{wup}(v, w)
$$

- to pairs of documents $D_{1}, D_{2}$ :

$$
\operatorname{wup}\left(D_{1}, D_{2}\right)=\operatorname{wup}\left(\operatorname{NER}\left(D_{1}\right), \operatorname{NER}\left(D_{2}\right)\right)
$$

- wup and its extensions are always in $[0,1]$


## The Wu-Palmer similarity matrix

```
1.00}00.630.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.38 0.49 0.47 0.47 0.44 0.54 0.31 0.44 (
0.63 1.00 0.45 0.45 0.54 0.40 0.42 0.42 0.57 0.49 0.46 0.45 0.59 0.35}00.43 0.42 0.42 0.41 0.47 0.32 0.40
0.51 0.45 1.00 0.40 0.53 0.35 0.37 0.37 0.58}0.4
0.51 0.45 0.40 1.00 0.63 0.45 0.46 0.46 0.67
```



```
0.45}0.4
0.46}0.420.420.37 0.46 0.35 0.42 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.34 0.45 0.45 0.44 0.42 0.50 0.28 0.40
0.47 0.42 0.37 0.46 0.35 0.43 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.36 0.47 0.45 0.45 0.43 0.51 0.30 0.42
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.33 0.31 0.29}0.40.40 0.23 0.28 0.27 0.28 0.26 0.31 0.21 0.26 
```



```
0.54}0.4
0.50}0.450.40 0.49 0.37 0.45 0.47 0.48 0.29 0.43 0.39 1.00 0.70 0.40 0.50 0.49 0.48 0.46 0.54 0.35 0.46
llllllllllllllllllllllllllllll
0.38}0.350.28 0.38 0.29 0.34 0.34 0.36 0.23 0.34 0.29 0.40 0.23 1.00 0.48 0.45 0.46 0.42 0.52 0.30 0.43
```



```
0.47 0.42 0.37 0.47 0.35}0.4
0.47 0.42 0.38}0.470.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.51 0.32 0.43
0.44}00.41 0.35 0.45 0.34 0.40 0.42 0.43 0.26 0.39 0.34 0.46 0.28 0.42 0.36 0.46 0.43 1.00 0.53 0.31 0.43
```




```
0.44}00.4
```


## The Wu-Palmer similarity matrix

Too uniform! Try zeroing values below median


## The similarity graph


$G=(V, E)$, weighted adjacency matrix $A$

## Modularity clustering

"Modularity is the fraction of the edges that fall within a cluster minus the expected fraction if edges were distributed at random."

- "at random" = random graphs over same degree sequence
- degree sequence $=\left(k_{1}, \ldots, k_{n}\right)$ where $k_{i}=|N(i)|$
- "expected" = over all possible "half-edge" recombinations degree sequence invariant operation

- expected edges between $u, v: k_{u} k_{v} /(2 m)$ where $m=|E|$
- $\bmod (u, v)=\frac{1}{2 m}\left(A_{u v}-k_{u} k_{v} /(2 m)\right) \quad$ param
- $\bmod (G)=\sum_{\{u, v\} \in E} \bmod (u, v) x_{u v}$
$x_{u v}=1$ if $u, v$ in the same cluster and 0 otherwise var
- "Natural extension" to weighted graphs: $k_{u}=\sum_{v} A_{u v}, m=\sum_{u v} A_{u v}$


## Use modularity to define clustering

- What is the "best clustering"?
- Maximize discrepancy between actual and expected "as far away as possible from average"

$$
\left.\begin{array}{rl}
\max & \sum_{\{u, v\} \in E} \bmod (u, v) x_{u v} \\
\forall u \in V, v \in V & x_{u v} \in\{0,1\}
\end{array}\right\}
$$

