Large-scale Mathematical Optimization

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

INF580

About the course

- ▶ Aims of lectures: theory, algorithms, some code won't repeat much of MAP557
- Aims of TD: modelling abilities in practice with AMPL and Python

► Warning:

some disconnection between lectures and TD is normal

some theoretical topics do not lend themselves to implementation

- ▶ Lectures/TD: (generally) on fri afternoon
- **Exam:** mini-project (individual/pairs) or oral exam

http://www.lix.polytechnique.fr/~liberti/ teaching/dix/inf580

Outline

Introduction

MP language Solvers MP systematics Some applications Decidability Formal systems Gödel Turing Tarski Completeness and incompleteness MP solvability Efficiency and Hardness Some combinatorial problems in NP NP-hardness Complexity of solving MP formulations Distance Geometry The universal isometric embedding Dimension reduction Dealing with incomplete metrics The Isomap heuristic Distance geometry problem Distance geometry in MP DGP cones Barvinok's Naive Algorithm Isomap revisited

Summary Random projections in LP Random projection theory Projecting LP feasibility Projecting LP optimality

Solution retrieval Application to quantile regression

Sparsity and ℓ_1 minimization

Motivation Basis pursuit Theoretical results Application to noisy channel encoding Improvements

Kissing Number Problem

Lower bounds Upper bounds from SDP? Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Clustering in Natural Language

Clustering on graphs Clustering in Euclidean spaces Distance instability MP formulations Random projections again

Outline

Introduction

MP language Solvers MP systematics Some applications Summary

Random projections in LP

Random projection theory Projecting LP feasibility Projecting LP optimality Solution retrieval Application to quantile regression

Sparsity and ℓ_1 minimization

Motivation Basis pursuit Theoretical results Application to noisy channel encoding Improvements

Kissing Number Problem

Lower bounds Upper bounds from SDP? Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Clustering in Natural Language

Clustering on graphs Clustering in Euclidean spaces Distance instability MP formulations Random projections again

What is *Mathematical Optimization*?

- ▶ Mathematics of solving optimization problems
- ► Formal language: Mathematical Programming (MP)
- ▶ Sentences: descriptions of optimization problems
- ▶ Interpreted by solution algorithms ("solvers")
- ▶ As expressive as any imperative language
- ▶ Shifts focus from *algorithmics* to *modelling*

Why Large-scale?

- ▶ Any process can be optimized
- ▶ Social, technical and business processes are complex
- Computer power limits model precision
- Nowadays, need to solve very precise models
 increase in model size
- \blacktriangleright \Rightarrow algorithmic complexity must grow slowly with size
- ▶ Focus on LP algs and heuristics
- Investigate LP relaxations & dimensionality reduction methods

The syllabus

- Which optimization problems can be solved? a tour of 20th century logic
- Complexity of optimization problems basics of theoretical computer science

▶ Distance geometry

modern large-scale optimization and data science techniques

▶ Random projections

new approaches to approximately solving large-scale problems

 Sparsity and l₁ minimization integrality out of continuity

► Further topics

as time allows

MP Formulations

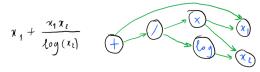
Given functions $f, g_1, \ldots, g_m : \mathbb{Q}^n \to \mathbb{Q}$ and $Z \subseteq \{1, \ldots, n\}$

$$\begin{array}{ccc} \min_{x} & f(x) \\ \forall i \leq m & g_{i}(x) \leq 0 \\ \forall j \in Z & x_{j} \in \mathbb{Z} \end{array} \right\} \quad [P]$$

▶ More general than it looks:

$$\max f(x) = -\min - f(x) g_i(x) = 0 \Leftrightarrow (g_i(x) \le 0 \land -g_i(x) \le 0) L \le x \le U \Leftrightarrow (L - x \le 0 \land x - U \le 0)$$

• f, g_i represented by expression DAGs



Class of all formulations $P: \mathbb{MP}$

Semantics of MP formulations

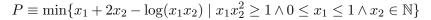
- $\llbracket P \rrbracket$ = optimum (or optima) of P
- Given $P \in \mathbb{MP}$, there are three possibilities: [P] exists, P is unbounded, P is infeasible
- ▶ P is feasible iff [[P]] exists or P is unbounded otherwise it is infeasible
- P has an optimum iff [[P]] exists otherwise it is infeasible or unbounded

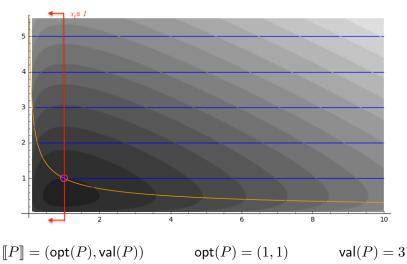
► Example:

Exercise

Code this toy MP in AMPL and solve it with BARON

Example: solution "by inspection"





10/413

Feasibility and optimality

- ► Feasibility problem: $[g(x) \le 0]$ can be written as the MP $[\min\{0 \mid g(x) \le 0]\}$
- ▶ Bounded MP $[\min\{f(x) \mid g(x) \le 0\}]$: bisection on f_0 in feas. prob. $[f(x) \le f_0 \land g(x) \le 0]$
- Unbounded MP: not equivalent to feasibility in general, cannot prove unboundedness

Bisection algorithm

- $\blacktriangleright P \equiv \min\{f(x) \mid \forall i \in I \ g_i(x) \le 0 \land x \in X\}$
- Assume global opt x^* of P has value $f(x^*)$ between given lower/upper bounds
- ▶ Reformulate *P* to a parametrized feasibility problem $Q(f_0) \equiv \{x \in X \mid f(x) \le f_0 \land \forall i \in I \ g_i(x) \le 0\}$

Bisection algorithm for *optimal value*

- 1: Input: lower & upper bound for f_0
- 2: while lower and upper bounds differ by $> \epsilon$ do
- 3: let f_0 be midway between bounds
- 4: **if** $Q(f_0)$ is feasible **then**
- 5: update upper bound to f_0
- 6: **else**
- 7: update *lower* bound to f_0
- 8: end if
- 9: end while

▶ solve an optimization problem with calls to feasibility oracle

• need only $\lceil \log_2 \left(\frac{\text{UB}-\text{LB}}{\epsilon} \right) \rceil$ calls to oracle

Exercise

Solve the toy MP using this bisection algorithm in AMPL

Bisection algorithm for *optimum*

- 1: *Input:* lower & upper bounds for f_0 , candidate global optimum \hat{x}
- 2: while lower and upper bounds differ by $> \epsilon$ do
- 3: let f_0 be midway between bounds
- 4: **if** $Q(f_0)$ is feasible **then**
- 5: find a feasible point x'
- 6: **if** f(x') better than $f(\hat{x})$ **then**
- 7: update \hat{x} to x'
- 8: update *upper* bound to $f(\hat{x})$
- 9: end if
- 10: else
- 11: update *lower* bound to f_0
- 12: end if
- 13: end while

Exercise

Solve the toy MP using this bisection algorithm in AMPL

Bisection algorithm for MP (formal)

Given:

an optimization problem in *minimization* form for maximization have to switch a few things: which ones?

- ▶ global optimal value approximation tolerance $\epsilon > 0$
- ▶ lower bound f, upper bound \bar{f}
- a feasibility algorithm *F* which finds an element in a set or certifies emptyness up to ε

Bisection algorithm for MP (formal)

1: let
$$(\hat{x}, \hat{f}) = (\text{uninitialized}, \bar{f})$$

2: while $\bar{f} - \underline{f} > \epsilon$ do
3: let $f_0 = (\underline{f} + \overline{f})/2$
4: $(x', f') = \overline{\mathcal{F}}(Q(f_0))$
5: if $(x', f') \neq (\emptyset, \emptyset)$ then
6: if $f' < \hat{f}$ then
7: update $(\hat{x}, \hat{f}) \leftarrow (x', f')$
8: update $\overline{f} \leftarrow \hat{f}$
9: end if
10: else
11: update $\underline{f} \leftarrow f_0$
12: end if
13: end while

Subsection 1

MP language

Entities of a MP formulation

Sets of indices

- ► Parameters problem input, or *instance*
- Decision variables
 - will encode the solution after solver execution
- ► Objective function
- ► Constraints

MP Example

Linear Program (LP) in standard form

- m, n: number of rows and columns corresponding index sets I = {1,...,m}, J = {1,...,n}
 c ∈ ℝⁿ, b ∈ ℝ^m, A an m × n matrix
 x ∈ ℝⁿ
- $\blacktriangleright \min_x c^\top x$
- $\blacktriangleright Ax = b \land x \ge 0$

Exercise

Code this example in AMPL and solve it with CPLEX

MP language implementations

► Humans model with quantifiers $(\forall, \sum,...)$ e.g. $\forall i \in I \sum_{j \in J} a_{ij}x_j \leq b_i$ structured formulation

- Solution algorithms accept lists of explicit constraints e.g. $4x_1 + 1.5x_2 + x_6 \le 2$ flat formulation
- ▶ Translation from structured to flat formulation
- MP language implementations
 AMPL, GAMS, Matlab+YALMIP,
 Python+amplpy/cvxpy, Julia+JuMP, ...

Exercise

Use AMPL to derive the flat formulation from the standard form LP

AMPL

- ► AMPL = A Mathematical Programming Language
- ▶ Syntax similar to human notation
- ▶ Bare-bone programming language
 - $e.g.\ no\ function\ calls$
- ► Commercial & closed-source
 - extremely rapid prototyping
 - we get free licenses for this course
 - ▶ free open-source AMPL sub-dialect in GLPK glpsol
- \blacktriangleright Can also use Python+amplpy/cvxpy, or Julia+JuMP Exercise

Formulate and solve the standard form LP using Python+amplpy

Subsection 2

Solvers

Solvers

► Solver:

a solution algorithm for a whole subclass of MP examples: BARON, CPLEX

\blacktriangleright Take formulation P as input

- Output $\llbracket P \rrbracket$ and possibly other information
- ► Trade-off between generality and efficiency fast solvers for large MP subclasses: unlikely

Some subclasses of MP

- (i) LINEAR PROGRAMMING (LP) f, g_i linear, $Z = \emptyset$
- (ii) MIXED-INTEGER LP (MILP) f, g_i linear, $Z \neq \emptyset$
- (iii) NONLINEAR PROGRAMMING (NLP) some nonlinearity in $f, g_i, Z = \emptyset$

 f, g_i convex: convex NLP (cNLP)

(iv) MIXED-INTEGER NLP (MINLP) some nonlinearity in $f, g_i, Z \neq \emptyset$ f, g_i convex: convex MINLP (cMINLP) $\begin{array}{ccc} \min & f(x) \\ \forall i \le m & g_i(x) \le 0 \\ \forall j \in Z & x_j \in \mathbb{Z} \end{array} \right\} \quad [P]$

And their solvers

(i) LINEAR PROGRAMMING (LP) simplex algorithm, interior point method (IPM) Implementations: CPLEX, GLPK, CLP

- (ii) MIXED-INTEGER LP (MILP) cutting plane alg., Branch-and-Bound (BB) Implementations: CPLEX, GuRoBi
- (iii) NONLINEAR PROGRAMMING (NLP)
 IPM, gradient descent (cNLP), spatial BB (sBB)
 Implementations: IPOPT (cNLP), Baron, Couenne
- (iv) MIXED-INTEGER NLP (MINLP) outer approximation (cMINLP), sBB Implementations: Bonmin (cMINLP), Baron, Couenne

Subsection 3

MP systematics

Types of MP

$Continuous\ variables:$

- ▶ LP (linear functions)
- ▶ QP (quadratic objective over affine sets)
- QCP (linear objective over quadratic sets)
- ▶ QCQP (quadratic objective over quadratic sets)
- ▶ cNLP (convex sets, convex objective)
- ▶ SOCP (LP over 2nd order cone)
- ▶ SDP (LP over PSD cone)
- ► CPP (LP over copositive cone)
- ▶ NLP (nonlinear functions)

Types of MP

Mixed-integer variables:

- ▶ IP (integer programming), MIP (mixed-integer programming)
- ▶ extensions: MILP, MIQP, MIQCP, MIQCQP, cMINLP, MINLP
- ▶ BLP (LP over $\{0,1\}^n$)
- ▶ BQP (QP over $\{0,1\}^n$)

Some more "exotic" classes:

- ► MOP (multiple objective functions)
- BLevP (optimization constraints)
- ► SIP (semi-infinite programming) Example: nonlinear constraint $y \ge x^2$ equivalent to infinite linear constraint set $\forall p \in \mathbb{R} \ (y \ge 2px - p^2)$

Subsection 4

Some applications

Some application fields

- Production industry planning, scheduling, allocation, ...
- Transportation & logistics facility location, routing, rostering, ...
- Service industry pricing, strategy, product placement, ...
- Energy industry power flow optimization, monitoring smart grids, ...
- Machine Learning & Artificial Intelligence clustering, support vector machines, ANN training, ...
- Biochemistry & medicine protein structure, blending, tomography, ...
- ► Mathematics

Kissing number, packing of geometrical objects, ...

Easy example

A bank needs to invest C gazillion dollars, and focuses on two types of investments: one, imaginatively called (a), guarantees a 15% return, while the other, riskier and called, surprise surprise, (b), is set to a 25%. At least one fourth of the budget C must be invested in (a), and the quantity invested in (b) cannot be more than double the quantity invested in (a). How do we choose how much to invest in (a) and (b) so that revenue is maximized?

Modelling school

First question to ask oneself is: What are the decision variables?

Easy example

► Parameters:

 \blacktriangleright budget C

 \blacktriangleright return on investment on (a): 15%, on (b): 25%

- Decision variables:
 - $x_a =$ budget invested in (a)
 - $x_b =$ budget invested in (b)
- Objective function: $1.15 x_a + 1.25 x_b$
- ► Constraints:

$$\begin{array}{l} \blacktriangleright \quad x_a + x_b = C \\ \blacktriangleright \quad x_a \ge C/4 \\ \blacktriangleright \quad x_b \le 2x_a \end{array}$$

Easy example: remarks

• Missing trivial constraints: verify that $x_a = C + 1$, $x_b = -1$ satisfies constraints forgot $x \ge 0$

► No numbers in formulations:

replace numbers by parameter symbols

$$\begin{array}{ccc} \max_{x_a, x_b \ge 0} & c_a x_a + c_b x_b \\ & & x_a + x_b & = & C \\ & & x_a & \ge & pC \\ & & dx_a - x_b & \ge & 0 \end{array} \right\}$$

• Formulation generality: extend to n investments:

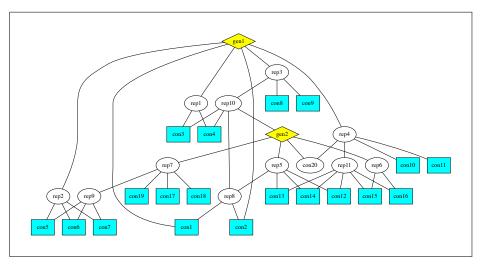
Example: monitoring an electrical grid

An electricity distribution company wants to monitor certain quantities at the lines of its grid by placing measuring devices at the buses. There are three types of buses: consumer, generator, and repeater. There are five types of devices:

- A: installed at any bus, and monitors all incident lines (cost: 0.9MEUR)
- ▶ B: installed at consumer and repeater buses, and monitors two incident lines (cost: 0.5MEUR)
- C: installed at generator buses only, and monitors one incident line (cost: 0.3MEUR)
- D: installed at repeater buses only, and monitors one incident line (cost: 0.2MEUR)
- ► E: installed at consumer buses only, and monitors one incident line (cost: 0.3MEUR).

Provide a least-cost installation plan for the devices at the buses, so that all lines are monitored by at least one device.

Example: the electrical grid



Example: formulation

► Index sets:

- \blacktriangleright V: set of buses v
- \blacktriangleright E: set of lines $\{u, v\}$
- A: set of *directed* lines (u, v)
- ▶ $\forall u \in V$ let N_u = buses adjacent to u
- \blacktriangleright D: set of device types
- D_M : device types covering > 1 line
- $\blacktriangleright D_1 = D \smallsetminus D_M$

► Parameters:

- $\blacktriangleright \forall v \in V \quad b_v = \text{bus type}$
- $\blacktriangleright \quad \forall d \in D \quad c_d = \text{device cost}$

Example: formulation

Decision variables

- ∀d ∈ D, v ∈ V x_{dv} = 1 iff device type d installed at bus v
 ∀d ∈ D, (u, v) ∈ A y_{duv} = 1 iff device type d installed at bus u measures line {u, v}
- ▶ all variables are binary

► Objective function

$$\min_{x,y} \sum_{d \in D} \sum_{v \in V} c_d x_{dv}$$

Example: formulation

► Constraints

▶ device types:

$$\begin{array}{lll} \forall v \in V \quad b_v = \operatorname{gen} & \to & x_{\mathsf{B}v} = 0 \\ \forall v \in V \quad b_v \in \{\operatorname{con}, \operatorname{rep}\} & \to & x_{\mathsf{C}v} = 0 \\ \forall v \in V \quad b_v \in \{\operatorname{gen}, \operatorname{con}\} & \to & x_{\mathsf{D}v} = 0 \\ \forall v \in V \quad b_v \in \{\operatorname{gen}, \operatorname{rep}\} & \to & x_{\mathsf{E}v} = 0 \end{array}$$

▶ at most one device of any type at each bus

$$\forall v \in V \quad \sum_{d \in D} x_{dv} \le 1$$

Example: formulation

► Constraints

▶ A: every line incident to installed device is monitored

$$\forall u \in V, v \in N_u \quad y_{\mathsf{A}uv} = x_{\mathsf{A}u}$$

▶ B: two monitored lines incident to installed device

$$\forall u \in V \quad \sum_{v \in N_u} y_{\mathsf{B}uv} = \min(2, |N_u|) x_{\mathsf{B}u}$$

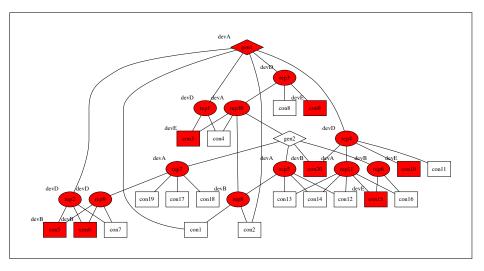
▶ C,D,E: one monitored line incident to installed device

$$\forall d \in D_1, u \in V \quad \sum_{v \in N_u} y_{duv} = x_{du}$$

line is monitored

$$\forall \{u, v\} \in E \quad \sum_{d \in D} y_{duv} + \sum_{e \in D} y_{evu} \ge 1$$

Example: solution



all lines monitored, no redundancy, cost 9.2MEUR

Outline

Introduction

MP language Solvers MP systematics Some applications

Decidability

Formal systems Gödel Turing Tarski Completeness and incompleteness MP solvability

Efficiency and Hardness

Some combinatorial problems in NP NP-hardness Complexity of solving MP formulation istance Geometry The universal isometric embedding Dimension reduction Dealing with incomplete metrics The Isomap heuristic Distance geometry problem Distance geometry in MP DGP cones Barvinok's Naive Algorithm

Isomap revisited

Summary

Random projections in LP

Random projection theory Projecting LP feasibility Projecting LP optimality Solution retrieval Application to quantile regression

Sparsity and ℓ_1 minimization

Motivation Basis pursuit Theoretical results Application to noisy channel encoding Improvements

Kissing Number Problem

Lower bounds Upper bounds from SDP? Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Clustering in Natural Language

Clustering on graphs Clustering in Euclidean spaces Distance instability MP formulations Random projections again • "Solve MPs": is there an algorithm \mathcal{D} s.t.:

$$\forall P \in \mathbb{MP} \quad \mathcal{D}(P) = \begin{cases} \text{infeasible} & P \text{ is infeasible} \\ \text{unbounded} & P \text{ is unbounded} \\ \llbracket P \rrbracket & \text{otherwise} \end{cases}$$

▶ I.e. does there exist a single, all-powerful solver?

Subsection 1

Formal systems

Formal systems (FS)

► A *formal system* consists of:

- \blacktriangleright an alphabet
- ▶ a formal grammar

allowing the determination of *formulæ* and *sentences*

• a set A of *axioms* (given sentences)

▶ a set *R* of *inference rules* allowing the derivation of new sentences from old ones

► A *theory T* is the smallest set of sentences that is obtained by recursively applying *R* to *A*

[Smullyan, Th. of Formal Systems, 1961]

Examples

► Alphabets:

$$\begin{split} \mathscr{B} &= \{ \llcorner, 0, 1 \}, \ \mathscr{N} = \mathscr{B} \cup \{ 2, 3, \dots, \}, \ \mathscr{V} = \{ x_0, x_1, x_2, \dots \} \\ \mathscr{E} &= \{ (,), +, -, \times, \div, \Box^{\Box}, \exp, \log, \sin \} \cup \ \mathscr{N} \cup \ \mathscr{V} \\ \mathscr{P} \mathscr{A}_1 &= \{ \forall, \exists, \lor, \land, \neg, = \} \cup \ \mathscr{E}, \\ \mathscr{M} \mathscr{P} &= \{ \min, \max, \sum, \prod, \leq, \geq \} \cup \ \mathscr{P} \mathscr{A}_1 \end{split}$$

► An expression grammar:

expr	:	term + expr	$\mathtt{term}-\mathtt{expr}$	term
term	:	$\texttt{factor} \times \texttt{term}$	$factor \div te$	rm factor
factor	:	power	power	
power	:	$\log(unr) \mid exp(u)$	$\operatorname{unr}) \mid \sin(\operatorname{unr}) \mid$	$(-\texttt{unr}) \mid \texttt{unr}$
unr	:	$(expr) \mid \mathcal{N}$	V	

e.g.
$$(1 - \sin(x)^2)^{(1/2)}$$
:
expr = term = factor = power^{power} = unr^{unr} = (expr)^{(expr)} = (term - expr)^{(term)} = (factor - term)^{(factor \div factor)} = \dots

► Axioms: see later

▶ Inference rules: modus ponens, symbol replacement, $A \vdash A \land A$, $A \vdash A \lor A$, ...

Example: PA1

- ▶ Theory: 1st order provable sentences about \mathbb{N}
- ▶ Alphabet: $+, \times, \wedge, \lor, \rightarrow, \forall, \exists, \neg, =, 0, S(\cdot)$ and variable names

$$\begin{array}{l} \begin{array}{l} \text{Peano's Axioms:} \\ \hline 1. \ \forall x \ (0 \neq S(x)) \\ 2. \ \forall x, y \ (S(x) = S(y) \rightarrow x = y) \\ 3. \ \forall x \ (x + 0 = x) \\ 4. \ \forall x \ (x \times 0 = 0) \\ 5. \ \forall x, y \ (x + S(y) = S(x + y)) \\ 6. \ \forall x, y \ (x \times S(y) = x \times y + x) \\ 7. \ \text{axiom schema over all } (k + 1) \text{-ary } \phi: \ \forall y = (y_1, \dots, y_k) \\ (\phi(0, y) \land \forall x(\phi(x, y) \rightarrow \phi(S(x), y))) \rightarrow \forall x \phi(x, y) \end{array}$$

► Inference: see

 $\label{eq:https://en.wikipedia.org/wiki/List_of_rules_of_inference} e.g. \ modus \ ponens \ (P \land (P \to Q)) \to Q$

► Generates ring $(\mathbb{N}, +, \times)$ and arithmetical proofs e.g. $\exists x \in \mathbb{N}^n \ \forall i \ (p_i(x) \leq 0)$ (polynomial MINLP feasibility)

Example of PA1 derivation

$\forall x \ (x = x)$						
$\forall x$	x + 0 = x	[1]				
$\forall t, r, s$	$t = r \to (t = s \to r = s)$	[2]				
$\forall x$	$x + 0 = x \to (x + 0 = x \to x = x)$	[3]				
$\forall x$	$x + 0 = x \to x = x$	[4]				
$\forall x$	x = x	QED				
	$ \begin{array}{c} \forall x \\ \forall t, r, s \\ \forall x \\ \forall x \end{array} $	$ \begin{array}{ccc} \forall x & x+0=x \\ \forall t,r,s & t=r \rightarrow (t=s \rightarrow r=s) \\ \forall x & x+0=x \rightarrow (x+0=x \rightarrow x=x) \\ \forall x & x+0=x \rightarrow x=x \end{array} $				

Notes:

- ▶ truth tables of $A \to B$ and $(\neg A) \lor B$ are the same
- ▶ logic indicates a "logical theorem"

[equality] $(t = r \land t = s) \rightarrow r = s$; [truth tables] $t = r \rightarrow (t = s \rightarrow r = s)$

- **mp** indicates application of *modus ponens*
- ▶ all derivations are completely syntactical

Example: Reals

- ▶ Theory: 1st order provable sentences about \mathbb{R}
- ▶ Alphabet: $+, \times, \wedge, \lor, \forall, \exists, =, <, \leq, 0, 1, variable names$
- ▶ Axioms: field and order
- ► Inference: see
 - $\begin{array}{l} \texttt{https://en.wikipedia.org/wiki/List_of_rules_of_inference} \\ \texttt{e.g.} \ modus \ ponens \ (P \land (P \rightarrow Q)) \rightarrow Q \end{array}$
- ► Generates polynomial rings $\mathbb{R}[X_1, \ldots, X_k]$ (for all k) e.g. $\exists x \in \mathbb{R}^n \forall i \ (p_i(x) \leq 0)$ (polynomial NLP feasibility)

Relevance of FSs to MP

Given a FS \mathcal{F} :

- A decision problem is a set P of sentences
 Decide if a given sentence f belongs to P
- Decidability in formal systems: $P \equiv \text{provable sentences}$
- Proof of f: finite sequence of sentences ending with f sentences: axioms, or derived from predecessors by inference rules
- ▶ PA1: decide if sentence f about \mathbb{N} has a proof e.g. $\exists x \in \mathbb{Z}^n \ \forall i \ p_i(x) \leq 0$ (polynomial p)
- ▶ Reals: decide if sentence f about \mathbb{R} has a proof e.g. $\exists x \in \mathbb{R}^n \forall i \ p_i(x) \leq 0$ (polynomial p)
- ► Formal study of MINLP/NLP feasibility

Decidability, computability, solvability

- ▶ *Decidability*: applies to decision problems
- ► Computability: applies to function evaluation
 - Is the function mapping i to the i-th prime integer computable?
 - ▶ Is the function mapping Cantor's CH to 1 if provable in ZFC axiom system and to 0 otherwise computable?
- Solvability: applies to other problems
 E.g. to optimization problems

Completeness and decidability

 Complete FS F: for any f ∈ F, either f or ¬f is provable otherwise F is incomplete
 Decidable FS F:

 \exists algorithm \mathcal{D} s.t.

$$\forall f \in \mathcal{F} \left\{ \begin{array}{ll} \mathcal{D}(f) = 1 & \text{iff } f \text{ is provable} \\ \mathcal{D}(f) = 0 & \text{iff } f \text{ is not provable} \end{array} \right.$$

otherwise \mathcal{F} is *undecidable*

Example: PA1

- Gödel's 1st incompleteness theorem:
 PA1 is incomplete
- Turing's theorem:
 PA1 is undecidable
- ▶ \Rightarrow PA1 is incomplete and undecidable

Subsection 2

Gödel

Gödel's 1st incompleteness theorem

- ▶ \mathcal{F} : any FS extending PA1
- **Thm.** \mathcal{F} complete iff inconsistent
- ϕ : sentence " ϕ not provable in \mathcal{F} " denoted $\mathcal{F} \not\vdash \phi$; it can be constructed <u>in \mathcal{F} </u> (hard part of thm.)
 - ▶ \vdash : "is provable" in PA1; \vdash : in meta-language
 - Assume \mathcal{F} is complete: either $\mathcal{F}\vdash\phi$ or $\mathcal{F}\vdash\neg\phi$
 - ▶ If $\mathcal{F} \vdash \phi$ then $\mathcal{F} \vdash (\mathcal{F} \nvDash \phi)$ i.e. $\mathcal{F} \nvDash \phi$, contradiction
 - ► If $\mathcal{F}\vdash\neg\phi$ then $\mathcal{F}\vdash\neg(\mathcal{F}\not\vdash\phi)$ i.e. $\mathcal{F}\vdash(\mathcal{F}\vdash\phi)$ this implies $\mathcal{F}\vdash\phi$, i.e. $\mathcal{F}\vdash(\phi\land\neg\phi)$, \mathcal{F} inconsistent
 - Assume \mathcal{F} is inconsistent: any sentence is provable,

i.e. ${\mathcal F}$ complete

proof: $P \land \neg P$, hence P and $\neg P$, in particular for any Q we have $P \lor Q$, whence Q (since $\neg P$ and $P \lor Q$), implying $P \land \neg P \to Q$

- ▶ If we want PA1 to be consistent, it must be incomplete
- $\blacktriangleright \text{ Warning: } \mathcal{F} \not\vdash \phi \equiv \neg (\mathcal{F} \vdash \phi) \not\equiv \mathcal{F} \vdash \neg \phi$

Gödel's encoding

```
► For \psi \in \mathsf{PA1}, \ \ulcorner \psi \urcorner \in \mathbb{N}
```

an integer which encodes the sentence

 $called \ ``G\"odel \ number" \ of \ the \ sentence$

 \triangleright \neg is an injective map

many ways to define $\lceil \cdot \rceil$

▶ Inverse: $\langle \ulcorner \phi \urcorner \rangle = \phi$

 ϕ is the sentence corresponding to Gödel number $\lceil \phi \rceil$

 \blacktriangleright Encode/decode in $\mathbb N$ any sentence of a formal system

Gödel's self-referential sentence ϕ

- For integers $x, y \exists g \in \mathbb{N} \langle g \rangle \equiv \mathsf{proof}(x, y) :$ $\langle x \rangle$ is a proof in PA1 for the sentence $\langle y \rangle$
- For integers m, n, p ∃g ∈ N g = sost(m, n, p) = Gödel number of the sentence obtained by replacing in ⟨m⟩ the free variable symbol with Gödel number n with the Gödel number p (note that this operation replaces a symbol with a number)
- ▶ let y be the Gödel number of the variable symbol "y" i.e. $\mathbf{y} = \lceil y \rceil \in \mathbb{N}$
- γ(y) ≡ ¬∃x ∈ ℕ proof(x, sost(y, y, y)): γ(y): there is no proof in PA1 for the sentence obtained by replacing, in the sentence ⟨y⟩, every free variable symbol "y" with the integer assigned to the free variable y

► let
$$q = \lceil \gamma(y) \rceil$$
, consider $\phi \equiv \gamma(q)$
note $\phi \equiv \neg \exists x \in \mathbb{N} \operatorname{proof}(x, \operatorname{sost}(q, \mathbf{y}, q))$

Gödel's self-referential sentence ϕ

 $\phi \equiv \neg \exists x \in \mathbb{N} \ \mathsf{proof}(x, \mathsf{sost}(q, \mathbf{y}, q))$

 \blacktriangleright Let $\lceil \psi \rceil \equiv \text{sost}(q, \mathbf{v}, q)$ ψ derived by replacing the free variable symbol "y" in $\langle q \rangle$ with q • $\phi \equiv$ "there is no proof in PA1 for the sentence ψ " • How did we obtain ϕ ? Since $\phi \equiv \gamma(q)$, ϕ derived by replacing the free variable symbol "y" in $\gamma(y)$ with q • Only difference between ϕ and ψ : $\gamma(y)$ instead of $\langle q \rangle$ • But recall that $q = \lceil \gamma(y) \rceil$, i.e. $|\langle q \rangle \equiv \gamma(y)|$ \blacktriangleright So, in fact, $\psi \equiv \phi$ • Hence ϕ states " ϕ is not provable in PA1"

Note: the replacement of y with q in meta-language is encoded by sost() in PA1

Subsection 3

Turing

Turing machines

- ► Turing Machine (TM): *computation model*
 - ▶ infinite tape with cells storing finite alphabet letters
 - ▶ head reads/writes/skips *i*-th cell, moves left/right
 - **•** states=program (e.g. if s write 0, move left, change to state t)
 - ▶ initial tape content: input, final tape content: output
 - ▶ final state \perp : termination (nontermination denoted \varnothing)
 - can model PA1
- ▶ \exists universal TM (UTM) U s.t.
 - ▶ given the "program" of a TM T and an input x
 - \blacktriangleright U "simulates" T running on x
- \blacktriangleright \Rightarrow The basis of the modern computer
- ► HALTING PROBLEM (HP): given TM M & input x, is $M(x) = \bot$?

Does a given TM terminate on its input?

