
Advanced Mathematical Programming
Leo Liberti1

1 CNRS LIX, École Polytechnique, F-91128 Palaiseau, France
Email:liberti@lix.polytechnique.fr

December 27, 2022

liberti@lix.polytechnique.fr

Contents

I Setting the scene 9
1 Introduction 11

1.1 Some easy examples . 12
1.2 Real vs. didactical problems . 14
1.3 Solutions of the easy problems . 15

1.3.1 Investments . 15
1.3.1.1 Missing trivial constraints . 15
1.3.1.2 No numbers in formulations . 15
1.3.1.3 Formulation generality . 16
1.3.1.4 Technical constraints . 16

1.3.2 Blending . 17
1.3.2.1 Decision variables . 17
1.3.2.2 Parameters . 18
1.3.2.3 Objective function . 18
1.3.2.4 Constraints . 18
1.3.2.5 Ambiguities in the text description . 19
1.3.2.6 Unused textual elements . 19

1.3.3 Assignment . 20
1.3.3.1 Decision variables . 20
1.3.3.2 Objective function . 21
1.3.3.3 Constraints . 21

1.3.4 Demands . 22
1.3.5 Multi-period production . 22
1.3.6 Capacities . 23
1.3.7 Demands, again . 24
1.3.8 Rostering . 25
1.3.9 Covering, set-up costs and transportation . 25
1.3.10 Circle packing . 27
1.3.11 Molecular distance geometry . 28

2 The language of optimization 29
2.1 MP as a language . 29

2.1.1 The arithmetic expression language . 30
2.1.1.1 Semantics . 31

2.1.2 MP entities . 31
2.1.2.1 Parameters . 31
2.1.2.2 Decision variables . 31
2.1.2.3 Objective functions . 32
2.1.2.4 Functional constraints . 32
2.1.2.5 Implicit constraints . 32

2.1.3 The MP formulation language . 32
2.1.3.1 Solvers as interpreters . 33
2.1.3.2 Imperative and declarative languages . 33

2.2 Definition of MP and basic notions . 34
2.2.1 Certifying feasibility and boundedness . 35
2.2.2 Cardinality of the MP class . 36
2.2.3 Reformulations . 36

2.2.3.1 Minimization and maximization . 36
2.2.3.2 Equation and inequality constraints . 36

2

CONTENTS 3

2.2.3.3 Right-hand side constants . 37
2.2.3.4 Symbolic transformations . 37
2.2.3.5 Linearization . 37

2.2.4 Coarse taxonomy . 37
2.2.5 Solvers state-of-the-art . 38
2.2.6 Flat versus structured formulations . 39

2.2.6.1 Modelling languages . 39
2.2.7 Some examples . 40

2.2.7.1 Diet problem . 40
2.2.7.2 Transportation problem . 41
2.2.7.3 Network flow . 41
2.2.7.4 Set covering problem . 41
2.2.7.5 Multiprocessor scheduling with communication delays 42

2.2.7.5.1 The infamous “big M” . 44
2.2.7.6 Graph partitioning . 45
2.2.7.7 Haverly’s Pooling Problem . 45
2.2.7.8 Pooling and Blending Problems . 46
2.2.7.9 Euclidean Location Problems . 47
2.2.7.10 Kissing Number Problem . 47

3 The AMPL language 49
3.1 The workflow . 49
3.2 Input files . 50
3.3 Basic syntax . 50
3.4 LP example . 51

3.4.1 The .mod file . 51
3.4.2 The .dat file . 53
3.4.3 The .run file . 54

3.5 The imperative sublanguage . 55

II Computability and complexity 57
4 Computability 59

4.1 A short summary . 59
4.1.1 Models of computation . 59
4.1.2 Decidability . 60

4.2 Solution representability . 60
4.2.1 The real RAM model . 60
4.2.2 Approximation of the optimal objective function value 60
4.2.3 Approximation of the optimal solution . 61
4.2.4 Representability of algebraic numbers . 61

4.2.4.1 Solving polynomial systems of equations 61
4.2.4.2 Optimization using Gröbner bases . 62

4.3 Computability in MP . 62
4.3.1 Polynomial feasibility in continuous variables . 62

4.3.1.1 Quantifier elimination . 63
4.3.1.2 Cylindrical decomposition . 63

4.3.2 Polynomial feasibility in integer variables . 64
4.3.2.1 Undecidability versus incompleteness . 64
4.3.2.2 Hilbert’s 10th problem . 64

4.3.3 Universality . 66
4.3.4 What is the cause of MINLP undecidability? . 66
4.3.5 Undecidability in MP . 67

5 Complexity 69
5.1 Some introductory remarks . 69

5.1.1 Problem classes . 69
5.1.1.1 The class P . 69
5.1.1.2 The class NP . 70

5.1.2 Reductions . 70
5.1.2.1 The hardest problem in the class . 71

4 CONTENTS

5.1.2.2 The reduction digraph . 73
5.1.2.3 Decision vs. optimization . 73
5.1.2.4 When the input is numeric . 73

5.2 Complexity of solving general MINLP . 74
5.3 Quadratic programming . 75

5.3.1 NP-hardness . 75
5.3.1.1 Strong NP-hardness . 75

5.3.2 NP-completeness . 76
5.3.3 Box constraints . 76
5.3.4 Trust region subproblems . 77
5.3.5 Continuous Quadratic Knapsack . 77

5.3.5.1 Convex QKP . 78
5.3.6 The Motzkin-Straus formulation . 78

5.3.6.1 QP on a simplex . 79
5.3.7 QP with one negative eigenvalue . 79
5.3.8 Bilinear programming . 80

5.3.8.1 Products of two linear forms . 80
5.3.9 Establishing local minimality . 81

5.4 General Nonlinear Programming . 82
5.4.1 Verifying convexity . 83

5.4.1.1 The copositive cone . 83

III Mathematical Programming 85
6 Convex analysis 87

6.1 Convex analysis . 87
6.2 Conditions for local optimality . 89

6.2.1 Equality constraints . 89
6.2.2 Inequality constraints . 91
6.2.3 General NLPs . 95

6.3 Duality . 95
6.3.1 The Lagrangian function . 96
6.3.2 The dual of an LP . 96

6.3.2.1 Alternative derivation of LP duality . 97
6.3.2.2 Economic interpretation of LP duality . 97

6.3.3 Strong duality . 97
7 Linear Programming 99

7.1 The Simplex method . 99
7.1.1 Geometry of Linear Programming . 100
7.1.2 Moving from vertex to vertex . 102
7.1.3 Decrease direction . 103
7.1.4 Bland’s rule . 103
7.1.5 Simplex method in matrix form . 104
7.1.6 Sensitivity analysis . 104
7.1.7 Simplex variants . 105

7.1.7.1 Revised Simplex method . 105
7.1.7.2 Two-phase Simplex method . 105
7.1.7.3 Dual Simplex method . 105

7.1.8 Column generation . 106
7.2 Polytime algorithms for LP . 106
7.3 The ellipsoid algorithm . 106

7.3.1 Equivalence of LP and LSI . 107
7.3.1.1 Reducing LOP to LI . 107

7.3.1.1.1 Addressing feasibility . 107
7.3.1.1.2 Instance size . 107
7.3.1.1.3 Bounds on bfs components . 107
7.3.1.1.4 Addressing unboundedness . 107
7.3.1.1.5 Approximating the optimal bfs 108
7.3.1.1.6 Approximation precision . 108

CONTENTS 5

7.3.1.1.7 Approximation rounding . 108
7.3.1.2 Reducing LI to LSI . 109

7.3.2 Solving LSIs in polytime . 109
7.4 Karmarkar’s algorithm . 110
7.5 Interior point methods . 111

7.5.1 Primal-Dual feasible points . 112
7.5.2 Optimal partitions . 112
7.5.3 A simple IPM for LP . 113
7.5.4 The Newton step . 114

8 Mixed-Integer Linear Programming 115
8.1 Total unimodularity . 115
8.2 Cutting planes . 117

8.2.1 Separation Theory . 118
8.2.2 Chvátal Cut Hierarchy . 118
8.2.3 Gomory Cuts . 119

8.2.3.1 Cutting plane algorithm . 119
8.2.4 Disjunctive cuts . 122
8.2.5 Lifting . 123
8.2.6 RLT cuts . 124

8.3 Branch-and-Bound . 125
8.3.1 Example . 125
8.3.2 Branch-and-Cut . 126
8.3.3 Branch-and-Price . 126

8.4 Lagrangean relaxation . 126
9 Nonlinear Programming 129

9.1 Sequential quadratic programming . 129
9.2 The structure of GO algorithms . 130

9.2.1 Deterministic vs. stochastic . 130
9.2.2 Algorithmic reliability . 131
9.2.3 Stochastic global phase . 131

9.2.3.1 Sampling approaches . 131
9.2.3.2 Escaping approaches . 132
9.2.3.3 Mixing sampling and escaping . 132
9.2.3.4 Clustering starting points . 132

9.2.4 Deterministic global phase . 133
9.2.4.1 Fathoming . 135

9.2.5 Example of solution by B&S . 136
9.3 Variable Neighbourhood Search . 138
9.4 Spatial Branch-and-Bound . 139

9.4.1 Bounds tightening . 140
9.4.1.1 Optimization-based bounds tightening . 140
9.4.1.2 Feasibility-based bounds tightening . 141