- Issue: optimum could be intransitive
- Idea: treat clusters as cliques (even if zero weight) $\Rightarrow$ clique partitioning constraints for transitivity

$$
\begin{array}{lr}
\forall i<j<k & x_{i j}+x_{j k}-x_{i k} \leq 1 \\
\forall i<j<k & x_{i j}-x_{j k}+x_{i k} \leq 1 \\
\forall i<j<k & -x_{i j}+x_{j k}+x_{i k} \leq 1
\end{array}
$$

if $i, j \in C$ and $j, k \in C$ then $i, k \in C$

## The resulting clustering


cluster 1: job01, job02, job03, job05, job10
cluster 2: job04, job06, job22
cluster 3: job07, job08, job11, job12, job20
job27.txt

## Is it good?

| Vinci | Accenture | Elektrobit | Amazon 1-3 |
| :--- | :--- | :--- | :--- |
| Axa | Expedia | Google | CSX |
| Deezer | fragment1 | Ford | Westrock |
| Alstom |  | Marriott | Mitre |
| Aledade |  | Llamasoft | Clarity <br> fragment2 |

- ? - named entities rarely appear in WordNet
- Desirable property: chooses number of clusters


## Subsection 2

## Clustering in Euclidean spaces

## Clustering vectors

Most frequent words $w$ over collection $C$ of documents $d$ ./keywords.py
global environment customers strategic processes teams sql job industry use java developing project process engineering field models opportunity drive results statistical based operational performance using mathematical computer new technical highly market company science role dynamic background products level methods design looking modeling manage learning service customer effectively technology requirements build mathematics problems plan services time scientist implementation large analytical techniques lead available plus technologies sas provide machine product functions organization algorithms position model order identify activities innovation key appropriate different complex best decision simulation strategy meet client assist quantitative finance commercial language mining travel chain amazon pricing practices cloud supply

$$
\begin{aligned}
\operatorname{tfidf}_{C}(w, d) & =\frac{|(t \in d \mid t=w)||C|}{|\{h \in C \mid w \in h\}|} \\
\text { keyword }_{C}(i, d) & =\text { word } w \text { having } i^{\text {th }} \text { best } \operatorname{tfidf}_{C}(w, d) \text { value } \\
\operatorname{vec}_{C}^{m}(d) & =\left(\operatorname{tfidf}_{C}\left(\text { keyword }_{C}(i, d), d\right) \mid i \leq m\right)
\end{aligned}
$$

Transforms documents to vectors

## Minimum sum-of-squares clustering

- MSSC, a.k.a. the $k$-means problem
- Given points $p_{1}, \ldots, p_{n} \in \mathbb{R}^{m}$, find clusters $C_{1}, \ldots, C_{k}$

$$
\min \sum_{j \leq k} \sum_{i \in C_{j}}\left\|p_{i}-\operatorname{centroid}\left(C_{j}\right)\right\|_{2}^{2}
$$

where centroid $\left(C_{j}\right)=\frac{1}{\left|C_{j}\right|} \sum_{i \in C_{j}} p_{i}$

- $k$-means alg.: given initial clustering $C_{1}, \ldots, C_{k}$

1: $\forall j \leq k$ compute $y_{j}=\operatorname{centroid}\left(C_{j}\right)$
2: $\forall i \leq n, j \leq k$ if $y_{j}$ is the closest centr. to $p_{i}$ let $x_{i j}=1$ else 0
3: $\forall j \leq k$ update $C_{j} \leftarrow\left\{p_{i} \mid x_{i j}=1 \wedge i \leq n\right\}$
4: repeat until stability

## $k$-means with $k=2$

| Vinci | AXA |
| :--- | ---: |
| Deezer | Alstom |
| Accenture | Elektrobit |
| Expedia | Ford |
| Google | Marriott |
| Aledade | Amazon 1-3 |
| Llamasoft | CSX |
|  | WestRock |
|  | MITRE |
|  | Clarity |
|  | fragments 1-2 |

## $k$-means with $k=2$ : another run

Deezer<br>Elektrobit<br>Google<br>Aledade

## $k$-means with $k=2$ : third run!

| AXA | Vinci |
| :--- | ---: |
| Deezer | Accenture |
| Expedia | Alstom |
| Ford | Elektrobit |
| Marriott | Google |
| Llamasoft | Aledade |
| Amazon 1-3 |  |
| CSX |  |
| WestRock |  |
| MITRE |  |
| Clarity |  |
| fragments 1-2 |  |

A fickle algorithm

We can't trust $k$-means: why?