▶ Turing's theorem: HP is undecidable

Computable functions

- TM T on input x yielding output y: write T(x) = y
- ▶ If a TM T terminates on all input, $T(\cdot)$ is *computable* a.k.a. "total computable"
- ▶ If a function is not computable, then it's *uncomputable*
- If T only terminates on some input, $T(\cdot)$ is *partial computable*

denote $T(x) = \emptyset$ (undefined) if T does not terminate on input x

Turing's proof

- Enumerate all TMs: $(M_i \mid i \in \mathbb{N})$
- ► Halting function halt $(i, \ell) = \begin{cases} 1 & \text{if } M_i(\ell) = \bot \\ 0 & \text{if } M_i(\ell) = \varnothing \end{cases}$
- Show halt $\neq F$ for any total computable $F(i, \ell)$:
 - define G(i) = 0 if F(i, i) = 0 or undefined (\emptyset) othw G is partial computable because F is computable
 - ▶ let M_j be the TM computing Gfor any i, $M_i(i) = \bot$ iff G(i) = 0 (since G(i) undefined othw)
 - consider halt(j, j):
 - $\begin{array}{l} \blacktriangleright \quad \mathsf{halt}(j,j) = 1 \to M_j(j) = \bot \to G(j) = 0 \to F(j,j) = 0 \\ \textstyle \blacktriangleright \quad \mathsf{halt}(j,j) = 0 \to M_j(j) = \varnothing \to G(j) = \varnothing \to F(j,j) \neq 0 \end{array}$
 - ▶ so $halt(j, j) \neq F(j, j)$ for all j
- ▶ halt is uncomputable

Turing and Gödel

- Consider TM called "provable" with input α ∈ PA1: while(1) {i=0; if proof(i, Γα¬) return YES; else i=i+1}
- ▶ provable(α) = YES iff PA1 $\vdash \alpha$
- termination of provable \Rightarrow decidability in PA1
- ► Gödel's ϕ is not provable ⇒ provable(ϕ) = Ø ⇒ PA1 is undecidable

PA1 incomplete and undecidable

Subsection 4

Tarski

Example: Reals

▶ Tarski's theorem: Reals is complete

► Algorithm:

constructs solution sets (YES) or derives contradictions(NO)

 \Rightarrow provides proofs or contradictions for all sentences

► ⇒ Reals is complete and also decidable since every complete theory is decidable

$Completeness \Rightarrow decidability$

```
• Given \phi \in \mathcal{F}
      i = 0
      while 1 do
         if proof(i, \lceil \phi \rceil) then
            return YES
         else if proof(i, \neg \phi \neg) then
            return NO
         end if
         i = i + 1
      end while
```

• Since \mathcal{F} complete, alg. terminates on all ϕ

Tarski's theorem

▶ Algorithm based on quantifier elimination

- ► Feasible sets of polynomial systems p(x) ≤ 0 have finitely many connected components
- ► Each connected component recursively built of cylinders over points or intervals *extremities: pts.*, ±∞, *algebraic curves at previous recursion levels*
- ▶ In some sense, generalization of Reals in \mathbb{R}^1

Dense linear orders

Given a sentence ϕ in DLO (similar to Reals in one dimension)

- ▶ Reduce to DNF w/clauses $\exists x_i q_i(x)$ where $q_i = \bigwedge q_{ij}$
- ▶ Each q_{ij} has form s = t or s < t (s, t vars or consts)
 - \blacktriangleright s,t both constants:
 - $s < t, \, s = t$ verified and replaced by 1 or 0
 - s, t the same variable x_i :

s < t replaced by 0, s = t replaced by 1

• if s is x_i and t is not:

s = t means "replace x_i by t" (eliminate x_i)

▶ remaining case:

 q_i conjunction of $s < x_i$ and $x_i < t$: replace by s < t (eliminate x_i)

- ▶ q_i no longer depends on x_i , rewrite $\exists x_i \ q_i$ as q_i
- Repeat over vars. x_i , obtain real intervals or contradictions

Quantifier elimination!

Subsection 5

Completeness and incompleteness

Decidability and completeness

- ▶ PA1 is incomplete and undecidable
- ▶ Reals is complete and decidable
- Are there FS \mathcal{F} that are:
 - ▶ incomplete and decidable?
 - complete and undecidable?

this case already discussed, answer is NO

Incomplete and decidable (trivial)

NoInference:

Any FS with $<\infty$ axiom schemata and no inference rules

- ▶ Only possible proofs: sequences of axioms
- ▶ Only provable sentences: axioms
- For any other sentence f: no proof of f or $\neg f$
- Trivial decision algorithm:
 given f, output YES if f is a finite axiom sequence,
 NO otherwise
- ► NoInference is incomplete and decidable

Incomplete and decidable (nontrivial)

 \blacktriangleright ACF: Algebraically Closed Fields (e.g. $\mathbb{C})$

 $field \ axioms + \ ``every \ polynomial \ splits'' \ schema$

- ► Theorem: ACF is incomplete
 - ACF_p: ACF \land C_p $\equiv [\sum_{j \leq p} 1 = 0]$ (with p prime)

▶ Claim: $\forall p \text{ (prime) } C_p^{-1} \text{ independent of ACF}$

- ▶ suppose proof of C_p or $\neg C_p$ possible for p
- ▶ then either $ACF \land \neg C_p$ or $ACF \land C_p$ inconsistent
- ▶ but \exists field of any prime characteristic p
- ▶ ACF \land C_p and ACF $\land \neg$ C_p consistent for all p
- Theorem: ACF is decidable
 Decision algorithm D(ψ) for ACF:
 - ▶ if $\psi \equiv C_p$ or $\neg C_p$ for some prime p, return NO

▶ else run quantifier elimination on ψ'

 ψ' obtained by replacing $\sum\limits_{j\leq p} 1$ by 0 whenever possible in ψ

 $\blacktriangleright \Rightarrow \mathsf{ACF}$ is incomplete and decidable

The two meanings of *completeness*

► WARNING!!!

"complete" is used in two different ways in logic

- 1. Gödel's 1st incompleteness theorem FS \mathcal{F} complete₁ if ϕ or $\neg \phi$ provable $\forall \phi$
- 2. Gödel's completeness $_2$ theorem
 - A: set of sentences in \mathcal{F}
 - M a model of \mathcal{F} (domain of values for var symbols)
 - A^M : each var in A replaced by corresp. value
 - $\exists M \text{ s.t. } A^M \text{ is true} \Rightarrow A \text{ consistent}$

partial converse: corollary of Gödel's completeness thm

- Complete₂ FS: $\forall M(A^M) \Rightarrow \mathcal{F} \vdash A$
- ► Gödel's completeness theorem: 1st order logic is complete₂
- ▶ Note the strong assumption " $\forall M$ "

incompleteness theorem only considers $M=\mathbb{N}$

► Pay attention when reading literature/websites

Subsection 6

MP solvability

The issue

- ▶ Proved PA1 incomplete and undecidable
- ▶ Proved Reals complete and decidable
- ▶ But MP feasibility problems are *existential statements*

 $\exists x \text{ s.t. } g(x) \leq 0 ?$

- PA1 and Reals also involve universal quantifiers
 MP feasibility provides smaller theories
- ► For Reals, if larger theory complete and decidable, smaller theory also complete and decidable
- For PA1, larger theory incomplete and undecidable, but smaller theory might be complete or decidable!

Polynomial equations in integers

► Consider the feasibility-only MP

 $\min\{0 \mid \forall i \le m \ g_i(x) = 0 \land x \in \mathbb{Z}^n\}$

with $g_i(x)$ multivariate polynomials in x

▶ Rewrite as a *Diophantine equation* (DE):

$$\exists x \in \mathbb{Z}^n \quad \sum_{i \le m} (g_i(x))^2 = 0 \tag{1}$$

- ► Can restrict to \mathbb{N} wlog, i.e. Eq. (1) \in PA1 write $x_i = x_i^+ - x_i^-$ where $x_i^+, x_i^- \in \mathbb{N}^n$
- Formulæ of PA1 are generally undecidable but is the subclass (1) of PA1 decidable or not?

Hilbert's 10th problem

► Hilbert:

Given a Diophantine equation with any number of unknowns and with integer coefficients: devise a process which could determine by a finite number of operations whether the equation is solvable in integers

▶ Davis & Putnam: conjecture DEs are undecidable

- \blacktriangleright consider set \mathbb{RE} of recursively enumerable (r.e.) sets
- \triangleright $R \subseteq \mathbb{N}$ is in \mathbb{RE} if \exists TM listing all and only elements in R let $\mathbb{TM} = \{T : \mathbb{N} \to \mathbb{N} \mid T \text{ is a TM}\};$ then $\forall R \in \mathbb{RE} \; \exists T \in \mathbb{TM} \; (\operatorname{ran} T = R)$

• some \mathbb{RE} sets are undecidable, e.g. $R = \{ \lceil \phi \rceil \mid \mathsf{PA1} \vdash \phi \}$ r.e.: list all proofs; undecidable: by Gödel's thm "listing elements of set" and "proving if element in set" are very different problems!

▶ for each $R \in \mathbb{RE}$ show \exists polynomial p(r, x) s.t. $r \in R \leftrightarrow \exists x \in \mathbb{N}^n \ p(r, x) = 0$

 \blacktriangleright if we can prove this, \exists undecidable DEs othw for any $r \in \mathbb{N}$ can decide if $r \in R$ by finding $x \in \mathbb{N}^n$ s.t. p(r, x) = 0

Proof strategy

- Strategy: "model" r.e. sets with polynomial equations in integers
- ► D&P+Robinson: universal quantifiers removed, but eqn system involves exponentials
- Matiyasevich: exploits exponential growth of Pell's equation solutions to remove exponentials
- ► ⇒ DPRM theorem, implying DE undecidable Negative answer to Hilbert's 10th problem

Structure of the DPRM theorem

▶ Gödel's proof of his 1st incompleteness thm. *r.e.* sets \equiv DEs with $< \infty \exists$ and bounded \forall quantifiers

▶ Davis' normal form

one bounded quantifier suffices: $\exists x_0 \forall a \leq x_0 \exists x \ p(a, x) = 0$

(2 bnd qnt \equiv 1 bnd qnt on pairs) and induction

Robinson's idea

get rid of bounded universal quant. by using exponent vars

• *idea*:
$$[\exists x_0 \forall a \leq x_0 \exists x \ p(a, x) = 0]$$
 " \rightarrow " $\left[\exists x \prod_{a \leq x_0} p(a, x) = 0 \right]$

precise encoding needs variables in exponents

► Matyiasevic's contribution

express $c = b^a$ using polynomials

• use Pell's equation $x^2 - dy^2 = 1$

let solutions (x_n, y_n) satisfy $x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n$

 \blacktriangleright x_n, y_n grow exponentially with n

MP is unsolvable

- We know that if $R \in \mathbb{RE}$ then $\exists T \in \mathbb{TM}$ s.t. ran T = R, we need the converse!
- ▶ Lemma: $\forall T \in \mathbb{TM} \operatorname{ran} T \in \mathbb{RE}$
- Consider list of all TMs $(M_i \mid i \in \mathbb{N})$ if $M_i(x) = \bot$ at t-th execution step, write $M_i^t(x) = \bot$
- ▶ Yields all sets in $\mathbb{RE} = (R_i \mid i \in \mathbb{N})$ by dovetailing

at k-th round, perform k-th step of $M_i(1)$, (k-1)-st of $M_i(2)$, ..., 1-st of $M_i(k)$ $\Rightarrow \forall k \in \mathbb{N}, \ell \leq k$ if $M_i^{\ell}(k-\ell+1) = \bot$ then let $R_i \leftarrow$

- $\Rightarrow \forall k \in \mathbb{N}, \ell \geq k \text{ if } M_i(k-\ell+1) = \pm \text{ then let } R_i \leftarrow R_i \cup \{k-\ell+1\}$
- $\Rightarrow R_i = \{k \ell + 1 \mid \exists k \in \mathbb{N}, \ell \le k \ (M_i^\ell(k \ell + 1) = \bot)\}$
- ▶ DPRM theorem: $\forall R \in \mathbb{RE}$, R represented by poly eqn
- ▶ By lemma, can choose UTM M_i with ran $M_i = R_i \in \mathbb{RE}$ ⇒ \exists Universal DE (UDE), say U(r, x) = 0
- min{0 | U(r, x) = 0 ∧ x ∈ Nⁿ}: undecidable (feasibility) MP
 min (U(x, x))²: uncleable (artimization) N
- $\min_{x \in \mathbb{N}^n} (U(r, x))^2$: unsolvable (optimization) MP

Common misconception

"Since \mathbb{N} is contained in \mathbb{R} , how is it possible that Reals is decidable but DE (= Reals $\cap \mathbb{N}$, right?) is not?"

After all, if a problem contains a hard subproblem, it's hard by inclusion, right?

▶ Can you express $\mathsf{DE} p(x) = 0 \land x \in \mathbb{N}$ in Reals? \blacktriangleright p(x) = 0 belongs to both DE and Reals, OK \blacktriangleright " $x \in \mathbb{N}$ " in Reals? \Leftarrow find poly q(x) s.t. $\exists x \ q(x) = 0$ iff $x \in \mathbb{N}^n$ • $q(x) = x(x-1)\cdots(x-a)$ only good for $\{0, 1, ..., a\}$ $q(x) = \prod (x-i)$ is ∞ ly long, invalid ► IMPOSSIBLE! if it were possible, DE would be decidable, contradiction ► \Rightarrow Reals $\not\supseteq$ DE

MIQCP is undecidable

▶ [Jeroslow 1973]: MIQCP:

$$\begin{array}{ccc} \min & c^{\top}x \\ \forall i \leq m & x^{\top}Q^{i}x + a_{i}^{\top}x + b_{i} \geq 0 \\ & x \in \mathbb{Z}^{n} \end{array} \right\} \qquad (\dagger)$$

is undecidable

Proof:

- Let U(r, x) = 0 be an UDE
- ▶ $P(r) \equiv \min\{u \mid (1-u)U(r,x) = 0 \land u \in \{0,1\} \land x \in \mathbb{Z}^n\}$ P(r) describes an unsolvable problem
- Linearize every product $x_i x_j$ by y_{ij} and add $y_{ij} = x_i x_j$ until only degree 1 and 2 left
- ▶ Obtain instances of MIQCP (†) for every r

Some MIQCQPs are decidable

▶ If each Q_i is diagonal PSD, decidable [Witzgall 1963]

▶ If x are bounded in $[x^L, x^U] \cap \mathbb{Z}^n$, decidable can express $x \in \{ \lceil x^L \rceil, \lceil x^L \rceil + 1, \dots, \lfloor x^U \rfloor \}$ by polynomial

$$\forall i \le m \quad \prod_{\substack{x_i^L \le i \le x_i^U}} (x-i) = 0$$

turn into poly system in \mathbb{R} (in Reals, decidable)

▶ \Rightarrow Bounded (vars) easier than unbounded (for \mathbb{Z})

 $\begin{bmatrix} \text{MIQP decision vers.} \end{bmatrix} \text{ is } \frac{\text{decidable}}{x^{\top}Qx + c^{\top}x \leq \gamma} \\ Ax \geq b \\ \forall j \in Z \quad x_j \in \mathbb{Z} \end{bmatrix}$ (in **NP** [Del Pia et al. 2014])

NLP is undecidable

We can't represent unbounded subsets of \mathbb{N} by polynomials But we can if we allow some transcendental functions $x \in \mathbb{Z} \quad \longleftrightarrow \quad \sin(\pi x) = 0$

• Constrained NLP is undecidable:

 $\min\{0 \mid U(a, x) = 0 \land \forall j \le n \ \sin(\pi x_j) = 0\}$

• Even with just one nonlinear constraint:

$$\min\{0 \mid (U(a,x))^2 + \sum_{j \le n} (\sin(\pi x_j))^2 = 0\}$$

Unconstrained NLP is undecidable:

$$\min(U(a,x))^2 + \sum_{j \le n} (\sin(\pi x_j))^2$$

► Box-constrained NLP is undecidable (*boundedness doesn't help*): $\min\{(U(a, \tan x_1, \dots, \tan x_n))^2 + \sum_{j \le n} (\sin(\pi \tan x_j))^2 \mid -\frac{\pi}{2} \le x \le \frac{\pi}{2}\}$

Some NLPs are decidable

► All polynomial NLPs are decidable

by decidability of Reals

▶ QUADRATIC PROGRAMMING (QP) is decidable over \mathbb{Q}

$$\min \begin{array}{ccc} x^{\top}Qx & + & c^{\top}x \\ Ax & \geq & b \end{array} \right\} \qquad (P)$$

► Bricks of the proof

- ▶ if Q is PSD, $\llbracket P \rrbracket \in \mathbb{Q}$
 - 1. remove inactive constr., active are eqn, use to replace vars
 - 2. work out KKT conditions, they are linear in rational coefficients
 - 3. \Rightarrow solution is rational
- ∃ polytime IPM for solving P [Renegar&Shub 1992]
 unbounded case treated in [Vavasis 1990]
- ► \Rightarrow [QP decision version] is in NP \Rightarrow QP is decidable over \mathbb{Q}

Rationals

[Robinson 1949]: RT (1st ord. theory over Q) is undecidable

▶ [Pheidas 2000]: *existential* theory of \mathbb{Q} (ERT) is open can we decide whether p(x) = 0 has solutions in \mathbb{Q} ? Boh!

▶ [Matyiasevich 1993]:

- equivalence between DEH and ERT
- DEH = [DE restricted to homogeneous polynomials]
- ► but we don't know whether DEH is decidable

Note that Diophantus solved DE in positive rationals

Outline

Introduction

MP language Solvers MP systematics Some applications

Decidability

Formal systems Gödel Turing Tarski Completeness and incompletenes MP solvability

Efficiency and Hardness

Some combinatorial problems in NP NP-hardness Complexity of solving MP formulations istance Geometry The universal isometric embedding Dimension reduction Dealing with incomplete metrics The Isomap heuristic Distance geometry problem Distance geometry in MP DGP cones Barvinok's Naive Algorithm

Isomap revisited

Summary

Random projections in LP

Random projection theory Projecting LP feasibility Projecting LP optimality Solution retrieval Application to quantile regression

Sparsity and ℓ_1 minimization

Motivation Basis pursuit Theoretical results Application to noisy channel encoding Improvements

Kissing Number Problem

Lower bounds Upper bounds from SDP? Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Clustering in Natural Language

Clustering on graphs Clustering in Euclidean spaces Distance instability MP formulations Random projections again

Worst-case algorithmic complexity

 Computational complexity theory: worst-case time/space taken by an algorithm to complete

▶ Given an algorithm \mathcal{A}

- e.g. to determine whether a graph G = (V, E) is connected or not
- input: G; size of input: $\nu = |V| + |E|$
- How does $cpu(\mathcal{A})$ vary with ν ?
 - $\mathsf{cpu}(\mathcal{A}) = O(\log \nu)$: logarithmic (sublinear)
 - $\operatorname{cpu}(\mathcal{A}) = O(\log^k \nu)$ for fixed k: polylogarithmic
 - $\mathsf{cpu}(\mathcal{A}) = O(\nu)$: linear
 - $\operatorname{cpu}(\mathcal{A}) = O(\nu^2)$: quadratic
 - $\operatorname{cpu}(\mathcal{A}) = O(\nu^k)$ for fixed k: polytime
 - $\mathsf{cpu}(\mathcal{A}) = O(2^{\nu})$: exponential
- $\blacktriangleright \text{ polytime} \leftrightarrow \text{efficient}$
- $\blacktriangleright exponential \leftrightarrow inefficient$

The " $O(\cdot)$ " calculus

$\forall f, g : \mathbb{N} \to \mathbb{N} \quad f <_O g \quad \leftrightarrow \quad \exists n \in \mathbb{N} \; \forall \nu > n \; (f(\nu) < g(\nu))$

$\forall g : \mathbb{N} \to \mathbb{N} \quad O(g) = \{f : \mathbb{N} \to \mathbb{N} \mid \exists C \in \mathbb{N} \ (f <_O Cg)\}$

 $\forall f,g:\mathbb{N}\to\mathbb{N}\quad O(f)< O(g)\quad \leftrightarrow \quad f\in O(g) \ \land \ g\not\in O(f)$

Are polytime algorithms "efficient"?

- ► Why are polynomials special?
- Many different variants of Turing Machines (TM) more tapes, more heads, ...
- ▶ Polytime is invariant to all definitions of TM e.g. TM with ∞ly many tapes: simulate with a single tape running along diagonals, similarly to dovetailing
- In practice, O(v)-O(v³) is an acceptable range covering most practically useful efficient algorithms
- Many exponential algorithms are also usable in practice for limited sizes
- Sublinear algorithms aren't allowed to read their whole input!

Instances and problems

- An input to an algorithm \mathcal{A} : *instance*
- Collection of all inputs for A: problem in general, a problem P is an infinite set of instances
- $\blacktriangleright \mathcal{A} \text{ solves } P \text{ if } \mathcal{A} \text{ solves every instance of } P$
 - ▶ There are problems which no algorithm can solve
 - ▶ A problem can be solved by different algorithms
- Given P find complexity of best alg. \mathcal{A} solving P

 $\min_{<_O} \{ \mathsf{cpu}(\mathcal{A}) \mid \mathcal{A} \text{ solves } P \}$

We (generally) don't know how to search over all algs for P sometimes we can find complexity bounds

Complexity classes: **P**, **NP**

- ► Focus on *decision problems*
- ▶ If \exists polytime algorithm for P, then $P \in \mathbf{P}$
- ▶ If there is a polytime checkable *certificate* for all YES instances of P, then $P \in \boxed{\mathbf{NP}}$

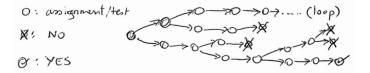
e.g. problem: shortest s—t path with fewer than K edges in a graph; path itself is a certificate: it can be checked whether it has fewer than K edges in time proportional to K, which is smaller than the size of the graph

 No-one knows whether P = NP: we think not NO instances of some probs in NP don't seem to have polytime certificates

▶ NP includes problems for which we don't think a polytime algorithm exists e.g. *k*-CLIQUE, SUBSET-SUM, KNAPSACK, HAMILTONIAN CYCLE, SAT, ...

Equivalent definition of \mathbf{NP}

▶ **NP**: problems solved by *nondeterministic* polytime TM



nondeterministic: follow all paths concurrently, stop at first YES

• Equivalence with previous definition

- (⇒) Assume ∃ polysized certificate for every YES instance. Nondeterministic polytime algorithm: concurrently explore all possible polysized certificates, call verification oracle for each, determine YES/NO.
- ► (⇐) Run nondeterministic polytime algorithm: trace will look like a tree (branchings at tests, loops unrolled) with polytime depth. If YES there will be a terminating polysized sequence of steps from start to termination, serving as a polysized certificate

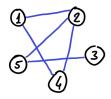
Subsection 1

Some combinatorial problems in \mathbf{NP}

k-STABLE

Instance: (G = (V, E), k)
Problem: determine if G has a stable set of size k
A subset U ⊆ V is stable if G[U] is empty
For G = (V, E) and U ⊆ V, the subgraph of G induced by U is G[U] = (U, {{u, v} ∈ E | u, v ∈ U})

 $\blacktriangleright \quad G = (V, E) \text{ is } empty \text{ if } E = \emptyset$



- ▶ 1-STABLE? YES (every graph with \geq 1 vertices is YES)
- ▶ 2-STABLE? YES (every non-complete graph is YES)
- 3-STABLE? NO polytime certificate for the absence of a k-stable?

Variables? Objective? Constraints?

Variables? Objective? Constraints?

• Decision variables:
$$\forall j \in V \quad x_j = \begin{cases} 1 & j \in k \text{-stable} \\ 0 & \text{otherwise} \end{cases}$$

Variables? Objective? Constraints?

• Decision variables: $\forall j \in V \quad x_j = \begin{cases} 1 & j \in k \text{-stable} \\ 0 & \text{otherwise} \end{cases}$

▶ no objective (pure feasibility MP)

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_j = \begin{cases} 1 & j \in k \text{-stable} \\ 0 & \text{otherwise} \end{cases}$
- ▶ no objective (pure feasibility MP)
- "if $\{i, j\} \in E$, then $x_i = 1$ or $x_j = 1$ or neither but not both"

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_j = \begin{cases} 1 & j \in k \text{-stable} \\ 0 & \text{otherwise} \end{cases}$
- ▶ no objective (pure feasibility MP)
- "if $\{i, j\} \in E$, then $x_i = 1$ or $x_j = 1$ or neither but not both"

$$\forall \{i, j\} \in E \quad x_i + x_j \le 1$$

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_j = \begin{cases} 1 & j \in k \text{-stable} \\ 0 & \text{otherwise} \end{cases}$
- ▶ no objective (pure feasibility MP)
- "if $\{i, j\} \in E$, then $x_i = 1$ or $x_j = 1$ or neither but not both"

$$\forall \{i, j\} \in E \quad x_i + x_j \le 1$$

 \blacktriangleright "∃ a k-stable"

Variables? Objective? Constraints?

- Decision variables: $\forall j \in V \quad x_j = \begin{cases} 1 & j \in k \text{-stable} \\ 0 & \text{otherwise} \end{cases}$
- ▶ no objective (pure feasibility MP)
- "if $\{i, j\} \in E$, then $x_i = 1$ or $x_j = 1$ or neither but not both"

$$\forall \{i, j\} \in E \quad x_i + x_j \le 1$$

 \blacktriangleright " \exists a k-stable"

$$\sum_{i \in V} x_i = k$$

► Pure feasibility problem:

$$\left. \begin{array}{rcl} & \sum\limits_{i \in V} x_i & = & k \\ \forall \{i, j\} \in E & x_i + x_j & \leq & 1 \\ & & x & \in & \{0, 1\}^n \end{array} \right\}$$

► Pure feasibility problem:

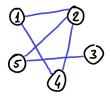
$$\left. \begin{array}{rcl} & \sum\limits_{i \in V} x_i &= k \\ \forall \{i, j\} \in E & x_i + x_j &\leq 1 \\ & x &\in \{0, 1\}^n \end{array} \right\}$$

► MAX STABLE:

$$\left. \begin{array}{ccc} \max & \sum_{i \in V} x_i \\ \forall \{i, j\} \in E & x_i + x_j &\leq 1 \\ & x &\in \{0, 1\}^n \end{array} \right\}$$

k-CLIQUE

- Instance: (G = (V, E), k)
- **\triangleright** <u>Problem</u>: determine whether G has a *clique* of size k



- ▶ 1-CLIQUE? YES (every graph with \geq 1 vertices is YES)
- ► 2-CLIQUE? YES (every non-empty graph is YES)
- ▶ 3-CLIQUE? YES (triangle $\{1, 2, 4\}$ is a certificate)

certificate can be checked in $O(k^2) < O(n^2)$ (k fixed)

 \blacktriangleright > 4-CLIQUE? NO

polytime certificate for the absence of a k-clique?

► Decision variables: $\forall j \in V \quad x_j = \begin{cases} 1 & j \in k \text{-clique} \\ 0 & \text{otherwise} \end{cases}$

• Decision variables: $\forall j \in V \quad x_j = \begin{cases} 1 & j \in k \text{-clique} \\ 0 & \text{otherwise} \end{cases}$

▶ no objective (pure feasibility MP)

• Decision variables:
$$\forall j \in V \quad x_j = \begin{cases} 1 & j \in k \text{-clique} \\ 0 & \text{otherwise} \end{cases}$$

- ▶ no objective (pure feasibility MP)
- ► Constraints:

▶ " \exists a k-clique"

$$\sum_{i \in V} x_i = k$$

MP formulations for CLIQUE Variables? Objective? Constraints?

• Decision variables:
$$\forall j \in V \quad x_j = \begin{cases} 1 & j \in k \text{-clique} \\ 0 & \text{otherwise} \end{cases}$$

- ▶ no objective (pure feasibility MP)
- ► Constraints:

▶ " \exists a k-clique"

$$\sum_{i \in V} x_i = k$$

▶ for G = (V, E), the complement graph $\overline{G} = (V, \overline{E})$ has $\overline{E} = \{\{u, v\} \mid \{u, v\} \notin E\}$

Prop.: C clique in $G \Leftrightarrow C$ stable in \overline{G}

MP formulations for CLIQUE Variables? Objective? Constraints?

• Decision variables:
$$\forall j \in V \quad x_j = \begin{cases} 1 & j \in k \text{-clique} \\ 0 & \text{otherwise} \end{cases}$$

- ▶ no objective (pure feasibility MP)
- ► Constraints:

▶ " \exists a k-clique"

$$\sum_{i \in V} x_i = k$$

▶ for G = (V, E), the complement graph $\overline{G} = (V, \overline{E})$ has $\overline{E} = \{\{u, v\} \mid \{u, v\} \notin E\}$

Prop.: C clique in $G \Leftrightarrow C$ stable in \overline{G}

▶ ⇒ use constraints for k-stable in \overline{G} : "if $\{i, j\} \in \overline{E}$ then $\neg (x_i = x_j = 1)$ "

$$\forall \{i, j\} \notin E \quad x_i + x_j \le 1$$

MP formulations for CLIQUE

► Pure feasibility problem:

$$\left.\begin{array}{rcl}\sum_{i\in V} x_i &=& k\\ \forall \{i,j\} \notin E \quad x_i + x_j &\leq& 1\\ & x &\in& \{0,1\}^n\end{array}\right\}$$

MP formulations for CLIQUE

► Pure feasibility problem:

$$\left.\begin{array}{rcl} \sum\limits_{i\in V} x_i &=& k\\ \forall \{i,j\} \notin E \quad x_i + x_j &\leq& 1\\ & x &\in& \{0,1\}^n \end{array}\right\}$$

► MAX CLIQUE:

$$\max \sum_{i \in V} x_i$$

$$\forall \{i, j\} \notin E \quad x_i + x_j \leq 1$$

$$x \in \{0, 1\}^n$$

Notice the tiny difference with STABLE

AMPL code for MAX CLIQUE

File clique.mod

```
# clique.mod
param n integer, > 0;
set V := 1..n;
set E within {V,V};
var x{V} binary;
maximize clique_card: sum{j in V} x[j];
subject to notstable{i in V, j in V : i<j and (i,j) not in E}:
    x[i] + x[j] <= 1;</pre>
```

File clique.dat

```
# clique.dat
param n := 5;
set E := (1,2) (1,4) (2,4) (2,5) (3,5);
```

AMPL code for MAX CLIQUE File clique.run:

```
# clique.run
model clique.mod;
data clique.dat;
option solver cplex;
solve;
printf "C =";
for {j in V : x[j] > 0} {
    printf " %d", j;
}
printf "\n";
```

Run with "ampl clique.run" on command line

```
CPLEX 12.8.0.0: optimal integer solution; objective 3
0 MIP simplex iterations
0 branch-and-bound nodes
C = 1 2 4
```

Code and test the formulation for MAX STABLE

SUBSET-SUM

▶ Instance: list
$$a = (a_1, ..., a_n) \in \mathbb{N}^n$$
 and $b \in \mathbb{N}$
▶ Problem: is there $J \subseteq \{1, ..., n\}$ such that $\sum_{j \in J} a_j = b$?

▶
$$a = (1, 1, 1, 4, 5), b = 3$$
: YES with $J = \{1, 2, 3\}$
all $b \in \{0, ..., 12\}$ yield YES instances

▶
$$a = (3, 6, 9, 12), b = 20$$
: NO

MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

► Pure feasibility problem:

$$\left. \begin{array}{rcl} \sum\limits_{j \leq n} a_j x_j &=& b \\ & & \\ x &\in & \{0,1\}^n \end{array} \right\}$$

AMPL code for SUBSET-SUM

File subsetsum.mod

```
# subsetsum.mod
param n integer, > 0;
set N := 1..n;
param a{N} integer, >= 0;
param b integer, >= 0;
var x{N} binary;
subject to subsetsum: sum{j in N} a[j]*x[j] = b;
```

$File \ {\tt subsetsum.dat}$

```
# subsetsum.dat
param n := 5;
param a :=
1   1
2   1
3   1
4   4
5   5
;
param b := 3;
```

Code your own subsetsum.run!

KNAPSACK

• Instance: $c, w \in \mathbb{N}^n, K \in \mathbb{N}$

▶ <u>Problem</u>:

find $J \subseteq \{1, \ldots, n\}$ s.t. $c(J) \leq K$ and w(J) is maximum

• notation:
$$c(J) = \sum_{j \in J} c_j$$
 (similarly for $w(J)$)

natively expressed as an optimization problem

$$\ \, \mathbf{n}=3,\, c=(5,6,7),\, w=(3,4,5),\, K=11$$

c(J) ≤ 11 feasible for J in Ø, {j}, {1, 2}
w(Ø) = 0, w({1, 2}) = 3 + 4 = 7, w({j}) ≤ 5 for j ≤ 3 ⇒ J_{max} = {1,2}

• K = 4: trivial solution $(J = \emptyset)$

MP formulation for KNAPSACK

Variables? Objective? Constraints?

MP formulation for KNAPSACK

Variables? Objective? Constraints?

$$\max \left\{ \begin{array}{ccc} \sum_{j \leq n} w_j x_j \\ \sum_{j \leq n} c_j x_j &\leq K \\ x &\in \{0,1\}^n \end{array} \right\}$$

AMPL code for KNAPSACK File knapsack.mod

```
# knapsack.mod
param n integer, > 0;
set N := 1..n;
param c{N} integer;
param w{N} integer;
param K integer, >= 0;
var x{N} binary;
maximize value: sum{j in N} w[j]*x[j];
subject to knapsack: sum{j in N} c[j]*x[j] <= K;
File hypersect dat</pre>
```

File knapsack.dat

```
# knapsack.dat
param n := 3;
param : c w :=
1 5 3
2 6 4
3 7 5;
param K := 11;
```

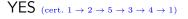
Code your own knapsack.run!

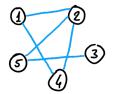
HAMILTONIAN CYCLE

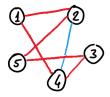
• Instance: G = (V, E)

 \blacktriangleright <u>Problem</u>: does G have a Hamiltonian cycle?

cycle covering every $v \in V$ exactly once







MP formulation for HAMILTONIAN CYCLE

Variables? Objective? Constraints?

MP formulation for HAMILTONIAN CYCLE

Variables? Objective? Constraints?

$$\forall i \in V \qquad \sum_{\substack{j \in V \\ \{i,j\} \in E}} x_{ij} = 1$$
(2)
$$\forall j \in V \qquad \sum_{\substack{i \in V \\ \{i,j\} \in E}} x_{ij} = 1$$
(3)
$$\forall \varnothing \subsetneq S \subsetneq V \qquad \sum_{\substack{i \in S, j \notin S \\ \{i,j\} \in E}} x_{ij} \ge 1$$
(4)

WARNING: Eq. (4) is a second order statement! quantified over sets yields exponentially large set of constraints

AMPL code for HAMILTONIAN CYCLE File hamiltonian.mod

```
# hamiltonian.mod
param n integer, > 0;
set V default 1..n, ordered;
set E within {V,V};
set A := E union {i in V, j in V : (j,i) in E};
# index set for nontrivial subsets of V
set PV := 1..2**n-2:
# nontrivial subsets of V
set S{k in PV} := {i in V: (k div 2**(ord(i)-1)) mod 2 = 1};
var x{A} binary;
subject to successor{i in V} :
  sum{j in V : (i,j) in A} x[i,j] = 1;
subject to predecessor{j in V} :
  sum{i in V : (i,j) in A} x[i,j] = 1;
# breaking non-hamiltonian cycles
subject to breakcycles{k in PV}:
  sum\{i \text{ in } S[k], j \text{ in } V \text{ diff } S[k]: (i,j) \text{ in } A\} x[i,j] >= 1;
```

Code your own .dat and .run files!