9.4.2 Choice of region . 141
9.4.3 Convex relaxation . 142

9.4.3.1 Reformulation to standard form . 142
9.4.3.2 Convexification . 144

9.4.4 Local solution of the original problem . 145
9.4.4.1 Branching on additional variables . 145
9.4.4.2 Branching on original variables . 145

9.4.5 Branching . 145

IV Advanced Topics 147
10 Distance Geometry 149

10.1 Some applications of DG . 149
10.1.1 Clock synchronization . 149
10.1.2 Sensor network localization . 150
10.1.3 Molecular structure from distance data . 151
10.1.4 Autonomous underwater vehicles . 151

6 CONTENTS

10.1.5 Finding graph embeddings for deep learning . 151
10.2 A short summary of DG history . 152

10.2.1 A proof of Heron’s theorem . 154
10.3 The universal isometric embedding . 155

10.3.1 Matrix completion problems . 156
10.3.2 Floyd-Warshall algorithm . 157
10.3.3 Multidimensional scaling . 157
10.3.4 Principal component analysis . 161

10.4 Complexity . 163
10.4.1 Reduction proof . 164
10.4.2 Membership in NP . 166

10.5 Number of solutions . 167
10.6 Formulation-based solution methods . 169

10.6.1 Unconstrained quartic formulation . 169
10.6.2 Constrained quadratic formulations . 170
10.6.3 Semidefinite programming . 171
10.6.4 Diagonally dominant programming . 172
10.6.5 Barvinok’s naive algorithm . 176

10.6.5.1 Quadratic Programming feasibility . 176
10.6.5.2 Concentration of measure . 177
10.6.5.3 Analysis of Barvinok’s algorithm . 177
10.6.5.4 Applicability to the DGP . 178

10.6.6 Isomap . 178
11 Quantile regression 181

11.1 Quantiles . 182
11.2 Regression . 182
11.3 LP formulation . 183

11.3.1 Density . 183
11.4 Solution properties . 184
11.5 Prediction and visualization . 185
11.6 Constrained QR . 185

12 Sparsity and ℓ1 minimization 189
12.1 Motivation . 189

12.1.1 Coding problem for costly channels . 189
12.1.2 Coding problems for noisy channels . 190

12.2 Sparsest solution of a linear system . 190
12.3 MILP formulation and LP relaxation . 191
12.4 Intuitive explanations . 191
12.5 The phase transition . 192
12.6 Theoretical results . 192

12.6.1 Main theorem . 192
12.6.2 The null space property . 193

12.6.2.1 A realistic variant of the NSP . 195
12.6.3 Restricted isometry property . 196

12.6.3.1 Applicability to Eq. (12.1) . 197
12.6.3.2 RIP and eigenvalues . 197

12.6.4 Normally sampled matrices . 198
13 Random projections in MP 201

13.1 The Johnson-Lindenstrauss Lemma . 201
13.1.1 Union and intersection bounds . 202
13.1.2 Proving the JLL . 203
13.1.3 Approximating the identity . 206

13.2 Random projections in mathematical programming . 206
13.2.1 Linear feasibility . 208
13.2.2 Linear optimization . 209
13.2.3 Solution retrieval . 210
13.2.4 Quadratic optimization . 211

13.2.4.1 Feasibility and retrieval . 211
13.2.4.2 Approximation error . 212

CONTENTS 7

13.2.4.3 Relations of QP results to LP . 214
13.3 Minimum sum-of-squares clustering . 214

13.3.1 cMINLP formulation . 216
13.3.1.1 Removing centroid constraints . 216
13.3.1.2 Linearization of products . 217

13.3.2 Approximating reformulations . 218
13.3.2.1 Linearizable norms . 218

13.3.2.1.1 The ℓ∞ norm . 219
13.3.2.1.2 The ℓ1 norm . 220

13.3.2.2 Approximation guarantees . 220
13.3.3 Randomly projected formulations . 221

13.3.3.1 Applicability of the JLL . 221
13.3.3.2 The additive JLL for infinite sets . 222

14 The kissing number problem 231
14.1 Basic formulations . 231

14.1.1 In practice . 232
14.2 Spherical codes . 233
14.3 MINLP formulation . 234
14.4 Polar coordinates . 234
14.5 Lower bounds . 235
14.6 Upper bounds . 235

14.6.1 The useless SDP . 236
14.6.2 The shadow bound . 236
14.6.3 The Delsarte bound . 237

14.6.3.1 Valid cuts and Gegenbauer polynomials 237
14.6.3.2 Primal and dual . 238
14.6.3.3 Delsarte’s theorem . 239
14.6.3.4 Pfender’s theorem . 239

14.6.4 Implementable LPs . 240
14.6.4.1 The choice of H . 241

15 ACOPF 243
16 PMU placement 245
A Fighting over Gödel 247
B Apocryphal history of the kissing number problem 253

8 CONTENTS

Part I

Setting the scene

9

Chapter 1

Introduction

The Dean, in his office, is receiving a delegation from a prominent firm, with the aim of promoting a
partnership between the two institutions. The goal is to pair a technical contact from the firm with a
faculty member from the university. The hope is that the two will talk and find something interesting to do
together. This might induce the firm to give some money to the university. It’s a well-tested endeavour,
which invariably ends up generating a “framework contract” (which mentions no money whatsoever),
followed, sometimes, by more substantial contracts.

There’s a physics professor who extols the virtues of a new revolutionary battery for storing energy.
There’s a mathematics professor who entered the now burgeoning field of “data science” and talks about
how it took them two years to “clean” a certain vendor database, after which they could apparently
forecast all future sales to a 1% precision. Another professor from the computer science department says
“me too”. When it’s my turn, as usual, I mentally groan, and brace for impact.

— And now we come to Prof. Liberti, says the Dean with his usual sneer, for he’s heard the commu-
nication failure of my trade too many times for him to be optimistic about it.

— We are listening, Prof. Liberti, says the CTO of the firm, tell us what you do. We’re sure your
research will be very useful to our firm.

— Well, uhm. OK. What I do is called “mathematical programming”. It’s a language for describing
and then solving optimization problems.

— Interesting. And tell me, Prof. Liberti: what type of problems do you work on?

— All, really. Any optimization problem can be modelled as a mathematical program.

— Yes, yes of course. But could you tell us exactly what this mathematical thingy can be applied to?

— But this is exactly what I’m trying to say: it is a language, you can use it to describe any problem!
So the application field really does not matter!

This can go on and on, with the industry leader who tries to extract an application field name out of me
(optimal power flow in electrical grids, vehicle routing on road/rail networks, economic planning, shortest
paths in urban settings, facility location in view of minimizing costs, crew rostering in the airline business,
pricing of goods and services based on market demand, mixing and transforming materials, scheduling of
tasks on processors, packing of crates/boxes in variously shaped containers, packing of said containers in
a ship, docking the damn ships in the port, strategic decisions to address market segmentation, retrieving
a clean signal from a noisy one, assigning personnel to different jobs, analysing data by clustering points,
finding the shape of proteins and other molecules, aligning strands of RNA or DNA so that they match
as closely as possible, and many, many more), while I attempt to wiggle out of having an application

11

12 CHAPTER 1. INTRODUCTION

label slapped on my work.

Once, when I was younger and more naive, I figured I might as well make the industrialist happy.
During one of these meetings, after a couple of iterations of “what application field do you work on?”
followed by “this is really the wrong question”, I had decided to break the monotony and hopelessness of
the exchange by stating I work on shortest paths in road networks.

— Ah, this is fantastic! came the reply, but unfortunately we don’t do any of that.

This had two adverse effects: the first, and less serious, was that the industrialist did not wish to
work with me. The second, much more damaging, was that I had inadvertently convinced the Dean that
I worked on shortest paths. So he never invited me to any further industry meeting unless the words
“shortest paths” appeared prominently in the firm’s product descriptions.

On the other hand, the “stalling choice” I adopt today, while it keeps me invited to meetings with
the Dean, is no less disastrous with industry leaders. At one point I thought to myself, I’ll try and
collaborate with firms that already employ an operations research team, who’ll be obviously familiar
with mathematical programming. So, additionally to the “Dean scenario”, I sometimes also went to visit
operations research teams in large firms directly. This approach elicited the polite answer “thank you, but
we already know how to do that”, followed by vague promises of future possible scientific collaborations,
never actually pursued.

When the top boss of a large firm, which includes an operations research team internally, asks my Dean
about mathematical programming or operations research, I immediately get called, and the meeting itself
is usually successful. Unfortunately, however, the very need for hiring outside hands instead of relying
on the internal team means that there is a disagreement between the latter and their top boss. I am
henceforth directed to working with the internal team, which means that I rely on their availability for
data, explanations, and so on; and then I am supposed to deliver what they could not. Quite aside from
the difficulty of producing better results than a whole team of specialists, the real issue is that the internal
team have all the motivations to sabotage the outsider’s work, so it takes fairly advanced diplomatic skills
to actually produce something.

To recap: mathematical programming is a general framework for describing and solving optimization
problems. It is not only theoretical: quite on the contrary, it applies to practically everything. Its
methods are used in engineering, chemistry, biology, mathematics, economics, psychology and even some
social and human sciences. As far as communication is concerned, this polyvalence is its worst weakness.
The generalization and efficiency of some mathematical programming algorithms, on the other hand,
boggle the mind: it seems they can solve every optimization problem under the sun — which is exactly
what they are meant to do.