## Subsection 3

## Distance instability

## Nearest Neighbours

$k$-Nearest Neighbours ( $k$-NN).
Given:
$>k \in \mathbb{N}$
$\rightarrow$ a distance function $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$
$\rightarrow a \operatorname{set} \mathcal{X} \subset \mathbb{R}^{n}$
$\rightarrow$ a point $z \in \mathbb{R}^{n} \backslash \mathcal{X}$,
find the subset $\mathcal{Y} \subset \mathcal{X}$ such that:
(a) $|\mathcal{Y}|=k$
(b) $\forall y \in \mathcal{Y}, x \in \mathcal{X} \quad(d(z, y) \leq d(z, x))$


- basic problem in data science
- pattern recognition, computational geometry, machine learning, data compression, robotics, recommender systems, information retrieval, natural language processing and more
- Example: Used in Step 2 of k-means: assign points to closest centroid


## With random variables

- Consider 1-NN
- Let $\ell=|\mathcal{X}|$
- Distance function family
$\left\{d^{m}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}\right\}_{m}$

- For each $m$ :
- random variable $Z^{m}$ with some distribution over $\mathbb{R}^{n}$
- for $i \leq \ell$, random variable $X_{i}^{m}$ with some distrib. over $\mathbb{R}^{n}$
- $X_{i}^{m}$ iid w.r.t. $i, Z^{m}$ independent of all $X_{i}^{m}$
- $D_{\text {min }}^{m}=\min _{i \leq \ell} d^{m}\left(Z^{m}, X_{i}^{m}\right)$
- $D_{\max }^{m}=\max _{i \leq \ell} d^{m}\left(Z^{m}, X_{i}^{m}\right)$


## Distance Instability Theorem

- Let $p>0$ be a constant
- If

$$
\exists i \leq \ell \quad\left(d^{m}\left(Z^{m}, X_{i}^{m}\right)\right)^{p} \text { converges as } m \rightarrow \infty
$$

then, for any $\varepsilon>0$,
closest and furthest point are at about the same distance

Note " $\exists i$ " suffices since $\forall m$ we have $X_{i}^{m}$ iid w.r.t. $i$

## Distance Instability Theorem

- Let $p>0$ be a constant
- If

$$
\forall i \leq \ell \lim _{m \rightarrow \infty} \operatorname{Var}\left(\frac{\left(d^{m}\left(Z^{m}, X_{i}^{m}\right)\right)^{p}}{\mathbb{E}\left(\left(d^{m}\left(Z^{m}, X_{i}^{m}\right)\right)^{p}\right)}\right)=0
$$

then, for any $\varepsilon>0$,

$$
\lim _{m \rightarrow \infty} \mathbb{P}\left(D_{\max }^{m} \leq(1+\varepsilon) D_{\min }^{m}\right)=1
$$

Note " $\exists i$ " suffices since $\forall m$ we have $X_{i}^{m}$ iid w.r.t. $i$
[Beyer et al. 1999]