SATISFIABILITY (SAT)

• Instance: boolean logic sentence f in CNF

 $\bigwedge_{i \le m} \bigvee_{j \in C_i} \ell_j$

where $\ell_j \in \{x_j, \bar{x}_j\}$ for $j \leq n$

• <u>Problem</u>: is there $\phi : x \to \{0, 1\}^n$ s.t. $\phi(f) = 1$?

$$f \equiv (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2)$$

$$x_1 = x_2 = 1, x_3 = 0 \text{ is a YES certificate}$$

$$f \equiv (x_1 \lor x_2) \land (\bar{x}_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2)$$

$$\frac{\phi}{|x_1| | x_2| | x_2$$

MP formulation for SAT

Variables? Objective? Constraints?

MP formulation for SAT

Variables? Objective? Constraints?

Algorithm $\hat{\rho}$ to generate MP from given SAT sentence $\bigwedge_{i \leq m} \bigvee_{j \in C_i} \ell_j$:

MP formulation for SAT

Variables? Objective? Constraints?

Algorithm $\hat{\rho}$ to generate MP from given SAT sentence $\bigwedge_{i \leq m} \bigvee_{j \in C_i} \ell_j$:

• Literals $\ell_j \in \{x_j, \bar{x}_j\}$: decision variables in $\{0, 1\}$

$$\hat{\rho}(\ell_j) \quad \longmapsto \quad \left\{ \begin{array}{cc} x_j & \text{if } \ell_j \equiv x_j \\ 1 - x_j & \text{if } \ell_j \equiv \bar{x}_j \end{array} \right.$$

• Clauses $\Gamma_i \equiv \bigvee_{j \in C_i} \ell_j$: constraints

$$\hat{\rho}(\Gamma_i) \quad \longmapsto \quad \sum_{j \in C_i} \hat{\rho}(\ell_j) \ge 1$$

► Conjunction: feasibility-only ILP

$$\hat{\rho}\left(\bigwedge_{i} \Gamma_{i}\right) \longmapsto \forall i \leq m \quad \hat{\rho}(\Gamma_{i})$$

MP formulation for SAT

Prop.: SAT instance q is YES iff ILP instance $\hat{\rho}(q)$ is YES

▶ **Proof:** Let $L = (\ell'_1, \ldots, \ell'_n)$ be a solution of SAT. Then $x^* = (x_1^*, \ldots, x_n^*)$ where $x_j^* = 1$ iff $\ell'_j = x_j =$ true and $x_j^* = 0$ iff $\ell'_j = \bar{x}_j =$ true is a feasible solution of ILP (satisfies each clause constraint by definition of $\hat{\rho}$).

Conversely: if x solves ILP, then form solution L of SAT by mapping $x_j^* = 1$ to true and $x_j^* = 0$ to false, result follows again by defined $\hat{\rho}$.

AMPL code for SAT?

Using $\hat{\rho}$ we can only obtain flat formulations Example: file sat.run (flat formulation) for instance $(x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2)$

```
# sat.run
var x{1..3} binary;
subject to con1: x[1] + (1-x[2]) + x[3] >= 1;
subject to con2: (1-x[1])+ x[2] >= 1;
option solver cplex;
solve;
display x, solve_result;
```

Subsection 2

 $\mathbf{NP} ext{-hardness}$

NP-Hardness

- ▶ Do hard problems exist? Depends on $\mathbf{P} \neq \mathbf{NP}$
- ▶ Next best thing: define *hardest problem in* **NP**
- ► Defn.: Problem *P* is <u>NP-hard</u> if $\forall Q \in \mathbf{NP} \exists$ polytime alg. ρ_Q : $q \in Q \mapsto \rho_Q(q) \in P$ with q YES iff $\rho_Q(q)$ YES

 $\rho_Q:Q\to P$ is called a $polynomial\ reduction\ from\ Q$ to P

- **Prop.**: P is hardest for **NP**
 - 1. run best alg. for P on $\rho_Q(q)$, get answer $\alpha \in \{ \mathsf{YES}, \mathsf{NO} \}$
 - 2. return α as answer for q
 - 3. so Q cannot be harder than P
 - 4. $\forall Q \in \mathbf{NP} \Rightarrow$ no problem in \mathbf{NP} is harder than P
- If P is in **NP** and is **NP**-hard, it is called **NP**-complete
- $\blacktriangleright Reduction: "model" Q using "language" of P$
- ▶ Every problem in **NP** reduces to SAT [Cook 1971]

Cook's theorem

<u>Theorem 1</u>: If a set S of strings is accepted by some nondeterministic Turing machine within polynomial time, then S is P-reducible to {DNF tautologies}.

Boolean decision variables store TM dy-
namicsDefinition of T
 B_t asserts th
only one squar
 $B_t = (S_1, g_1)$ prosition symbols: $B_t = (S_1, g_1)$ pis,tfor 1< i<k, 1<s,t<f.</td>pis,tis true iff tape square number s
at step t contains the symbol σ_i .
 Q_t^i for 1<i<f.</td> $\begin{bmatrix} 6 \\ 1 \le i \le j \le T \end{bmatrix}$ true iff at step t the machine is in
state q_i .that if at time
time t square number s is scanned
by the tape head.that if at time
transition function

 $\frac{Definition of TM dynamics in CNF}{B_t \text{ asserts that at time t one and}}$ only one square is scanned: $B_t = (S_{1,t} \lor S_{2,t} \lor \cdots \lor S_{T,t}) \notin \begin{bmatrix} \delta \\ 1 \le i \le j \le T \end{bmatrix}$ $\frac{[\delta_{1 \le i} \lor T_{i,t} \lor T_{i,t}]}{[\delta_{i,j} \circ T_{i,t} \lor T_{i,t}]}$

that if at time t the machine is in state q_i scanning symbol σ_j , then at time t + 1 the machine is in state q_k , where q_k is the state given by the transition function for M.

 $\begin{array}{c} t & T \\ G_{i,j} &= & \begin{cases} T \\ \xi \\ s=1 \end{cases} (\neg Q_t^i \lor \neg S_{s,t} \lor \neg P_{s,t}^j \lor Q_{t+1}^k) \end{array}$

Description of a dynamical system using a declarative programming language (SAT) — what MP is all about!

The MP version of Cook's theorem

Thm.

Any problem P in **NP** can be polynomially reduced to a MILP Proof

Since $P \in \mathbf{NP}$, every YES instance $\pi \in P$ must have a polynomial-time (say $p^P(|\pi|)$) verifiable certificate c_{π} (wlog assume it is a $\{0,1\}$ string), with length bounded by a polynomial (say $q^{P}(|\pi|)$). This means that a deterministic TM M_P verifying c_{π} will reach termination in polytime $p^{P}(\pi)$. Let κ be such that $p^{P}, q^{P} \in O(n^{\kappa})$. We define a MILP on binary variables holding the content of the tape of M_P as it changes according to the transition function of M_P , such that the tape contains: (i) "NO" in the first cell, and π in the subsequent $|\pi|$ cells, at the initial step k = 0; (ii) "YES" in the first cell at the final step $k = n^{\kappa}$. Then the MILP is feasible iff π is a YES instance of P. This provides a polytime reduction from P to MILP.

Cook's theorem: sets and params

- ▶ Model a deterministic TM dynamics using MILP
- M_P is a 5-tuple $(Q, \Sigma, s, F, \delta)$: states, alphabet, initial, final, transition
- ► Transition function $\delta : Q \smallsetminus F \times \Sigma \to Q \times \Sigma \times \{-1, 1\}$ δ : state ℓ , symbol $j \mapsto$ state ℓ' , symbol j', direction d
- M_P polytime: terminates in n^{κ} , where $n = |\pi|$
- ► Index sets:

states Q, characters Σ , tape cells I, steps K

► Parameters:

initial tape string (NO, π) YES written in cell 1 when M_P in final state

Cook's theorem: decision vars

Cook's theorem: constraints (informal)

1. Initialization:

- 1.1 initial string (NO, π) on tape at step k = 0
- 1.2 M_P in initial state s at step k = 0
- 1.3 initial head position on cell i = 0 at k = 0
- 2. Execution:
 - 2.1 $\forall i, k$: cell *i* has exactly one symbol *j* at step *k*
 - 2.2 $\forall k: M_P$ is in exactly one state ℓ
 - 2.3 $\forall k$: tape head M_P is at exactly one cell i
 - 2.4 $\forall i, k$: if cell *i* changes symbol between steps *k* and k + 1, head must be on cell *i* at step *k*
 - 2.5 $\forall k, i, j$: cell *i* and symbol *j* in state *k* lead to cells, symbol and states given by transition function δ
- **3.** *Termination:*
 - 3.1 M_P terminates at step $k \le n^k$ w/YES written in cell 1

Cook's theorem: constraints

1. Initialization:

1.1
$$(t_{1,NO,0} = 1) \land (\forall i > 1 \quad t_{i,\pi_i,0} = 1)$$

1.2 $q_{s,0} = 1$
1.3 $h_{0,0} = 1$

2. Execution:

$$\begin{array}{ll} 2.1 & \forall i,k \quad \sum_{j} t_{ijk} = 1 \\ 2.2 & \forall k \quad \sum_{\ell} q_{\ell k} = 1 \\ 2.3 & \forall k \quad \sum_{i} h_{ik} = 1 \\ 2.4 & \forall i, j \neq j', k < n^{\kappa} \quad t_{ijk} t_{i,j',k+1} \leq h_{ik} \end{array}$$

2.5
$$\forall i, \ell, \ell', j, j', k, d \text{ s.t. } (\ell', j', d) = \delta(\ell, j)$$

 $h_{ik} q_{\ell k} t_{ijk} = h_{i+d,k+1} q_{\ell',k+1} t_{i,j',k+1}$

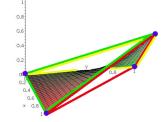
3. Termination:

3.1
$$(t_{1,\text{YES},n^{\kappa}} = 1) \land (\sum_{f \in F,k} q_{fk} = 1)$$

Cook's theorem: linearization

- ▶ MP in previous slide: MINLP not MILP
- Fortet's inequalities for products of binary vars: For $x, y \in \{0, 1\}$ and $z \in [0, 1]$

$$z = xy \Leftrightarrow z \leq x \wedge z \leq y \wedge z \geq x+y-1$$



- ▶ MILP is feasibility only
- ▶ MILP has polynomial size
- $\blacktriangleright \Rightarrow MILP is \mathbf{NP}$ -hard

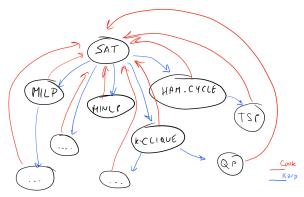
Reduction graph

After Cook's theorem

To prove NP-hardness of a new problem P, pick a known NP-hard problem Q that "looks similar enough" to P and find a polynomial reduction ρ_Q from Q to P [Karp 1972]

Why it works: suppose P easier than Q, solve Q by calling

 $\operatorname{Alg}_P \circ \rho_Q$, conclude Q as easy as P, contradiction since Q hardest in **NP**



Example of polynomial reduction

- ▶ STABLE: given G = (V, E) and $k \in \mathbb{N}$, does it contain a stable set of size k?
- ▶ Assuming k-CLIQUE is **NP**-complete, reduce from it
 - Given instance (G, k) of CLIQUE consider the *complement* graph (computable in polytime)

$$\bar{G} = (V, \bar{E} = \{\{i, j\} \mid i, j \in V \land \{i, j\} \notin E\})$$

Prop.: G has a clique of size k iff \overline{G} has a stable set of size k

- $\rho(G) = \overline{G}$ a polynomial reduction CLIQUE \rightarrow STABLE
- \blacktriangleright \Rightarrow STABLE is **NP**-hard
- ► STABLE is also in **NP**

 $U \subseteq V$ is a stable set iff $E(G[U]) = \emptyset$ (polytime verification)

 \blacktriangleright \Rightarrow STABLE is **NP**-complete

Subsection 3

Complexity of solving MP formulations

LP is in \mathbf{P}

▶ Khachian's algorithm (Ellipsoid method)

▶ Karmarkar's algorithm

▶ IPM with crossover

IPM: penalize $x \ge 0$ by $-\beta \log(x)$, polysized sequence of subproblems crossover: polytime number of simplex pivots get to opt

No known pivot rule makes simplex alg. polytime! greedy pivot has exponential complexity on Klee-Minty cube

(Recall) MILP is **NP**-hard

▶ SAT **NP**-hard by Cook's theorem, reduce from SAT

$$\bigwedge_{i \le m} \bigvee_{j \in C_i} \ell_j$$

where ℓ_j is either x_j or $\bar{x}_j \equiv \neg x_j$

► Polynomial reduction $\hat{\rho}$

• E.g. $\hat{\rho}$ maps $(x_1 \lor x_2) \land (\bar{x}_2 \lor x_3)$ to

 $\min\{0 \mid x_1 + x_2 \ge 1 \land x_3 - x_2 \ge 0 \land x \in \{0, 1\}^3\}$

► SAT is **YES** iff MILP is feasible

Complexity of Quadratic Programming (QP)

$$\min \begin{array}{cc} x^{\top}Qx & + & c^{\top}x \\ Ax & \geq & b \end{array} \right\}$$

- Quadratic obj, linear constrs, continuous vars
- ▶ Many applications (e.g. portfolio selection)
- \blacktriangleright If Q has at least one negative eigenvalue, **NP**-hard
- ▶ Decision problem: "is the min. obj. fun. value ≤ 0 ?"
- ► If Q PSD then objective is convex, problem is in P KKT conditions become linear system, data in Q ⇒ soln in Q

QP is **NP**-hard

- ▶ By reduction from SAT, let σ be an instance of SAT
- ▶ $\hat{\rho}(\sigma, x) \ge 1$: linear constraints of (SAT → MILP) reduction
- ▶ Consider QP subclass

$$\min \left\{ \begin{array}{c} f(x) = \sum_{j \le n} x_j (1 - x_j) \\ \hat{\rho}(\sigma, x) \ge 1 \\ 0 \le x \le 1 \end{array} \right\}$$
(†)

- Claim: σ is YES iff val(†) = opt. obj. fun. val. of (†) = 0
 Proof:
 - ► assume σ YES with soln. x^* , then $x^* \in \{0, 1\}^n$, hence $f(x^*) = 0$, since $f(x) \ge 0$ for all x, $\mathsf{val}(\dagger) = 0$
 - Assume σ NO, suppose val(†) = 0, then (†) feasible with soln. x', since f(x') = 0 then x' ∈ {0,1}, feasible in SAT hence σ is YES, contradiction

Box-constrained QP is **NP**-hard

$$\min_{x \in [x^L, x^U]} x^\top Q x + c^\top x \bigg\}$$

► Add surplus vars v to SAT→MILP constraints: $\hat{\rho}(\sigma, x) - 1 - v = 0$ (denote by $\forall i \leq m (a_i^\top x - b_i - v_i = 0)$)

Consider special QP subclass

$$\min \left\{ \begin{array}{l} \sum_{j \le n} x_j (1-x_j) + \sum_{i \le m} (a_i^\top x - b_i - v_i)^2 \\ 0 \le x \le 1, v \ge 0 \end{array} \right\}$$

- \blacktriangleright Issue: v not bounded above
- ▶ Reduce from 3SAT, get ≤ 3 literals per clause ⇒ can consider $0 \leq v \leq 2$

cQKP is **NP**-hard

CONTINUOUS QUADRATIC KNAPSACK PROBLEM (CQKP)

$$\begin{array}{rcl} \min & f(x) = x^\top Q x & + & c^\top x \\ & & \sum\limits_{j \leq n} a_j x_j & = & \gamma \\ & & x & \in & [0,1]^n, \end{array}$$

Reduction from SUBSET-SUM

given list $a \in \mathbb{Q}^n$ and γ , is there $J \subseteq \{1, \ldots, n\}$ s.t. $\sum_{j \in J} a_j = \gamma$? reduce to cQKP subclass with $f(x) = \sum_{j} x_j (1 - x_j)$

 $\triangleright \sigma$ is a YES instance of SUBSET-SUM

let
$$x_j^* = 1$$
 iff $j \in J$, $x_j^* = 0$ otherwise

feasible by construction

• f is non-negative on $[0,1]^n$ and $f(x^*) = 0$: optimum

 \triangleright σ is a NO instance of SUBSET-SUM

suppose $opt(cQKP) = x^*$ with $f(x^*) = 0$

then $x^* \in \{0,1\}^n$ because $f(x^*) = 0$

feasibility of $x^* \Rightarrow J = \text{supp}(x^*)$ solves σ , contradiction $\Rightarrow f(x^*) > 0$

QP on a simplex is NP-hard

$$\min f(x) = x^{\top}Qx + c^{\top}x \\ \sum_{j \le n} x_j = 1 \\ \forall j \le n \quad x_j \ge 0$$

Reduce MAX CLIQUE to subclass with $f(x) = -\sum_{\{i,j\}\in E} x_i x_j$ Motzkin-Straus formulation (MSF):

$$\max\{\sum_{\{i,j\}\in E} x_i x_j \mid \sum_{j\in V} x_j = 1 \land x \ge 0\}$$

▶ Theorem [Motzkin& Straus 1964]

Let C be the maximum clique of the instance G = (V, E) of max clique $\exists x^* \in \text{opt} (MSF)$ with $f^* = f(x^*) = \frac{1}{2} - \frac{1}{2\omega(G)}$ $\forall j \in V$ $x_j^* = \begin{cases} \frac{1}{\omega(G)} & \text{if } j \in C \\ 0 & \text{otherwise} \end{cases}$

• $\omega(G)$: size of max clique in G

Proof of the Motzkin-Straus theorem

 $x^* \in \arg(\max_{\substack{\sum_j x_j=1\\x\geq 0}} \sum_{ij\in E} x_i x_j) \text{ s.t. } |C = \{j \in V \mid x_j^* > 0\}| \text{ smallest } (\ddagger)$

1. C is a clique

Suppose $1, 2 \in C$ but $\{1, 2\} \notin E$, then $x_1^*, x_2^* > 0$, can perturb x^* by $\epsilon \in [-x_1^*, x_2^*]$, get $x^{\epsilon} = (x_1^* + \epsilon, x_2^* - \epsilon, x_3^*, x_4^*, \ldots)$, feasible w.r.t. simplex and bound constraints

{1,2} ∉ E ⇒ x₁x₂ does not appear in f(x) ⇒ f(x^ε) depends at worst linearly on ε; by local optimality of x*, f achieves max for ε = 0, in interior of its range ⇒ f(x^ε) constant w.r.t. ε. Hence f(x^ε) is globally optimal for all ε

► setting $\epsilon = -x_1^*$ or $= x_2^*$ yields global optima with more zero components than x^* , against assumption (‡), hence $\{1, 2\} \in E[C]$; by relabeling C is a clique

Proof of the Motzkin-Straus theorem

 $x^* \in \arg(\max_{\substack{\sum_j x_j=1\\x\geq 0}} \sum_{ij\in E} x_i x_j) \text{ s.t. } |C = \{j \in V \mid x_j^* > 0\}| \text{ smallest } (\ddagger)$

2. $|C| = \omega(G)$

SO

• square the simplex constraint $\sum_j x_j = 1$, get

$$\psi(x) \equiv \sum_{j \in V} x_j^2 + 2 \sum_{i < j \in V} x_i x_j = 1$$

by construction $x_j^* = 0$ for $j \notin C \Rightarrow$

$$\psi(x^*) = \sum_{j \in C} (x_j^*)^2 + 2 \sum_{i < j \in C} x_i^* x_j^* = \sum_{j \in C} (x_j^*)^2 + 2f(x^*) = 1$$

• $\psi(x) = 1$ for all feasible x, so f(x) achieves maximum when $\sum_{j \in C} (x_j^*)^2$ is minimum, i.e. $x_j^* = \frac{1}{|C|}$ for all $j \in C$

again by simplex constraint

$$2f(x^*) = 1 - \sum_{j \in C} (x_j^*)^2 = 1 - |C| \frac{1}{|C|^2} = 1 - \frac{1}{|C|} \le 1 - \frac{1}{\omega(G)}$$
$$f(x^*) \text{ attains max } \left(\frac{1}{2} - \frac{1}{2|C|}\right) \text{ when } |C| = \omega(G) \Rightarrow \forall j \in C \ x_j = \frac{1}{\omega(G)}$$

135/413

Copositive programming

- ► STQP: min $x^{\top}Qx$: $\sum_{j} x_{j} = 1 \land x \ge 0$ *NP-hard by Motzkin-Straus*
- Linearize: $X = xx^{\top}$

replace $x_i x_j$ by X_{ij} and add constraints $X_{ij} = x_i x_j$

- Define $A \bullet B = \operatorname{tr}(A^{\top}B) = \sum_{i,j} A_{ij}B_{ij}$ write StQP (linearized) objective as min $Q \bullet X$
- Let $C = \{X \mid X = xx^{\top} \land x \ge 0\}, \ \bar{C} = \operatorname{conv}(C)$
- $\blacktriangleright \sum_{j} x_{j} = 1 \Leftrightarrow (\sum_{j} x_{j})^{2} = 1^{2} \Leftrightarrow \mathbf{1} \bullet X = 1$
- ▶ STQP ≡ min $Q \bullet X : 1 \bullet X = 1 \land X \in C$ linear obj. ⇒ optima attained at extrema of feas. set ⇒ can replace C by its convex hull \overline{C}

 \bar{C} is a completely positive cone

Dual
$$\equiv \max y : Q - y\mathbf{1} \in \overline{C}^* = \{A \mid \forall x \ge 0 \ (x^\top A x \ge 0)\}$$

 \bar{C}^* is a copositive cone

▶ \Rightarrow Pair of **NP**-hard cNLPs!

An exercise and a project idea

You, a private investment banker, are seeing a customer. She tells you "I have 3,450,000\$ I don't need in the next three years. Invest them in low-risk assets so I get at least 2.5% return per year."

Model the problem of determining the required portfolio. Missing data are part of the fun (and of real life).

[What are the decision varis, objective, constraints? What data are missing?]

Project idea 1: Consider the MILP formulation for MAX CLIQUE and the Motzkin-Straus formulation. Can the latter have multiple global optima? If so, do they all characterize a maximum clique? What do local optima characterize? Pursue a computational study to answer these questions, then check [Gibbons et al., *Mathematics of Operations Research*, **22**:754-768, 1997] and [Pelillo & Jagota, J. Artif. Neural Networks, **2**:411-420, 1995]

Outline

Introduction

MP language Solvers MP systematics Some applications

Decidability

Formal systems Gödel

Turing

Completeness

Completeness and incompleteness MP solvability

Efficiency and Hardness

Some combinatorial problems in NP NP-hardness Complexity of solving MP formulation

Distance Geometry

The universal isometric embedding Dimension reduction Dealing with incomplete metrics The Isomap heuristic Distance geometry problem Distance geometry in MP DGP cones Barvinok's Naive Algorithm Isomap revisited

Summary

Random projections in LP

Random projection theory Projecting LP feasibility Projecting LP optimality Solution retrieval Application to quantile regression

Sparsity and ℓ_1 minimization

Motivation Basis pursuit Theoretical results Application to noisy channel encoding Improvements

Kissing Number Problem

Lower bounds Upper bounds from SDP? Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Clustering in Natural Language

Clustering on graphs Clustering in Euclidean spaces Distance instability MP formulations Random projections again

A gem in Distance Geometry

- Heron's theorem
- Heron lived around year 0

 Hung out at Alexandria's library



$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

A = area of triangle
 s = ¹/₂(a + b + c)

Useful to measure areas of agricultural land

Heron's theorem: *Proof* [M. Edwards, high school student, 2007]

A. $2\alpha + 2\beta + 2\gamma = 2\pi \Rightarrow \alpha + \beta + \gamma = \pi$

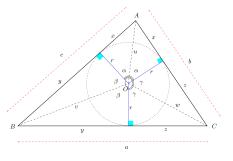
 $\begin{array}{rcl} r+ix &=& ue^{i\alpha}\\ r+iy &=& ve^{i\beta}\\ r+iz &=& we^{i\gamma} \end{array}$

$$\Rightarrow (r+ix)(r+iy)(r+iz) = (uvw)e^{i(\alpha+\beta+\gamma)} = uvw e^{i\pi} = -uvw \in \mathbb{R} \Rightarrow \operatorname{Im}((r+ix)(r+iy)(r+iz)) = 0 \Rightarrow r^2(x+y+z) = xyz \Rightarrow r = \sqrt{\frac{xyz}{x+y+z}}$$

B. $s = \frac{1}{2}(a+b+c) = \frac{1}{2}(2x+2y+2z) = x+y+z$

$$s-a = x+y+z-y-z = x s-b = x+y+z-x-z = y s-c = x+y+z-x-y = z$$

 $\Rightarrow \quad \mathcal{A} = \frac{1}{2}(ra + rb + rc) = r\frac{a + b + c}{2} = rs = \sqrt{s(s - a)(s - b)(s - c)}$ 140/413



Subsection 1

The universal isometric embedding

Representing metric spaces in \mathbb{R}^n

• Given metric space (X, d) with dist. matrix (DM) $D = (d_{ij})$, embed X in some \mathbb{R}^K so it has the same DM

• Consider *i*-th row
$$x_i = (d_{i1}, \ldots, d_{in})$$
 of D

- Embed $i \in X$ by vector $U^D(i) = x_i \in \mathbb{R}^n$ define $U^D : \{1, \dots, n\} \to \mathbb{R}^n$ s.t. $U^D(i) = x_i$
- ► Thm.: (U^D, ℓ_∞) is a metric space with DM D*i.e.* $\forall i, j \leq n ||x_i - x_j||_\infty = d_{ij}$
- ▶ U^D is called Universal Isometric Embedding (UIE)
- ▶ Practical issue: embedding is high-dimensional (\mathbb{R}^n)

[Kuratowski 1935]

Proof

▶ Consider i, j ∈ X with distance d(i, j) = d_{ij}
 ▶ Then

$$||x_i - x_j||_{\infty} = \max_{k \le n} |d_{ik} - d_{jk}| \le \max_{k \le n} |d_{ij}| = d_{ij}$$

ineq. \leq above from triangular inequalities in metric space:

$$\forall k \qquad d_{ik} \leq d_{ij} + d_{jk} \land d_{jk} \leq d_{ij} + d_{ik}$$

$$\Rightarrow \quad d_{ik} - d_{jk} \leq d_{ij} \land d_{jk} - d_{ik} \leq d_{ij}$$

$$\Rightarrow \quad |d_{ik} - d_{jk}| \leq d_{ij}$$

If valid $\forall k$ then valid for \max_k

• $\max |d_{ik} - d_{jk}|$ over $k \le n$ achieved when $k \in \{i, j\}$

$$\Rightarrow \|x_i - x_j\|_{\infty} = d_{ij}$$

Subsection 2

Dimension reduction

Schoenberg's theorem

- [I. Schoenberg, Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espace de Hilbert", Ann. Math., 1935]
- ▶ Question: Given $n \times n$ symmetric matrix D, what are necessary and sufficient conditions s.t. D is a Euclidean DM (EDM) corresponding to n points $x_1, \ldots, x_n \in \mathbb{R}^K$ with K minimum?

▶ Necessary and sufficient conditions for an EDM Thm. $D = (d_{ij})$ is an EDM iff $\frac{1}{2}(d_{1i}^2 + d_{1j}^2 - d_{ij}^2 | 2 \le i, j \le n)$ is PSD (of rank K)

 Yields important result in data science: Classic Multidimensional Scaling

Gram matrices and EDMs

- Realization: $n \times K$ matrix $x = (x_1, \ldots, x_n) \subseteq \mathbb{R}^K$
- ► Gram matrix of x: $G = xx^{\top} = (x_i \cdot x_j)$ Lemma: (i) $G \succeq 0$; (i) each $M \succeq 0$ is a Gram matrix of some x
- **•** Theorem: given rlz x, Gram matrix G and EDM D satisfy

$$G = -\frac{1}{2}JD^2J \qquad (\S)$$

► In the theorem,
$$D^2 = (d_{ij}^2)$$
 and
 $J = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^\top = \begin{pmatrix} 1 - \frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\ -\frac{1}{n} & 1 - \frac{1}{n} & \cdots & -\frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & \cdots & 1 - \frac{1}{n} \end{pmatrix}$

▶ This is a variant of Schoenberg's theorem

Multidimensional scaling (MDS)

- Often get approximate EDMs D from raw data (i.e. matrices that are not EDMs, but they are "not too far") (they measure dissimilarities, discrepancies, differences)
- $\tilde{G} = -\frac{1}{2}J\tilde{D}^2J$ is an approximate Gram matrix
- Approximate Gram \Rightarrow spectral decomposition $P\tilde{\Lambda}P^{\top}$ has $\tilde{\Lambda} \not\geq 0$
- Let Λ be a PSD diagonal matrix closest to Λ̃:
 Λ obtained from Λ̃ by zeroing negative components
- $x = P\sqrt{\Lambda}$ is an "approximate realization" of \tilde{D}
- $\blacktriangleright \text{ Denote } x = \text{MDS}(D)$

Classic MDS: Main result

1. Prove lemma: matrix is Gram iff it is PSD 2. Prove theorem: $G = -\frac{1}{2}JD^2J$

Proof of lemma

$\blacktriangleright \ Gram \subseteq PSD$

- x is an $n \times K$ real matrix
- $G = xx^{\top}$ its Gram matrix
- For each $y \in \mathbb{R}^n$ we have

$$yGy^{\top} = y(xx^{\top})y^{\top} = (yx)(x^{\top}y^{\top}) = (yx)(yx)^{\top} = ||yx||_2^2 \ge 0$$

 $\blacktriangleright \Rightarrow G \succeq 0$

$\blacktriangleright PSD \subseteq Gram$

- ▶ Let $G \succeq 0$ be $n \times n$
- Spectral decomposition: $G = P\Lambda P^{\top}$

 $(P \text{ orthogonal}, \Lambda \geq 0 \text{ diagonal})$

$$\blacktriangleright \Lambda \ge 0 \Rightarrow \sqrt{\Lambda} \in \mathbb{R}^{n \times n}$$

- $G = P\Lambda P^{\top} = (P\sqrt{\Lambda})(\sqrt{\Lambda}^{\top}P^{\top}) = (P\sqrt{\Lambda})(P\sqrt{\Lambda})^{\top}$
- Let $x = P\sqrt{\Lambda}$, then G is the Gram matrix of x

Proof of theorem (1/2)

- Let $G = xx^{\top}$, translate x so that centroid $\frac{1}{n} \sum_{j} x_{j} = 0$
- Expand: $d_{ij}^2 = ||x_i x_j||_2^2 = (x_i x_j)(x_i x_j) = x_i x_i + x_j x_j 2x_i x_j$ (*)
- Aim at "inverting" (*) to express $x_i x_j$ in function of d_{ij}^2
- Sum (*) over $i: \sum_{i} d_{ij}^2 = \sum_{i} x_i x_i + n x_j x_j 2x_j \sum_{i} x_i^{0}$ by zero centroid

Similarly for j and divide by n, get:

$$\frac{1}{n} \sum_{i \le n} d_{ij}^2 = \frac{1}{n} \sum_{i \le n} x_i x_i + x_j x_j \quad (\dagger)$$

$$\frac{1}{n} \sum_{j \le n} d_{ij}^2 = x_i x_i + \frac{1}{n} \sum_{j \le n} x_j x_j \quad (\ddagger)$$

Sum (\dagger) over j, get:

$$\frac{1}{n}\sum_{i,j}d_{ij}^{2} = n\frac{1}{n}\sum_{i}x_{i}x_{i} + \sum_{j}x_{j}x_{j} = 2\sum_{i}x_{i}x_{i}$$

 \blacktriangleright Divide by n, get:

$$\frac{1}{n^2} \sum_{i,j} d_{ij}^2 = \frac{2}{n} \sum_i x_i x_i \quad (**)$$

Proof of theorem (2/2)

• Rearrange (*), (\dagger) , (\ddagger) as follows:

$$2x_i x_j = x_i x_i + x_j x_j - d_{ij}^2$$
(5)

$$x_{i}x_{i} = \frac{1}{n}\sum_{j}d_{ij}^{2} - \frac{1}{n}\sum_{j}x_{j}x_{j}$$
(6)

$$x_{j}x_{j} = \frac{1}{n}\sum_{i}d_{ij}^{2} - \frac{1}{n}\sum_{i}x_{i}x_{i}$$
(7)

Replace LHS of Eq. (6)-(7) in RHS of Eq. (5), get

$$2x_i x_j = \frac{1}{n} \sum_k d_{ik}^2 + \frac{1}{n} \sum_k d_{kj}^2 - d_{ij}^2 - \frac{2}{n} \sum_k x_k x_k$$

• By (**) replace $\frac{2}{n} \sum_{i} x_i x_i$ with $\frac{1}{n^2} \sum_{i,j} d_{ij}^2$, get

$$2x_i x_j = \frac{1}{n} \sum_k (d_{ik}^2 + d_{kj}^2) - d_{ij}^2 - \frac{1}{n^2} \sum_{h,k} d_{hk}^2 \quad (\S)$$

which expresses $x_i x_j$ in function of D

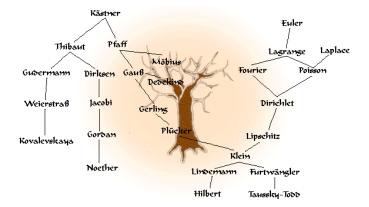
▶ Finally, show RHS of (§) is (i, j)-th entry of −JD²J See lecture notes, Thm. 10.3.5

Principal Component Analysis (PCA)

- $\blacktriangleright\,$ Given an approximate EDM D
- ▶ find x = MDS(D)
- However, you want $x = P\sqrt{\Lambda}$ in K dimensions $but \operatorname{rank}(\Lambda) > K$
- Only keep K largest components of Λ zero the rest
- ▶ Get realization in desired space
- ▶ Denote x = PCA(D, K)

Example 1/3

$Mathematical\ genealogy\ skeleton$

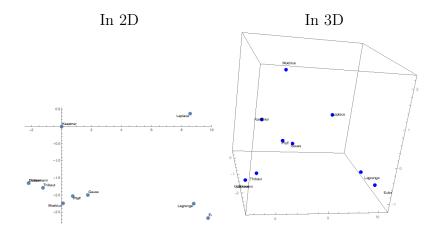


Example 2/3

A partial view

	Euler	Thibaut	Pfaff	Lagrange	Laplace	Möbius	Gudermann	Dirksen
Kästner	10	1	1	9	8	2	2	2
Euler		11	9	1	3	10	12	12
Thibaut			2	10	10	3	1	1
Pfaff				8	8	1	3	3
Lagrange					2	9	11	11
Laplace						9	11	11
Möbius							4	4
Gudermann								2
Dirksen								
		$(0)^{-1}$	10 1	$1 \ 9$	8 2	2 2	2 \	
		1		-	-		1	
		-	0 11	9 1		12 12	8	
		1 1	11 0	2 10	10 3	1 1	3	
		1	9 2	0 8	8 1	3 3	1	
	D =	9	1 10	8 0	2 9	11 11	7	
		8	3 10	8 2	0 9	11 11	7	
		2	10 3	1 9	9 0	4 4	2	
		2 1	12 1	3 11	11 4	0 2	4	
		2 1	12 1	3 11	11 4	2 0	4	
		$\setminus 2$	8 3	$1 \ 7$	7 2	4 4	0 /	

Example 3/3

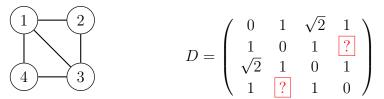


Subsection 3

Dealing with incomplete metrics

Partial metrics

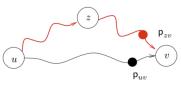
- ▶ If your metric space is missing some distances
- \blacktriangleright Get incomplete EDM D
- ▶ Cannot define vectors $U^D(i)$ in UIE
- <u>Note</u>: D defines a graph



• Complete graph with shortest path (SP) distances: $d_{24} = 2$

Floyd-Warshall algorithm 1/2

- Given n × n partial matrix D computes all shortest path lengths
- For each triplet z, u, v of vertices in the graph, test: when going $u \rightarrow v$, is it convenient to pass through z?