1.1 Some easy examples

Look at the list of problems below. We start from a bank and its investment strategy. There follows a
refinery wishing to make fuels from a blend of crudes. We then look at pairing jobs to machines in a
production environment. We continue with a firm deciding some expenses to satisfy demands. Then there
is a firm planning production and storage to match sales forecasts. Then a network operator deciding its
data routing on two possible backbone links. Then a firm confronted with hiring and training decisions in
view of demands. Then a hospital rostering nurses. The ninth problem requires decision on three issues:
how to cover a set of customers with facilities, how to deal with a one-time cost, and how to transport
the goods from the built facilities to the customers. Then there is a beer crate packing operation. Lastly,
we look at a protein structure problem.

The descriptions of all these problems are given in English, which is a natural language that can be
used to describe pretty much all of human thought, at least to some approximation. I find it amazing

1.1. SOME EASY EXAMPLES 13

that the same problems can be described exactly using a unique formal language.

1. Investments. A bank needs to invest C gazillion dollars, and focuses on two types of investments:
one, imaginatively called (a), guarantees a 15% return, while the other, riskier and called, surprise
surprise, (b), is set to a 25%. At least one fourth of the budget C must be invested in (a), and
the quantity invested in (b) cannot be more than double the quantity invested in (a). How do we
choose how much to invest in (a) and (b) so that revenue is maximized?

2. Blending. A refinery produces two types of fuel by blending three types of crude. The first type of
fuel requires at most 30% of crude 1 and at least 40% of crude 2, and retails at 5.5EUR per unit1 of
volume. The second type requires at most 50% of crude 1 and at least 10% of crude 2, and retails
at 4.5EUR. The availability of crude 1 is 3000 units, at a unit cost of 3EUR; for crude 2 we have
2000 units and a unit cost of 6EUR; for crude 3, 4000 and 4EUR. How do we choose the amounts
of crude to blend in the two fuels so as to maximize net profit?

3. Assignment. There are n jobs to be dispatched to m identical machines. The j-th job takes time pj
to complete. Jobs cannot be interrupted and resumed. Each machine can only process one job at
a time. Assign jobs to machines so the whole set of jobs is completed in the shortest possible time.

4. Demands. A small firm needs to obtain a certain number of computational servers on loan. Their
needs change every month: 9 in January, 5 in February, 7 in March, 9 in April. The loan cost
depends on the length: 200EUR for one month, 350 for two, and 450 for three. Plan the needed
loans in the cheapest possible way.

5. Multi-period production. A manufacturing firm needs to plan its activities on a 3-month horizon.
It can produce 110 units at a cost of 300$ each; moreover, if it produces at all in a given month, it
must produce at least 15 units per month. It can also subcontract production of 60 supplementary
units at a cost of 330$ each. Storage costs amount to 10$ per unit per month. Sales forecasts for
the next three months are 100, 130, and 150 units. Satisfy the demand at minimum cost.

6. Capacities. A total of n data flows must be routed on one of two possible links between a source
and a target node. The j-th data flow requires cj Mbps to be routed. The capacity of the first
link is 1Mbps; the capacity of the second is 2Mbps. Routing through the second link, however, is
30% more expensive than routing through the first. Minimize the routing cost while respecting link
capacities.

7. Demands, again. A computer service firm estimates the need for service hours over the next five
months as follows: 6000, 7000, 8000, 9500, 11000. Currently, the firm employs 50 consultants: each
works at most 160 hours/month, and is paid 2000EUR/month. To satisfy demand peaks, the firm
must recruit and train new consultants: training takes one month, and 50 hours of supervision
work of an existing consultant. Trainees are paid 1000EUR/month. It was observed that 5% of the
trainees leave the firm for the competition at the end of training. Plan the activites at minimum
cost.

8. Rostering. A hospital needs to roster nurses: each can work 5 consecutive days followed by two
days of rest. The demand for each day of the week (mon-sun) are: 11, 9, 7, 12, 13, 8, 5. Plan the
roster in order to minimize the number of nurses.

9. Covering, set-up costs and transportation. A distribution firm has identified n candidate sites to
build depots. The i-th candidate depot, having given capacity bi, costs fi to build (for i ≤ n).
There are m stores to be supplied, each having a minimum demand dj (for j ≤ n). The cost of
transporting one unit of goods between depot i and store j is cij . Plan openings and transportation
so as to minimize costs.

1Speaking of “units” in this context is not an implicit reference to an integrality constraints: one might well want to
acquire a fractional number of units.

14 CHAPTER 1. INTRODUCTION

10. Circle packing. Maximize the number of cylindrical crates of beer (each having 20cm radius) which
can be packed in the carrying area (6m long and 2.5m wide) of a pick-up truck.

11. Molecular distance geometry. A protein with n atoms is examined with a nuclear magnetic resonance
experiment, which determines all and only the distances dij between the pairs of atoms closer than
5Å. Decide the atomic positions that best satisfy these distance data.

1.2 Real vs. didactical problems

What is the the most prominent common feature of the problems in Sect. 1.1? To a student, they possibly
contribute to raise a state of mind between boredom and despair. To a professor, it is the fact that they
can all be formulated by means of mathematical programming. To a practitioner, the fact that they are
all invented for teaching purposes. No real world problem ever presents itself as clearly as the problems
above.

Should any reader of this text ever become a mathematical programming consultant, let her or him
be aware of this fact: on being assigned a task by your client, you shall be given almost no explanation
and some incomprehensible data. The sketch below is sadly much closer to the truth than one might
imagine.

— Dr. Liberti, thank you for visiting the wonderful, magnificent firm I preside. I’ll come straight to
the point: we have a problem we want you to solve.

— Why, certainly sir; what is the problem?

— Exactly this thing we want you to solve.

— I understand you want me to solve the problem; but what is it?

— My dear fellow, if we knew what the problem was, we very possibly wouldn’t need your help! Now
off you go and do your mathemathingy trick or whatever it is that you do, and make us rich! Oh and by
the way we’ll try and withhold any payment for your services with any excuse we deem fit to use. And if
forced by law to actually pay you (God forbid!), we’ll at least delay the payment indefinitely. You won’t
mind, will you?

Although it is usually not quite as bad, the “definition” of a problem, in an industrialist’s view, is
very often a partial set of database tables, with many essential columns missing for nondisclosure (or
forgetfulness, or loss) purposes, accompanied by an email reading more or less as follows. These 143
tables are all I found to get you going. I don’t have any further time for you over the next three months. I
don’t know what the tables contain, nor what most of the column labels mean, but I’m almost sure that the
column labeled t5y/3R denotes a complicated function – I forget which one – of the estimated contribution
of the product indexed by the row to our fiscal imposition in 2005, scaled by a 2.2% inflation, well more
or less. Oh, and we couldn’t give you the unit costs or profits, since of course they are confidential. Your
task is to optimize our revenues. You have three days. Best of luck.

Coming back to the common features of the list of problems in Sect. 1.1, the majority concern industry.
This is not by chance: most of the direct practical value provided by mathematical programming is to
technological processes. In the last twenty years, however, the state-of-the-art has advanced enough so
that mathematical programming methods now feature prominently as substeps of complex algorithmic
frameworks designed to address systemic issues. This provides an indirect, though no less important,
value to the real world.

1.3. SOLUTIONS OF THE EASY PROBLEMS 15

1.3 Solutions of the easy problems

We now provide solutions for all of the problems listed in Sect. 1.1. Some of these solutions are heavily
commented: I am hoping to address many of the issues raised by students when they learn how to model
by mathematical programming.

1.3.1 Investments

A bank needs to invest C gazillion dollars, and focuses on two types of investments: one, imaginatively
called (a), guarantees a 15% return, while the other, riskier and called, surprise surprise, (b), is set
to a 25%. At least one fourth of the budget C must be invested in (a), and the quantity invested in
(b) cannot be more than double the quantity invested in (a). How do we choose how much to invest
in (a) and (b) so that revenue is maximized?

We start with a simplistic bank wishing to invest an unknown, but given, budget C in two types of
investments, (a) and (b). Let xa denote the part of the budget C invested in (a), and xb the same for
(b): their relation is xa + xb = C. The revenue is 1.15xa + 1.25xb. The “technical constraints” require
that xa ≥ 1

4C and xb ≤ 2xa. This might appear to be all: written properly, it looks like the following
formulation.

max
xa,xb

1.15xa + 1.25xb

xa + xb = C
xa ≥ 1

4C
2xa − xb ≥ 0.

1.3.1.1 Missing trivial constraints

Now, it is easy to see that xa = C + 1 and xb = −1 satisfies all the constraints, but what is the meaning
of a negative part of a budget? This should make readers realize we had left out an apparently trivial,
but crucial piece of information: xa ≥ 0 and xb ≥ 0.

Like all programming, mathematical programming is also subject to bugs: in our brains, the “part
of a budget” is obviously nonnegative, but this is a meaning corresponding only to the natural language
description of the problem. When we switch to formal language, anything not explicitly stated is absent:
everything must be laid out explicitly. So the correct formulation is

max
xa,xb

1.15xa + 1.25xb

xa + xb = C
xa ≥ 1

4C
2xa − xb ≥ 0
xa, xb ≥ 0.