## Preliminary results

- Lemma. $\left\{B^{m}\right\}_{m}$ seq. of rnd. vars with finite variance and $\lim _{m \rightarrow \infty} \mathbb{E}\left(B^{m}\right)=b \wedge \lim _{m \rightarrow \infty} \operatorname{Var}\left(B^{m}\right)=0$; then

$$
\forall \varepsilon>0 \lim _{m \rightarrow \infty} \mathbb{P}\left(\left\|B^{m}-b\right\| \leq \varepsilon\right)=1
$$

denoted $B^{m} \rightarrow_{\mathbb{P}} b$

- Slutsky's theorem. $\left\{B^{m}\right\}_{m}$ seq. of rnd. vars and $g$ a continuous function; if $B^{m} \rightarrow_{\mathbb{P}} b$ and $g(b)$ exists, then $g\left(B^{m}\right) \rightarrow_{\mathbb{P}} g(b)$
- Corollary. If $\left\{A^{m}\right\}_{m},\left\{B^{m}\right\}_{m}$ seq. of rnd. vars. s.t. $A^{m} \rightarrow_{\mathbb{P}} a$ and $B^{m} \rightarrow_{\mathbb{P}} b \neq 0$ then $\frac{A^{m}}{B^{m}} \rightarrow_{\mathbb{P}} \frac{a}{b}$


## Proof

1. $\mu_{m}=\mathbb{E}\left(\left(d^{m}\left(Z^{m}, X_{i}^{m}\right)\right)^{p}\right)$ independent of $i$ (since all $X_{i}^{m}$ iid)
2. $V_{m}=\frac{\left(d^{m}\left(Z^{m}, X_{i}^{m}\right)\right)^{p}}{\mu_{m}} \rightarrow_{\mathbb{P}} 1$ :

- $\mathbb{E}\left(V_{m}\right)=1$ (rnd. var. over mean) $\Rightarrow \lim _{m} \mathbb{E}\left(V_{m}\right)=1$
- Hypothesis of thm. $\Rightarrow \lim _{m} \operatorname{Var}\left(V_{m}\right)=0$
- Lemma $\Rightarrow V_{m} \rightarrow_{\mathbb{P}} 1$

3. $\mathbf{V}^{m}=\left(V_{m} \mid i \leq \ell\right) \rightarrow_{\mathbb{P}} \mathbf{1}$ (by iid)
4. Slutsky's thm. $\Rightarrow \min \left(\mathbf{V}^{m}\right) \rightarrow_{\mathbb{P}} \min (\mathbf{1})=1$ simy for max
5. Corollary $\Rightarrow \frac{\max \left(\mathbf{V}^{m}\right)}{\min \left(\mathbf{V}^{m}\right)} \rightarrow_{\mathbb{P}} 1$
6. $\frac{D_{\max }^{m}}{D_{\min }^{m}}=\frac{\mu_{m} \max \left(\mathbf{V}^{m}\right)}{\mu_{m} \min \left(\mathbf{V}^{m}\right)} \rightarrow_{\mathbb{P}} 1$
7. Result follows (defn. of $\rightarrow_{\mathbb{P}}$ and $D_{\max }^{m} \geq D_{\min }^{m}$ )

## A precision limit

- Closest and farthest point from $z$ : can't be told apart with precision $>\varepsilon$
- In real algorithms, often want "closest"
- Hope of telling apart closest from second-closest?


## Loss of precision $\varepsilon$ for $K \leq 10000$

## Uniform $(0,1)$



Normal $(0,1)$


## Exponential(1)



- Precision falls exponentially fast
- Generates algorithmic instability


## When it applies

- iid random variables from any distribution
- Particular forms of correlation e.g. $U_{i} \sim \operatorname{Uniform}(0, \sqrt{i}), X_{1}=U_{1}, X_{i}=U_{i}+\left(X_{i-1} / 2\right)$ for $i>1$
- Variance tending to zero e.g. $X_{i} \sim \mathrm{~N}(0,1 / i)$
- Discrete uniform distribution on $m$-dimensional hypercube
for both data and query
- Computational experiments with $k$-means: instability already with $n>15$
- Complete linear dependence on all distributions can be reduced to NN in 1D
- Exact and approximate matching query point $=($ or $\approx)$ data point
- Query point in a well-separated cluster in data
- Implicitly low dimensionality project; but NN must be stable in lower dim.