- ▶ If so, then change the path length
- Complete missing entries d_{uv} in D shortest path lengths $u \to v$
- Denote $\overline{D} = \text{FloydWarshall}(D)$

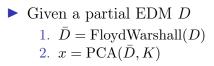
Floyd-Warshall algorithm 2/2

initialization for u < n, v < n do if $d_{uv} = ?$ then $d_{uv} \leftarrow \infty$ end if end for # main loop (outer loop must be on triangulation vertex) for $z \leq n$ do for u < n do for v < n do if $d_{uv} > d_{uz} + d_{zv}$ then $d_{uv} \leftarrow d_{uz} + d_{zv}$ end if end for end for end for

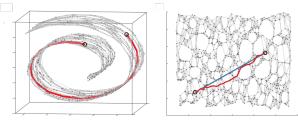
Subsection 4

The Isomap heuristic

Isomap embedding in \mathbb{R}^K



▶ Intuition of why it works well:



 $\blacktriangleright \text{ Denote } x = \text{Isomap}(D, K)$

[Tenenbaum et al., Science, 2000]

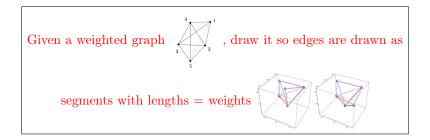
Subsection 5

Distance geometry problem

The Distance Geometry Problem (DGP)

Given $K \in \mathbb{N}$ and G = (V, E, d) with $d : E \to \mathbb{R}_+$, find $x : V \to \mathbb{R}^K$ s.t.

$$\forall \{i, j\} \in E \quad ||x_i - x_j||_2^2 = d_{ij}^2$$



Some applications

- clock synchronization (K = 1)
- sensor network localization (K = 2)
- molecular structure from distance data (K = 3)
- autonomous underwater vehicles (K = 3)
- \blacktriangleright EDM completion (whatever K)
- finding graph embeddings (whatever K)

Clock synchronization

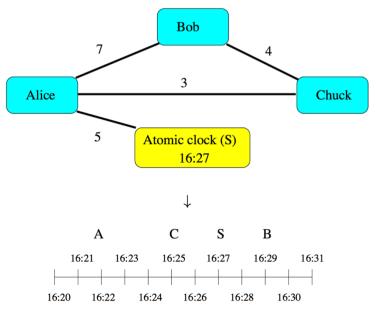
From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial measurements of their time differences

- ► *K* = 1
- \blacktriangleright V: timestamps
- ▶ $\{u, v\} \in E$ if known time difference between u, v
- \blacktriangleright d: values of the time differences

Used in time synchronization of distributed networks

Clock synchronization



Sensor network localization

From [Yemini, Proc. CDSN, 1978]

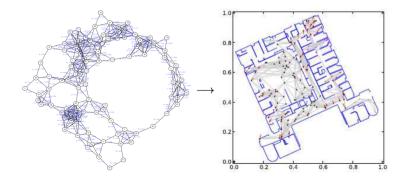
The positioning problem arises when it is necessary to locate a set of geographically distributed objects using measurements of the distances between some object pairs

► *K* = 2

- \blacktriangleright V: (mobile) sensors
- ▶ $\{u, v\} \in E$ iff distance between u, v is measured
- \blacktriangleright d: distance values

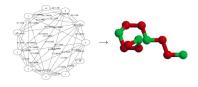
Used whenever GPS not viable (e.g. underwater) $d_{uv} \lesssim \text{battery consumption in P2P communication betw. } u, v$

Sensor network localization



Molecular structure from distance data

From [Liberti et al., SIAM Rev., 2014]



- \blacktriangleright V: atoms
- ▶ $\{u, v\} \in E$ iff distance between u, v is known
- \blacktriangleright d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid) Covalent bond lengths and angles known precisely Distances ≤ 5.5 measured approximately by NMR

Graph embeddings

- Relational knowledge best represented by graphs
- ▶ We have fast algorithms for clustering vectors
- **Task**: represent a graph in \mathbb{R}^n
- "Graph embeddings" and "distance geometry": almost synonyms
- ▶ Used in Natural Language Processing (NLP) obtain "word vectors" & "sentence vectors"

Project idea 2: create a graph-of-words from a sentence, enrich it with semantic distances, then use the DG methods in these lectures to embed the graph in a low-dimensional space; then evaluate sentence similarity using vector angles

Complexity

- ▶ DGP₁ with $d: E \to \mathbb{Q}_+$ is in **NP**
 - ▶ if instance YES \exists realization $x \in \mathbb{R}^{n \times 1}$
 - if some component $x_i \notin \mathbb{Q}$ translate x so $x_i \in \mathbb{Q}$
 - \triangleright consider some other x_i

• let
$$\ell = |\text{sh. path } p: i \to j| = \sum_{\{u,v\} \in p} (-1)^{s_{uv}} d_{uv} \in \mathbb{Q}$$

for some $s_{uv} \in \{0, 1\}$

• then
$$x_j = x_i \pm \ell \to x_j \in \mathbb{Q} \ (\forall j)$$

 \blacktriangleright \Rightarrow polytime verification of

$$\forall \{i, j\} \in E \quad |x_i - x_j| = d_{ij}$$

▶ DGP_K may not be in NP for K > 1don't know how to polytime check $||x_i - x_j||_2 = d_{ij}$ for $x \notin \mathbb{Q}^{nK}$

Hardness

PARTITION is NP-hard

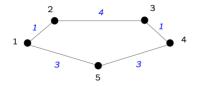
Given
$$a = (a_1, \ldots, a_n) \in \mathbb{N}^n$$
, $\exists I \subseteq \{1, \ldots, n\}$ s.t. $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

 \blacktriangleright Reduce PARTITION to DGP₁ on single-cycle graphs

$$\bullet a \longrightarrow \text{cycle } C$$
$$V(C) = \{1, \dots, n\}, E(C) = \{\{1, 2\}, \dots, \{n, 1\}\}$$

For
$$i < n$$
 let $d_{i,i+1} = a_i$
For $i = n$, let $d_{n,n+1} = d_{n1} = a_n$

• E.g. for
$$a = (1, 4, 1, 3, 3)$$
, get cycle graph:



[Saxe, 1979]

PARTITION is $YES \Rightarrow DGP_1$ is YES

• Given:
$$I \subset \{1, \ldots, n\}$$
 s.t. $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$

Construct: realization x of C in \mathbb{R}

- 1. $x_1 = 0$ // start
- 2. **induction step**: suppose x_i known if $i \in I$

let
$$x_{i+1} = x_i + d_{i,i+1}$$
 // go right else

let
$$x_{i+1} = x_i - d_{i,i+1}$$
 // go left

• Correctness proof: by the same induction but careful when i = n: have to show $x_{n+1} = x_1$

PARTITION is $YES \Rightarrow DGP_1$ is YES

Proof that $x_{n+1} = x_1$:

$$(1) = \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \in I} d_{i,i+1} =$$
$$= \sum_{i \in I} a_i = \sum_{i \notin I} a_i =$$
$$= \sum_{i \notin I} d_{i,i+1} = \sum_{i \notin I} (x_i - x_{i+1}) = (2)$$

$$(1) = (2) \Rightarrow \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \notin I} (x_i - x_{i+1}) \Rightarrow \sum_{i \le n} (x_{i+1} - x_i) = 0$$

$$\Rightarrow (x_{n+1} - x_n) + (x_n - x_{n-1}) + \dots + (x_3 - x_2) + (x_2 - x_1) = 0$$

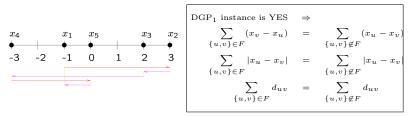
$$\Rightarrow x_{n+1} = x_1$$

PARTITION is $NO \Rightarrow DGP_1$ is NO

▶ By contradiction: suppose DGP_1 is YES, x realization of C

►
$$F = \{\{u, v\} \in E(C) \mid x_u \le x_v\},\ E(C) \smallsetminus F = \{\{u, v\} \in E(C) \mid x_u > x_v\}$$

Trace x_1, \ldots, x_n : follow edges in $F(\rightarrow)$ and in $E(C) \smallsetminus F(\leftarrow)$



► Let
$$J = \{i < n \mid \{i, i+1\} \in F\} \cup \{n \mid \{n, 1\} \in F\}$$

⇒ $\sum_{i \in J} a_i = \sum_{i \notin J} a_i$

 \blacktriangleright So J solves Partition instance, contradiction

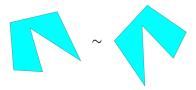
▶ \Rightarrow DGP is **NP**-hard, DGP₁ is **NP**-complete

Number of solutions

- \blacktriangleright (G, K): DGP instance
- $\tilde{X} \subseteq \mathbb{R}^{Kn}$: set of solutions
- Congruence: composition of translations, rotations, reflections
- $\blacktriangleright C = \text{set of congruences in } \mathbb{R}^K$
- ► $x \sim y$ means $\exists \rho \in C \ (y = \rho x)$: distances in x are preserved in y through ρ
- $\blacktriangleright \Rightarrow \text{if } |\tilde{X}| > 0, \, |\tilde{X}| = 2^{\aleph_0}$

Number of solutions modulo congruences

• Congruence is an equivalence relation \sim on \tilde{X} (reflexive, symmetric, transitive)



- ▶ Partitions \tilde{X} into equivalence classes
- $\blacktriangleright \ X = \tilde{X} / \! \sim$

sets of representatives of equivalence classes

▶ Focus on |X| rather than $|\tilde{X}|$

Rigidity, flexibility and |X|

- $\blacktriangleright \text{ infeasible } \Leftrightarrow |X| = 0$
- ▶ rigid graph $\Leftrightarrow |X| < \aleph_0$
- ▶ globally rigid graph $\Leftrightarrow |X| = 1$
- flexible graph $\Leftrightarrow |X| = 2^{\aleph_0}$
- ► $|X| = \aleph_0$: impossible by Milnor's theorem

Milnor's theorem implies $|X| \neq \aleph_0$

 \blacktriangleright System S of polynomial equations of degree 2

$$\forall i \le m \quad p_i(x_1, \dots, x_{nK}) = 0$$

• Let X be the set of $x \in \mathbb{R}^{nK}$ satisfying S

- Number of connected components of X is O(3^{nK})
 [Milnor 1964]
- ▶ Assume |X| is countable; then G cannot be flexible
 ⇒ each incongruent rlz is in a separate component
 ⇒ by Milnor's theorem, there's finitely many of them

Examples

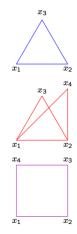
$$\begin{split} V^1 &= \{1,2,3\} \\ E^1 &= \{\{u,v\} \mid u < v\} \\ d^1 &= 1 \end{split}$$

$$V^{2} = V^{1} \cup \{4\}$$

$$E^{2} = E^{1} \cup \{\{1,4\},\{2,4\}\}$$

$$d^{2} = 1 \land d_{14} = \sqrt{2}$$

$$\begin{split} V^3 &= V^2 \\ E^3 &= \{\{u, u+1\} | u \leq 3\} \cup \{1, 4\} \\ d^1 &= 1 \end{split}$$



 ρ congruence in \mathbb{R}^2 $\Rightarrow \rho x$ valid realization |X| = 1

 ρ reflects x_4 wrt $\overline{x_1, x_2}$ $\Rightarrow \rho x$ valid realization $|X| = 2 (\triangle, \bigcirc)$

 $\begin{array}{l} \rho \text{ rotates } \overline{x_2 x_3}, \ \overline{x_1 x_4} \text{ by } \theta \\ \Rightarrow \rho x \text{ valid realization} \\ |X| \text{ is uncountable} \\ (\Box, \Box, \Box, \Box, \infty, \ldots) \end{array}$

Subsection 6

Distance geometry in MP

DGP formulations and methods

- ► System of equations
- ▶ Unconstrained global optimization (GO)
- Constrained global optimization
- ▶ SDP relaxations and their properties
- ▶ Diagonal dominance
- ▶ Concentration of measure in SDP
- ▶ Isomap for DGP

System of quadratic equations

$$\forall \{u, v\} \in E \quad \|x_u - x_v\|^2 = d_{uv}^2 \tag{8}$$

Computationally: useless reformulate using slacks:

$$\min_{x,s} \left\{ \sum_{\{u,v\}\in E} s_{uv}^2 \mid \forall \{u,v\} \in E \quad \|x_u - x_v\|^2 = d_{uv}^2 + s_{uv} \right\}$$
(9)

Unconstrained Global Optimization

$$\min_{x} \sum_{\{u,v\}\in E} (\|x_u - x_v\|^2 - d_{uv}^2)^2 \tag{10}$$

Globally optimal obj. fun. value of (10) is 0 iff x solves (8)

Computational experiments in [Liberti et al., 2006]:

- ► GO solvers from >15 years ago
- ▶ randomly generated protein data: ≤ 50 atoms
- cubic crystallographic grids: ≤ 64 atoms

Constrained global optimization

$$\min_{x} \sum_{\{u,v\} \in E} |||x_u - x_v||^2 - d_{uv}^2| \text{ exactly reformulates (8)}$$

► Relax objective f to concave part, remove constant term, rewrite min -f as $-\max f$ $\min_x \sum_{uv} (d_{uv}^2 - \|x_u - x_v\|_2^2) = \sum_{uv} d_{uv}^2 - \max_x \sum_{uv} \|x_u - x_v\|_2^2$

- Reformulate convex part of obj. fun. to convex constraints $\forall \{u, v\} \in E ||x_u x_v||_2^2 \le d_{uv}^2$
- ► Exact reformulation ("push-and-pull")

$$\max_{\substack{\{u,v\} \in E \\ \forall \{u,v\} \in E \\ \|x_u - x_v\|^2 \le d_{uv}^2 } }$$
 (11)

Theorem (Activity) At a glob. opt. x^* of a YES instance, all constraints of (11) are active

Push-and-pull linearization

Linearization of nonlinear terms $||x_i - x_j||_2^2$ for all $\{i, j\} \in E$:

$$\Rightarrow \quad \forall \{i, j\} \in E \quad \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i \cdot x_j = d_{ij}^2$$
$$\Rightarrow \begin{cases} \forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\ X = x x^\top \end{cases}$$

Relaxation

$$\begin{array}{rcl} X &=& x \, x^{\top} \\ \Rightarrow & X - x \, x^{\top} &=& 0 \\ (\text{relax}) &\Rightarrow & X - x \, x^{\top} &\succeq& 0 \\ \\ \text{Schur}(X, x) = \left(\begin{array}{cc} I_K & x^{\top} \\ x & X \end{array} \right) &\succeq& 0 \end{array}$$

If x does not appear elsewhere \Rightarrow get rid of it (e.g. choose x = 0):

replace $\mathsf{Schur}(X, x) \succeq 0$ *by* $X \succeq 0$

SDP relaxation

► Relaxation:

$$\min F \bullet X \forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 X \succeq 0$$

- ▶ Note SDP ≡ linear obj. s.t. linear constrs \land PSD cone
- ▶ DGP linearization/relaxation only defines feasible set
- Note $F \bullet X = \operatorname{tr}(F^{\top}X) = \sum_{ij} F_{ij}X_{ij}$
- \blacktriangleright Can we choose a "good" objective function F?

Some possible objective functions

▶ For protein conformation:

$$\min \sum_{\{i,j\}\in E} (X_{ii} + X_{jj} - 2X_{ij})$$

with = changed to \geq in constraints (or max and \leq) "push-and-pull" relaxation

▶ [Ye, 2003], application to wireless sensors localization

$\min \operatorname{tr}(X)$

 $\begin{aligned} \operatorname{tr}(X) &= \operatorname{tr}(P^{-1}\Lambda P) = \operatorname{tr}(P^{-1}P\Lambda) = \operatorname{tr}(\Lambda) = \sum_i \lambda_i \\ &\Rightarrow hope \ to \ minimize \ rank \end{aligned}$

▶ How about "just random"?

How do you choose?

for want of some better criterion...

TEST!

- Download protein files from Protein Data Bank (PDB) they contain atom realizations
- Mimick a Nuclear Magnetic Resonance experiment Keep only pairwise distances < 5.5
- Try and reconstruct the protein shape from those weighted graphs
- Quality evaluation of results:

Empirical choice

- ▶ Ye faster but often imprecise
- ▶ *Random* good but nondeterministic
- ▶ Push-and-Pull: can relax $X_{ii} + X_{jj} 2X_{ij} = d_{ij}^2$ to $X_{ii} + X_{jj} - 2X_{ij} \ge d_{ij}^2$ easier to satisfy feasibility, useful later on
- Heuristic: add $+\eta tr(X)$ to objective, with $\eta \ll 1$ might help minimize solution rank
- $\min \sum_{\{i,j\}\in E} (X_{ii} + X_{jj} 2X_{ij}) + \eta \operatorname{tr}(X)$ appears to be a good objective function

When solving real problems maths may not be enough use common sense too

Retrieving realizations in \mathbb{R}^{K}

- ▶ SDP relaxation yields $n \times n$ PSD matrix X^*
- We need $n \times K$ realization matrix x^*
- $\blacktriangleright \text{ Recall } PSD \Leftrightarrow Gram$
- ▶ Apply PCA to X^* , keep K largest comps, get x'
- ▶ This yields solutions with errors
- Use x' as starting pt for local NLP solver

Later on: Barvinok's Naive Algorithm, an SDP-specific alternative to PCA

When SDP solvers hit their size limit

- ► SDP solver: technological bottleneck
- ▶ Can we use an LP solver instead?
- ▶ Diagonally Dominant (DD) matrices are PSD
- ▶ Not vice versa: inner approximate PSD cone $Y \succeq 0$
- ▶ Idea by A.A. Ahmadi [Ahmadi & Hall 2015]

Diagonally dominant matrices

$n \times n$ symmetric matrix X is DD if

$$\forall i \le n \quad X_{ii} \ge \sum_{j \ne i} |X_{ij}|.$$

E.g.

(1	0.1	-0.2	0	0.04	0 \
(0.1	1	-0.05	0.1	0	0
	-0.2	-0.05	1	0.1	0.01	0
	0	0.1	0.1	1	0.2	0.3
	0.04	0	0.01	0.2	1	-0.3
(0	0	0	0.3	-0.3	1 /

Gershgorin's circle theorem

• Let A be symmetric $n \times n$

 $\blacktriangleright \quad \forall i \le n \text{ let } R_i = \sum_{j \ne i} |A_{ij}| \text{ and } I_i = [A_{ii} - R_i, A_{ii} + R_i]$

► Then $\forall \lambda$ eigenvalue of $A \quad \exists i \leq n \text{ s.t. } \lambda \in I_i$ <u>*Proof*</u>

- Let λ be an eigenvalue of A with eigenvector y
- ▶ Normalize y s.t. $\exists i \leq n \ y_i = 1$ and $\forall j \neq i \ |y_j| \leq 1$ let $i = \arg \max_j |y_j|$, divide $y \ \operatorname{by} \operatorname{sgn}(y_i)|y_i|$

$$\blacktriangleright Ay = \lambda y \Rightarrow \sum_{j \le n: j \ne i} A_{ij} y_j + A_{ii} y_i = \sum_{j \le n: j \ne i} A_{ij} y_j + A_{ii} = \lambda y_i = \lambda$$

• Hence
$$\sum_{j \le n: j \ne i} A_{ij} y_j = \lambda - A_{ii}$$

► Triangle+Cauchy-Schwarz inequalities & $\forall j \neq i |y_j| \leq 1 \Rightarrow$ $|\lambda - A_{ii}| = |\sum_{j \leq n: j \neq i} A_{ij}y_j| \leq \sum_{j \leq n: j \neq i} |A_{ij}| |y_j| \leq \sum_{j \leq n: j \neq i} |A_{ij}| = R_i$ hence $\lambda \in I_i$

$\mathrm{DD} \Rightarrow \mathrm{PSD}$

- Assume A is DD, λ an eigenvalue of A
- $\blacktriangleright \Rightarrow \forall i \le n \quad A_{ii} \ge \sum_{j \ne i} |A_{ij}| = R_i$
- $\blacktriangleright \Rightarrow \forall i \le n \quad A_{ii} R_i \ge 0$
- ▶ By Gershgorin's circle theorem $\lambda \ge 0$
- $\blacktriangleright \Rightarrow A \text{ is PSD}$

DD Linearization

$$\forall i \le n \quad X_{ii} \ge \sum_{j \ne i} |X_{ij}| \tag{*}$$

▶ linearize | · | by additional matrix var T
 ⇒ write |X| as T
 ▶ ⇒ (*) becomes

$$X_{ii} \ge \sum_{j \ne i} T_{ij}$$

add "sandwich" constraints -T ≤ X ≤ T
Can easily prove (*) in case X ≥ 0 or X ≤ 0:

$$X_{ii} \geq \sum_{j \neq i} T_{ij} \geq \sum_{j \neq i} X_{ij}$$
$$X_{ii} \geq \sum_{j \neq i} T_{ij} \geq \sum_{j \neq i} -X_{ij}$$

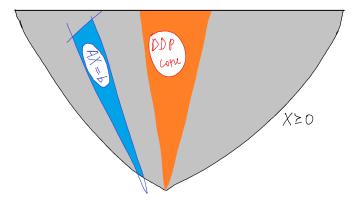
General case requires polyhedral analysis

DD Programming (DDP)

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\ X \quad \text{is DD}$$

$$\Rightarrow \begin{cases} \forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\ \forall i \leq n \qquad \sum_{\substack{j \leq n \\ j \neq i}} T_{ij} \leq X_{ii} \\ -T \leq X \leq T \end{cases}$$

The issue with inner approximations



DDP could be infeasible!

Exploit push-and-pull

▶ Enlarge the feasible region

► From

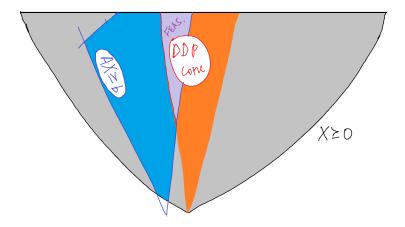
$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2$$

▶ Use "push" objective min $\sum_{ij \in E} X_{ii} + X_{jj} - 2X_{ij}$

▶ Relax to

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} \ge d_{ij}^2$$

Hope to achieve LP feasibility



DDP formulation for the DGP

$$\min \sum_{\substack{\{i,j\}\in E \\ \forall \{i,j\}\in E \\ \forall i \leq n \\ -T \leq X \\ T \geq 0 \end{bmatrix}} (X_{ii} + X_{jj} - 2X_{ij}) \geq d_{ij}^2 \\ \sum_{\substack{j\leq n \\ j\neq i \\ T \geq 0}} T_{ij} \leq X_{ii} \\ -T \leq X \leq T \\ T \geq 0$$

Solve, then retrieve solution in \mathbb{R}^K with PCA

Subsection 7

DGP cones

Cones

 \blacktriangleright Set C is a cone if:

 $\forall A, B \in C, \ \alpha, \beta \geq 0 \quad \alpha A + \beta B \in C$

• If C is a cone, the *dual cone* is

 $C^* = \{ y \mid \forall x \in C \ \langle x, y \rangle \ge 0 \}$

vectors making acute angles with all elements of C
If C ⊂ S_n (set n × n symmetric matrices)
C* = {Y | ∀X ∈ C (Y • X > 0)}

• A $n \times n$ matrix cone C is finitely generated by $\mathcal{X} \subset \mathbb{R}^n$ if

$$\mathcal{X} = \{x_1, \dots, x_p\} \land \quad \forall X \in C \; \exists \delta \in \mathbb{R}^p_+ \; X = \sum_{\ell \le p} \delta_\ell \; x_\ell x_\ell^\top$$

Representations of \mathbb{DD}

► Consider $E_{ii}, E_{ij}^+, E_{ij}^-$ in \mathbb{S}_n Define $\mathcal{E}_0 = \{E_{ii} \mid i \le n\}, \mathcal{E}_1 = \{E_{ij}^{\pm} \mid i < j\}, \mathcal{E} = \mathcal{E}_0 \cup \mathcal{E}_1$

$$E_{ii} = \operatorname{diag}(0, \dots, 0, 1_i, 0, \dots, 0)$$

$$E_{ij}^+ \text{ has minor } \begin{pmatrix} 1_{ii} & 1_{ij} \\ 1_{ji} & 1_{jj} \end{pmatrix}, 0 \text{ elsewhere}$$

$$E_{ij}^- \text{ has minor } \begin{pmatrix} 1_{ii} & -1_{ij} \\ -1_{ji} & 1_{jj} \end{pmatrix}, 0 \text{ elsewhere}$$

- ▶ Thm. \mathbb{DD} = cone generated by \mathcal{E} [Barker & Carlson 1975] Pf. Rays in \mathcal{E} are extreme, all DD matrices generated by \mathcal{E}
- ▶ Cor. DD finitely gen. by $\mathcal{X}_{DD} = \{e_i \mid i \leq n\} \cup \{(e_i \pm e_j) \mid i < j \leq n\}$ Pf. Verify $E_{ii} = e_i e_i^\top$, $E_{ij}^\pm = (e_i \pm e_j)(e_i \pm e_j)^\top$, where e_i is the *i*-th std basis element of \mathbb{R}^n

Finitely generated dual cone representation

Thm. If C finitely gen. by
$$\mathcal{X}$$
, then

$$C^* = \{Y \in \mathbb{S}^n \mid \forall x \in \mathcal{X} \ (Y \bullet xx^\top \ge 0)\}$$
recall $C^* \triangleq \{Y \in \mathbb{S}^n \mid \forall x \in C \mid Y \bullet x \ge 0\}$

 \triangleright (\supset) Let Y s.t. $\forall x \in \mathcal{X} (Y \bullet xx^{+} > 0)$ $\blacktriangleright \forall X \in C, X = \sum \delta_x x x^{\top}$ (by fin. gen.) $r \in \mathcal{X}$ • hence $Y \bullet X = \sum_{x} \delta_{x} Y \bullet x x^{\top} \ge 0$ (by defn. of Y) • whence $Y \in C^*$ (by define of C^*) $\blacktriangleright (\subseteq) \text{ Suppose } Z \in C^* \smallsetminus \{Y \mid \forall x \in \mathcal{X} (Y \bullet xx^\top > 0)\}$ • then $\exists \mathcal{X}' \subset \mathcal{X}$ s.t. $\forall x \in \mathcal{X}' \ (Z \bullet xx^{\top} < 0)$ • consider any $Y = \sum \delta_x x x^\top \in C$ with $\delta \ge 0$ $x \in \mathcal{X}'$ • then $Z \bullet Y = \sum \delta_x Z \bullet x x^\top < 0$ so $Z \notin C^*$ $r \in \mathcal{X}'$ • contradiction $\Rightarrow C^* = \{Y \mid \forall x \in \mathcal{X} (Y \bullet xx^\top > 0)\}$

Dual cone constraints

- **Remark**: for $v \in \mathbb{R}^n$, $X \bullet vv^{\top} = v^{\top}Xv$
- ▶ Use finitely generated dual cone theorem
- \blacktriangleright Decision variable matrix X
- ► Constraints:

 $\forall v \in \mathcal{X} \quad v^{\top} X v \ge 0$

▶ Cor. $DD^* \supset PSD$

Pf. $X \in \mathbb{PSD}$ iff $\forall v \in \mathbb{R}^n \ vXv \ge 0$, so certainly valid $\forall v \in \mathcal{X}$

▶ If $|\mathcal{X}|$ polysized, get compact formulation

 $otherwise\ use\ column\ generation$

 $\triangleright |\mathcal{X}_{\mathbb{D}\mathbb{D}}| = |\mathcal{E}| = O(n^2)$

Dual cone DDP formulation for DGP

$$\min \left\{ \begin{array}{ll} \min \left\{ X_{ii} + X_{jj} - 2X_{ij} \right\} \\ \forall \{i, j\} \in E \\ \forall v \in \mathcal{X}_{\mathbb{DD}} \end{array} \right\} \left\{ \begin{array}{ll} X_{ii} + X_{jj} - 2X_{ij} \\ v^{\top}Xv \geq 0 \end{array} \right\}$$

• $v^{\top}Xv \ge 0$ for $v \in \mathcal{X}_{\mathbb{DD}}$ equivalent to:

 $\forall i \le n \quad X_{ii} \ge 0$ $\forall \{i, j\} \notin E \quad X_{ii} + X_{jj} - 2X_{ij} \ge 0$ $\forall i < j \quad X_{ii} + X_{jj} + 2X_{ij} \ge 0$

Note we went back to equality "pull" constraints (why?)

Quantifier $\forall \{i,j\} \not\in E$ should be $\forall i < j$ but we already have those constraints $\forall \{i,j\} \in E$

Properties

- ▶ SDP relaxes original problem
- DualDDP relaxes SDP hence also relaxes original problem
- ▶ Yields tight obj fun bounds w.r.t. SDP
- Solutions may have large negative rank in some applications, retrieving feasible solutions may be difficult

Project idea 3: Apply the DG methods seen in these lectures in order to control a fleet of submarine robots (for each time instant $t \in T$ they define a different distance graph)

Subsection 8

Barvinok's Naive Algorithm

Concentration of measure

From [Barvinok, 1997]

The value of a "well behaved" function at a random point of a "big" probability space X is "very close" to the mean value of the function.

and

In a sense, measure concentration can be considered as an extension of the law of large numbers.