We remark that writing xa, xb ≥ 0 (which is formally wrong) is just a short-hand for its correct counterpart
xa ≥ 0 ∧ xb ≥ 0. Variable restrictions can also be stated under the minimum operator:

max
xa,xb≥0

1.15xa + 1.25xb.

1.3.1.2 No numbers in formulations

Something else we draw from computer programming is that good coding practices forbid the use of
numerical constants within the code itself: they should instead appear at the beginning of the coding

16 CHAPTER 1. INTRODUCTION

section where they are used. Correspondingly, we let ca = 1.15, cb = 1.25, p = 1
4 and d = 2, and rewrite

the formulation as follows:
max

xa,xb≥0
caxa + cbxb

xa + xb = C
xa ≥ pC

dxa − xb ≥ 0.

 (1.1)

1.3.1.3 Formulation generality

Most mathematical writing attempts to set the object of interest in the most general setting. What if we
had n possible investments rather than only two? We should rename our variables x1, . . . , xn, and our
returns c1, . . . , cn, yielding:

max
x≥0

∑
j≤n

cjxj∑
j≤n

xj = C

x1 ≥ pC
dx1 − x2 ≥ 0,

 (1.2)

a formulation which generalizes Eq. (1.1) since the latter is an instance of Eq. (1.2) where n = 2. In
particular, Eq. (1.1) is the type of formulation that can be an input to a mathematical programming
solver (once C is fixed to some value), since it involves a list of (scalar) variables, and a list of (single-row)
constraints. Such formulations are called flat. On the other hand, Eq. (1.2) involves a variable vector x
(of unspecified length n) with some components xj : it needs to be flattened before it can be passed to a
solver. This usually involves fixing a parameter (in this case n) to a given value (in this case, 2), with
all the consequences this entails on the formulation (see Sect. 2.2.6). Formulations involving parameter
symbols and quantifiers are called structured.

1.3.1.4 Technical constraints

Lastly, there are two reasons why I called the last two constraints “technical”. The first has to do with
the application field: they provide a way to limit the risk of pledging too much money to the second
investment. They would not be readily explained in a different field (whereas the objective maximizes
revenue, something which is common to practically all business-related decisions). The second is that
they cannot be generalized with the introduction of the parameter n: they still only concern the first two
investments. Of course, had the problem been described as “the quantity invested in anything different
from (a) cannot be more than double the quantity invested in (a)”, then the corresponding formulation
would have been:

max
x≥0

∑
j≤n

cjxj∑
j≤n

xj = C

x1 ≥ pC
∀j ∈ {2, . . . , n} dx1 − xj ≥ 0,

an even “more structured” formulation than Eq. (1.2) since it also involves a constraint vector (the last
line in the formulation above) including n− 1 single-row constraints.

How far is it reasonable to generalize formulations? It depends on the final goals: in the real world of
production, one is usually confronted with the problem of improving an existing system, so some of the
sizes (e.g. the number of machines) might be fixed, while others (e.g. the demands, which might vary by
day or month) are not.

1.3. SOLUTIONS OF THE EASY PROBLEMS 17

1.3.2 Blending

A refinery produces two types of fuel by blending three types of crude. The first type of fuel requires
at most 30% of crude 1 and at least 40% of crude 2, and retails at 5.5EUR per unit2 of volume. The
second type requires at most 50% of crude 1 and at least 10% of crude 2, and retails at 4.5EUR. The
availability of crude 1 is 3000 units, at a unit cost of 3EUR; for crude 2 we have 2000 units and a
unit cost of 6EUR; for crude 3, 4000 and 4EUR. How do we choose the amounts of crude to blend
in the two fuels so as to maximize net profit?

We come to the world of oil production: when we refuel our vehicles, we are actually buying a blend
of different crudes with different qualities. In Sect. 2.2.7.7 we shall look at blending operations with a
decision on based on the qualities. Here we look at a simple setting where we have prescriptions on the
fraction of each crude to put in the blend for a particular fuel.

1.3.2.1 Decision variables

Although I did not stress this fact in Sect. 1.3.1, the first (and most critical) decision to make when
modelling a problem is to define the decision variables. In Sect. 1.3.1 it was quite obvious we needed
to decide the parts of budget xa, xb, so there was no need to reflect on the concept. Here, however, the
natural language description of this problem is sufficiently fuzzy for the issue to deserve some remarks.

• The process of turning a problem description from natural language to formal language is called
modelling. It involves human intelligence. So far, no-one has ever produced a computer program
that is able to automate this task. The difficulty of modelling is that natural language is ambiguous.
The natural language description is usually interpreted in each stakeholder’s cultural context. When
working with a client in the real world, the modelling part might well take the largest part of the
meeting time.

• For most problems arising in a didactical setting, my advice is: start modelling by deciding a semi-
formal meaning for the decision variables; then try and express the objective function and constraints
in terms of these variables. If you cannot, or you obtain impossibly nonlinear expressions, try
adding new variables. If you still fail, go back and choose a different set of decision variables. One
is generally better off modelling structured formulations rather than flat formulations: so, while
you decide the variables, you also have to decide how they are indexed, in what sets these indices
range, and what parameters appear in the formulation.

• For real world problems, where information is painstakingly collected during many meetings with
the client, the first task is to understand what the client has in mind. Usually, the client tries to
describe the whole system in which she works. Naturally, she will give more information about the
parts of the system which, to her mind, are most problematic. On the other hand, it might well
be that the problematic parts are only symptoms of an issue originating because poor decisions are
being taken elsewhere in the system. When you think you have a sufficiently clear picture of the
whole system (meaning the interactions between all the parts, and every entity on which decisions
can be taken), then you can start modelling as sketched above (i.e., think of decision variables first).

In the present case, the hint about “what decision variables to consider” is given in the final question
“how do we choose the amounts of crude to blend in the two fuels?” So each choice must refer to crudes
and fuels: as such, we need variables indexed over crudes and over fuels. Let us define the set of C of
crudes, and the set F of fuels, and then decision variables xij indicating the fraction of crude i ∈ C in
fuel j ∈ F . What else does the text of the problem tell us? We know that each fuel j ∈ F has a retail
price, which we shall call rj , and that each crude i ∈ C has an availability in terms of units, which we
shall call ai, and a unit cost, called ci.

2Speaking of “units” in this context is not an implicit reference to an integrality constraints: one might well want to
acquire a fractional number of units.

18 CHAPTER 1. INTRODUCTION

1.3.2.2 Parameters

The other numeric information given in the text concerns upper or lower bounds to the amount of crude
in each fuel. Since we are employing decision variables xij to denote this amount, we can generalize these
lower and upper bounds by a set of intervals [xLij , x

U
ij], which define the ranges xLij ≤ xij ≤ xUij of each

decision variable. Specifically, we have xU11 = 0.3, xL21 = 0.4, xU12 = 0.5 and xL22 = 0.1. Unspecified lower
bounds must be set to 0 and unspecified upper bounds to 1, since xij denotes a fraction. We remark that
xL, xU , r, a are vectors of parameters, which, together with the index sets C,F , will allow us to write a
structured formulation.

1.3.2.3 Objective function

Let us see whether this choice of decision variables lets us easily express the objective function: the text
says “maximize the net profit”. A net profit is the difference between revenue and cost. We have:

revenue =
∑
j∈F

rj fuelj

cost =
∑
i∈C

ci crudei.

We have not defined decision variables denoting the amounts of produced fuels and crudes used for
production. But these can be written in terms of the decision variables xij as follows:

∀j ∈ F fuelj =
∑
i∈C

aixij

∀i ∈ C crudei = ai
∑
j∈F

xij .

So, now, the objective function is:

max

∑
j∈F

rj
∑
i∈C

aixij −
∑
i∈C

ciai
∑
j∈F

xij

 .

We can rewrite the objective more compactly as follows:

max

∑
j∈F

rj
∑
i∈C

aixij −
∑
i∈C

ciai
∑
j∈F

xij

 =

= max

∑
i∈C
j∈F

airjxij −
∑
i∈C
j∈F

aicixij

 =

= max
∑
i∈C
j∈F

ai(rj − ci)xij .

1.3.2.4 Constraints

What about the constraints? As mentioned already, we have range constraints, which we express in
tensor form:

x ∈ [xL, xU].

(The scalar form would need a quantification: ∀i ∈ C, j ∈ F xLij ≤ xij ≤ xUij).

1.3. SOLUTIONS OF THE EASY PROBLEMS 19

Any other constraint? As in Problem 1 of Sect. 1.1, there is a risk of a bug due to a forgotten trivial
constraint: we know that xij are supposed to indicate a fraction of crude i ∈ C over all j ∈ F . So, for all
j ∈ F , the sum of the fractions cannot exceed 1:

∀j ∈ F
∑
i∈C

xij ≤ 1.

It would not be wrong to opt for an equality constraint instead of an inequality. From the mathematical
point of view, both options give rise to the same optimal objective function value, since maximization
tends to decrease the difference RHS − LHS to zero by increasing the xij as much as possible. From a
modelling point of view, we are told that xij are fractions, but we are never told that the fuels might not
contain other components than the crudes (e.g. stabilizing or anti-freezing agents), so modelling with ≤
is a safer options in case this formulation is a part of a larger, more complicated formulation.