## Subsection 4

## MP formulations

- With k-means being so fast, why bother with MP?
- Principle:
changing an MP is easier than changing an algorithm
- Side constraints
e.g. clusters are spheres, or other shapes
- Clustering subproblems
e.g. assign resources subject to optimal clustering
- MP delivers a bound
"can't do better than bound" guarantee


## MP formulation

$$
\begin{align*}
\min _{x, y, s} & \sum_{i \leq n} \sum_{j \leq k}\left\|p_{i}-y_{j}\right\|_{2}^{2} x_{i j} & \\
\forall j \leq k & \frac{1}{s_{j}} \sum_{i \leq n} p_{i} x_{i j} & =y_{j} \\
\forall i \leq n & \sum_{j \leq k} x_{i j} & =1 \\
\forall j \leq k & \sum_{i \leq n} x_{i j} & =s_{j} \\
\forall j \leq k & y_{j} & \in \mathbb{R}^{m}
\end{align*}
$$

MINLP: nonconvex terms; continuous, binary and integer variables

## Reformulation

The (MSSC) formulation has the same optima as:

$$
\begin{aligned}
& \min _{x, y, P} \sum_{i \leq n} \sum_{j \leq k} P_{i j} x_{i j} \\
& \forall i \leq n, j \leq k \quad\left\|p_{i}-y_{j}\right\|_{2}^{2} \leq P_{i j} \\
& \forall j \leq k \quad \sum_{i \leq n} p_{i} x_{i j}=\sum_{i \leq n} y_{j} x_{i j} \\
& \forall i \leq n \quad \sum_{j \leq k} x_{i j}=1 \\
& \forall j \leq k \quad y_{j} \in\left(\left[\min _{i \leq n} p_{i h}, \max _{i \leq n} p_{i h}\right] \mid h \leq k\right) \\
& x \in\{0,1\}^{n k} \\
& P \in\left[0, P^{U}\right]^{n k}
\end{aligned}
$$

- The only nonconvexities are products of binary by continuous bounded variables


## Products of binary and continuous vars.

- Suppose term $x y$ appears in a formulation
- Assume $x \in\{0,1\}$ and $y \in[0,1]$ is bounded
- means "either $z=0$ or $z=y$ "
- Replace xy by a new variable z
- Adjoin the following constraints:

$$
\begin{aligned}
z & \in[0,1] \\
y-(1-x) \leq & z \leq y+(1-x) \\
-x \leq & z \leq x
\end{aligned}
$$

- $\Rightarrow$ Everything's linear now!


## Products of binary and continuous vars.

- Suppose term $x y$ appears in a formulation
- Assume $x \in\{0,1\}$ and $y \in\left[y^{L}, y^{U}\right]$ is bounded
- means "either $z=0$ or $z=y$ "
- Replace xy by a new variable z
- Adjoin the following constraints:

$$
\begin{aligned}
& z \in\left[\min \left(y^{L}, 0\right), \max \left(y^{U}, 0\right)\right] \\
& y-(1-x) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq z \leq y+(1-x) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \\
&-x \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq z \leq x \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \\
& \rightarrow \Rightarrow \text { Everything's linear now! }
\end{aligned}
$$

[L. et al. 2009]

## MSSC is a convex MINLP

$$
\begin{aligned}
& \min _{x, y, P, \chi, \xi} \sum_{i \leq n} \sum_{j \leq k} \chi_{i j} \\
& \forall i \leq n, j \leq k \quad 0 \leq \\
& \forall i \leq n, j \leq k \quad \chi_{i j} \quad \leq P_{i j} \\
& \forall i \leq n, j \leq k \quad\left\|p_{i}-y_{j}\right\|_{2}^{2} \leq \chi_{i j} \\
& \forall j \leq k \quad \sum_{i \leq n} p_{i} x_{i j}=\sum_{i \leq P^{U}} \xi_{i j}
\end{aligned}
$$