Concentration of measure

Given Lipschitz function $f: X \to \mathbb{R}$ s.t.

$$\forall x, y \in X \quad |f(x) - f(y)| \le L ||x - y||_2$$

for some $L \ge 0$, there is *concentration of measure* if \exists constants c, C s.t.

$$\forall \varepsilon > 0 \quad \mathsf{P}_x(|f(x) - \mathsf{E}(f)| > \varepsilon) \leq c \, e^{-C\varepsilon^2/L^2}$$

where $\mathsf{E}(\cdot)$ is w.r.t. given Borel measure μ over X

\equiv "discrepancy from mean is unlikely"

Barvinok's theorem

Consider:

- ▶ for each $k \leq m$, manifolds $\mathcal{X}_k = \{x \in \mathbb{R}^n \mid x^\top Q^k x = a_k\}$ where $m \leq \operatorname{poly}(n)$
- feasibility problem $F \equiv \left[\bigcap_{k \leq m} \mathcal{X}_k \neq \varnothing\right]$
- ▶ SDP relaxation $\forall k \leq m (Q^k \bullet X = a_k) \land X \succeq 0$ with soln. \bar{X}
- ► Algorithm: $T \leftarrow \mathsf{factor}(\bar{X}); \quad y \sim \mathsf{N}^n(0,1); \quad x' \leftarrow Ty$

Then:

►
$$\exists c > 0, n_0 \in \mathbb{N}$$
 such that $\forall n \ge n_0$
 $\mathsf{Prob}\left(\forall k \le m \quad \mathsf{dist}(x', \mathcal{X}_k) \le c \sqrt{\|\bar{X}\|_2 \ln n}\right) \ge 0.9.$

Algorithmic application

- \blacktriangleright x' is "close" to each \mathcal{X}_k : try local descent from x'
- \blacktriangleright \Rightarrow Feasible QP solution from an SDP relaxation

Elements of Barvinok's formula

$$\mathsf{Prob}\left(\forall k \le m \quad \mathsf{dist}(x', \mathcal{X}_k) \le c \sqrt{\|\bar{X}\|_2 \ln n}\right) \ge 0.9.$$

- $\sqrt{\|\bar{X}\|_2}$ arises from T (a factor of \bar{X})
- ▶ $\sqrt{\ln n}$ arises from concentration of measure
- ▶ 0.9 follows by adjusting parameter values in "union bound"

Application to the DGP

$$\blacktriangleright \quad \forall \{i, j\} \in E \quad \mathcal{X}_{ij} = \{x \mid ||x_i - x_j||_2^2 = d_{ij}^2\}$$

▶ DGP can be written as
$$\bigcap_{\{i,j\}\in E} \mathcal{X}_{ij} \stackrel{?}{\neq} \varnothing$$

- ► SDP relaxation $X_{ii} + X_{jj} 2X_{ij} = d_{ij}^2 \land X \succeq 0$ with soln. \overline{X}
- ▶ Difference with Barvinok: $x \in \mathbb{R}^{Kn}$, $\operatorname{rk}(\bar{X}) \leq K$
- ► IDEA: sample $y \sim \mathsf{N}^{nK}(0, \frac{1}{\sqrt{K}})$
- ▶ Thm. Barvinok's theorem works in rank K

Proof structure

▶ Show that, on average, $\forall k \leq m \operatorname{tr}((Ty)^{\top}Q^{k}(Ty)) = Q^{k} \bullet \overline{X} = a_{k}$

compute multivariate integrals

 \blacktriangleright bilinear terms disappear because y normally distributed

- decompose multivariate int. to a sum of univariate int.
- ▶ Exploit concentration of measure to show errors happen rarely

▶ a couple of technical lemmata yielding bounds

▶ ⇒ bound Gaussian measure μ of ε -neighbourhoods of

$$\begin{split} A_i^- &= \{ y \in \mathbb{R}^{n \times K} \mid \mathcal{Q}^i(Ty) \le Q^i \bullet \bar{X} \} \\ A_i^+ &= \{ y \in \mathbb{R}^{n \times K} \mid \mathcal{Q}^i(Ty) \ge Q^i \bullet \bar{X} \} \\ A_i &= \{ y \in \mathbb{R}^{n \times K} \mid \mathcal{Q}^i(Ty) = Q^i \bullet \bar{X} \}. \end{split}$$

use "union bound" for measure of A_i⁻(ε) ∩ A_i⁺(ε)
show A_i⁻(ε) ∩ A_i⁺(ε) = A_i(ε)
use "union bound" to measure intersections of A_i(ε)
appropriate values for some parameters ⇒ result

The heuristic

1. Solve SDP relaxation of DGP, get soln. \bar{X} use DDP+LP if SDP+IPM too slow

2. a.
$$T = \text{factor}(\bar{X})$$

b. $y \sim N^{nK}(0, \frac{1}{\sqrt{K}})$
c. $x' = Ty$

3. Use x' as starting point for a local NLP solver on formulation

$$\min_{x} \sum_{\{i,j\} \in E} \left(\|x_i - x_j\|^2 - d_{ij}^2 \right)^2$$

and return improved solution x

Subsection 9

Isomap revisited

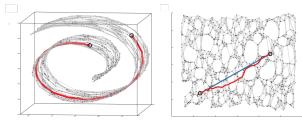
Isomap for the DGP

• Given DGP instance (K, G = (V, E, d)):

- 1. D = square weighted adjacency matrix of G
- 2. \overline{D} = completion of D

3.
$$x' = \text{PCA}(\bar{D}, K)$$

4. x =locally optimal solution closest to x



► Step 4 is the "refinement step"

calls a local solver for the DGP with starting point \boldsymbol{x}'

▶ Vary Step 2 to generate Isomap-based heuristics

Variants for Step 2

- A. Floyd-Warshall all-shortest-paths algorithm on G (classic Isomap)
- B. Find a spanning tree (SPT) of G and compute a random realization in $\bar{x} \in \mathbb{R}^{K}$, use its sqEDM
- C. Solve a push-and-pull SDP/DDP/DualDDP to find a realization $x' \in \mathbb{R}^n$, use its sqEDM

Project idea 4: implement and test at least 6 different variants of Isomap for DGP: the three above, and at least three new ones of your own conception

Subsection 10

Summary

Matrix reformulations

- ▶ Quadratic nonconvex too difficult?
- ► Solve SDP relaxation
- ▶ SDP relaxation too large?
- ► Solve DDP approximation
- Get $n \times n$ matrix solution, need $K \times n!$

Solution rank reduction methods

- ▶ Multidimensional Scaling (MDS)
- ▶ Principal Component Analysis (PCA)
- ▶ Barvinok's naive algorithm (BNA)
- ► Isomap

All provide good starting points for local solvers

Can also use them for general dimensionality reduction: they map n vectors in $\mathbb{R}^n \longrightarrow n$ vectors in \mathbb{R}^K

Outline

Introduction

Isomap revisited

Summary

Random projections in LP

Random projection theory Projecting LP feasibility Projecting LP optimality Solution retrieval Application to quantile regression

Sparsity and ℓ_1 minimization

Motivation Basis pursuit Theoretical results Application to noisy channel encoding Improvements

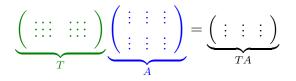
Kissing Number Problem

Lower bounds Upper bounds from SDP? Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Clustering in Natural Language

Clustering on graphs Clustering in Euclidean spaces Distance instability MP formulations Random projections again The gist of random projections (RP)

Let A be a m×n data matrix (columns in ℝ^m, m ≫ 1)
T short & fat, normally sampled componentwise

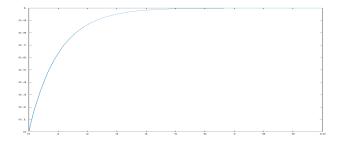


▶ Then $\forall i < j ||A_i - A_j||_2 \approx ||TA_i - TA_j||_2$ "wahp"

wahp

"wahp" = "with arbitrarily high probability" the probability of E_k (depending on some parameter k) approaches 1 "exponentially fast" as k increases

$$\mathbf{P}(E_k) \ge 1 - O(e^{-k})$$



Johnson-Lindenstrauss Lemma (JLL)

Thm.

Given $A \subseteq \mathbb{R}^m$ with |A| = n and $\varepsilon > 0$ there is $k = O(\frac{1}{\varepsilon^2} \ln n)$ and a $k \times m$ matrix T s.t.

 $\forall x, y \in A \quad (1 - \varepsilon) \|x - y\| \leq \|Tx - Ty\| \leq (1 + \varepsilon) \|x - y\|$

If $k \times m$ matrix T is sampled componentwise from $N(0, \frac{1}{\sqrt{k}})$, then $\mathbf{P}(A \text{ and } TA \text{ approximately congruent}) \geq \frac{1}{n}$ (nontrivial) — result follows by probabilistic method

Note that $1/\sqrt{k}$ is the standard deviation, not the variance

In practice

- ▶ $\mathbf{P}(A \text{ and } TA \text{ approximately congruent}) \ge \frac{1}{n}$
- ▶ re-sampling sufficiently many times gives wahp
- Empirically, sample T few times (once will do) $\mathbb{E}_T(||Tx - Ty||) = ||x - y||$ probability of error decreases wahp

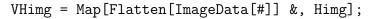
Surprising fact:

k is independent of the original number of dimensions \boldsymbol{m}

Clustering Google images

[L. & Lavor, 2017]

Clustering without RPs



VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
Out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 3}}

Too slow!

Clustering with RPs

Get["Projection.m"]; VKimg = JohnsonLindenstrauss[VHimg, 0.1]; VKcl = Timing[ClusteringComponents[VKimg, 3, 1]] Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

> From 0.405s CPU time to 0.00232s Same clustering

Projecting formulations

► Given:

- F(p, x): MP formulation with params p & vars x
- ▶ sol(F): solution of F
- ▶ C: formulation class (e.g. LP, NLP, MILP, MINLP)
- Given RP T, define T F(p, x) as F(Tp, x) or F(Tp, Tx)
- ▶ Want to show: $\forall F \in \mathscr{C} \operatorname{sol}(F) \approx \operatorname{sol}(TF)$ wahp

► Issues:

- RPs project points not vars/constrs
- approximate congruence \neq feasibility/optimality
- JLL applies to finite pt sets, vars encode ∞ pts
- ▶ Today we see this for $\mathscr{C} = LP$
- ▶ Can also be applied to QP, SDP, QCQP, and more

Subsection 1

Random projection theory

The shape of a set of points

► Lose dimensions but not too much accuracy Given $A_1, ..., A_n \in \mathbb{R}^m$ find $k \ll m$ and $A'_1, ..., A'_n \in \mathbb{R}^k$ s.t. A and A' "have almost the same shape"

What is the shape of a set of points?

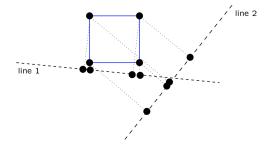
congruence \Leftrightarrow same shape: $\|A_i - A_j\| = \|A'_i - A'_j\|$

• Approximate congruence \equiv small distortion: A, A' have almost the same shape if $\forall i < j \leq n \quad (1-\varepsilon) \|A_i - A_j\| \leq \|A'_i - A'_j\| \leq (1+\varepsilon) \|A_i - A_j\|$ for some small $\varepsilon > 0$

Assume norms are all Euclidean

Losing dimensions = "projection"

In the plane, hopeless



In 3D: no better

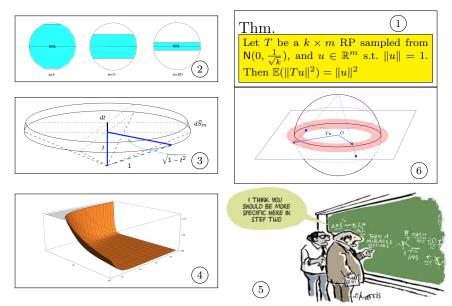
Recall the JLL

Thm.

Given $A \subseteq \mathbb{R}^m$ with |A| = n and $\varepsilon > 0$ there is $k = O(\frac{1}{\varepsilon^2} \ln n)$ and a $k \times m$ matrix T s.t.

 $\forall x, y \in A \quad (1 - \varepsilon) \|x - y\| \leq \|Tx - Ty\| \leq (1 + \varepsilon) \|x - y\|$

Approximate congruence: proof sketch



RPs preserve norms on average

Thm.

Let T be a $k \times m$ rectangular matrix with each component sampled from $\mathsf{N}(0, \frac{1}{\sqrt{k}})$, and $u \in \mathbb{R}^m$ s.t. ||u|| = 1. Then $\mathbb{E}(||Tu||^2) = 1$

Proof

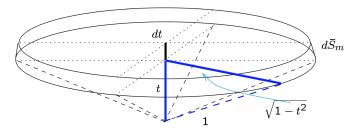
Can we argue that the variance decreases wahp?

Surface area of a slice of hypersphere $\bar{S}_m(r)$: surface of *m*-dimensional sphere of radius *r*

$$\bar{S}_m(r) = \frac{2\pi^{m/2}r^{m-1}}{\Gamma(m/2)} \qquad S_m \triangleq \bar{S}_m(1)$$

Lateral surface of infinitesimally high hypercylinder

$$d\bar{S}_m(t) = S_{m-1}(1-t^2)^{\frac{m-2}{2}}dt$$

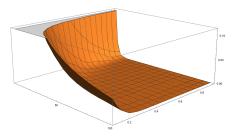


Area of polar caps

$$\mathcal{A}^{\rm pc} = 2\int_t^1 d\bar{S}_m(s) = 2S_{m-1}\int_t^1 (1-s^2)^{\frac{m-2}{2}} ds$$

 $1 + x \le e^x$ for all x and $\int_t^1 f(s)ds \le \int_t^\infty f(s)ds$ for $f \ge 0$

$$\Rightarrow \mathcal{A}^{\rm pc} \le 2S_{m-1} \int_t^\infty e^{-\frac{m-2}{2}s^2} ds = \frac{2S_{m-1}}{\sqrt{m-2}} \sqrt{\frac{\pi}{2}} \operatorname{erfc}\left(\frac{\sqrt{m-2}t}{\sqrt{2}}\right) \stackrel{\text{``}}{\approx} \stackrel{\text{''}}{O}(e^{-t^2})$$

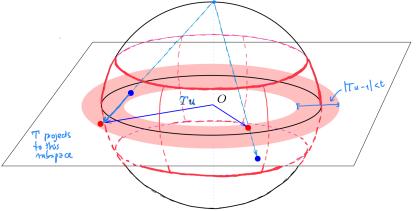


- ▶ Polar caps area decreases as $m \to \infty$ with t fixed
- Concentration of measure of the equatorial band

An intuitive explanation

- ▶ Polar caps area $\mu(\mathcal{A}_t^m) = \mu(\{u \in \mathbb{S}^{m-1} \mid |u_m| > t\})$ decreases with t fixed as $m \to \infty \Rightarrow$ area of equatorial band $\overline{\mathcal{A}}_t^m$ increases with same conditions
- ▶ $T\bar{\mathcal{A}}_t^m = \{u \in \mathbb{S}^{m-1} \mid |||Tu||^2 1| \leq t\}$ has concentration of

measure (if T is stereographic)



Intermezzo: The union bound

Events E_1, \ldots, E_k such that $\mathbf{P}(E_i) \ge 1 - p$ for each $i \le k$

• What is $\mathbf{P}(\text{all } E_i)$?

▶ $\mathbf{P}(\text{all } E_i) = 1 - \mathbf{P}(\text{at least one } \neg E_i) \Rightarrow$

$$\mathbf{P}\left(\bigwedge_{i\leq k} E_i\right) = 1 - \mathbf{P}\left(\bigvee_{i\leq k} (\neg E_i)\right) \ge$$
$$\ge 1 - \sum_{i=1}^k \mathbf{P}(\neg E_i) \ge 1 - \sum_{i=1}^k (1 - (1 - p)) = 1 - kp$$

► So $\mathbf{P}(\text{all } E_i) \ge 1 - kp$

A syntactical explanation for $k = O(\varepsilon^{-2} \ln n)$

- ► B = set of unit vectors; by "intuitive explanation" $\Rightarrow \forall u \in B \exists C > 0 \text{ s.t. } \mathbf{P}(1 - t \leq ||Tu|| \leq 1 + t) \geq 1 - e^{-Ct^2}$
- ► By union bound: $\Rightarrow \mathbf{P}(\forall u \in B \ 1 - t \le ||Tu|| \le 1 + t) \ge 1 - |B|e^{-Ct^2}$

▶ Prob.
$$\in [0, 1] \Rightarrow$$
 require $1 - |B|e^{-Ct^2} > 0$:
 $\Rightarrow |B|e^{-Ct^2} < 1$

• (arbitrarily) Let $t = \varepsilon \sqrt{k}$: $\Rightarrow |B|e^{-C\varepsilon^2 k} < 1$

 $\blacktriangleright \Rightarrow k > C\varepsilon^{-2}\ln(|B|)$

Apply to vector differences

- Let $A \subset \mathbb{R}^m$, |A| = n
- $\blacktriangleright \quad \forall x, y \in A \text{ we have}$

$$||Tx - Ty||^{2} = ||T(x - y)||^{2} = ||x - y||^{2} ||T\frac{x - y}{||x - y||}||^{2} = ||x - y||^{2} ||Tu||^{2}$$

where $||u||_{2} = 1$

•
$$\mathbb{E}(||Tu||^2) = ||u|| = 1 \Rightarrow \mathbb{E}(||Tx - Ty||^2) = ||x - y||^2$$

► Let
$$B = \{\frac{x-y}{\|x-y\|} \mid x, y \in A\}$$

 $|B| = O(n^2) \Rightarrow k = C\varepsilon^{-2}\ln(n)$ for some constant C

▶ By concentration of measure on $T\bar{\mathcal{A}}^m$, $\exists \varepsilon \in (0,1)$ s.t.

$$(1-\varepsilon)\|x-y\|^{2} \le \|Tx-Ty\|^{2} \le (1+\varepsilon)\|x-y\|^{2} \quad (*)$$

holds with positive probability

▶ Probabilistic method: ∃T such that (*) holds ⇒ JLL follows

Randomized algorithm

Distortion has low probability [Gupta 02]:

 $\begin{aligned} \forall x, y \in A \quad \mathbf{P}(\|Tx - Ty\| \le (1 - \varepsilon)\|x - y\|) &\le 1/n^2 \\ \forall x, y \in A \quad \mathbf{P}(\|Tx - Ty\| \ge (1 + \varepsilon)\|x - y\|) &\le 1/n^2 \end{aligned}$

▶ Probability \exists pair $x, y \in A$ distorting Euclidean distance: union bound over $\binom{n}{2}$ pairs

 $\mathbf{P}(\neg(A \text{ and } TA \text{ have almost the same shape})) \leq \binom{n}{2} \frac{2}{n^2} = 1 - \frac{1}{n}$ $\mathbf{P}(A \text{ and } TA \text{ have almost the same shape}) \geq 1/n$

► Algorithm:

- ▶ $\mathbf{P}(\exists x, y \in A \text{ with large JLL discrepancy}) \leq 1 1/n$
- Consider t > 1 independent samplings of random RP T
- ▶ Probability that all have large discrepancy: $\leq (1 1/n)^t$
- Choose t so at least one T will be good with prob. ≥ 0.99 : $(1 - 1/n)^t \leq 1 - 0.99 = 0.01$ yields $t \geq \ln(0.01) / \ln(1 - 1/n)$ if n = 100, get $t \geq 459$

Subsection 2

Projecting LP feasibility

Pure feasibility LP: easy cases

<u>Thm.</u>

 $T: \mathbb{R}^m \to \mathbb{R}^k$ a RP, and $b, A_1, \ldots, A_n \in \mathbb{R}^m$. For any given vector $x \in X$, we have:

(i) If
$$b = \sum_{i=1}^{n} x_i A_i$$
 then $Tb = \sum_{i=1}^{n} x_i TA_i$
by linearity of T
(ii) If $b \neq \sum_{i=1}^{n} x_i A_i$ then $\mathbf{P}\left(Tb \neq \sum_{i=1}^{n} x_i TA_i\right) \ge 1 - 2e^{-Ck}$
by JLL applied to $||b - \sum_i x_i A_i||$
(iii) If $b \neq \sum_{i=1}^{n} y_i A_i$ for all $y \in X \subseteq \mathbb{R}^n$, where $|X|$ is finite, then
 $\mathbf{P}\left(\forall y \in X \ Tb \neq \sum_{i=1}^{n} y_i TA_i\right) \ge 1 - 2|X|e^{-Ck}$
for some constant $C > 0$ (independent of n, k)
by union bound

[Vu et al., Math of OR, 2018]

Separating hyperplanes

When |X| is large, project separating hyperplanes instead

- ▶ Convex $C \subseteq \mathbb{R}^m$, $x \notin C$: then \exists hyperplane c separating x from C
- ▶ In particular, true if $C = \operatorname{cone}(A_1, \ldots, A_n)$ for $A \subseteq \mathbb{R}^m$
- Can show $x \in C \Leftrightarrow Tx \in TC$ with high probability
- As above, if $x \in C$ then $Tx \in TC$ by linearity of T Difficult part is proving the converse
- Can also project point-to-cone distances

Projection of separating hyperplanes

Thm.

Given $c, b, A_1, \ldots, A_n \in \mathbb{R}^m$ of unit norm s.t. $b \notin \operatorname{cone}\{A_1, \ldots, A_n\}$ pointed, $\varepsilon > 0$, $c \in \mathbb{R}^m$ s.t. $c^\top b < -\varepsilon$, $c^\top A_i \ge \varepsilon$ $(i \le n)$, and T a RP:

$$\mathbf{P}[Tb \notin \mathsf{cone}\{TA_1, \dots, TA_n\}] \ge 1 - 4(n+1)e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$$

for some constant C.

Proof

Let \mathscr{A} be the event that T approximately preserves $||c - \chi||^2$ and $||c + \chi||^2$ for all $\chi \in \{b, A_1, \ldots, A_n\}$. Since \mathscr{A} consists of 2(n + 1) events, by the JLL ("squared variant") and the union bound, we get

$$\mathbf{P}(\mathscr{A}) \ge 1 - 4(n+1)e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$$

Now consider $\chi = b$

$$\langle Tc, Tb \rangle = \frac{1}{4} (\|T(c+b)\|^2 - \|T(c-b)\|^2)$$

by JLL $\leq \frac{1}{4} (\|c+b\|^2 - \|c-b\|^2) + \frac{\varepsilon}{4} (\|c+b\|^2 + \|c-b\|^2)$
 $= c^\top b + \varepsilon < 0$

and similarly $\langle Tc, TA_i \rangle \geq 0$

[Vu et al., Math. OR, 2018]

The feasibility projection theorem

Thm. Given $\delta > 0$, \exists sufficiently large $m \le n$ such that: for any LFP input A, b where A is $m \times n$ we can sample a random $k \times m$ matrix T with $k \ll m$ and

P(orig. LFP feasible \iff proj. LFP feasible) $\geq 1 - \delta$

Subsection 3

Projecting LP optimality

Notation

- $P \equiv \min\{cx \mid Ax = b \land x \ge 0\}$ (original problem)
- $TP \equiv \min\{cx \mid TAx = Tb \land x \ge 0\} \ (projected \ problem)$
- v(P) = optimal objective function value of P
- v(TP) = optimal objective function value of TP

The optimality projection theorem

- ► Assume feas(*P*) is bounded
- ► Assume all optima of *P* satisfy $\sum_j x_j \le \theta$ for some given $\theta > 0$

(prevents unboundedness)

<u>Thm.</u>

Given $\gamma > 0$,

$$v(P) - \gamma \le v(TP) \le v(P) \qquad (*)$$

holds with arbitrarily high probability (w.a.h.p.)

more precisely, (*) holds with prob. $1 - 4ne^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$ where $\varepsilon = \gamma/(2(\theta + 1)\eta)$ and $\eta = O(||y||_2)$ where y is a dual optimal solution of **P** having minimum norm

The easy part

Show $v(TP) \leq v(P)$:

- Constraints of $P: Ax = b \land x \ge 0$
- Constraints of TP: $TAx = Tb \land x \ge 0$
- ▶ \Rightarrow constraints of *TP* are lin. comb. of constraints of *P*
- ▶ \Rightarrow any solution of *P* is feasible in *TP* (btw, the converse holds almost never)
- \triangleright *P* and *TP* have the same objective function

▶ ⇒ TP is a relaxation of P ⇒ $v(TP) \le v(P)$

The hard part (sketch)

• Eq. (12) equivalent to P for $\gamma = 0$

$$\left.\begin{array}{ll} cx & \leq & v(P) - \gamma \\ Ax & = & b \\ x & \geq & 0 \end{array}\right\}$$

(12)

Note: for $\gamma > 0$, Eq. (12) is infeasible

▶ By feasibility projection theorem,

$$\left.\begin{array}{ccc} cx & \leq & v(P) - \gamma \\ TAx & = & Tb \\ x & \geq & 0 \end{array}\right\}$$

is infeasible w.a.h.p. for $\gamma>0$

- ► Re-state: $cx < v(P) \gamma \wedge TAx = Tb \wedge x \ge 0$ infeasible w.a.h.p.
- ► $\Rightarrow cx \ge v(P) \gamma$ holds w.a.h.p. for $x \in \mathsf{feas}(TP)$

$$\blacktriangleright \Rightarrow v(P) - \gamma \le v(TP)$$

Subsection 4

Solution retrieval

Projected solutions are infeasible in P

 $\blacktriangleright Ax = b \Rightarrow TAx = Tb$ by linearity

However, Thm. For $x \ge 0$ s.t. TAx = Tb, Ax = b with probability zero

if not, an x belonging to (n-k)-dim. subspace would belong to an (n-m)-dim. subspace (with $k \ll m$) with positive probability

 Can't get solution for original LFP using projected LFP!

Solution retrieval by duality

▶ Primal min{
$$c^{\top}x \mid Ax = b \land x \ge 0$$
} ⇒ dual max{ $b^{\top}y \mid A^{\top}y \le c$ }

• Let
$$x' = \operatorname{sol}(TP)$$
 and $y' = \operatorname{sol}(\operatorname{dual}(TP))$

$$\blacktriangleright \Rightarrow (TA)^{\top} y' = (A^{\top} T^{\top}) y' = A^{\top} (T^{\top} y') \le c$$

► ⇒
$$T^{\top}y'$$
 is a solution of $\mathsf{dual}(P)$

- \blacktriangleright \Rightarrow we can compute an optimal basis J for P
- Solve $A_J x_J = b$, get x_J , obtain a solution x^* of P
- ▶ Won't work in practice: errors in computing J

Solution retrieval by projected basis

- H: optimal basis of TP we can trust that — given by solver
- $\blacktriangleright |H| = k \Rightarrow A_H \text{ is } m \times k \text{ (tall and slim)}$
- ► Pseudoinverse: solve $k \times k$ system $A_H^{\top} A_H x_H = A_H^{\top} b$ $\Rightarrow x_H = (A_H^{\top} A_H)^{-1} A_H^{\top} b$

$$\blacktriangleright \quad \text{let } x = (x_H, 0)$$

- ► Can prove small feasibility error wahp
- ▶ **ISSUE**: may be slightly infeasible empirically: $x \ge 0$ but $x^- = \min(0, x) \to 0$ as $k \to \infty$

Project idea 5: Test the output of duality and projected basis retrieval methods on a set of 50 random large feasible standard-form LPs: you should find that the duality method is worse than the projected basis method. Formulate a reasoned hypothesis about the reason why this happens

Projected LP duals

- The dual of $P \equiv \min\{cx \mid Ax = b \land x \ge 0\}$ is $D \equiv \max\{yb \mid yA \le c\}$
- ► A projected dual on $y \in \mathbb{R}^m$ can be derived as follows: max{ $(yT^{\top})Tb \mid (yT^{\top})TA \leq c$ }
- ▶ Replacing $u = yT^{\top} \in \mathbb{R}^k$, we obtain $TD \equiv \max\{u\bar{b} \mid u\bar{A} \leq c\}$ where $\bar{b} = Tb$, $\bar{A} = TA$
- ▶ Theory [D'Ambrosio et al. MPB 2020]:
 - if original dual is feasible, projected dual is feasible
 approximation guarantees on projected dual objective function
 retrieval: if ū ∈ arg opt(TD), let ỹ = ūT, ỹ is feasible in D

Project idea 6: Develop an algorithm for finding a candidate solution x' of P from \tilde{y} . Sample 50 random large standard form LP instances, solve P, TP, TD for each instance. Collect soln. x^* from P, \tilde{x} from TP, x' from TD, then compute objective function value and feasibility error w.r.t. P of x^*, \tilde{x}, x' . Plot all this data in function of the number of rows of A and ε

Subsection 5

Application to quantile regression

Conditional random variables

▶ random variable *B* conditional on A_1, \ldots, A_p

▶ assume *B* depends linearly on $\{A_j \mid j \leq p\}$

• want to find $x_1, \ldots, x_n \in \mathbb{R}$ s.t.

$$B = \sum_{j \le p} x_j A_j$$

• use samples $b, a_1, \ldots, a_p \in \mathbb{R}^m$ to find estimates

$$\blacktriangleright a^i = \text{row}, a_j = \text{column}$$

Sample statistics

► expectation:

$$\hat{\mu} = \arg\min_{\mu \in \mathbb{R}} \sum_{i \le m} (b_i - \mu)^2$$

► conditional expectation (*linear regression*):

$$\hat{\nu} = \operatorname*{arg\,min}_{\nu \in \mathbb{R}^p} \sum_{i \le m} (b_i - \underbrace{\nu a^i})^2$$

▶ sample median:

$$\begin{split} \hat{\xi} &= \arg\min_{\xi \in \mathbb{R}} \sum_{i \le m} |b_i - \xi| \\ &= \arg\min_{\xi \in \mathbb{R}} \sum_{i \le m} \left(\frac{1}{2} \max(b_i - \xi, 0) - \frac{1}{2} \min(b_i - \xi, 0) \right) \end{split}$$

► conditional sample median: *similarly*

Quantile regression

▶ sample τ -quantile:

$$\hat{\xi} = \arg\min_{\xi \in \mathbb{R}} \sum_{i \le m} \left(\tau \max(b_i - \xi, 0) - (1 - \tau) \min(b_i - \xi, 0) \right)$$

• conditional sample τ -quantile (quantile regression):

$$\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} \sum_{i \le m} \left(\tau \max(b_i - \beta a^i, 0) - (1 - \tau) \min(b_i - \beta a^i, 0) \right)$$

Linear Programming formulation

Let $A = (a_j \mid j \leq n)$; then

$$\hat{\beta} = \arg \min \left\{ \begin{array}{ccc} \tau u^{+} + (1 - \tau)u^{-} \\ A(\beta^{+} - \beta^{-}) + u^{+} - u^{-} &= b \\ \beta, u &\geq 0 \end{array} \right\}$$

> parameters: A is $m \times p$, $b \in \mathbb{R}^m$, $\tau \in \mathbb{R}$

- ▶ decision variables: $\beta^+, \beta^- \in \mathbb{R}^p, u^+, u^- \in \mathbb{R}^m$
- ▶ LP constraint matrix is $m \times (2p + 2m)$ density: p/(p+m) — can be high

Project idea 7: Test the application of RPs on at 50 large random MULTICOMMODITY FLOW (MCF) problems. Plot the ratio of projected to original objective, retrieved to original objective, and infeasibility errors in function of the number of rows of the equality system Ax = b and ε . Is MCF a good application testbed for RP?

Large datasets

Russia Longitudinal Monitoring Survey hh1995f

- harphi m = 3783, p = 855
- $\blacktriangleright A = \texttt{hf1995f}, \ b = \log \operatorname{avg}(A)$
- 18.5% dense
- poorly scaled data, CPLEX yields infeasible (!!!) after around 70s
 CPU
- quantreg in R fails

▶ 14596 RGB photos on my HD, scaled to 90×90 pixels

- each row of A is an image vector, $b = \sum A$
- 62.4% dense
- CPLEX killed by OS after ≈30min (presumably for lack of RAM) on 16GB
- could not load dataset in R

Electricity prices

-

- Every hour over 365 days in 2015 (8760 rows)
- ▶ From 22 countries (columns) from the European zone

	orig	proj
1	5.82e-01	5.69e-01
2	9.46e-02	0
3	0	0
4	1.06-01	1.18e-01
5	2.73e-04	6.92e-05
6	-4.81e-06	-2.07e-05
$\overline{7}$	1.32e-01	1.36e-01
8	0	0
9	0	0
10	0	0
11	-3.46e-08	-2.45e-05
12	0	0
13	5.66e-02	5.49e-02
14	-2.50e-04	2.91e-03
15	2.86e-02	2.81e-02
16	0	0
17	0	0
18	0	9.35e-02
19	0	0
20	2.23e-09	0
21	0	-7.99e-06

- Permutation (18,2) (21,20) applied to proj gives same nonzero pattern and reduces l₂ error from 0.13 to 0.01
- ► For every **proj** solution I found I could always find a permutation with this property!!
- … On closer inspection, many columns reported equal data
- Small numerical error
- Approximate solutions respect Nonzero pattern
- LP too small for approximation to have an impact on CPU time

Outline

Introduction

Isomap revisited

Summary

Random projections in LP

Random projection theory Projecting LP feasibility Projecting LP optimality Solution retrieval Application to quantile regression

Sparsity and ℓ_1 minimization

Motivation Basis pursuit Theoretical results Application to noisy channel encoding Improvements

Kissing Number Problem

Lower bounds Upper bounds from SDP? Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Clustering in Natural Language

Clustering on graphs Clustering in Euclidean spaces Distance instability MP formulations Random projections again

Subsection 1

Motivation

Coding problem for costly channels

 \blacktriangleright Task:

send long sparse vector $y \in \mathbb{R}^n$ on costly channel

- 1. construct $m \times n$ encoding matrix A with $m \le n$ both parties know A
- 2. encode $b = Ay \in \mathbb{R}^m$

3. send b

▶ Decode by finding sparsest x s.t. Ax = bcan we expect $x \approx y$, i.e. small ||x - y||?

► Summary:

- 1. given long sparse vector y
- 2. shorten it to b, send b
- 3. upon receiveing b, recover long sparse vector y

Coding problem for noisy channels

- <u>Task</u>: send vector $w \in \mathbb{R}^d$ on a noisy channel
- Encoding: $n \times d$ matrix Q with n > d, send $z = Qw \in \mathbb{R}^n$ both parties know Q
- Error prob. e: en components of z sent wrong
- Receive (wrong) vector $\overline{z} = z + x$ where x is sparse
- Can we recover z?

n-d

Q

AQ= O

- Choose $m \times n$ matrix A s.t. m = n d and AQ = 0
- Let $\mathbf{b} = A\bar{z} = A(z+x) = A(Qw+x) = AQw + Ax = \mathbf{A}x$
- Suppose we can find sparsest x' s.t. Ax' = b

$$\Rightarrow$$
 we can recover $z' = \bar{z} - x'$

▶ Recover w' = (Q^TQ)⁻¹Q^Tz' (pseudoinverse) What is the likelihood of getting small ||w - w'||?