Hence, the complete formulation is as follows:

max
0≤x≤1

∑
i∈C
j∈F

ai(rj − ci)xij

∀j ∈ F
∑
i∈C

xij ≤ 1

x ∈ [xL, xU].

1.3.1 Exercise
Propose a formulation of this problem based on decision variables yij denoting the total amount (rather
than the fraction) of crude i in fuel j.

1.3.2.5 Ambiguities in the text description

Unfortunately, whether the problem is didactical or from the real world, human communication is given
in natural language, which is prone to ambiguities. “Almost the same text” may yield dramatic differences
in the formulation or no difference at all. If you are working with a client, if in doubt ask — do not be
afraid of being considered an idiot for asking multiple times: you will certainly be considered an idiot if
you produce the wrong formulation. If the setting is didactical, perhaps the ambiguity is desired, and
you have to deal with it as well as you can (you might be judged exactly for the way you dealt with a
textual ambiguity).

1.3.2 Exercise
The text of the blending problem states “The first type of fuel requires. . . ”. How would the formulation
change if, instead of “fuel j requires at most/least a given fraction of crude i”, we had “crude i must
constitute at most/least a given fraction of fuel j”? What about “the amount of crude i in fuel j is at
least a given quantity qLij”?

1.3.2.6 Unused textual elements

Recall that the text mentioned three crudes. Although our structured formulations are invariant to the
actual number of crudes, the data are such that the third crude is completely irrelevant to the problem.
This is a typical feature of modelling real world problems: some (much?) of the information given to the
modeller turns out to be irrelevant. The issue is that one may only recognize irrelevance a posteriori.
During the modelling process, irrelevant information gives a nagging sensation of failure, which a good
modeller must learn to recognize and ignore.

In fact, recognizing data irrelevance often provides a valuable feedback to the client: they may use
this information in order to simplify and rationalize the dynamics of their system processes. Mostly, the
reason why some data are irrelevant, and yet given to the modeller, is that, historically, those data were

20 CHAPTER 1. INTRODUCTION

once relevant. In the present case, perhaps the firm once used all three crude types to produce other
types of fuels. Some fuel types may have been discontinued to various reasons, but the database system
remained unchanged.

1.3.3 Assignment

There are n jobs to be dispatched to m identical machines. The j-th job takes time pj to complete.
Jobs cannot be interrupted and resumed. Each machine can only process one job at a time. Assign
jobs to machines so the whole set of jobs is completed in the shortest possible time.

When hearing talk of “jobs” and “machines” (or “tasks” and “processors”), a mathematical program-
mer’s brain pathways immediately synthesize the concept of “scheduling”. Scheduling problems consist
of an assignment (of jobs to machines or tasks to processors) and of a linear order (on jobs on a given
machine). But sometimes text descriptions can be misleading, and the problem be simpler than it might
appear.

In this case we have identical machines, jobs cannot be interrupted/resumed, each machine can process
at most one job at a time, and the requirement is to assign jobs to machines so that the set of jobs is
completed “in the shortest possible time”. The appearance of the word “shortest time” seems to require
an order of the jobs on each machine: after all completing a set of jobs requires the maximum completion
time of the last job over all machines.

But now suppose someone already gave you the optimal assignment of jobs to machines: then the
working time of each machine would simply be the sum of the completion times of all the jobs assigned
to the machine. And the completion times for all jobs would involve minimizing the working time of the
slowest machine. This does not involve an order of the jobs assigned to each machine. The problem can
therefore be more simply formulated by means of an assignment.

1.3.3.1 Decision variables

Assignment problems are among the fundamental problems which we can solve efficiently. You should
therefore learn to recognize and formulate them without even thinking about it.

The beginner’s mistake is to define two sets of binary variables xi (relating to job i) and yj (relating
to machine j) and stating that xiyj denotes the assignment of job i to machine j, because “xiyj = 1 if
and only if both are 1”. This is a mistake for at least two reasons:

• the definition of a binary decision variable should reflect a boolean condition, whereas here the
condition (the assignment of i to j) is related to the product of two variables;

• introducing a product of variables in the formulation introduces a nonlinearity, which yields more
difficult formulations to solve. While sometimes nonlinearity is necessary, one should think twice
(or more) before introducing it in a formulation.

Nonetheless, the first reason points us towards the correct formulation. Since the boolean condition
is “whether job i is assigned to machine j”, we need binary decision variables indexed on the pair i, j. So
we introduce the index sets J of jobs and the set M of machines, and decision variables xji ∈ {0, 1} for
each j ∈ J and i ∈ M . The only other formulation parameters are the completion times pj for each job
j ∈ J .

1.3. SOLUTIONS OF THE EASY PROBLEMS 21

1.3.3.2 Objective function

We can write the working time µi of machine i ∈ M as the sum of the completion times of the jobs
assigned to it:

∀i ∈M µi =
∑
j∈J

pjxji. (1.3)

Now the objective function minimizes the maximum µi:

min
µ,x

max
i∈M

µi.

Several remarks are in order.

• New decision variables µi (for i ∈ M) were “surreptitiously” introduced. This is a helpful trick in
order to help us cope with increasing formulation complexity while modelling. It is clear that µi
can be eliminated by the formulation by replacing it with the right-hand side (RHS) of Eq. (1.3),
so they are inessential. They simply serve the purpose of writing the formulation more clearly.

• The function in Eq. (1.3.3.2) involves both a minimization and a maximization; at first sight, it
might remind the reader of a a saddle point search. On closer inspection, the minimization operator
occurs over decision variables, but the second only occurs over the indices of a given set: so the
maximization does not involve an optimization procedure, but simply the choice of maximum value
among |M |. It simply means that the function being optimized is maxi∈M µi. Such a function is
piecewise linear and concave.

• Eq. (1.3.3.2) can be reformulated to a purely linear form by means of an additional decision variable
t, as follows:

min
µ,x,t

t (1.4)

∀i ∈M t ≥ µi. (1.5)

It is clear that t will be at least as large as the maximum µi, and by minimizing it we shall select the
“min max µ”.

1.3.3.3 Constraints

The unmentioned constraint implicit in the term “assignment” is that each job j is assigned to exactly
one machine i. This is written formally as follows:

∀j ∈ J
∑
i∈M

xji = 1. (1.6)

Eq. (1.6) is known as an assignment constraint. It does its work by stating that exactly one variable in
the set {xji | i ∈ M} will take value 1, while the rest will take value 0. All that is left to do is to state
that the variables are binary:

∀j ∈ J, i ∈M xji ∈ {0, 1}. (1.7)

Eq. (1.7), known as boolean constraint, are part of the wider class of integrality constraints.

The whole formulation can now be written as follows.

min
x,t

t

∀i ∈M
∑
j∈J

pjxji ≤ t

∀j ∈ J
∑
i∈M

xji = 1

x ∈ {0, 1}|J||M |.

22 CHAPTER 1. INTRODUCTION

1.3.4 Demands

A small firm needs to obtain a certain number of computational servers on loan. Their needs change
every month: 9 in January, 5 in February, 7 in March, 9 in April. The loan cost depends on the
length: 200EUR for one month, 350 for two, and 450 for three. Plan the needed loans in the cheapest
possible way.

There are no new difficulties with this problem. The only thing worth pointing out is that we have
L ⊂ T , and therefore we can perform arithmetic operations on indices, as both indices in L and T point
to months.

1. Index sets

(a) T : set of month indices ({1, 2, 3, 4})
(b) L: set of loan indices ({1, 2, 3})

2. Parameters

(a) ∀t ∈ T let dt = demand in month t

(b) ∀ℓ ∈ L let cℓ = cost of loan length ℓ

3. Decision variables
∀t ∈ T, ℓ ∈ L let xtℓ = number of servers loaned for ℓ months in month t

4. Objective function: min
∑
ℓ∈L

cℓ
∑
t∈T

xtℓ

5. Constraints
demand satisfaction: ∀t ∈ T

∑
ℓ∈L
ℓ≤t

xt−ℓ+1,ℓ ≥ dt.

Again we emphasize that variables indexed by time involve some index arithmetic (see xt−ℓ+1,ℓ in the
demand satisfaction constraint).

1.3.5 Multi-period production

A manufacturing firm needs to plan its activities on a 3-month horizon. It can produce 110 units
at a cost of 300$ each; moreover, if it produces at all in a given month, it must produce at least 15
units per month. It can also subcontract production of 60 supplementary units at a cost of 330$ each.
Storage costs amount to 10$ per unit per month. Sales forecasts for the next three months are 100,
130, and 150 units. Satisfy the demand at minimum cost.