$$
\forall i \leq n, j \leq k \quad y_{j}-\left(1-x_{i j}\right) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq \quad \xi_{i j} \quad \leq y_{j}+\left(1-x_{i j}\right) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right)
$$

$$
\forall i \leq n, j \leq k \quad-x_{i j} \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq \quad \xi_{i j} \quad \leq x_{i j} \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right)
$$

$$
\forall i \leq n \quad \sum_{j \leq k} x_{i j}=1
$$

$$
\left.\begin{array}{rrl}
\forall j \leq k & y_{j} & \in \\
x & \in & {\left[y^{L}, y^{U}\right]} \\
P & \in[0,1\}^{n k} \\
\chi & \in\left[0, P^{U}\right]^{n k} \\
\forall i \leq n, j \leq k & \xi_{i j} & \in
\end{array}\right]\left[\min \left(y^{U}, 0\right), \max \left(y^{U}, 0\right)\right]
$$

$y_{j}, \xi_{i j}, y^{L}, y^{U}$ are vectors in $\mathbb{R}^{m}$

## How to solve it

- cMINLP is NP-hard
- Algorithms:
- Outer Approximation (OA)
- Branch-and-Bound (BB)
- Best (open source) solver: Bonmin
- Another good (commercial) solver: KNitro
- With $k=2$, unfortunately...

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution, best possible 6.1855969 ( 32142.17 seconds)

- Interesting feature: the bound
guarantees we can't do better than bound
all BB algorithms provide it


## Bonmin

| Alstom | Vinci |
| :--- | ---: |
| Elektrobit | AXA |
| Ford | Deezer |
| Llamasoft | Accenture |
| Amazon 2 | Expedia |
| CSX | Google |
| MITRE | Aledade |
| Clarity | Marriott |
| fragment 2 | Amazon 1 \& 3 |
|  | WestRock |
|  | fragment 1 |

## Couple of things left to try

- Approximate $\ell_{2}$ by $\ell_{1}$ norm
$\ell_{1}$ is a linearizable norm
- Randomly project the data
lose dimensions but keep approximate shape


## Linearizing convexity

- Replace $\left\|p_{i}-y_{j}\right\|_{2}^{2}$ by $\left\|p_{i}-y_{j}\right\|_{1}$
- Warning: optima will change
but still within"clustering by distance" principle

$$
\forall i \leq n, j \leq k \quad\left\|p_{i}-y_{j}\right\|_{1}=\sum_{a \leq d}\left|p_{i a}-y_{j a}\right|
$$

- Replace each $|\cdot|$ term by new vars. $Q_{i j a} \in\left[0, P^{U}\right]$ Adjust $P^{U}$ in terms of $\|\cdot\|_{1}$
- Adjoin constraints

$$
\begin{aligned}
\forall i \leq n, j \leq k \quad \sum_{a \leq d} Q_{i j a} & \leq P_{i j} \\
\forall i \leq n, j \leq k, a \leq d \quad-Q_{i j a} & \leq p_{i a}-y_{j a} \leq Q_{i j a}
\end{aligned}
$$

- Obtain a MILP

Most advanced MILP solver: CPLEX

## CPLEX

objective 112.24, bound 39.92, in 44.74 s

| AXA | Vinci |
| :--- | ---: |
| Deezer | Accenture |
| Ford | Alstom |
| Marriott | Expedia |
| Amazon 1-3 | Elektrobit |
| Llamasoft | Google |
| CSX | Aledade |
| WestRock |  |
| MITRE |  |
| Clarity <br> fragments 1-2 |  |