<u>Summary</u>: 1. given short dense vector w, 2. lengthen it to z for redundancy; 3. send z and receive $\overline{z} = z + x$; 4. find long sparse error vector x using short vector $b = A\overline{z}$; 5. recover z' then w'

What these tasks have in common

- Given matrix A with fewer rows than columns
- \blacktriangleright Given vector b
- Find sparsest solution x^* of Ax = b
- Note: Ax = b feasible iff rank(A) = rank(A|b)

Subsection 2

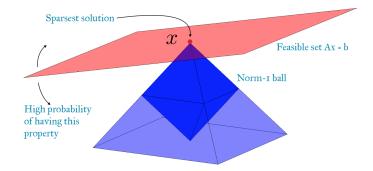
Basis pursuit

Sparsest solution of a linear system

► Problem $P^0(A, b) \equiv \min\{ x _0 \mid Ax = b\}$ Reduction from EXACT COVER BY 3-SETS [Garey&Joh MILP: $\min\{\sum_j y_j \mid \forall j - My_j \leq x_j \leq My_j \land Ax = b\}$	nson 1979, A6[MP5]]
► $P^1(A,b) \equiv \min\{ x _1 \mid Ax = b\}$ is a relaxation	
$ \begin{array}{c c} \hline \text{Reformulate to LP:} & & \\ \hline \min & \sum_{j \le n} & s_j \\ \forall j \le n & -s_j \le & x_j & \le s_j \\ & & Ax & = & b \end{array} \right\} (\dagger $)
 Empirical observation: P¹ often finds op Too often for this to be a coincidence Theoretical justification by Candès, Tao, D 	
Mathematics of sparsity, Compressed sensing, Compres	ssive sampling

▶ Note: we always assume $b \neq 0$ in $P^0(A, b)$ and $P^1(A, b)$

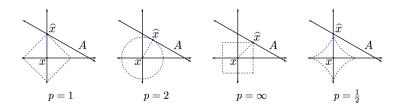
Graphical intuition 1



• Wouldn't work with ℓ_2, ℓ_∞ norms Ax = b flat at poles — "zero probability of sparse solution"

Warning: this is not a proof, and \exists cases not explained by this drawing [Candès 2014]

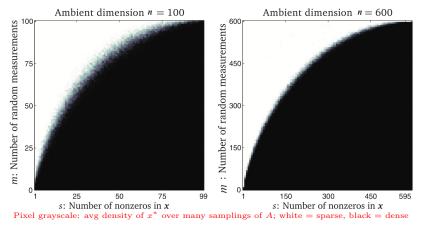
Graphical intuition 2



x̂ such that *Ax̂* = *b* approximates *x* in *ℓ*_p norms
 p = 1 only convex case zeroing some components

From [Davenport et al., 2012]; again, this is not a proof!

Phase transition in sparse recovery For $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$: consider $P^1(A, Ax)$ and its opt. x^*



 $\mathsf{Prob}(x^* \text{ has sparsity } s)$ undergoes a phase transition For a given *n*, if *m* is too small P^1 fails to find the optimum of P^0

[Tropp et al., Information and Inference, 2014]

Subsection 3

Theoretical results

Main theorem and proof structure

Defn. (i) Given a small $\epsilon \ge 0$, a scalar α is *near-zero* if $|\alpha| < \epsilon$; (ii) a vector is *s-sparse* if it has $\le s$ nonzero components

▶ Thm. Let:

- 1. $A \sim \mathsf{N}(0, 1)^{mn}$ with m < n but m "not too small"
- 2. $\hat{x} \in \mathbb{R}^n$ have s nonzeros and n-s zeros or near-zeros
- 3. \bar{x} be the best approx of \hat{x} with exactly s nonzeros
- 4. $\hat{b} = A\hat{x}$ and x^* be the unique s-sparse min of $P^1(A, \hat{b})$

then x^* is a "good approximation" of \bar{x} (*)

▶ Proof sketch:

- ▶ **Prop.** A has the null space property (NSP) \Rightarrow (*)
- **Prop.** A has restricted isometry prop. (RIP) \Rightarrow A has NSP
- ▶ **Prop.** $A \sim \mathsf{N}(0, 1)^{mn} \Rightarrow A$ has RIP
- ▶ adapt to near-zeros by modifying NSP

Some notation

Defn. (i) For any $n \in \mathbb{N}$ define $[n] = \{1, \ldots, n\}$; (ii) for $z \in \mathbb{R}^n$ and $S \subseteq [n]$ let $z[S] = ((z_j \text{ iff } j \in S) \text{ xor } 0 \mid j \leq n)$ be the *restriction* of z to S

- Consider Ax = b where A is m × n with m < n
 if feasible it has uncountably many solutions
- ► Let $x \in \mathbb{R}^n$ s.t. Ax = b, $N_A = \operatorname{null}(A)$, $N_A^0 = N_A \setminus \{0\}$ $\Rightarrow \forall y \in N_A$ we have A(x + y) = Ax + Ay = Ax + 0 = b
- ▶ For $S \subseteq [n]$ let $\overline{S} = [n] \smallsetminus S$

• Note that $\forall z \in \mathbb{R}^n$ we have $z = z[S] + z[\overline{S}]$

Null space property

Defn. For $x \in \mathbb{R}^n$ let $supp(x) = \{j \le n \mid x_j \ne 0\}$

▶ Defn.
$$\mathsf{NSP}_s(A) \equiv$$

 $\forall S \subseteq [n] \ (|S| = s \rightarrow \forall y \in \mathsf{N}^0_A \ ||y[S]||_1 < ||y[\bar{S}]||_1)$
A has the null space property of order *s*

- A has the NSP of order s iff each s-sparse solution of Ax = b is the unique optimum of $P^1(A, b)$
- ▶ **Prop.** $\forall x^* \in \mathbb{R}^n$ with $|\mathsf{supp}(x^*)| \leq s$ and $b = Ax^*$ $[x^* \text{ unique min of } P^1(A, b)] \Leftrightarrow \mathsf{NSP}_s(A)$

the "NSP proposition"

Strength of NSP_t as t grows

NSP Prop. states $|supp(x^*)| \leq s$ but $NSP_s(A)$ assumes |S| = s: why?

Lemma

 $\forall A \in \mathbb{R}^{m \times n}, t < s \leq n \quad \mathsf{NSP}_s(A) \Rightarrow \mathsf{NSP}_t(A)$ Proof $\mathsf{NSP}_s(A) \equiv \forall S \subseteq [n] \ (|S| = s \to \forall y \in \mathsf{N}^0_A \ \|y[S]\|_1 < \|y[\bar{S}]\|_1), \text{ hence:}$ given $T, U \subseteq [n]$ with T, U nontrivial disjoint, |T| = t and $|T \cup U| = s$, • $\forall y \in \mathbb{N}^0_A$ $||y[T \cup U]||_1 < ||y[T \cup U]||_1 = ||y[[n] \setminus (T \cup U)]||_1 \Rightarrow$ $(\dagger) \ \forall y \in \mathsf{N}^0_A \ \|y[T]\|_1 + \|y[U]\|_1 < \|y\|_1 - \|y[T]\|_1 - \|y[U]\|_1 \Rightarrow$ $(\ddagger) \ \forall y \in \mathsf{N}_A^0 \ \|y[T]\|_1 < \|y[\bar{T}]\|_1 - 2\|y[U]\|_1$ whence $\forall T \subseteq [n] \ (|T| = t \rightarrow \forall y \in \mathsf{N}^0_A \ \|y[T]\|_1 < \|y[\bar{T}]\|_1)$ since $||y[U]||_1 > 0$, and so $\mathsf{NSP}_t(A)$ $||y[T \cup U]||_1 = \sum_{j \in T \cup U} |y_j| = \sum_{j \in T} |y_j| + \sum_{j \in U} |y_j| = ||y[T]||_1 + ||y[U]||_1$ (†) $\|y[[n] \setminus V]\|_1 = \sum_{j \in [n] \setminus V} |y_j| = \sum_{j \in [n]} |y_j| - \sum_{j \in V} |y_j| = \|y\|_1 - \|y[V]\|_1$ (‡) $\|y\|_1 - \|y[T]\|_1 = \sum_{j \le n} |y_j| - \sum_{j \in T} |y_j| = \sum_{j \notin T} |y_j| = \sum_{j \in \bar{T}} |y_j| = \|y_j[\bar{T}]\|_1$

Proof of the NSP proposition (\Rightarrow)

 $\forall x \text{ (}x \text{ uniq min of } P^1(A, Ax) \land |\mathsf{supp}(x)| = s) \Rightarrow \mathsf{NSP}_s(A)$

- <u>Claim</u> $\forall y \in \mathsf{N}^0_A \ \exists S \subseteq [n]$ with |S| = s such that $Ay[S] \neq 0$
 - *Pf.* |supp(y[S])| = |S| = s by definition ⇒ by hypothesis y[S] unique min of $P^1(A, A y[S])$
 - \Rightarrow by assumption (rhs vector $\neq 0) \ A \, y[S] \neq 0$
- ▶ $\forall y \in \mathbb{R}^n \text{ and } S \subseteq [n] \text{ we have } y = y[S] + y[\overline{S}]$
- ► ⇒ for any $y \in \mathsf{N}^0_A$ we have $Ay = Ay[S] + Ay[\bar{S}] = 0$ ⇒ $A(-y[\bar{S}]) = Ay[S] \neq 0$ by claim

• Moreover, $-y[\bar{S}]$ is feasible in $P^1(A, Ay[S])$

▶ $y[S] \neq -y[\overline{S}]$ othw by $y = y[S] + y[\overline{S}]$ both would be scalings of y and hence both in N_A^0 , which cannot happen as $Ay[S] \neq 0$

 $\|y[S]\|_1 \text{ uniq min value and } -y[\bar{S}] \text{ feas in } P^1(A, Ay[S]) \Rightarrow \\ \|-y[\bar{S}]\|_1 = \|y[\bar{S}]\|_1 > \|y[S]\|_1 \Rightarrow \mathsf{NSP}_s(A)$

Proof of the NSP proposition (\Leftarrow) $\mathsf{NSP}_s(A) \Rightarrow \forall x^* \ (x^* \text{ uniq min } P^1(A, Ax^*) \land |\mathsf{supp}(x^*)| = s)$ $\blacktriangleright \text{ Let } x^* \in \mathbb{R}^n, \ b = Ax^*, \ S = \mathsf{supp}(x^*) \text{ and } |S| = s$ $\blacktriangleright \text{ Let } \bar{x} \text{ soln. of } Ax = b, \text{ then } \bar{x} = x^* - y \text{ with } y \in \mathsf{N}^0_A$

[add and subtract same qty] $||x^*||_1 = ||(x^* - \bar{x}[S]) + \bar{x}[S]||_1$ [by triangle inequality] < $||x^* - \bar{x}[S]||_1 + ||\bar{x}[S]||_1$ $[S = \text{supp}(x^*) \Rightarrow x^* = x^*[S]] = \|x^*[S] - \bar{x}[S]\|_1 + \|\bar{x}[S]\|_1$ [since $x^* - \bar{x} = y$] = $||y[S]||_1 + ||\bar{x}[S]||_1$ [since $y \in \mathbb{N}^0_A$ and $\mathbb{NSP}_s(A)$ holds] $\langle \|y[S]\|_1 + \|\bar{x}[S]\|_1$ [since $y = x^* - \bar{x}$ and $x^*[\bar{S}] = 0$] = $\| - \bar{x}[\bar{S}] \|_1 + \| \bar{x}[S] \|_1$ [since $||-z||_1 = ||z||_1 \wedge z[S] + z[\bar{S}] = z$] = $||\bar{x}||_1$ $\Rightarrow \|x^*\|_1 < \|\bar{x}\|_1$

so x^* is a min of $P^1(A, Ax^*)$; ℓ_1 norm strictly convex $\Rightarrow x^*$ uniq min

A variant of the null space property

- ▶ Motivation: "almost sparse solutions" given \hat{x} with $|\operatorname{supp}(\hat{x})| > s$ and $b = A\hat{x}$ let $S = \underset{T \subseteq [n]:|T|=s}{\operatorname{arg\,max}} \|\hat{x}[T]\|_1$ and $\bar{x} = \hat{x}[S] (\Rightarrow |\operatorname{supp}(\bar{x})| = s)$
- Assume $\|\hat{x}[\bar{S}]\|_1 \ll \|\hat{x}[S]\|_1$ and $\epsilon = \max_{j \in \bar{S}} |\hat{x}_j|$ is small *i.e.* \hat{x} "almost" has support size s (up to ϵ)
- Show min x^* of $P^1(A, A\hat{x})$ is s-sparse and close to \hat{x}
- Generalize NSP with $\rho \in (0, 1)$: $\mathsf{NSP}_s^{\rho}(A) \Leftrightarrow \forall S \subseteq [n] \ (|S| = s \to \forall y \in \mathsf{N}_A^0 \| y[S] \|_1 \le \rho \| y[\bar{S}] \|_1)$
- ▶ **Prop.** $\mathsf{NSP}_s^{\rho}(A) \Rightarrow \text{if } x^* \min \text{ of } P^1(A, A\hat{x}) \text{ then}$ $\|x^* - \hat{x}\|_1 \le 2\frac{1+\rho}{1-\rho} \|\bar{x} - \hat{x}\|_1 \le (n-s)\epsilon$

i.e. x^* is a good approximation of \bar{x}

• Moreover, if $|\mathsf{supp}(\hat{x})| = s$ then $x^* = \hat{x} = \bar{x}$

Proof of the NSP_s^{ρ} proposition

► x^* feasible in $Ax = A\hat{x}$ so $\exists ! y \in \mathsf{N}_A \ (x^* = \hat{x} + y)$

 $\blacktriangleright \Rightarrow \|x^*\|_1 = \|\hat{x} + y\|_1 \le \|\hat{x}\|_1 \text{ since } x^* \text{ min of } P^1(A, A\hat{x})$

$$\begin{aligned} \|\hat{x} + y\|_1 &= \sum_{j \in S} |\hat{x}_j + y_j| + \sum_{j \in \bar{S}} |\hat{x}_j + y_j| \\ &\geq \sum_{j \in S} (|\hat{x}_j| - |y_j|) + \sum_{j \in \bar{S}} (|y_j| - |\hat{x}_j|) \text{ by triangle ineq} \end{aligned}$$

$$\begin{split} \bullet &= \|\hat{x}[S]\|_{1} - \|y[S]\|_{1} + \|y[\bar{S}]\|_{1} - \|\hat{x}[\bar{S}]\|_{1} \quad (\text{add and subtract } \|\hat{x}[\bar{S}]\|_{1} \Rightarrow) \\ &= \|\hat{x}\|_{1} + \|y[\bar{S}]\|_{1} - 2\|\hat{x}[\bar{S}]\|_{1} - \|y[S]\|_{1} \quad (\text{since } \bar{x} = \hat{x}[S] \Rightarrow) \\ &= \|x\|_{1} - 2\|\hat{x} - \bar{x}\|_{1} + \|y[\bar{S}]\|_{1} - \|y[S]\|_{1} \quad (*) \end{split}$$

► Therefore
$$(*) \leq \|\hat{x} + y\|_1 \leq \|\hat{x}\|_1$$
, whence
 $\|\hat{x}\|_1 \geq \|\hat{x}\|_1 - 2\|\hat{x} - \bar{x}\|_1 + \|y[\bar{S}]\|_1 - \|y[S]\|_1$ (cancel $\|\hat{x}\|_1 \Rightarrow$)
 $2\|\hat{x} - \bar{x}\|_1 \geq \|y[\bar{S}]\|_1 - \|y[S]\|_1$

▶ By NSP^ρ_s,
$$-\|y[S]\|_1 \ge -\rho \|y[\bar{S}]\|_1$$
, so
 $2\|\hat{x} - \bar{x}\|_1 \ge (1 - \rho) \|y[\bar{S}]\|_1$ whence $\|y[\bar{S}]\|_1 \le \frac{2}{1 - \rho} \|\hat{x} - \bar{x}\|_1$ (†)

$$\begin{array}{l} \bullet \quad x^* = \hat{x} + y \Rightarrow \|x^* - \hat{x}\|_1 = \|y\|_1 = \|y[S]\|_1 + \|y[\bar{S}]\|_1 \\ \text{by } \mathsf{NSP}_s^{\rho} \|y[S]\|_1 \le \rho \|y[\bar{S}]\|_1 \text{ hence } \|x^* - \hat{x}\|_1 \le (1+\rho)\|y[\bar{S}]\|_1 \\ \text{by } (\dagger) \ \|x^* - \hat{x}\|_1 \le 2\frac{1+\rho}{1-\rho}\|\hat{x} - \bar{x}\|_1 \\ \end{array}$$

Further, $\|\hat{x} - \bar{x}\|_1 = \|\hat{x} - \hat{x}[S]\|_1 = \|\hat{x}[\bar{S}]\| \le |\bar{S}|\epsilon = (n-s)\epsilon$

Restricted isometry property

• A is an $m \times n$ matrix, $\delta \in (0, 1), s \in \mathbb{N}$

- ► $\mathsf{RIP}^{\delta}_{s}(A) \iff \forall x \in \mathbb{R}^{n} \text{ s.t. } |\mathsf{supp}(x)| = s \text{ we have}$ $(1 - \delta) ||x||_{2}^{2} \le ||Ax||_{2}^{2} \le (1 + \delta) ||x||_{2}^{2}$
- ▶ **Prop.** $\mathsf{RIP}_{2s}^{\delta}(A) \land \rho = \frac{\sqrt{2\delta}}{1-\delta} < 1 \Rightarrow \mathsf{NSP}_{s}^{\rho}(A)$ See Thm. 5.12 in [Damelin & Miller 2012] for a proof

• It suffices that $\delta < \sqrt{2} - 1 \approx 0.4142$

RIP and $P^0(A, b)$

• Recall $P^0(A, b) \equiv \min\{||x||_0 \mid Ax = b\}$ is NP-hard find solution to Ax = b with smallest support size

▶ Thm. Let $\hat{x} \in \mathbb{R}^n$ with $|\mathsf{supp}(\hat{x})| = s, \delta < 1, A$ a matrix s.t. $\mathsf{RIP}_{2s}^{\delta}(A), x^* = \arg P^0(A, A\hat{x})$; then $x^* = \hat{x}$

Pf. Suppose false, let $y = x^* - \hat{x} \neq 0$; by define of x^* we have $||x^*||_0 \leq ||\hat{x}||_0 \leq s$, hence $||y||_0 \leq 2s$; since A has RIP get $||Ay||_2^2 \in (1 \pm \delta) ||y||_2^2$, but $Ay = Ax^* - A\hat{x} = 0$ while $y \neq 0$, and $\delta \in (0, 1) \rightarrow 1 \pm \delta > 0$, hence $0 \in (\alpha, \beta)$ where $\alpha, \beta > 0$, contradiction

Thm. 23.6 [Shwartz & Ben-David, 2014]

Result of limited scope, since we don't know if $P^0(A, b)$ can be solved efficiently if A has the RIP

Sufficient eigenvalue conditions for RIP

- Recall $\operatorname{RIP}_s^{\delta}(A)$: $\forall x \text{ with } S = \operatorname{supp}(x) \text{ and } |S| = s$ $(1-\delta) \|x\|_2^2 \le \|Ax\|_2^2 \le (1+\delta) \|x\|_2^2$
- Let $A^J = (A^j \mid j \in J)$, where A^j is the *j*-th col. of A

$$||Ax||_2^2 = \langle Ax, Ax \rangle = \langle A^S x[S], A^S x[S] \rangle = \langle B_S x[S], x[S] \rangle$$

where $B_S = (A^S)^\top A^S$ is $s \times s$ and PSD, and consider $x[S]$ as a vector in \mathbb{R}

 $\Rightarrow 0 \le \lambda_{\min}(B_S) \|x\|_2^2 \le \langle B_S x, x \rangle \le \lambda_{\max}(B_S) \|x\|_2^2$ replace B_S by its spectral decomp $P \Lambda P^{\top}$, note $\Lambda = \operatorname{diag}(\lambda_{\min}, \dots, \lambda_{\max})$

• Let
$$\lambda^L = \min_{|S|=s} \lambda_{\min}(B_S), \ \lambda^U = \max_{|S|=s} \lambda_{\max}(B_S)$$

► $\Leftarrow \exists \delta > 0 \text{ s.t. } 1 - \delta \leq \lambda^L \leq \lambda^U \leq 1 + \delta$ *i.e.* all eigenvalues of B(S) close to 1 for all $S \subset [n]$ with |S| = s

Construction of A s.t. $\mathsf{RIP}_s^{\delta}(A)$

- ▶ Need $\lambda \approx 1$ for each eigenvalue λ of B_S
- $\blacktriangleright \Rightarrow \text{Need} \quad \forall S \subseteq N \quad |S| = s \ \rightarrow \ (A^S)^\top A^S \approx I_s$

 $\blacktriangleright \Rightarrow \text{Need}$

$$\forall i < j \le n \quad (A^i)^\top A^j \approx 0$$

$$\forall i \le n \quad (A^i)^\top A^i = \|A^i\|_2^2 \approx 1$$

Sufficient condition: A sampled from $N(0, \frac{1}{\sqrt{m}})^{mn}$

• Difference with JLL RIP holds for uncountably many vectors x with |supp(x)| = sJLL holds for given sets of finitely many vectors with any support

Project idea 8: What other types of rectangular matrices M have the property $M^{\top}M = I$ or $\approx I$? Can they be used to prove the main theorem? How do they work, computationally, compared with matrices sampled from normal distributions? Compare on at least 50 random instances of $P^1(A, b)$

Isotropic vectors

- 1. **Defn.** Rnd vect $a \in \mathbb{R}^m$ is *isotropic* iff $\operatorname{cov}(a) = I_m$ remark: (a) $\operatorname{cov}(a) = \mathsf{E}(aa^\top)$; (b) if $a \sim \mathsf{N}(0, 1)^m$ then a isotropic
- 2. If rnd vect *a* isotropic, then $\forall x \in \mathbb{R}^m \mathsf{E}(\langle a, x \rangle^2) = ||x||_2^2$ For two sq. symm. matrices *B*, *C* we have B = C iff $\forall x (x^\top Bx = x^\top Cx)$; hence $\mathsf{E}(\langle a, x \rangle^2) = x^\top \mathsf{E}(aa^\top)x = x^\top I_m x = ||x||_2^2$
- 3. If rnd vect $a \in \mathbb{R}^m$ isotropic, then $\mathsf{E}(||a||_2^2) = m$ $\mathsf{E}(||a||_2^2) = \mathsf{E}(a^\top a) = \mathsf{E}(\mathsf{tr}(a^\top a)) = \mathsf{E}(\mathsf{tr}(aa^\top)) = \mathsf{tr}(\mathsf{E}(aa^\top)) = \mathsf{tr}(I_m) = m$
- If rnd vect a, c ∈ ℝ^m indep. isotropic, then E(⟨a, c⟩²) = m By conditional expectation E(⟨a, c⟩²) = E_c(E_a(⟨a, c⟩² | c)); by Item 2 inner expectation is ||c||²₂, by Item 3 outer is m
- 5. If $a \sim N(0, 1)^m$, $||a||_2 = O(\sqrt{m})$ wahp by Thm. 3.1.1 in [Vershynin, 2018]
- 6. Independent rnd vectors are almost orthogonal Results above $\Rightarrow ||a||_2, ||c||_2, \langle a, c \rangle = O(\sqrt{m})$, normalize a, c to \bar{a}, \bar{c} to get $\langle \bar{a}, \bar{c} \rangle = O(1/\sqrt{m}) \Rightarrow$ for m large $\langle \bar{a}, \bar{c} \rangle \approx 0$

Construction of A s.t. $\mathsf{RIP}^{\delta}_{s}(A)$

▶ Thm. For $A \sim \mathsf{N}(0, 1)^{m \times n}$ and $\delta \in (0, 1) \exists C_1, C_2 > 0$ depending on δ s.t.

$$\forall s < m \left(m \geq \frac{s \ln(n/s)}{C_1} \rightarrow \mathsf{Prob}(\mathsf{RIP}^\delta_s(A)) \geq 1 - e^{-C_2 m} \right)$$

Pf. see Thm. 5.17 in [Damelin & Miller, 2012] **Remark:** extra \sqrt{m} factor in A comes from $\|\cdot\|_2 \le \|\cdot\|_1 \le \sqrt{m}\|\cdot\|_2$

► In practice:

- $\mathsf{Prob}(\mathsf{RIP}^{\delta}_{s}(A)) = 0$ for m too small w.r.t. s fixed
- as *m* increases $\mathsf{Prob}(\mathsf{RIP}^{\delta}_{s}(A)) > 0$
- $\blacktriangleright\,$ as m increases even more $\mathsf{Prob}(\mathsf{RIP}^\delta_s(A)) \to 1$ wahp
- \blacktriangleright achieve logarithmic compression for large n and fixed s
- $A \sim \mathsf{N}(0,1)^{mn} \wedge m \ge 10s \ln \frac{n}{s} \Rightarrow \mathsf{RIP}_s^{1/3}(A)$ wahp, Lem. 5.5.2 [Moitra 2018]
- works better than worst case bounds ensured by theory

Some literature

- 1. Damelin & Miller, The mathematics of signal processing, CUP, 2012
- 2. Vershynin, High-dimensional probability, CUP, 2018
- 3. Moitra, Algorithmic aspects of machine learning, CUP, 2018
- 4. Shwartz & Ben-David, Understanding machine learning, CUP, 2014
- 5. Hand & Voroninski, arxiv.org/pdf/1611.03935v1.pdf
- 6. Candès & Tao

statweb.stanford.edu/~candes/papers/DecodingLP.pdf

7. Candès

statweb.stanford.edu/~candes/papers/ICM2014.pdf

- 8. Davenport et al., statweb.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf
- 9. Lustig *et al.*, people.eecs.berkeley.edu/~mlustig/CS/CSMRI.pdf

and many more (look for "compressed sensing")

Subsection 4

Application to noisy channel encoding

Noisy channel encoding procedure Algorithm:

- 1. message: character string μ
- 2. $w = \text{string2bitlist}(\mu) \in \{0, 1\}^d$
- 3. send z = Qw, receive $\bar{z} = z + \hat{x}$, let $b = A\bar{z}$

 $\Delta = s/n = \ density \ of \ \hat{x}, \quad Q \ is \ n \times d \ full \ rank \ with \ n > d$

4.
$$x^* = \text{optimum of } P^1(A, b)$$

5.
$$z^* = \bar{z} - x^*$$

- 6. $w^* = \operatorname{cap}(\operatorname{round}((Q^\top Q)^{-1}Q^\top z^*), [0, 1])$ $\operatorname{cap}(t, [\alpha, \beta]) = (\alpha \text{ if } t < \alpha) \text{ xor } (\beta \text{ if } t > \beta) \text{ xor } (t \text{ othw})$
- 7. $\mu^* = \text{bitlist2string}(w^*)$
- 8. evaluate $\mu_{\mathsf{err}} = \|\mu \mu^*\|$

Parameter choice [Matousek]:

- $\blacktriangleright \text{ noise } \Delta = 0.08$
- redundancy n = R d, where R = 4

Finding orthogonal A, Q

▶ [Matousek, Gärtner 2007]:

▶ sample A componentwise from N(0, 1)

• then "find Q s.t. QA = 0"

• Gaussian elim. on underdet. system AQ = 0

► Faster:

- sample n × n matrix M from uniform distr full rank with probability 1
- ▶ find eigenvector matrix of $M^{\top}M$ (orthonormal basis) random rotation of standard basis (used in original JLL proof)
- Concatenate d eigenvectors to make Q Concatenate m = n - d eigenvectors to make A AQ = 0 by construction!

Subsection 5

Improvements

LP size reduction

► Motivation

▶ Reduce CPU time spent on LP

▶ R = 4 redundancy for $\Delta = 0.08$ noise seems excessive

▶ Size of basis pursuit LP

- Ax = b is an $m \times n$ system where m = n d
- If $n = Rd \gg d$, *m* "relatively close" to *n*
- Recall random projections for LP: use them!

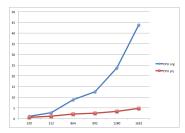
Computational results

d	n	Δ	ϵ	α	μ_{err}^{org}	μ_{err}^{prj}	CPU^{org}	CPU^{prj}
80	320	0.08	0.20	0.02	0	0	1.05	0.56
128	512			0.02	0	0	2.72	1.10
216	864			0.02	0	0	8.83	2.12
248	992			0.02	0	0	12.53	2.53
320	1280			0.02	0	0	23.70	3.35
408	1632			0.02	0	0	43.80	4.75

•
$$d = |\mu|, n = 4d, \Delta = 0.08, \epsilon = 0.2$$

- α = Achlioptas density $P(T_{ij} = -1) = P(T_{ij} = 1) = \frac{\alpha}{2}$ $P(T_{ij} = 0) = 1 - \alpha$
- $\mu_{err} = number of different characters$
- ► CPU: seconds of elapsed time
- \blacktriangleright 1 sampling of A, Q, T

Sentence: Conticuere omnes intentique ora tenebant, inde toro [...]



Reducing redundancy in n

- How about taking $n = (1 + \Delta)d$?
- ▶ $m = n d \approx \Delta d$ is very small
- Makes Ax = b very short and fat
- Prevents compressed sensing from working correctly not enough constraints
- Would need both m and d to be $\approx n$ and AQ = 0: impossible

 \mathbb{R}^n too small to host $m + d \approx 2n$ orthogonal vectors

• Relax to $AQ \approx 0$?

Almost orthogonality by the JLL Aim at A^{\top} , Q with $m + d \approx 2n$ and $AQ \approx 0$

▶ JLL Corollary: $\exists O(e^k)$ approx orthog vectors in \mathbb{R}^k Pf. Let *T* be a $k \times p$ RP, use concentration of measure on $||z||_2^2$ Prob $((1-\varepsilon)||z||_2^2 \le ||Tz||_2^2 \le (1+\varepsilon)||z||_2^2) \ge 1 - 2e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$ given $x, y \in \mathbb{R}^p$ apply to x + y, x - y and union bound:

$$\begin{aligned} |\langle Tx, Ty \rangle - \langle x, y \rangle| &= \frac{1}{4} \Big| ||T(x+y)||^2 - ||T(x-y)||^2 - ||x+y||^2 + ||x-y||^2 \Big| \\ &\leq \frac{1}{4} \Big| ||T(x+y)||^2 - ||x+y||^2 \Big| + \frac{1}{4} \Big| ||T(x-y)||^2 - ||x-y||^2 \Big| \\ &\leq \frac{\varepsilon}{4} (||x+y||^2 + ||x-y||^2) = \frac{\varepsilon}{2} (||x||^2 + ||y||^2) \end{aligned}$$

with prob $\geq 1 - 4e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$; apply to std basis matrix I_p , get

$$-\varepsilon \leq \langle T\mathbf{e}_i, T\mathbf{e}_j \rangle - \langle \mathbf{e}_i, \mathbf{e}_j \rangle \leq \varepsilon$$

 $\Rightarrow \exists p \text{ almost orthogonal vectors in } \mathbb{R}^k$, and $k = O(\frac{1}{\varepsilon^2} \ln p) \Rightarrow p = O(e^k)$

• Algorithm: $k = n, p = \lceil e^n \rceil$, get 2k columns from $T I_p$

Also see [https://terrytao.wordpress.com/2013/07/18/ a-cheap-version-of-the-kabatjanskii-levenstein-bound-for-almost-orthogonal-vectors/]

Almost orthogonality by the JLL

- Aim at $m \times n A$ and $n \times m Q$ s.t. $AQ \approx 0$ with $n = (1 + \Delta')m$ and Δ' "small" (say $\Delta' < 1$)
- ▶ Need 2m approx orthog vectors in \mathbb{R}^n with n < 2m
- Computationally: get large errors on ||AQ||₂
 JLL theory requires exceedingly large sizes
- In fact, we only need AQ = 0! can accept non-orthogonality in rows of A & cols of Q

Almost orthogonality by LP

▶ Sample Q and compute A using an LP

$$\max \sum_{\substack{i \le m \\ j \le n}} \mathsf{Uniform}(-1,1)A_{ij}$$

• subject to AQ = 0 and $A \in [-1, 1]$

• for m = 328 and n = 590 (i.e. $\Delta' = 0.8$):

• error:
$$\sum A_i Q^j = O(10^{-10})$$

- **rank**: full up to error precision (*not really though*)
- ► CPU: 688s (*meh*)

• for m = 328 and n = 492 (i.e. $\Delta' = 0.5$): the same

- for m = 328 and n = 426 (i.e. $\Delta' = 0.3$): *CPU* 470s
- ▶ Reduce CPU time by solving m LPs deciding A_i for all $i \leq m$

Computational results

m	n	Δ'	$\mu_{\rm err}^{\rm org}$	μ_{err}^{prj}	CPU^{org}	CPU^{prj}
328	426	0.3	182	15	2.45	1.87
			154	0	2.20	1.49
	459	0.4	0	1	4.47	2.45
			5	17	2.86	1.46
	492	0.5	60	0	4.53	1.18
			34	0	5.38	1.18
	590	0.8	14	0	8.30	1.41
			107	4	6.76	1.43

- CPU for computing A, Q not counted: precomputation is possible
- ► Approximate beats precise!

In summary

• If μ is short, set $\Delta' = \Delta$ and use compressed sensing (CS)

- If μ is longer, try increasing Δ' and use CS
- If μ is very long, use *JLL-projected CS*

 \blacktriangleright Can use approximately orthogonal A, Q too

m = 1896, n = 2465 $\Delta' = 0.3$: min s.t. CS is accurate

Conticuere omnes, intentique ora tenebant. Inde toro pater Aeneas sic orsus ab alto: Infandum, regina, iubes renovare dolorem. Troianas ut opes et lamentabile regnum eruerint Danai Quaequae ipse miserrima vidi et quorum pars magna fui. [Virgil, Aeneid, Cantus II]

 method
 error
 CPU

 CS
 0
 29.67s

 JLL-CS
 2
 17.13s

These results are consistent over 3 samplings

Project idea 9: Implement and test RPs applied to CS, as described in the last slides. Aim at setting the redundancy n equal to the noise $(1 + \Delta)d$, and use CPLEX to compute A such that $AQ \approx 0$. Test your code on at least 10 different texts of various lengths, up to around 500 characters. How does decoding quality depend on $||AQ||_2$?

Outline

Introduction

Summary

Random projections in LP

Random projection theory Projecting LP feasibility Projecting LP optimality Solution retrieval Application to quantile regression

Sparsity and ℓ_1 minimization

Motivation Basis pursuit Theoretical results Application to noisy channel encoding Improvements

Kissing Number Problem

Lower bounds Upper bounds from SDP? Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Clustering in Natural Language

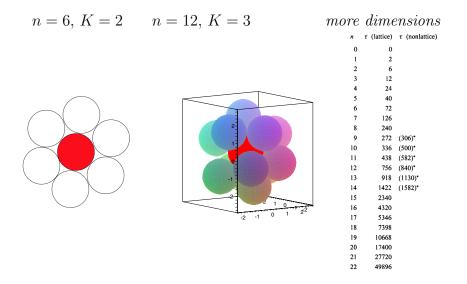
Clustering on graphs Clustering in Euclidean spaces Distance instability MP formulations Random projections again

Definition

- ▶ Optimization version. Given $K \in \mathbb{N}$, determine the maximum number kn(K) of unit spheres that can be placed adjacent to a central unit sphere so their interiors do not overlap
- ▶ Decision version. Given $n, K \in \mathbb{N}$, is $kn(K) \leq n$? in other words, determine whether n unit spheres can be placed adjacent to a central unit sphere so that their interiors do not overlap

Funny story: Newton and Gregory went down the pub...