1. Index sets

(a) T : set of month indices ({1, 2, 3})
(b) T ′ = T ∪ {0}

2. Parameters

(a) ∀t ∈ T let ft = sales forecasts in month t

(b) let p = max normal monthly production

(c) let r = max subcontracted monthly production

(d) let d = min monthly production level in normal production

1.3. SOLUTIONS OF THE EASY PROBLEMS 23

(e) let cnormal = unit cost in normal production

(f) let csub = unit cost in subcontracted production

(g) let cstore = unit storage cost

3. Decision variables

(a) ∀t ∈ T let xt = units produced in month t

(b) ∀t ∈ T let wt = 1 iff normal production active in month t, 0 otherwise

(c) ∀t ∈ T let yt = units subcontracted in month t

(d) ∀t ∈ T ′ let zt = units stored in month t

4. Objective function: min cnormal ∑
t∈T

xt + csub ∑
t∈T

yt + cstore
∑
t∈T

zt

5. Constraints

(a) demand satisfaction: ∀t ∈ T xt + yt + zt−1 ≥ ft
(b) storage balance: ∀t ∈ T xt + yt + zt−1 = zt + ft

(c) max production capacity: ∀t ∈ T xt ≤ p
(d) max subcontracted capacity: ∀t ∈ T xt ≤ r
(e) storage is empty when operation starts: z0 = 0

(f) minimum normal production level:

∀t ∈ T xt ≥ dwt (1.8)
∀t ∈ T xt ≤ pwt. (1.9)

(g) integrality constraints: ∀t ∈ T wt ∈ {0, 1}
(h) non-negativity constraints: ∀t ∈ T x, y, z ≥ 0.

We remark that Eq. (1.8)-(1.9) ensure that xt ≥ 0 iff wt = 1, and, conversely, xt = 0 iff wt = 0 (also see
Sect. 2.2.7.5.1).

1.3.6 Capacities

A total of n data flows must be routed on one of two possible links between a source and a target
node. The j-th data flow requires cj Mbps to be routed. The capacity of the first link is 1Mbps; the
capacity of the second is 2Mbps. Routing through the second link, however, is 30% more expensive
than routing through the first. Minimize the routing cost while respecting link capacities.

Note that the text hints to an assignment of data flows to links, as well as to capacity constraints.

1. Index sets

(a) F : set of data flow indices

(b) L: set of links joining source an target

2. Parameters

(a) ∀j ∈ F let cj = required capacity for flow j

(b) ∀i ∈ L let ki = capacity of link i

(c) ∀i ∈ L let pi = cost of routing 1Mbps through link i

24 CHAPTER 1. INTRODUCTION

3. Decision variables

(a) ∀i ∈ L, j ∈ F let xij = 1 iff flow j assigned to link i, 0 otherwise

4. Objective function: min
∑
i∈L

pi
∑
j∈F

cjxij

5. Constraints

(a) assignment: ∀j ∈ F
∑
i∈L

xij = 1

(b) link capacity: ∀i ∈ L
∑
j∈F

cjxij ≤ ki

1.3.7 Demands, again

A computer service firm estimates the need for service hours over the next five months as follows:
6000, 7000, 8000, 9500, 11000. Currently, the firm employs 50 consultants: each works at most
160 hours/month, and is paid 2000EUR/month. To satisfy demand peaks, the firm must recruit and
train new consultants: training takes one month, and 50 hours of supervision work of an existing
consultant. Trainees are paid 1000EUR/month. It was observed that 5% of the trainees leave the firm
for the competition at the end of training. Plan the activites at minimum cost.

1. Index sets

(a) T : set of month indices
(b) T ′ = T ∪ {0}

2. Parameters

(a) ∀t ∈ T let dt = service hour demands for month t
(b) σ = starting number of consultants
(c) ω = hours/month worked by each consultant
(d) γ = monthly salary for each consultant
(e) τ = number of hours needed for training a new consultant
(f) δ = monthly salary for trainee
(g) p = percentage of trainees who leave the firm after training

3. Decision variables

(a) ∀t ∈ T let xt = number of trainees hired at month t
(b) ∀t ∈ T let yt = number of consultants at month t

4. Objective function: min γ
∑
t∈T

yt + τ
∑
t∈T

xt

5. Constraints

(a) demand satisfaction: ∀t ∈ T ωyt − τxt ≥ dt
(b) active consultants: ∀t ∈ T yt−1 + (1− p)xt−1 = yt

note that (1− p)xt−1 may not be integer even if xt−1 is, which means that in order to satisfy this equation the
solver may need to increase x, y, exceeding the demands; the equation can always be satisfied as long as p ∈ Q,
of course (why?), but it may fail to be satisfied otherwise — think about a possible way out of this issue

(c) boundary conditions: y0 = σ, x0 = 0

(d) integrality and nonnegativity: x, y ∈ Z+.

We remark that nowhere does the text state that x0 = 0. But this is a natural condition in view of the
fact that hiring does not occur before the need arises, i.e. before the start of the planning horizon T .

1.3. SOLUTIONS OF THE EASY PROBLEMS 25

1.3.8 Rostering

A hospital needs to roster nurses: each can work 5 consecutive days followed by two days of rest. The
demand for each day of the week (mon-sun) are: 11, 9, 7, 12, 13, 8, 5. Plan the roster in order to
minimize the number of nurses.

The text of this problem says nothing about the total number of nurses. In real life, the output of
a rostering problem should be a timetable stating that, e.g., nurse John works from Monday to Friday,
nurse Mary from Tuesday to Saturday, and so on. In this sense, the timetable assigns nurses to days
in a similar way as scheduling assigns jobs to machines. But in this didactical setting the modeller is
asked to work without the set of nurses. The trick is to define variables for the number of nurses starting
on a certain day. This provides a neat way for decomposing the assignment problem from the resource
allocation.

1. Index sets

(a) T = {0, . . . , |T | − 1}: set of days indices (periodic set)

2. Parameters

(a) ∀t ∈ T let dt = demand for day t
(b) let α = number of consecutive working days

3. Decision variables

(a) ∀t ∈ T let xt = number of nurses starting on day t

4. Objective function: min
∑
t∈T

xt

5. Constraints

(a) resource allocation: ∀t ∈ T
α−1∑
i=0

xt+i ≥ dt

• Does it make sense to generalize the “days of the week” to a set T? After all, there will never be
weeks composed of anything other than seven days. However, some day an administrator might plan
the rostering over two weeks, or any other number of days. Moreover, this allows writing indexed
variables (such as xt for t ∈ T) rather than “flat” variables (e.g. a for Monday, b for Tuesday, and
so on).

• The set T is interpreted as being a periodic set: it indexes {Monday,Tuesday, . . . ,Sunday}, where
“Monday” obviously follows “Sunday”: this is seen in the resource allocation constraints, where t+ i
must be interpreted as modular arithmetic modulo |T |.

1.3.9 Covering, set-up costs and transportation

A distribution firm has identified n candidate sites to build depots. The i-th candidate depot, having
given capacity bi, costs fi to build (for i ≤ n). There are m stores to be supplied, each having a
minimum demand dj (for j ≤ n). The cost of transporting one unit of goods between depot i and
store j is cij. Plan openings and transportation so as to minimize costs.

This problem embodies three important features seen in many real-world supply chain problems:
covering a set of stores with facilities, set-up costs (already seen in Sect. 1.3.5, and modelled with the
binary variables w), and transportation. While we shall look at covering in Sect. 2.2.7.4 and transportation
in Sect. 2.2.7.2, this problem is typical in that it mixes these aspects together. Most real-world problems
I came across end up being modelled by combining variables and constraints from classic examples
(covering, packing, network flow, transportation, assignment, ordering and so on) in a smart way.

26 CHAPTER 1. INTRODUCTION

1. Index sets

(a) N = {1, . . . , n}: index set for candidate sites

(b) M = {1, . . . ,m}: index set for stores

2. Parameters

(a) ∀i ∈ N let bi = capacity of candidate depot i

(b) ∀i ∈ N let fi = cost of building depot i

(c) ∀j ∈M let dj = minimum demand for store j

(d) ∀i ∈ N, j ∈M let cij = cost of transporting one unit from i to j

3. Decision variables

(a) ∀i ∈ N, j ∈M let xij = units transported from i to j

(b) ∀i ∈ N let yi = 1 iff depot i is opened, 0 otherwise

4. Objective function: min
∑

i∈N,j∈M
cijxij +

∑
i∈N

fiyi

5. Constraints

(a) facility capacity: ∀i ∈ N
∑
j∈M

xij ≤ bi

(b) facility choice: ∀i ∈ N, j ∈M xij ≤ biyi
(also see Sect. 2.2.7.5.1)

(c) demand satisfaction: ∀j ∈M
∑
i∈N

xij ≥ dj

(d) integrality: ∀i ∈ N yi ∈ {0, 1}
(e) nonnegativity: ∀i ∈ N, j ∈M xij ≥ 0

A few remarks are in order.

• The facility choice constraint forces xij to be zero (for all j ∈M) if facility i is not built (i.e. yi = 0);
this constraint is inactive if yi = 1, since it reduces to xij ≤ bi, which is the obvious production
limit for candidate facility i (for i ∈ N).

• Facility capacity and demand satisfaction constraints encode the transportation problem within the
formulation. Set-up costs are modelled using the binary variables yi. Note that we do not need
to ensure an “only if” direction on the relationship between x and y, i.e. if yi = 1 we still allow
xij = 0 (in other words, if a facility is built, it might not produce anything), since it is enforced
by the objective function direction (a built facility which does not produce anything contradicts
minimality of the objective, since otherwise we could set the corresponding yi to zero and obtain
a lower value). The covering aspect of the problem (i.e. selecting a minimum cardinality subset
of facilities that cover the stores) is somewhat hidden: it is partly encoded in the term

∑
i yi of

the objective (minimality of the covering subset), by the facility choice constraints (which let the
y variables control whether the x variables are zero), and by the demand satisfaction constraints,
ensuring that ever store is covered.