Interrupted after 281s with bound 59.68

## Subsection 5

## Random projections again

## Works on the MSSC MP formulation too!

$$
\begin{aligned}
& \min _{x, y, s} \sum_{i \leq n} \sum_{j \leq d}\left\|T p_{i}-T y_{j}\right\|_{2}^{2} x_{i j} \\
& \forall j \leq d \\
& \forall i \leq n \\
& \forall j \leq d \\
& \forall j \leq d \quad y_{j} \in \mathbb{R}^{m} \\
& x \in\{0,1\}^{n d} \\
& s \in \mathbb{N}^{d}
\end{aligned}
$$

where $T$ is a $k \times m$ random projector replace $T y$ by $y^{\prime}$

## Works on the MSSC MP formulation too!

$$
\begin{align*}
& \min _{x, y^{\prime}, s} \sum_{i \leq n} \sum_{j \leq d}\left\|T p_{i}-y_{j}^{\prime}\right\|_{2}^{2} x_{i j} \\
& \forall j \leq d \quad \frac{1}{s_{j}} \sum_{i \leq n} T p_{i} x_{i j}=y_{j}^{\prime} \\
& \forall i \leq n \\
& \forall j \leq d \\
& \forall j \leq d \quad y_{j}^{\prime} \in \mathbb{R}^{k} \\
& \begin{aligned}
x & \in\{0,1\}^{n d} \\
s & \in \mathbb{N}^{d}
\end{aligned}
\end{align*}
$$

- where $k=O\left(\frac{1}{\varepsilon^{2}} \ln n\right)$
- less data, $\left|y^{\prime}\right|<|y| \Rightarrow$ get solutions faster
- Yields smaller cMINLP


## Bonmin on randomly proj. data

objective 5.07 , bound 0.48 , stopped at 180 s

| Deezer | Vinci |
| :--- | ---: |
| Ford | AXA |
| Amazon 1-3 | Accenture |
| CSX | Alstom |
| MITRE | Expedia |
| fragment 1 | Elektrobit |
|  | Google |
|  | Aledade |
|  | Marriott |
|  | Llamasoft |
|  | WestRock |
|  | Clarity |
|  | fragment 2 |

## CPLEX on randomly proj. data

$\ldots$ although it doesn't make much sense for $\|\cdot\|_{1}$ norm. .
objective 53.19, bound 20.68, stopped at 180s

| Vinci | AXA |
| :--- | ---: |
| Deezer | Accenture |
| Expedia | Alstom |
| Google | Elektrobit |
| Aledade | Marriott |
| Ford | Llamasoft |
| Amazon 1-3 | WestRock |
| CSX | MITRE |
| Clarity | fragment 1-2 |

## Many clusterings?

Compare them with clustering measures e.g. "adjusted mutual information score"

|  | bonmRP | bonmin | cplxRP | cplex | kmea1 | kmea2 | kmea3 | modul |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| bonminRP | 1.000 | 0.170 | 0.095 | 0.333 | 0.333 | 0.316 | 0.315 | 0.346 |
| bonmin | 0.170 | 1.000 | 0.021 | 0.079 | 0.179 | 0.179 | 0.086 | 0.178 |
| cplexRP | 0.095 | 0.021 | 1.000 | 0.044 | 0.095 | 0.185 | 0.069 | 0.055 |
| cplex | 0.333 | 0.079 | 0.044 | 1.000 | 0.317 | 0.316 | 0.775 | 0.271 |
| kmeans2-1 | 0.333 | 0.179 | 0.095 | 0.317 | 1.000 | 0.316 | 0.249 | 0.271 |
| kmeans2-2 | 0.316 | 0.179 | 0.185 | 0.316 | 0.316 | 1.000 | 0.381 | 0.286 |
| kmeans2-3 | 0.315 | 0.086 | 0.069 | 0.775 | 0.249 | 0.381 | 1.000 | 0.252 |
| modularity | 0.346 | 0.178 | 0.055 | 0.271 | 0.271 | 0.286 | 0.252 | 1.000 |

## THE END


[^0]:    Warning: this is not a proof, and $\exists$ cases not explained by this drawing [Candès 2014]