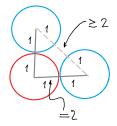
Some examples



Radius formulation

Given $n, K \in \mathbb{N}$, determine whether there exist n vectors $x_1, \ldots, x_n \in \mathbb{R}^K$ such that:

$$\forall i \le n \qquad \|x_i\|_2^2 = 4 \forall i < j \le n \qquad \|x_i - x_j\|_2^2 \ge 4$$

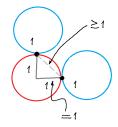


Contact point formulation

Given $n, K \in \mathbb{N}$, determine whether there exist n vectors $x_1, \ldots, x_n \in \mathbb{R}^K$ such that:

$$\forall i \le n \qquad \|x_i\|_2^2 = 1$$

$$\forall i < j \le n \qquad \|x_i - x_j\|_2^2 \ge 1$$



Spherical codes

▶ $S^{K-1} \subset \mathbb{R}^K$ unit sphere centered at origin

► *K*-dimensional spherical *z*-code:

- (finite) subset $\mathcal{C} \subset S^{K-1}$
- $\blacktriangleright \quad \forall x \neq y \in \mathcal{C} \qquad x \cdot y \leq z$

▶ non-overlapping interiors:

$$\begin{aligned} \forall i < j \quad \|x_i - x_j\|_2^2 &\geq 1 \\ \Leftrightarrow \quad \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i \cdot x_j &\geq 1 \\ \Leftrightarrow \quad 1 + 1 - 2x_i \cdot x_j &\geq 1 \\ \Leftrightarrow \quad 2x_i \cdot x_j &\leq 1 \\ \Leftrightarrow \quad x_i \cdot x_j &\leq \frac{1}{2} = \cos\left(\frac{\pi}{3}\right) = z \end{aligned}$$

► we aim at maximizing $kn_z(K) \triangleq |\mathcal{C}|$ let $kn(K) = kn_{\frac{1}{2}}(K)$

Subsection 1

Lower bounds

Lower bounds

- Construct spherical $\frac{1}{2}$ -code \mathcal{C} with $|\mathcal{C}|$ large
- ▶ Nonconvex NLP formulations
- ▶ SDP relaxations
- Combination of the two techniques

MINLP formulation

Maculan, Michelon, Smith 1995

Parameters:

- \blacktriangleright K: space dimension
- ▶ *n*: upper bound to kn(K)

Variables:

- $x_i \in \mathbb{R}^K$: contact pt. of *i*-th surrounding sphere
- $\alpha_i = 1$ iff sphere *i* in configuration

$$\begin{array}{rcl} \max & \sum_{i=1}^{n} \alpha_i \\ \forall i \leq n & ||x_i||^2 &= \alpha_i \\ \forall i < j \leq n & ||x_i - x_j||^2 &\geq \alpha_i \alpha_j \\ \forall i \leq n & x_i &\in [-1, 1]^K \\ \forall i \leq n & \alpha_i &\in \{0, 1\} \end{array}$$

Reformulating the binary products

- Additional variables: $\beta_{ij} = 1$ iff vectors i, j in configuration
- ► Linearize $\alpha_i \alpha_j$ by β_{ij}
- ► Add constraints:

$$\begin{aligned} \forall i < j \leq n & \beta_{ij} \leq \alpha_i \\ \forall i < j \leq n & \beta_{ij} \leq \alpha_j \\ \forall i < j \leq n & \beta_{ij} \geq \alpha_i + \alpha_j - 1 \end{aligned}$$

Computational experiments

AMPL and Baron

Certifying YES

▶
$$n = 6, K = 2$$
: OK, 0.60s

▶
$$n = 12, K = 3$$
: OK, 0.07s

▶ n = 24, K = 4: FAIL, CPU time limit (100s)

Certifying NO

▶ n = 7, K = 2: FAIL, CPU time limit (100s)

- ▶ n = 13, K = 3: FAIL, CPU time limit (100s)
- ▶ n = 25, K = 4: FAIL, CPU time limit (100s)

Almost useless

Modelling the decision problem

$$\begin{array}{cccc}
\max_{x,\alpha} & \alpha \\ \forall i \leq n & ||x_i||^2 &= 1 \\ \forall i < j \leq n & ||x_i - x_j||^2 \geq \alpha \\ \forall i \leq n & x_i \in [-1,1]^K \\ \alpha \geq 0 \end{array}\right\}$$

[Kucherenko, Belotti, Liberti, Maculan, Discr. Appl. Math. 2007]

Computational experiments AMPL and Baron

Certifying YES

Certifying NO

▶ n = 13, K = 3: FAIL, CPU time limit (100s)

Apparently even more useless

But more informative $(\arccos \alpha = \min. \text{ angular sep})$

Certifying YES by $\alpha \geq 1$

- ▶ n = 6, K = 2: OK, 0.06s
- n = 12, K = 3: OK, 0.05s
- ▶ n = 24, K = 4: OK, 1.48s

▶ n = 40, K = 5: FAIL, CPU time limit (100s)

What about polar coordinates?

- Only need to decide $s_{ik} = \sin \vartheta_{ik}$ and $c_{ik} = \cos \vartheta_{ik}$
- Replace x in (‡) using (†): get polyprog in s, c

 $\blacktriangleright Numerically more challenging to solve (polydeg 2K)$

▶ OPEN QUESTION: useful for bounds?

Subsection 2

Upper bounds from SDP?

SDP relaxation of Euclidean distances

▶ Linearization of scalar products

$$\forall i, j \le n \qquad x_i \cdot x_j \longrightarrow X_{ij}$$

where X is an $n \times n$ symmetric matrix

$$||x_i||_2^2 = x_i \cdot x_i = X_{ii} ||x_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = X_{ii} + X_{jj} - 2X_{ij} ||X_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = X_{ii} + X_{jj} - 2X_{ij} ||X_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = X_{ii} + X_{jj} - 2X_{ij} ||X_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = X_{ii} + X_{jj} - 2X_{ij}$$
||X_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = X_{ii} + X_{jj} - 2X_{ij} ||X_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = X_{ii} + X_{jj} - 2X_{ij} ||X_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = X_{ii} + X_{jj} - 2X_{ij} ||X_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = X_{ii} + X_{jj} - 2X_{ij}||X_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = X_{ii} + X_{jj} - 2X_{ij}||X_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = X_{ii} + X_{jj} - 2X_{ij}||X_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = X_{ij} + X_{ij} +

$$X - xx^{\top} \succeq 0 \Rightarrow \mathsf{Schur}(X, x) = \begin{pmatrix} I_K & x^{\top} \\ x & X \end{pmatrix} \succeq 0$$

SDP relaxation of binary constraints

$$\blacktriangleright \quad \forall i \le n \qquad \alpha_i \in \{0, 1\} \Leftrightarrow \alpha_i^2 = \alpha_i$$

• Let A be an $n \times n$ symmetric matrix

- Linearize $\alpha_i \alpha_j$ by A_{ij} (hence α_i^2 by A_{ii})
- $A = \alpha \alpha^{\top}$ makes linearization exact
- **Relaxation:** Schur $(A, \alpha) \succeq 0$

SDP relaxation of [MMS95]

Computational experiments

- Python, PICOS and Mosek or Octave and SDPT3
- \blacktriangleright bound always equal to n
- ▶ prominent failure :-(
- ► Why?

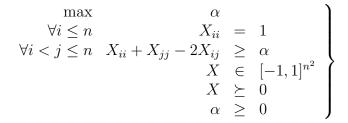
▶ can combine inequalities to remove A from SDP

$$\forall i < j \; X_{ii} + X_{jj} - 2X_{ij} \geq A_{ij} \geq \alpha_i + \alpha_i - 1 \Rightarrow X_{ii} + X_{jj} - 2X_{ij} \geq \alpha_i + \alpha_i - 1$$

(then eliminate all constraints in A)

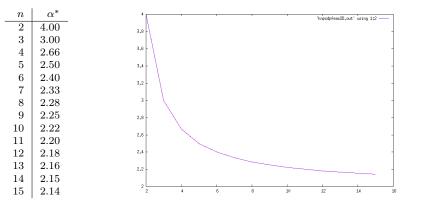
• integrality of α completely lost

SDP relaxation of [KBLM07]



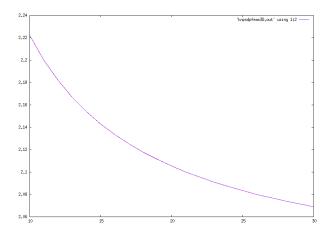
Computational experiments

With K = 2



Computational experiments

With K = 3



Always $\longrightarrow 2?$

An SDP-based heuristic?

- 1. $X^* \in \mathbb{R}^{n^2}$: SDP relaxation solution of [KBLM07]
- 2. Perform PCA, get $\bar{x} \in \mathbb{R}^{nK}$
- 3. Local NLP solver on [KBLM07] with starting point \bar{x}

However...

The Uselessness Theorem

Thm.

- 1. The SDP relaxation of [KBLM07] is useless
- 2. In fact, it is *extremely* useless
- 1. Part 1: Uselessness
 - ► Independent of K:

no useful bounds in function of K

- 2. Part 2: Extreme uselessness
 - (a) For all n, the bound is $\frac{2n}{n-1}$

(b) $\exists opt. X^* with eigenvalues <math>0, \frac{n}{n-1}, \dots, \frac{n}{n-1}$

By 2(b), applying MDS/PCA makes no sense

Proof of extreme uselessness

Strategy:

- ▶ Pull a simple matrix solution out of a hat
- ▶ Write primal and dual SDP of [KBLM07]
- ▶ Show it is feasible in both
- ▶ Hence it is optimal
- ► Analyse solution:
 - ▶ all n-1 positive eigenvalues are equal
 - its objective function value is 2n/(n-1)

Primal SDP

$\forall 1 \leq i \leq j \leq n \text{ let } B_{ij} = (1_{ij}) \text{ and } 0 \text{ elsewhere}$

quantifier	natural form	standard form	$dual \ var$
	$\max \alpha$	$\max \alpha$	
$\forall i \leq n$	$X_{ii} = 1$	$E_{ii} \bullet X = 1$	u_i
$\forall i < j \leq n$	$X_{ii} + X_{jj} - 2X_{ij} \ge \alpha$	$A_{ij} \bullet X + \alpha \le 0$	w_{ij}
		$A_{ij} = -E_{ii} - E_{jj} + E_{ij} + E_{ji}$	
$\forall i < j \le n$		$(E_{ij} + E_{ji}) \bullet X \le 2$	y_{ij}
$\forall i < j \le n$	$X_{ij} \ge -1$	$(-E_{ij} - E_{ji}) \bullet X \le 2$	z_{ij}
	$X \succeq 0$	$X \succeq 0$	_
	$lpha \ge 0$	$\alpha \ge 0$	

Dual SDP

$$\min \sum_{i} u_i + 2 \sum_{i < j} (y_{ij} + z_{ij})$$
$$\sum_{i} u_i E_{ii} + \sum_{i < j} ((y_{ij} - z_{ij})(E_{ij} - E_{ji}) + w_{ij}A_{ij}) \succeq 0$$
$$\sum_{i < j} w_{ij} \geq 1$$
$$w, y, z \ge 0$$

Simplify |v| = y + z, v = y - z:

$$\min \sum_{i} u_i + 2 \sum_{i < j} |v_{ij}|$$

$$\sum_{i} u_i E_{ii} + \sum_{i < j} \left(v_{ij} (E_{ij} - E_{ji}) + w_{ij} A_{ij} \right) \succeq 0$$

$$\sum_{i < j} w_{ij} \ge 1$$

$$w, v \ge 0$$

Pulling a solution out of a hat

$$\alpha^* = \frac{2n}{n-1}$$

$$X^* = \frac{n}{n-1}I_n - \frac{1}{n-1}\mathbf{1}_n$$

$$u^* = \frac{2}{n-1}$$

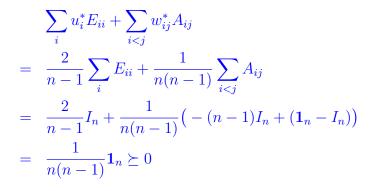
$$w^* = \frac{1}{n(n-1)}$$

$$v^* = 0$$

where $\mathbf{1}_n = all$ -one $n \times n$ matrix

Solution verification

- ▶ linear constraints: *by inspection*
- ► $X \succeq 0$: eigenvalues of X^* are $0, \frac{n}{n-1}, \dots, \frac{n}{n-1}$
- $\sum_{i} u_i E_{ii} + \sum_{i < j} (v_{ij}(E_{ij} E_{ji}) + w_{ij}A_{ij}) \succeq 0:$



Corollary

$$\lim_{n \to \infty} \mathsf{v}(n, [\text{KBLM07}]) = \lim_{n \to \infty} \frac{2n}{n-1} = 2$$

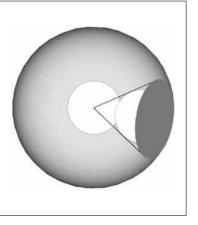
as observed in computational experiments

Subsection 3 Gregory's upper bound

Surface upper bound

Gregory 1694, Szpiro 2003

Consider a kn(3) configuration inscribed into a super-sphere of radius 3. Imagine a lamp at the centre of the central sphere that casts shadows of the surrounding balls onto the inside surface of the super-sphere. Each shadow has a surface area of 7.6; the total surface of the super-ball is 113.1. So $\frac{113.1}{7.6} = 14.9$ is an upper bound to kn(3).



At end of XVII century, yielded Newton/Gregory dispute

Subsection 4

Delsarte's upper bound

Pair distribution on sphere surface

▶ Spherical z-code C has $x_i \cdot x_j \leq z$ $(i < j \leq n = |C|)$

$$\forall t \in [-1,1] \quad \sigma_t = \frac{1}{n} \big| \{(i,j) \mid i,j \le n \land x_i \cdot x_j = t\} \big|$$

z-code: let σ_t = 0 for t ∈ (z, 1) (z = 1/2 for KNP)
 |C| = n < ∞: only finitely many σ_t ≠ 0

$$\int_{[-1,1]} \sigma_t dt = \sum_{\substack{t \in [-1,1]\\\sigma_t \neq 0}} \sigma_t = \frac{1}{n} |\text{all pairs}| = \frac{n^2}{n} = n$$
$$\sigma_1 = \frac{1}{n}n = 1$$
$$\forall t \in (z,1) \quad \sigma_t = 0$$
$$\forall t \in [-1,1] \quad \sigma_t \ge 0$$
$$|\{\sigma_t > 0 \mid t \in [-1,1]\}| < \infty$$

Growing Delsarte's LP

- ▶ Decision variables: σ_t , for $t \in [-1, 1]$
- ► Objective function:

$$\max |\mathcal{C}| = \max n = \max_{\sigma} \sum_{\substack{t \in [-1,1] \\ \sigma_t \neq 0}} \sigma_t$$
$$= \sigma_1 + \max_{\sigma} \sum_{\substack{t \in [-1,2] \\ \sigma_t \neq 0}} \sigma_t = 1 + \max_{\sigma} \sum_{\substack{t \in [-1,2] \\ \sigma_t \neq 0}} \sigma_t$$

Note n not a parameter in this formulation

► Constraints:

 $\forall t \in [-1, z] \quad \sigma_t \ge 0$

▶ LP unbounded! — need more constraints

The general approach

• We need σ to encode the fact that

$$\forall t \in [-1,1] \quad \sigma_t = \frac{1}{n} \big| \{(i,j) \mid i,j \le n \land x_i \cdot x_j = t\} \big|$$

▶ We use the algebraic theory in [Delsarte et al., "Spherical codes and designs", *Geometriæ Dedicata* 6:363-388, 1977]

▶ It involves the expression of a non-negative polynomial by means of a linear combination of Gegenbauer polynomials weighted by the σ_t

I will skip over the details

▶ You can also see the proof in [Odlyzko, Sloane, "New bounds on the number of unit spheres that can touch a unit sphere in *n* dimensions", J. of Comb. Theory A, 26:210-214, 1979]

Gegenbauer cuts

▶ Look for function family $\mathscr{F} : [-1,1] \to \mathbb{R}$ s.t.

$$\forall \phi \in \mathscr{F} \quad \sum_{\substack{t \in [-1,z]\\\sigma_t \neq 0}} \phi(t) \sigma_t \ge 0$$

Most popular *F*: Gegenbauer polynomials G^K_h
 Special case G^K_h = P^{γ,γ}_h of Jacobi polynomials (where γ = (K − 2)/2)

$$P_{h}^{\alpha,\beta}(t) = \frac{1}{2^{h}} \sum_{i=0}^{h} \binom{h+\alpha}{i} \binom{h+\beta}{h-1} (t+1)^{i} (t-1)^{h-i}$$

- Matlab knows them: G^K_h(t) = gegenbauerC(h, (K 2)/2, t)
 Octave knows them: G^K_h(t) = gsl_sf_gegenpoly_n(h, K-2/2, t) need command pkg load gsl before function call
- **They encode dependence on** *K*

Delsarte's LP

Primal: (given some Gegenbauer polynomial index set H)

$$\begin{array}{ccc} 1 + \max & \sum_{\substack{t \in [-1, \frac{1}{2}] \\ \sigma_t \neq 0}} \sigma_t \\ \forall h \in H & \sum_{\substack{t \in [-1, \frac{1}{2}] \\ \sigma_t \neq 0}} G_h^K(t) \sigma_t \geq -G_h^K(1) \\ \forall t \in [-1, z] & \sigma_t \geq 0. \end{array} \right\} [\text{DelP}]$$

MP syntax error: decision variables σ in sum quantifier! Dual:

$$\begin{array}{rcl}
1 + \min & \sum\limits_{h \in H} (-G_h^K(1))d_h \\
\forall t \in [-1, z] & \sum\limits_{h \in H} G_h^K(t)d_h \geq 1 \\
\forall h \in H & d_h \leq 0.
\end{array}$$
[DelD]

Delsarte's theorem

[Delsarte et al., 1977; Odlyzko & Sloane, 1979] Theorem Let $d_0 > 0$ and $F : [-1, 1] \to \mathbb{R}$ such that: (i) $\exists H \subseteq (\mathbb{N} \cup \{0\}) \text{ and } d \in \mathbb{R}^{|H|}_+ \ge 0$ s.t. $\overline{F}(t) = \sum_{h \in H} d_h G_h^K(t)$ (ii) $\forall t \in [-1, z] \ F(t) \le 0$ Then $\operatorname{kn}_z(K) \le \frac{F(1)}{d_0}$

Proof based on properties of Gegenbauer polynomials

- ▶ Best upper bound: $\min F(1)/d_0 \Rightarrow \min_{d_0=1} F(1) \Rightarrow [\text{DelD}]$
- ▶ [DelD] "models" Delsarte's theorem

Delsarte's normalized LP $(G_h^K(1) = 1)$ \blacktriangleright Primal:

$$\begin{array}{ccc} 1 + \max & \sum\limits_{\substack{t \in [-1, \frac{1}{2}] \\ \sigma_t \neq 0}} \sigma_t & \\ \forall h \in H & \sum\limits_{\substack{t \in [-1, \frac{1}{2}] \\ \sigma_t \neq 0}} G_h^K(t) \sigma_t & \geq & -1 \\ \forall t \in [-1, \frac{1}{2}] & \sigma_t & \geq & 0 \end{array} \right\} [\text{DelP}]$$

$$\begin{array}{ccc} 1 + \min & \sum_{h \in H} (-1)d_h \\ \forall t \in [-1, \frac{1}{2}] & \sum_{h \in H} G_h^K(t)d_h \geq 1 \\ \forall h \in H & d_h \leq 0 \end{array} \right\} [\text{DelD}]$$

 $d_0 = 1 \Rightarrow remove \ 0 \ from \ H$

Focus on normalized [DelD]

Rewrite $-d_h$ as d_h :

$$\begin{array}{ccc} 1 + \min & \sum_{h \in H} d_h \\ \forall t \in [-1, \frac{1}{2}] & \sum_{h \in H} G_h^K(t) d_h & \leq -1 \\ \forall h \in H & d_h & \geq 0 \end{array} \right\} [\text{DelD}]$$

Issue: semi-infinite LP (SILP) (how do we solve it?)

Approximate SILP solution

► Only keep finitely many constraints

- ▶ Discretize [-1, 1] with a finite $T \subset [-1, 1]$
- Obtain <u>relaxation</u> $[DelD]_T$:

$\mathsf{val}([\mathrm{DelD}]_T) \le \mathsf{val}([\mathrm{DelD}])$

- ▶ Risk: val([DelD]_T) < min $F(1)/d_0$ not a valid upper bound to kn_z(K)
- ► Happens if soln. of [DelD]_T infeasible in [DelD] i.e. infeasible w.r.t. some of the ∞ly many removed constraints

SILP feasibility

• Given SILP $\bar{S} \equiv \min\{c^{\top}x \mid \forall t \in \bar{T} \ a^{\top}(t)x \le b(t)\}$

- ▶ Relax to LP $S \equiv \min\{c^{\top}x \mid \forall t \in T \ a^{\top}(t)x \leq b(t)\}$ with $T \subsetneq \overline{T}$ and $|T| < \infty$
- ▶ Solve S, get solution x^*

• Let
$$\epsilon = \max_t \{ a^{\top}(t)x^* - b(t) \mid t \in \overline{T} \}$$

continuous optimization w.r.t. single var. t

- ► If $\epsilon \leq 0$ then x^* feasible in \bar{S} ⇒ $\operatorname{val}(\bar{S}) \leq c^{\top} x^*$
- If $\epsilon > 0$ refine S and repeat

• Apply to $[DelD]_T$, get solution d^* feasible in [DelD]

[DelD] feasibility

2. Solve

- 1. Choose discretization T of [-1, z]
 - $\begin{array}{ccc} 1 + \min & \sum\limits_{h \in H} d_h & \\ \forall t \in T & \sum\limits_{h \in H} G_h^K(t) d_h & \leq & -1 \\ \forall h \in H & d_h & \geq & 0 \end{array} \right\} [\text{DelD}]_T$

get solution d^*

- 3. Solve PP $\epsilon = \max_t \{1 + \sum_{h \in H} G_h^K(t)d_h^* \mid t \in [-1, z]\}$
- 4. If $\epsilon \leq 0$ then d^* feasible in [DelD] $\Rightarrow \operatorname{\mathsf{kn}}_z(K) \leq 1 + \sum_{h \in H} d_h^*$
- 5. Else refine T and repeat from Step 2

Subsection 5

Pfender's upper bound

Pfender's upper bound theorem

Thm. Let $\mathcal{C}_z = \{x_i \in \mathbb{S}^{K-1} \mid i \leq n \land \forall j \neq i \ (x_i \cdot x_j \leq z)\}; c_0 > 0; f : [-1,1] \rightarrow \mathbb{R} \text{ s.t.}:$ (i) $\sum f(x_i \cdot x_j) \ge 0$ (ii) $f(t) + c_0 \le 0$ for $t \in [-1, z]$ (iii) $f(1) + c_0 \le 1$ $i \overline{i < n}$ Then $\operatorname{\mathsf{kn}}_z(K) = n \leq \frac{1}{c_0}$ ([Pfender 2006]) Let $q(t) = f(t) + c_0$ $n^2 c_0 \leq n^2 c_0 + \sum f(x_i \cdot x_j)$ by (i) $i, j \leq n$ $= \sum (f(x_i \cdot x_j) + c_0) = \sum g(x_i \cdot x_j)$ $i,j \le n$ $i,j \le n$ $\leq \sum g(x_i \cdot x_i)$ since $g(t) \leq 0$ for $t \leq z$ and $x_i \in \mathcal{C}_z$ for $i \leq n$ $i \le n$ = ng(1) since $||x_i||_2 = 1$ for $i \leq n$ $\leq n$ since $q(1) \leq 1$.

Pfender's LP

Condition (i) of Theorem valid for conic combinations of suitable functions F:

$$f(t) = \sum_{h \in H} c_h f_h(t)$$
 for some $c_h \ge 0$,

e.g. $\mathcal{F} =$ Gegenbauer polynomials (again)

▶ Get SILP

$$\max_{\substack{c \in \mathbb{R}^{|H|} \\ \forall t \in [-1, z]}} c_h G_h^K(t) + c_0 \leq 0 \quad \text{(ii)}$$

$$\sum_{\substack{h \in H \\ h \in H}} c_h G_h^K(1) + c_0 \leq 1 \quad \text{(iii)}$$

$$\forall h \in H \quad c_h \geq 0 \quad \text{(conic comb.)}$$

▶ Discretize [-1, z] by finite T, solve LP, check validity (again)

Delsarte's and Pfender's theorem compared

Delsarte & Pfender's theorem look similar:

Delsarte	Pfender
(i) $F(t)$ G. poly comb	(i) $f(t)$ G. poly comb
(ii) $\forall t \in [-1, z] F(t) \leq 0$	(ii) $\forall t \in [-1, z] f(t) + c_0 \le 0$
	(iii) $f(1) + c_0 \le 1$
$\Rightarrow kn_z(K) \leq \tfrac{F(1)}{d_0}$	Pfender(i) $f(t)$ G. poly comb(ii) $\forall t \in [-1, z] f(t) + c_0 \leq 0$ (iii) $f(1) + c_0 \leq 1$ $\Rightarrow kn_z(K) \leq \frac{1}{c_0}$

Try setting $F(t) = f(t) + c_0$: condition (ii) is the same

▶ By condition (iii) in Pfender's theorem

$$\mathsf{kn}_z(K) \le \frac{F(1)}{d_0} = \frac{f(1) + c_0}{c_0} \le \frac{1}{c_0}$$

 \Rightarrow Delsarte bound at least as tight as Pfender's

▶ Delsarte (i) $\Rightarrow \int_{[-1,1]} F(t) dt \ge 0 \Rightarrow \int_{[-1,1]} (f(t) + c_0) dt \ge 0$ Pfender (i) $\Rightarrow \int_{[-1,1]} f(t) dt \ge 0$ more stringent

If \mathcal{F} are Gegenbauer polynomials, Delsarte requires weaker condition and yields tighter bound; but Pfender allows for more general \mathcal{F} , can get improved results see [Pfender, "Improved Delsarte bounds for spherical codes in small dimensions", J. Comb. Theory A, 114:1133-1147, 2007]

The final, easy improvement

▶ However you compute your upper bound B:
▶ The number of surrounding balls is *integer*▶ If kn_z(K) ≤ B, then in fact kn_z(K) ≤ LB

Outline

Introduction

Summary

Random projections in LP

Random projection theory Projecting LP feasibility Projecting LP optimality Solution retrieval Application to quantile regression

Sparsity and ℓ_1 minimization

Motivation Basis pursuit Theoretical results Application to noisy channel encoding Improvements

Kissing Number Problem

Lower bounds Upper bounds from SDP? Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Clustering in Natural Language

Clustering on graphs Clustering in Euclidean spaces Distance instability MP formulations Random projections again

Job offers

Optimisation / Operations Senior Manager

VINCI Airports

SLOBAL

Rueil-Malmaison, Île-de-France, France

...for the delivery of the various **optimization** projects... to the success of each **optimization** project...

Pricing Data Scientist/Actuary - Price Optimization Specialist(H-F) AXA Global Direct

Région de Paris, France

...optimization. The senior price optimization... Optimization and Innovation team, and will be part...

Growth Data scientist - Product Features Team

Deezer

Paris, FR

OverviewPress play on your next adventure! Music... to join the Product Performance & Optimization team... www.deezer.com

Analystes et Consultants - Banque -Optimisation des opérations financières... Accenture

Région de Paris, France

Nous recherchons des analystes jeunes diplômés et des consultants H/F désireux de travailler sur des problématiques d'optimisation des opérations bancaires (optimisation des modèles opérationnels et des processus) en France et au Benelux. Les postes sont à pourvoir en CDI, sur base d'un rattachement...

Electronic Health Record (EHR) Coordinator (Remote)

Aledade, Inc. - Bethesda, MD

Must have previous implementation or optimization experience with ambulatory EHRs and practice management software, preferably with expertise in Greenway,...

Operations Research Scientist

Ford Motor Company - ***** 2,381 reviews - Dearborn, MI

Strong knowledge of optimization techniques (e.g. Develop optimization frameworks to support models related to mobility solution, routing problem, pricing and...

IS&T Controller

ALSTOM Alstom

Saint-Ouen, FR

The Railway industry today is characterized... reviews, software deployment optimization, running... jobsearch.alstom.com

Fares Specialist / Spécialiste Optimisation des Tarifs Aériens

Egencia, an Expedia company

Courbevoie - FR

EgenciaChaque année, Egencia accompagne des milliers de sociétés réparties dans plus de 60 pays à mieux gérer leurs programmes de voyage. Nous proposons des solutions modernes et des services d'exception à des millions de voyageurs, de la planification à la finalisation de leur voyage. Nous répondons...

Automotive HMI Software Experts or Software Engineers

Elektrobit (EB)

Paris Area, France

Elektrobit Automotive offers in Paris interesting... performances and optimization area, and/or software...

Deployment Engineer, Professional Services, Google Cloud

Google

Paris, France

Note: By applying to this position your... migration, network optimization, security best...

Operations Research Scientist

Marriott International, Inc - ***** 4,694 reviews - Bethesda, MD 20817 Analyzes data and builds optimization,. Programming models and familiarity with optimization software (CPLEX, Gurobi)....

Research Scientist - AWS New Artificial Intelligence Team!

Aresearch Scientist - AWS New Artificial Intelligence Team! yviews - Palo Alto, CA We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center...

A typical job offer

Under the responsibility of the Commercial Director, the Optimisation / Operations Senior Manager will have the responsibility to optimise and develop operational aspects for VINCI Airports current and future portfolio of airports. They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. As part of the exercise of its function, the Optimisation Manager will undertake the following: Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives of the various technical services agreements, the strategy of the individual airports and the Group. This function will include: Participation in the definition of airport strategy. Definition of this airport strategy into the Optimisation Strategy, Regularly evaluate the impact of the Optimisation Strategy, Ensure accurate implementation of this strategy at all airports. Management of the various technical services agreements with our airports by developing specific technical competences from the Head Office level. Oversee the management and definition of all optimisation projects. Identification, overview and management of the project managers responsible for the delivery of the various optimization projects at each asset. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Development and implementation of the Group optimisation plan. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the strategies, trends and best practices of the airport industry and other reference industries in terms of the applicability to the optimization plan. Study of the needs and preferences of the passengers, through a continuous process of marketing research at all of the airports within the VINCI Airports portfolio. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Development and participation in the expansion or refurbishment projects of the airports, to assure a correct configuration and positioning of the operational and commercial area that can allow the optimization of the revenues and operational efficiency. Support the Director Business Development through the analysis and opportunity assessment of areas of optimization for all target assets in all bids and the preparation and implementation of the strategic plan once the assets are acquired. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports [...]

... and blah blah: IS THIS APPROPRIATE FOR MY $C_{55/413}$

Rationalizing the application process

- ▶ You collect many offers
- Don't have time to tailor application to each offer
- ▶ Partition offers into groups: clustering
- Need a similarity relation given two offers, do they describe "similar jobs"?
- ▶ Try Natural Language Processing (NatLangProc):
 - ► Automated summary
 - ► Relation Extraction
 - ▶ Named Entity Recognition (NER)
 - ► Keywords

Automated summary ./summarize.py job01.txt

They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports. You have a diverse range of experiences working at or with airports across various disciplines such as operations, ground handling, commercial, etc. Demonstrated high level conceptual thinking, creativity and analytical skills.