• An alternative formulation, with fewer constraints, can be obtained by combining facility capacity
and facility choice as follows:

∀i ∈ N
∑
j∈M

xij ≤ biyi, (1.10)

and then removing the facility choice constraints entirely. The formulation was presented with
explicit facility choice constraints because, in general, they are “solver-frendlier” (i.e. solvers work

1.3. SOLUTIONS OF THE EASY PROBLEMS 27

better with them). In this specific case, this may or may not be the case, depending on the instance.
But suppose you knew the transportation capacity limits qij on each pair i ∈ N, j ∈M . Then you
could rewrite the facility choice constraints as:

∀i ∈ N, j ∈M xij ≤ qijyi. (1.11)

Obviously, the transportation capacities from each facility cannot exceed the production capacity, so∑
j qij ≤ bi. This implies that by summing Eq. (1.11) over j ∈M , we obtain Eq. (1.10). By contrast,

we cannot “disaggregate” Eq. (1.10) to retrieve Eq. (1.11), which shows that the formulation using
Eq. (1.11) is somehow tighter (more precisely, it yields a better continuous relaxation — we shall
see this in Part III). Again, while this may not be the case in the formulation above (since we do
not have the qij parameters as given), using facility choice constraints is nonetheless a good coding
habit.

1.3.10 Circle packing

Maximize the number of cylindrical crates of beer (each having 20cm radius) which can be packed in
the carrying area (6m long and 2.5m wide) of a pick-up truck.

In this problem we have to make an assumption: i.e. that we know at least an upper bound ν to the
maximum number of crates of beer. We can compute it by e.g. dividing the carrying area of the pick-up
truck by the area of a circular base of the cylinder representing a beer crate.

1. Index sets

(a) N = {1, . . . , ν}

2. Parameters

(a) let r = radius of the circular base of the crates
(b) let a = length of the carrying area of the pick-up truck
(c) let b = width of the carrying area of the pick-up truck

3. Decision variables

(a) ∀i ∈ N let xi = abscissa of the center of circular base of the i-th crate
(b) ∀i ∈ N let yi = coordinate of the center of circular base of the i-th crate
(c) ∀i ∈ N let zi = 1 iff the i-th crate can be packed, and 0 otherwise

4. Objective function: max
∑
i∈N

zi

5. Constraints

(a) packing (abscissae): ∀i ∈ N rzi ≤ xi ≤ (a− r)zi
(b) packing (coordinates): ∀i ∈ N rzi ≤ yi ≤ (b− r)zi
(c) non-overlapping: ∀i < j ∈ N (xi − xj)2 + (yi − yj)2 ≥ (2r)2zizj

(d) integrality: ∀i ∈ N zi ∈ {0, 1}

This problem is also known in combinatorial geometry as packing of equal circles in a rectangle. Note
that any packing is invariant by translations, rotations and reflections. We therefore arbitrarily choose
the origin as the lower left corner of the rectangle, and align its sides with the Euclidean axes. Note that
the packing constraints ensure that either a circle is active, in which case it stays within the boundaries
of the rectangle, or it is inactive (and its center is set to the origin) — also see Sect. 2.2.7.5.1. The
non-overlapping constraints state that the centers of two active circles must be at least 2r distance units
apart.

28 CHAPTER 1. INTRODUCTION

1.3.11 Molecular distance geometry

A protein with n atoms is examined with a nuclear magnetic resonance experiment, which determines
all and only the distances dij between the pairs of atoms closer than 5Å. Decide the atomic positions
that best satisfy these distance data.

See Ch. 10 for more information about this problem and its modelling by MP.

1. Index sets

(a) V : set of atoms

(b) E: set of unordered pairs of atoms at distance ≤ 5Å

2. Parameters

(a) ∀{i, j} ∈ E let dij = Euclidean distance between atoms i, j

(b) let K = 3 be the number of dimensions of the Euclidean space we consider

3. Decision variables

(a) ∀i ∈ V, k ≤ K let xik = value of the k-th component of the i-th atom position vector

4. Objective function: min
∑

{i,j}∈E
(∥xi − xj∥22 − d2ij)2

A few remarks follow.

• Notationwise, we write xi to mean the vector (xi1, . . . , xiK). This allows us to write the Euclidean
distance between two vectors more compactly.

• Although the distance measure 5Å was given in the text of the problem, it is not a formulation
parameter. Rather, it simply states that E might not contain all the possible unordered pairs (it
usually doesn’t).

• The objective function appears to be a sum of squares, but this is deceiving: if you write it in
function of each component xik you soon discover that it is a quartic multivariate polynomial of
the x variables.

• The formulation is unconstrained. Like packings, a set of vectors identified by pairwise distances is
invariant to congruences. One way to make it invariant to rotations is to fix the barycenter of the
vector set to the origin, which corresponds to the constraint:∑

i∈N
xi = 0.

• Most solvers are happier if you provide bounds to the variables (there are some exceptions to this
rule). The worst that can happen is that all vectors are on a segment as long as D =

∑
{i,j}∈E

dij .

Since the barycenter is at the origin, you can impose the following variable bounds:

∀i ∈ N, k ≤ K − D

2
≤ xik ≤

D

2
.

Chapter 2

The language of optimization

Mathematical Programming (MP) is a formal language for describing and solving optimization problems.

In general, languages can be natural or formal. Natural languages are those spoken by people to
communicate. Almost every sentence we utter is ambiguous, as it can be interpreted by different people
in different ways. By contrast, its expressivity is incredibly rich, as it can be used to describe reality.
Formal languages can be defined formally through recursive rules for interpreting their sentences within
the confines of an abstract model of a tiny part of reality. If ambiguity occurs in formal languages, it is
limited in scope, announced and controlled.

Optimization refers to the improvement of a process which an agent can modify through his/her/its
decisions. For example, the airplane departure sequence is decided by controllers who usually try and
reduce the average (or maximum) delay.

We use the word “problem” here in the semi-formal sense of computer science: a problem is a formal
question relating some given input to a corresponding output: both input and output are encoded through
a sequence of bits respecting some given formats and rules. For example, a decision problem might ask
whether a given integer is even or odd: the input is an integer, and the output is a bit encoded by the
mapping 1 ↔ YES, 0 ↔ NO. An optimization problem might ask the shortest sequence of consecutive
vertices linking two given vertices in a graph (provided it exists).

2.1 MP as a language

In computer science, a (basic) language L is a collection of strings, each of which is a sequence of
characters from a given alphabet A . Composite languages can be formed as Cartesian products of basic
languages. The fundamental problem, given a language and a string, is to determine whether or not the
string belongs to the language. This is called recognition problem.

2.1.1 Exercise
Implement algorithms to recognize: (a) strings made entirely of digits; (b) strings consisting of a finite
sequence of floating point numbers (in exponential notation) separated by any amount of spaces, tabs and
commas; (c) strings consisting of multi-indexed symbols (use square brackets for indices, as in, e.g. x[2, 4]);
(d) strings consisting of English words from a dictionary of your choice.

2.1.2 Exercise
Implement an algorithm that recognizes a language consisting of strings in the union of (b) and (d) in
Exercise 2.1.1 above.

29

30 CHAPTER 2. THE LANGUAGE OF OPTIMIZATION

2.1.1 The arithmetic expression language

The most basic language we use in this book includes all functions that can be expressed in “closed form”
using a set of primitive operators, say +,−,×,÷, (·)(·), log, exp, sin, cos, tan. Some of these operators are
binary, some are unary, and others, like −, can be both, depending on context: the number of arguments
of an operator is its arity.

Operators recursively act on their arguments, which are either other operators, or symbols representing
numerical quantities (which can also be considered as operators of zero arity). Ambiguous cases, such
as x1 + x2x3, are resolved by assigning to each operator a precedence: × trumps +, so the order of the
operations is x2x3 first, and then x1+the result. In cases of tie, the left-to-right scanning order is used.

Given a string such as x1 + x1x2

log x2
, the recognition problem can be solved by the following recognition

algorithm, given here in pseudocode:

1. find the operator of leftmost lowest precedence in the string

2. identify its arguments and tag them by their arity, marking the characters of the string that compose
them

3. recurse over all operators of positive arity

If all characters in the string have been marked at the end of this algorithm, the string is a valid sentence
of the language. By representing each recursive call by a node, and the relation “parent-child” by an
arrow, we obtain a directed tree (called parsing tree) associated with each execution of the recognition
algorithm. If, moreover, we contract leaf nodes with equal labels, we obtain a directed acyclic graph
(DAG) representation of the arithmetical expression (see Example 2.1.3). This representation is called
expression DAG or expression tree.

2.1.3 Example
Consider the expression x1 + x1x2

log x2
. Precedences may be re-written using brackets and implicit operators

are written explicitly: this yields x1 + (x1 × x2)/ log(x2). The corresponding parsing tree and DAG are
shown in Fig. 2.1.

Figure 2.1: A parsing tree (left), the nodes being contracted (center), and the corresponding DAG (right).

Note that implementing this algorithm in code requires a nontrivial amount work, mostly necessary to
accommodate operator precedence (using brackets) and scope within the string. On the other hand, easy
modifications to the recognition algorithm sketched above yield more interesting behaviour. For example,
a minor change allows the recursive recognition algorithm to compute the result of an arithmetical
expression where all symbols representing numerical values are actually replaced by those values. This
algorithm performs what is called evaluation of an arithmetic expression.