Does it help? hard to say

Relation Extraction

./relextr-mitie.py job01.txt

```
====== RELATIONS ======
Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES_EVENT ] Head Office
Head Office [ INFLUENCED_BY ] Self
Head Office [ INTERRED_HERE ] Self
VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self
Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office
Self [ ORGANIZATIONS_WITH_THIS_SCOPE ] Head Office
Self [ PEOPLE INVOLVED ] Head Office
Self [ PLACE OF DEATH ] Head Office
Head Office [ RELIGION ] Self
VINCI Airports [ RELIGION ] Optimisation Strategy
```

Does it help? hardly

Named Entity Recognition

./ner-mitie.py job01.txt

```
==== NAMED ENTITIES =====
English MISC
French MISC
Head Office ORGANIZATION
Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON
Technical Services Agreements MISC
VINCI Airports ORGANIZATION
```

Does it help? ... maybe

For a document D, let NER(D) = named entity words

Subsection 1

Clustering on graphs

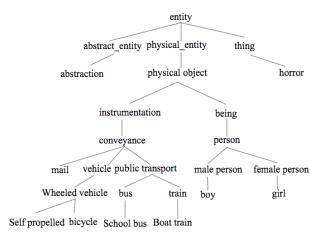
Constructing the graph

- 1. Recognize named entities from all documents
- 2. Use them to compute similarities among documents
- 3. Use modularity clustering

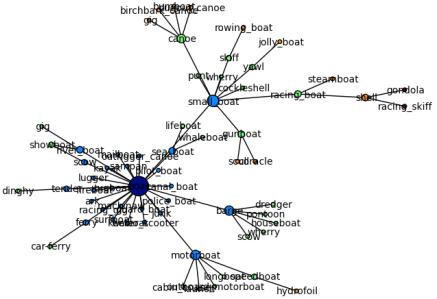
The named entities

- 1. Operations Head Airports Office VINCI Technical Self French / Strategy Agreements English Services Optimisation
- 2. Europe and P&C Work Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate International English
- 3. Scientist Product Analyze Java Features & Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press Performance Deezer Data Computer
- 4. Lean6Sigma Lean-type Office Banking Paris CDI France RPA Middle Accenture English Front Benelux
- 5. Partners Management Monitor BC Provide Support Sites Regions Miters Program Performance market develop Finance & IS&T Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
- 6. Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia English Fares with Company Inc.
- 7. Paris Integration France Automation Automotive French . Linux/Genivi HMI UI Software EB Architecture Elektrobit technologies GUIDE Engineers German Technology SW well-structured Experts Tools
- 8. Product Google Managers Puthon JavaScript AWS JSON BigQuery Java Platform Engineering HTML MuSQL Services Professional Googles Ruby Cloud OAuth
- 9. EHR Aledades Provide Wellness Perform ACO Visits EHR-system-specific Coordinator Aledade Medicare Greenway Allscripts
- 10. Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata & Python Company GDIA Ford Visa SPARK Data Applied Science Work C++ R Unix/Linux Physics Microsoft Operations Monte JAVA Mobility Insight Analytics Engineering Computer Motor SQL Operation Carlo PowerPoint
- 11. Management Java CANDIDATE Application Statistics Gurobi Provides Provider Mathematics Service Maintains Deliver SM&G SAS/HPF SAS Data Science Economics Marriott PROFILE Providers OR Engineering Computer SQL Education 12. Alto Statistics Java Sunnyvale Research ML Learning Science Operational Machine Amazon
- Computer C++ Palo Internet R Seattle
- 13. LLamasoft Work Fortune Chain Supply C# Top Guru What Impactful Team LLamasofts Makes Gartner Gain
- 14. Worldwide Customer Java Mosel Service Puthon Energy Familiarity CPLEX Research Partnering
- Amazon R SQL CS Operations Operations Science Research Engineering Computer Systems or Build 15.
- 16. Statistics Italy Broad Coins France Australia Puthon Amazon Germany SAS Appstore Spain Economics Experience R Research US Scientist UK SQL Japan Economist
- Competency Statistics Knowledge Employer communication Research Machine EEO United ORMA 17. Way OFCCP Corporation Mining & C# Python Visual Studio Opportunity Excellent Modeling Data Jacksonville Arena Talent Skills Science Florida Life Equal AnyLogic Facebook CSX Oracle 7 1413 Strategy Vision Operations Industrial Stream of States Analytics Engineering Computer Fragment

Word similarity: WordNet



WordNet: hyponyms of "boat"



Wu-Palmer word similarity

Semantic WordNet similarity between words w_1, w_2 :

$$\mathsf{wup}(w_1, w_2) = \frac{2 \operatorname{depth}(\mathsf{lca}(w_1, w_2))}{\mathsf{len}(\mathsf{shpath}(w_1, w_2)) + 2 \operatorname{depth}(\mathsf{lca}(w_1, w_2))}$$

► lca: lowest common ancestor

earliest common word in paths from both words to WordNet root

b depth: length of path from root to word

Example: wup(dog, boat)?

lca(dog, boat) = whole; depth(whole) = 4

- 18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate -> chordate -> animal -> organism -> living_thing -> whole -> artifact -> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat
- 13 -> dog -> domestic_animal -> animal -> organism -> living_thing
 -> whole -> artifact -> instrumentality -> conveyance -> vehicle
 -> craft -> vessel -> boat

wup(dog, boat) = 8/21 = 0.380952380952

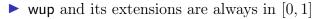
Extensions of Wu-Palmer similarity

▶ to lists of words H, L:

$$\mathsf{wup}(H,L) = \frac{1}{|H|\,|L|} \sum_{v \in H} \sum_{w \in L} \mathsf{wup}(v,w)$$

• to pairs of documents D_1, D_2 :

 $\mathsf{wup}(D_1, D_2) = \mathsf{wup}(\mathsf{NER}(D_1), \mathsf{NER}(D_2))$



The Wu-Palmer similarity matrix

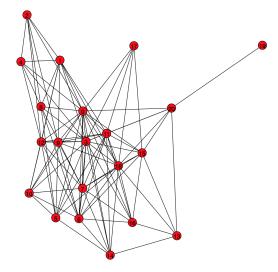
 $1.00\ 0.63\ 0.51\ 0.51\ 0.66\ 0.45\ 0.46\ 0.47\ 0.72\ 0.58\ 0.54\ 0.50\ 0.72\ 0.38\ 0.49\ 0.47\ 0.47\ 0.44\ 0.54\ 0.31\ 0.44$ $0.63\ 1.00\ 0.45\ 0.45\ 0.54\ 0.40\ 0.42\ 0.42\ 0.57\ 0.49\ 0.46\ 0.45\ 0.59\ 0.35\ 0.43\ 0.42\ 0.42\ 0.41\ 0.47\ 0.32\ 0.40$ 0.51 0.45 1.00 0.40 0.53 0.35 0.37 0.37 0.58 0.47 0.43 0.40 0.59 0.28 0.39 0.37 0.38 0.35 0.43 0.24 0.35 $0.51 \ 0.45 \ 0.40 \ 1.00 \ 0.63 \ 0.45 \ 0.46 \ 0.46 \ 0.67 \ 0.56 \ 0.52 \ 0.49 \ 0.68 \ 0.38 \ 0.48 \ 0.47 \ 0.47 \ 0.45 \ 0.53 \ 0.33 \ 0.44$ $0.66\ 0.54\ 0.53\ 0.63\ 1.00\ 0.34\ 0.35\ 0.35\ 0.49\ 0.42\ 0.39\ 0.37\ 0.50\ 0.29\ 0.36\ 0.35\ 0.35\ 0.34\ 0.40\ 0.26\ 0.34$ 0.45 0.40 0.35 0.45 0.34 1.00 0.42 0.43 0.66 0.54 0.49 0.45 0.67 0.34 0.44 0.43 0.43 0.40 0.49 0.28 0.40 $0.46\ 0.42\ 0.37\ 0.46\ 0.35\ 0.42\ 1.00\ 0.44\ 0.66\ 0.54\ 0.49\ 0.47\ 0.67\ 0.34\ 0.45\ 0.45\ 0.44\ 0.42\ 0.50\ 0.28\ 0.40$ $0.47\ 0.42\ 0.37\ 0.46\ 0.35\ 0.43\ 0.44\ 1.00\ 0.67\ 0.55\ 0.51\ 0.48\ 0.68\ 0.36\ 0.47\ 0.45\ 0.45\ 0.43\ 0.51\ 0.30\ 0.42$ $0.72\ 0.57\ 0.58\ 0.67\ 0.49\ 0.66\ 0.66\ 0.67\ 1.00\ 0.33\ 0.31\ 0.29\ 0.40\ 0.23\ 0.28\ 0.27\ 0.28\ 0.26\ 0.31\ 0.21\ 0.26$ 0.58 0.49 0.47 0.56 0.42 0.54 0.54 0.55 0.33 1.00 0.46 0.43 0.59 0.34 0.42 0.41 0.41 0.39 0.46 0.31 0.39 $0.54\ 0.46\ 0.43\ 0.52\ 0.39\ 0.49\ 0.49\ 0.51\ 0.31\ 0.46\ 1.00\ 0.39\ 0.56\ 0.29\ 0.38\ 0.36\ 0.36\ 0.34\ 0.41\ 0.24\ 0.35$ $0.50\ 0.45\ 0.40\ 0.49\ 0.37\ 0.45\ 0.47\ 0.48\ 0.29\ 0.43\ 0.39\ 1.00\ 0.70\ 0.40\ 0.50\ 0.49\ 0.48\ 0.46\ 0.54\ 0.35\ 0.46$ 0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.40 0.59 0.56 0.70 1.00 0.23 0.29 0.29 0.29 0.28 0.33 0.20 0.270.38 0.35 0.28 0.38 0.29 0.34 0.34 0.36 0.23 0.34 0.29 0.40 0.23 1.00 0.48 0.45 0.46 0.42 0.52 0.30 0.43 $0.49\ 0.43\ 0.39\ 0.48\ 0.36\ 0.44\ 0.45\ 0.47\ 0.28\ 0.42\ 0.38\ 0.50\ 0.29\ 0.48\ 1.00\ 0.39\ 0.39\ 0.39\ 0.36\ 0.45\ 0.26\ 0.37$ 0.47 0.42 0.37 0.47 0.35 0.43 0.45 0.45 0.27 0.41 0.36 0.49 0.29 0.45 0.39 1.00 0.48 0.46 0.54 0.33 0.440.47 0.42 0.38 0.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.51 0.32 0.43 $0.44\ 0.41\ 0.35\ 0.45\ 0.34\ 0.40\ 0.42\ 0.43\ 0.26\ 0.39\ 0.34\ 0.46\ 0.28\ 0.42\ 0.36\ 0.46\ 0.43\ 1.00\ 0.53\ 0.31\ 0.43$ $0.54\ 0.47\ 0.43\ 0.53\ 0.40\ 0.49\ 0.50\ 0.51\ 0.31\ 0.46\ 0.41\ 0.54\ 0.33\ 0.52\ 0.45\ 0.54\ 0.51\ 0.53\ 1.00\ 0.36\ 0.46$ $0.31\ 0.32\ 0.24\ 0.33\ 0.26\ 0.28\ 0.28\ 0.30\ 0.21\ 0.31\ 0.24\ 0.35\ 0.20\ 0.30\ 0.26\ 0.33\ 0.32\ 0.31\ 0.36\ 1.00\ 0.47$ $0.44\ 0.40\ 0.35\ 0.44\ 0.34\ 0.40\ 0.40\ 0.42\ 0.26\ 0.39\ 0.35\ 0.46\ 0.27\ 0.43\ 0.37\ 0.44\ 0.43\ 0.43\ 0.43\ 0.46\ 0.47\ 1.00$

The Wu-Palmer similarity matrix

Too uniform! Try zeroing values below median

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.00 0.49 0.47 0.47 0.44 0.54 0 $0.63 \ 1.00 \ 0.45 \ 0.45 \ 0.54$ 0.00 0.00 0.00 0.57 0.49 0.46 0.45 0.59 0.00 0.00 0.00 0.00 0.47 0.00 $0.51 \ 0.45 \ 1.00 \ 0.00 \ 0.53 \ 0.00 \ 0.00 \ 0.58 \ 0.47 \ 0.00 \ 0.00 \ 0.59 \ 0.00$ $0.51 \ 0.45 \ 0.00 \ 1.00 \ 0.63 \ 0.45 \ 0.46 \ 0.46 \ 0.67 \ 0.56 \ 0.52 \ 0.49 \ 0.68 \ 0.00 \ 0.48 \ 0.47 \ 0.47 \ 0.45 \ 0.53$ $0.66 \ 0.54 \ 0.53 \ 0.63 \ 1.00 \ 0.00 \ 0.00 \ 0.00 \ 0.49 \ 0.00 \ 0.00 \ 0.00 \ 0.50 \ 0.00 \ 0.00$ 0.45 0.00 0.00 0.45 0.00 1.00 0.00 0.00 0.66 0.54 0.49 0.45 0.67 0.00 0.440.490.46 0.00 0.00 0.46 0.00 0.00 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.00 0.45 0.45 0.44 00 0.50 0 $0.47 \ 0.00 \ 0.00 \ 0.46 \ 0.00 \ 0.00 \ 0.44 \ 1.00 \ 0.67 \ 0.55 \ 0.51 \ 0.48 \ 0.68$ 000470450450.51 $0.72\ 0.57\ 0.58\ 0.67\ 0.49\ 0.66\ 0.66\ 0.67\ 1.00\ 0.00$ $0.58 \ 0.49 \ 0.47 \ 0.56 \ 0.00 \ 0.54 \ 0.54 \ 0.55 \ 0.00 \ 1.00 \ 0.46 \ 0.43 \ 0.59 \ 0.00 \$ 0.46 $0.54 \ 0.46 \ 0.00 \ 0.52 \ 0.00 \ 0.49 \ 0.49 \ 0.51 \ 0.00 \ 0.46 \ 1.00 \ 0.00 \ 0.56 \ 0.00 \$ $0.50\ 0.45\ 0.00\ 0.49\ 0.00\ 0.45\ 0.47\ 0.48\ 0.00\ 0.43\ 0.00\ 1.00\ 0.70\ 0.00\ 0.50\ 0.49\ 0.48\ 0.46\ 0.54$ 0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.59 0.56 0.70 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.48 0.45 0.46 0.52 $0.00 \ 0.44 \ 0.45 \ 0.47 \ 0.00 \ 0.00 \ 0.50 \ 0.00 \ 0.48 \ 1.00 \ 0.00 \ 0.00 \ 0.00$ 0.49 0.00 0.00 0.48 0.45 $0.47 \ 0.00 \ 0.00 \ 0.47 \ 0.00 \ 0.00 \ 0.45 \ 0.00 \ 0.00 \ 0.00 \ 0.45 \ 0.00 \ 1.00 \ 0.48 \ 0.46 \ 0.54$ 0.47 0.00 0.00 0.47 0.00 0.00 0.44 0.450.00 0.00 0.00 0.48 0.00 0.46 $0.48 \ 1.00 \ 0.00 \ 0.51 \ 0$ 0.44 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.46 0.00 1.00 0.53 $0.54\ 0.47\ 0.00\ 0.53\ 0.00\ 0.49\ 0.50\ 0.51\ 0.00\ 0.46\ 0.00\ 0.54\ 0.00\ 0.52\ 0.45\ 0.54\ 0.51\ 0.53\ 1.00\ 0.00\ 0.46$ $00 \ 0.00 \ 1.00 \ 0.47$ 00 0 44

The similarity graph



G = (V, E), weighted adjacency matrix A

Modularity clustering

"Modularity is the fraction of the edges that fall within a cluster minus the expected fraction if edges were distributed at random."

- *"at random"* = random graphs over same degree sequence
- degree sequence = (k_1, \ldots, k_n) where $k_i = |N(i)|$
- "expected" = over all possible "half-edge" recombinations degree sequence invariant operation

• expected edges between $u, v: k_u k_v / (2m)$ where m = |E|

▶
$$\operatorname{mod}(u, v) = \frac{1}{2m} (A_{uv} - k_u k_v / (2m))$$
 param
▶ $\operatorname{mod}(G) = \sum_{\{u,v\} \in E} \operatorname{mod}(u, v) x_{uv}$
 $x_{uv} = 1 \text{ if } u, v \text{ in the same cluster and 0 otherwise var}$
▶ "Natural extension" to weighted graphs: $k_u = \sum_v A_{uv}, m = \sum_{uv} A_{uv}$

373 / 413

Use modularity to define clustering

▶ What is the "best clustering"?

 Maximize discrepancy between actual and expected "as far away as possible from average"

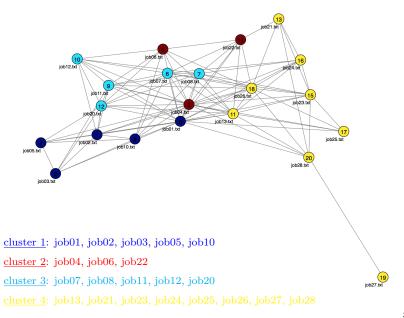
$$\begin{array}{ll} \max & \sum\limits_{\{u,v\}\in E} \mathsf{mod}(u,v) x_{uv} \\ \forall u \in V, v \in V \quad x_{uv} \in \{0,1\} \end{array}$$

- ▶ Issue: optimum could be intransitive
- ► Idea: treat clusters as cliques (even if zero weight) ⇒ clique partitioning constraints for transitivity

$$\begin{array}{lll} \forall i < j < k & x_{ij} + x_{jk} - x_{ik} & \leq & 1 \\ \forall i < j < k & x_{ij} - x_{jk} + x_{ik} & \leq & 1 \\ \forall i < j < k & -x_{ij} + x_{jk} + x_{ik} & \leq & 1 \end{array}$$

 $\textit{if } i,j \in C \textit{ and } j,k \in C \textit{ then } i,k \in C \\$

The resulting clustering



Is it good?

Vinci Axa Deezer Alstom Aledade

Accenture Elekt Expedia Goog fragment1 Ford Marr Llam

ElektrobitAmazon 1GoogleCSXFordWestrockMarriottMitreLlamasoftClarityfragment2

? — named entities rarely appear in WordNet
Desirable property: chooses number of clusters

Subsection 2

Clustering in Euclidean spaces

Clustering vectors

$\begin{array}{c} \textit{Most frequent words } \hline w \textit{ over collection } \hline C \textit{ of documents } d \\ \textit{./keywords.py} \end{array}$

global environment customers strategic processes teams sql job industry use java developing project process engineering field models opportunity drive results statistical based operational performance using mathematical computer new technical highly market company science role dynamic background products level methods design looking modeling manage learning service customer effectively technology requirements build mathematics problems plan services time scientist implementation large analytical techniques lead available plus technologies sas provide machine product functions organization algorithms position model order identify activities innovation key appropriate different complex best decision simulation strategy meet client assist quantitative finance commercial language mining travel chain amazon pricing practices cloud supply

$$\begin{aligned} \mathsf{tfidf}_C(w,d) &= \frac{|(t \in d \mid t = w)| \, |C|}{|\{h \in C \mid w \in h\}|} \\ \mathsf{keyword}_C(i,d) &= word \ w \ having \ i^{th} \ best \ \mathsf{tfidf}_C(w,d) value \\ \mathsf{vec}_C^m(d) &= (\mathsf{tfidf}_C(\mathsf{keyword}_C(i,d),d) \mid i \leq m) \end{aligned}$$

Transforms documents to vectors

tfidf: text frequency inverse document frequency

Minimum sum-of-squares clustering

- ▶ MSSC, a.k.a. the k-means problem
- Given points $p_1, \ldots, p_n \in \mathbb{R}^m$, find clusters C_1, \ldots, C_k

$$\min \sum_{j \le k} \sum_{i \in C_j} \|p_i - \mathsf{centroid}(C_j)\|_2^2$$

where $\operatorname{centroid}(C_j) = \frac{1}{|C_j|} \sum_{i \in C_j} p_i$

▶ k-means alg.: given initial clustering C_1, \ldots, C_k

1: $\forall j \leq k$ compute $y_j = \operatorname{centroid}(C_j)$ 2: $\forall i \leq n, j \leq k$ if y_j is the closest centr. to p_i let $x_{ij} = 1$ else 0 3: $\forall j \leq k$ update $C_j \leftarrow \{p_i \mid x_{ij} = 1 \land i \leq n\}$ 4: repeat until stability

k-means with k = 2

Vinci Deezer Accenture Expedia Google Aledade Llamasoft

AXA Alstom Elektrobit Ford Marriott Amazon 1-3 CSX WestRock MITRE Clarity fragments 1-2

k-means with k = 2: another run

Deezer Elektrobit Google Aledade

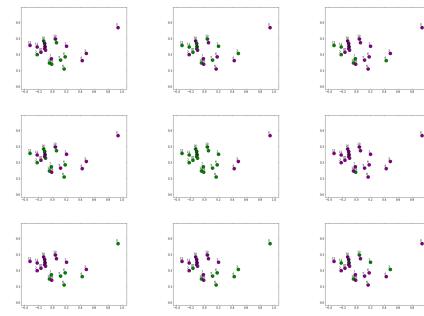
Vinci AXA Accenture Alstom Expedia Ford Marriott Llamasoft Amazon 1-3 CSX WestRock MITRE Clarity fragments 1-2

k-means with k = 2: third run!

AXA Deezer Expedia Ford Marriott Llamasoft Amazon 1-3 CSX WestRock MITRE Clarity fragments 1-2 Vinci Accenture Alstom Elektrobit Google Aledade

A fickle algorithm

We can't trust k-means: why?

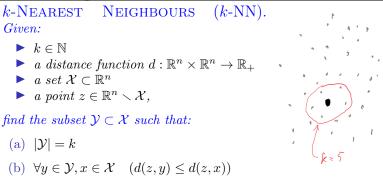


383 / 413

Subsection 3

Distance instability

Nearest Neighbours



▶ basic problem in data science

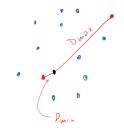
pattern recognition, computational geometry, machine learning, data compression, robotics, recommender systems, information retrieval, natural language processing and more

• Example: Used in Step 2 of k-means: assign points to closest centroid

[Cover & Hart 1967]

With random variables

- ► Consider 1-NN
- Let $\ell = |\mathcal{X}|$
- Distance function family $\{d^m : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+\}_m$
- \blacktriangleright For each m:



- $\blacktriangleright\,$ random variable Z^m with some distribution over \mathbb{R}^n
- for $i \leq \ell$, random variable X_i^m with some distrib. over \mathbb{R}^n
- ► X_i^m iid w.r.t. *i*, Z^m independent of all X_i^m

$$\blacktriangleright D^m_{\min} = \min_{i \le \ell} d^m(Z^m, X^m_i)$$

$$\blacktriangleright D^m_{\max} = \max_{i \le \ell} d^m(Z^m, X^m_i)$$

Distance Instability Theorem

Let p > 0 be a constant
If

 $\exists i \leq \ell \quad (d^m(Z^m, X^m_i))^p \text{ converges as } m \to \infty$ then, for any $\varepsilon > 0$,

closest and furthest point are at about the same distance

Note " $\exists i$ " suffices since $\forall m$ we have X_i^m iid w.r.t. i

[Beyer et al. 1999]

Distance Instability Theorem

Let p > 0 be a constantIf

$$\begin{aligned} \forall i \leq \ell \lim_{m \to \infty} \operatorname{Var} \left(\frac{(d^m(Z^m, X^m_i))^p}{\mathbb{E}((d^m(Z^m, X^m_i))^p)} \right) &= 0 \\ \text{then, for any } \varepsilon > 0, \\ \lim_{m \to \infty} \mathbb{P}(D^m_{\max} \leq (1 + \varepsilon) D^m_{\min}) &= 1 \end{aligned}$$

Note " $\exists i$ " suffices since $\forall m$ we have X_i^m iid w.r.t. i

[Beyer et al. 1999]

Preliminary results

• <u>Lemma</u>. $\{B^m\}_m$ seq. of rnd. vars with finite variance and $\lim_{m \to \infty} \mathbb{E}(B^m) = b \land \lim_{m \to \infty} \operatorname{Var}(B^m) = 0$; then $\forall \varepsilon > 0 \ \lim_{m \to \infty} \mathbb{P}(\|B^m - b\| \le \varepsilon) = 1$

denoted $B^m \to_{\mathbb{P}} b$

- ▶ <u>Slutsky's theorem</u>. $\{B^m\}_m$ seq. of rnd. vars and g a continuous function; if $B^m \to_{\mathbb{P}} b$ and g(b) exists, then $g(B^m) \to_{\mathbb{P}} g(b)$
- <u>Corollary</u>. If $\{A^m\}_m, \{B^m\}_m$ seq. of rnd. vars. s.t. $A^m \to_{\mathbb{P}} a$ and $B^m \to_{\mathbb{P}} b \neq 0$ then $\frac{A^m}{B^m} \to_{\mathbb{P}} \frac{a}{b}$

Proof

3.
$$\mathbf{V}^m = (V_m \mid i \leq \ell) \rightarrow_{\mathbb{P}} \mathbf{1} \text{ (by iid)}$$

4. Slutsky's thm. $\Rightarrow \min(\mathbf{V}^m) \rightarrow_{\mathbb{P}} \min(\mathbf{1}) = 1$ simy for max

5. Corollary
$$\Rightarrow \frac{\max(\mathbf{V}^m)}{\min(\mathbf{V}^m)} \to_{\mathbb{P}} 1$$

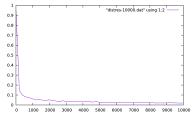
6.
$$\frac{D_{\max}^m}{D_{\min}^m} = \frac{\mu_m \max(\mathbf{V}^m)}{\mu_m \min(\mathbf{V}^m)} \to_{\mathbb{P}} 1$$

7. Result follows (defn. of $\rightarrow_{\mathbb{P}}$ and $D_{\max}^m \ge D_{\min}^m$)

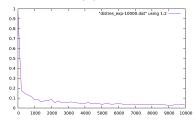
A precision limit

- Closest and farthest point from z: can't be told apart with precision > ε
- ▶ In real algorithms, often want "closest"
- ▶ Hope of telling apart closest from second-closest?

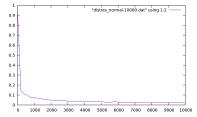
Loss of precision ε for $K \leq 10000$ Uniform(0,1)



$\mathsf{Exponential}(1)$



Normal(0,1)



- Precision falls exponentially fast
- Generates algorithmic instability

When it applies

- ▶ iid random variables from any distribution
- ▶ Particular forms of correlation e.g. $U_i \sim \text{Uniform}(0, \sqrt{i}), X_1 = U_1, X_i = U_i + (X_{i-1}/2)$ for i > 1
- ► Variance tending to zero e.g. $X_i \sim N(0, 1/i)$
- Discrete uniform distribution on *m*-dimensional hypercube
 for both data and query
- Computational experiments with k-means: instability already with n > 15

... and when it doesn't

- Complete linear dependence on all distributions can be reduced to NN in 1D
- Exact and approximate matching $query \ point = (or \approx) \ data \ point$
- Query point in a well-separated cluster in data
- Implicitly low dimensionality project; but NN must be stable in lower dim.

Subsection 4

MP formulations

Why?

▶ With k-means being so fast, why bother with MP?

► Principle:

changing an MP is easier than changing an algorithm

► Side constraints

e.g. clusters are spheres, or other shapes

Clustering subproblems

e.g. assign resources subject to optimal clustering

▶ MP delivers a bound

"can't do better than bound" guarantee

MP formulation

$\min_{x,y,s}$	$\sum_{i \leq n} \sum_{j \leq k} \ p_i - y_j\ _2^2 x_{ij}$		Ň	
$\forall j \leq k$	$rac{1}{s_j}\sum_{i\leq n}p_ix_{ij}$	=	y_j	
$\forall i \leq n$	$\sum_{j\leq k}^{m-1} x_{ij}$	=	1	
$\forall j \leq k$	$\sum_{i\leq n}^{j\leq n} x_{ij}$	=	s_j	(MSSC)
$\forall j \leq k$	$-y_j$	_	\mathbb{R}^{m}	
	x	\in	$\{0,1\}^{nk}$	
	s	\in	\mathbb{N}^k	J

MINLP: nonconvex terms; continuous, binary and integer variables

Reformulation

The (MSSC) formulation has the same optima as:

The only nonconvexities are products of binary by continuous <u>bounded</u> variables

Products of binary and continuous vars.

- \blacktriangleright Suppose term xy appears in a formulation
- Assume $x \in \{0, 1\}$ and $y \in [0, 1]$ is bounded
- means "either z = 0 or z = y"
- $\blacktriangleright Replace xy by a new variable z$
- ► Adjoin the following constraints:

$$z \in [0, 1]$$

$$y - (1 - x) \leq z \leq y + (1 - x)$$

$$-x \leq z \leq x$$

 \blacktriangleright \Rightarrow Everything's linear now!

[Fortet 1959]

Products of binary and continuous vars.

- Suppose term xy appears in a formulation
- Assume $x \in \{0, 1\}$ and $y \in [y^L, y^U]$ is bounded
- means "either z = 0 or z = y"
- $\blacktriangleright Replace xy by a new variable z$
- ► Adjoin the following constraints:

$$z \in [\min(y^{L}, 0), \max(y^{U}, 0)]$$

$$y - (1 - x) \max(|y^{L}|, |y^{U}|) \leq z \leq y + (1 - x) \max(|y^{L}|, |y^{U}|)$$

$$-x \max(|y^{L}|, |y^{U}|) \leq z \leq x \max(|y^{L}|, |y^{U}|)$$

 \blacktriangleright \Rightarrow Everything's linear now!

[L. et al. 2009]

MSSC is a convex MINLP

$$\begin{split} \min_{\substack{x,y,P,\chi,\xi}} & \sum_{i \leq n} \sum_{j \leq k} \chi_{ij} \\ \forall i \leq n, j \leq k \quad 0 \leq \chi_{ij} \leq P_{ij} \\ \forall i \leq n, j \leq k \quad P_{ij} - (1 - x_{ij})P^U \leq \chi_{ij} \leq x_{ij}P^U \\ \forall i \leq n, j \leq k \quad \||p_i - y_j\||_2^2 \leq P_{ij} \quad \Leftarrow \text{ convex} \\ \forall j \leq k \quad \sum_{i \leq n} p_i x_{ij} = \sum_{i \leq n} \xi_{ij} \\ \forall i \leq n, j \leq k \quad y_j - (1 - x_{ij}) \max(|y^L|, |y^U|) \leq \xi_{ij} \leq y_j + (1 - x_{ij}) \max(|y^L|, |y^U|) \\ \forall i \leq n, j \leq k \quad -x_{ij} \max(|y^L|, |y^U|) \leq \xi_{ij} \leq x_{ij} \max(|y^L|, |y^U|) \\ \forall i \leq n, j \leq k \quad y_j \in [y^L, y^U] \\ & \chi \in \{0, 1\}^{nk} \\ P \in [0, P^U]^{nk} \\ & \chi \in [0, P^U]^{nk} \\ & \forall i \leq n, j \leq k \quad \xi_{ij} \in [\min(y^L, 0), \max(y^U, 0)] \end{split}$$

 y_j, ξ_{ij}, y^L, y^U are vectors in \mathbb{R}^m

How to solve it

- ▶ cMINLP is **NP**-hard
- ► Algorithms:
 - ► Outer Approximation (OA)
 - ► Branch-and-Bound (BB)
- ▶ Best (open source) solver: BONMIN
- ► Another good (commercial) solver: KNITRO
- With k = 2, unfortunately...

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution, best possible 6.1855969 (32142.17 seconds)

 Interesting feature: the <u>bound</u> guarantees we can't do better than bound all BB algorithms provide it

Bonmin

Alstom Elektrobit Ford Llamasoft Amazon 2 CSX MITRE Clarity fragment 2

Vinci AXA Deezer Accenture Expedia Google Aledade Marriott Amazon 1 & 3 WestRock fragment 1

Couple of things left to try

Approximate l₂ by l₁ norm l₁ is a linearizable norm Randomly project the data lose dimensions but keep approximate shape

Linearizing convexity

- Replace $||p_i y_j||_2^2$ by $||p_i y_j||_1$
- ▶ Warning: optima will change

but still within "clustering by distance" principle

$$\forall i \le n, j \le k \quad \|p_i - y_j\|_1 = \sum_{a \le d} |p_{ia} - y_{ja}|$$

- ▶ Replace each $|\cdot|$ term by new vars. $Q_{ija} \in [0, P^U]$ Adjust P^U in terms of $||\cdot||_1$
- ▶ Adjoin constraints

$$\begin{aligned} \forall i \leq n, j \leq k \quad \sum_{a \leq d} Q_{ija} &\leq P_{ij} \\ \forall i \leq n, j \leq k, a \leq d \quad -Q_{ija} &\leq p_{ia} - y_{ja} \leq Q_{ija} \end{aligned}$$

▶ Obtain a MILP

Most advanced MILP solver: CPLEX

CPLEX

objective 112.24, bound 39.92, in 44.74s

AXA Vinci Deezer Accenture Ford Alstom Marriott Expedia Amazon 1-3 Elektrobit Llamasoft Google CSX Aledade WestRock MITRE Clarity fragments 1-2

Interrupted after 281s with bound 59.68

Subsection 5

Random projections again

Works on the MSSC MP formulation too!

$$\min_{\substack{x,y,s \\ i \leq n}} \sum_{i \leq n} \sum_{j \leq d} \|Tp_i - Ty_j\|_2^2 x_{ij}$$

$$\forall j \leq d \qquad \qquad \frac{1}{s_j} \sum_{i \leq n} Tp_i x_{ij} = Ty_j$$

$$\forall i \leq n \qquad \qquad \sum_{j \leq d} x_{ij} = 1$$

$$\forall j \leq d \qquad \qquad \sum_{i \leq n} x_{ij} = s_j$$

$$\forall j \leq d \qquad \qquad y_j \in \mathbb{R}^m$$

$$x \in \{0,1\}^{nd}$$

$$s \in \mathbb{N}^d$$

where T is a $k \times m$ random projector replace Ty by y'

Works on the MSSC MP formulation too!

 $\min_{x,y',s} \quad \sum_{i \le n} \sum_{j \le d} \|Tp_i - y'_j\|_2^2 x_{ij}$ $\forall j \le d$ $\forall i < n$ $\forall j \leq d$ $\forall j \leq d$

(MSSC')

• where $k = O(\frac{1}{\varepsilon^2} \ln n)$

▶ less data, $|y'| < |y| \Rightarrow$ get solutions faster

Yields smaller cMINLP

BONMIN on randomly proj. data

objective 5.07, bound 0.48, stopped at 180s

Deezer Ford Amazon 1-3 CSX MITRE fragment 1

Vinci AXA Accenture Alstom Expedia Elektrobit Google Aledade Marriott Llamasoft WestRock Clarity fragment 2

CPLEX on randomly proj. data

... although it doesn't make much sense for $\|\cdot\|_1$ norm...

objective 53.19, bound 20.68, stopped at 180s

Vinci Deezer Expedia Google Aledade Ford Amazon 1-3 CSX Clarity f

AXA Accenture Alstom Elektrobit Marriott Llamasoft WestRock MITRE fragment 1-2

Compare them with clustering measures e.g. "adjusted mutual information score"

	bonmRP	bonmin	cplxRP	cplex	kmea1	kmea2	kmea3	modul
bonminRP	1.000	0.170	0.095	0.333	0.333	0.316	0.315	0.346
bonmin	0.170	1.000	0.021	0.079	0.179	0.179	0.086	0.178
cplexRP	0.095	0.021	1.000	0.044	0.095	0.185	0.069	0.055
cplex	0.333	0.079	0.044	1.000	0.317	0.316	0.775	0.271
kmeans2-1	0.333	0.179	0.095	0.317	1.000	0.316	0.249	0.271
kmeans2-2	0.316	0.179	0.185	0.316	0.316	1.000	0.381	0.286
kmeans2-3	0.315	0.086	0.069	0.775	0.249	0.381	1.000	0.252
modularity	0.346	0.178	0.055	0.271	0.271	0.286	0.252	1.000

THE END