2.1.4 Exercise
Implement recognition and evaluation algorithms for an arithmetic expression language.

2.1. MP AS A LANGUAGE 31

2.1.1.1 Semantics

By semantics of a sentence we mean a set of its interpretations. A possible semantics of an arithmetic
expression language is the value of the function represented by the expression at a given point x. The
algorithm for this semantics can be readily obtained by the evalution algorithm described in Sect. 2.1.1
above as follows:

• replace each symbol (operator of zero arity) with the value of the corresponding component of the
vector x;

• evaluate the arithmetic expression.

Other semantics are possible, of course.

2.1.5 Exercise
Define a semantics for sat sentences, namely conjunctions of disjunctions of literals such as (x1 ∨ x̄2) ∧
(x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x3), where x̄i is equivalent to ¬xi, i.e. the negation of the literal xi.

2.1.6 Exercise
How would you define a semantics for the English language?

2.1.2 MP entities

The sentences of the MP formal language consist of symbols belonging to five categories: parameters,
decision variables, objective functions, functional constraints and implicit constraints. The parameters
encode the problem input, the decision variables encode the problem output (the solution), an objective
function defines a search direction of optimality, the functional constraints are expressed as equations
(=) or (non-strict) inequalities (≤, ≥) involving functions, and the implicit constraints express range
constraints, integrality, membership in a cone, and so on.

The distinction between functional and implicit constraints need not be strict. For example, one can
write x ∈ {0, 1} (an implicit integrality constraint) as x2 = x (a functional constraint), and vice versa.
In such cases, the choice often depends on the solution algorithm. For example, an algorithm that can
accept nonlinear functions as part of its input, but is limited to continuous variables, will accept x2 = x.
Conversely, an algorithm that only accepts linear functions but can deal with integrality constraints
directly will accept x ∈ {0, 1}.

2.1.2.1 Parameters

The input of the optimization problem that the MP describes is contained in various data structures,
which can be vectors, matrices, arrays and so on. Each component of these data structures appears as a
symbol in the MP formulation. These symbols are known as parameters. The parameter language must
simply recognize an appropriately structured set of parameter symbols (which are initially declared as
such) or numerical values.

2.1.2.2 Decision variables

The decisions that can be taken by the agent interested in solving the optimization problems are also
contained in various data structures, each component of which appears as a symbol in the MP formulation.
These symbols are known as decision variables. The decision variable language must simply recognize an
appropriately structured set of decision variable symbols (which are initially declared as such). After the
problem is solved, these symbols are assigned the values of the optimal solutions found.

32 CHAPTER 2. THE LANGUAGE OF OPTIMIZATION

2.1.2.3 Objective functions

An objective function string is an arithmetical expression having decision variables and (optionally)
parameter symbols as operators of zero arity, together with an optimization direction, denoted by min
or max. Depending on whether the optimization problem is feasibility-only, single-objective or multi-
objective, there may be zero, one or a finite number of objective functions in the problem.

The single objective function language is a trivial extension of the arithmetical expression language: it
must also recognize an optimization direction. The objective function language must be able to recognize
a sequence of single objective function language sentences.

2.1.7 Exercise
Consider an optimization problem that aims at minimizing the objective function f(x) =

∑
j≤n cjxj .

Typically, people use the ‘x’ symbols to denote decision variables: thus each component of the vector
x = (x1, . . . , xn) is a decision variable. Since we wrote f as a function of x, we implicitly mean that the
symbol c = (c1, . . . , cn) is a parameter vector.

2.1.2.4 Functional constraints

A constraint string is an arithmetical expression having decision variables and (optionally) parameter
symbols as operators of zero arity, together with a relational sign, denoted by =,≤,≥ and a numeri-
cal value. Depending on whether the problem is constrained or unconstrained, there may be multiple
constraint strings in the MP formulation or none.

The single constraint function language is a trivial extension of the arithmetical expression language:
it must also recognize the relational operator and the numerical value. The functional constraint function
langauge must be able to recognize a sequence of single constraint function language sentences.

2.1.2.5 Implicit constraints

Constraints are implicit when their description does not include an arithmetical expression string. We
shall consider two types:

• integrality constraints, which require that a certain subset of decision variables must attain integer
values to be feasible;

• semidefinite programming (SDP) constraints, which require that a certain square symmetric matrix
of decision variables must attain a positive semidefinite (PSD) matrix of values to be feasible.

An integrality constraint string simply consists of a tuple of indices denoting the decision variable symbols
required to be integer. Equivalently, an SDP constraint indicates that the decision variable matrix is
required to attain a PSD matrix value.

2.1.3 The MP formulation language

A MP formulation is a description of a MP problem. It consists of a tuple (P, V,O, F, I) where P is a
parameter string, V a decision variable string, O an objective function string, F a functional constraint
string, and I an implicit constraint string. An MP formulation indicates a optimization problem, if at
least one parameter is a symbol, or an instance of this problem if all parameters have numerical values.

2.1. MP AS A LANGUAGE 33

A problem is nontrivial if the parameter symbols can range over infinite sets of values. Each assignment
of values to the parameter symbols yields an instance, so that problems can also be considered as sets of
instances.

2.1.3.1 Solvers as interpreters

The semantics of an MP formulation are given by the assignment of optimal solution values to the decision
variable symbols. The algorithms for computing optima of MP formulations are called solvers. There
exist different solvers for MP, each targeting a particular MP restriction.

For example, if the objective and constraint functions are linear, several off-the-shelf solvers exist,
most of which are commercial, e.g. CPLEX [144], XPress-MP [128]. Many of these solvers have lately
endowed their products with algorithms for dealing also with nonlinear terms involving specific operators.
There are also some free and open-source solvers, though: look at the COIN-OR project [198] page
www.coin-or.org, as well as GLPK [205].

A solver establishes the semantics of an MP language sentence P . In this sense, it can be seen as
a natural interpreter for the MP language. Its input is the set of parameter values, i.e. the instance,
which suffices to reconstruct the formulation P . Its output (if the solver is successful) is usually the pair
(f∗, x∗) where f∗ is the optimal objective function value and x∗ an optimum with value f∗. We denote
this by JP K = (f∗, x∗).

Most theories of programming languages manage to control the relationship between syntax and
semantics, since the formal grammar parsers they employ to define recognition algorithms can easily
be modified to construct the sentence semantics (as underlined in the discussion on recognition and
evaluation of arithmetic expression sentences in Sect. 2.1.1). In other words, most programming languages
are defined in such a way that recursion in syntax parallels recursion in semantics (this is particularly
true of imperative languages, see Sect. 2.1.3.2).

On the other hand, the algorithms implemented by solvers have generally nothing to do with the recur-
sive syntactical structure of the formal grammar used to recognize the sentences. Hence, unfortunately,
the relationship between syntax and semantics is much harder to establish in a theoretical sense. There
is a general consensus to the effect that efficient (e.g. polynomial time) algorithms provide a “desirable
semantics”.

Not only can different solvers employ very different algorithms in order to compute JP K; they may
also have different formats for their semantics, which could be, e.g.: a single optimum, or many, or
even all if there are finitely many optima; the optima might be defined only with respect to (w.r.t.) a
neighbourhood, or they may be global; the results might be guaranteed or not (see Defn. 6.0.1 for a
formal definition of optima).

One of the major efforts in the theory of MP is that of deriving new implied constraints (generally
called valid cuts) to be added to existing hard MP formulations so that: (a) at least one (and hopefully all)
optimal solutions remains feasible; (b) they help make other problematic constraints (such as integrality
constraints) redundant; (c) they themselves are not problematic. This allows the use of an efficient solver
to solve the instance. Valid cuts can be seen as a way to keep JP K invariant while making the solution
searching process more efficient.

2.1.3.2 Imperative and declarative languages

Computer programming languages such as C/C++, Java, Pascal, Basic, Fortran, Python, Matlab (and
more) are known as imperative languages: a program in any of these languages will be a set of statements
in any of four broad categories: (a) storage, or assignments of values to program variables; (b) tests, or
verification of given conditions on program variables; (c) loops, or repeated execution of some parts of the

www.coin-or.org

34 CHAPTER 2. THE LANGUAGE OF OPTIMIZATION

code; (d) input/output (I/O), i.e. interaction with the hardware layer or external world. Most languages
can also encapsulate some parts of code into callable functions: this also allows the implementation of
loops by means of recursion.

By contrast, declarative1 languages only make logical statements about variables, and then let a
general algorithm search for the variable values that satisfy those statements. It should be clear that
MP is a declarative language. Programming in declarative languages is both simpler and harder than
programming in an imperative language. It is simpler because one need not conceive nor implement the
algorithm — it is by definition the language interpreter. It is harder because humans are better suited
to understand the very simple blocks assignments, tests, loops than to design multiple logical statements
which, conjunctively, are supposed to describe the output of a given process (without actually detailing
the process itself). Programming in a declarative language is also somtimes called modelling, although
this term also has a different meaning (see Sect. 1.3.2.1). The MP language shifts the focus of optimization
from algorithmics to modelling.

Suppose someone asks you to find the largest stable set in a given graph G = (V,E), i.e. the largest
subset S ⊆ V such that no unordered pair {s, t} of vertices in S is an edge in E. In an imperative
language, you would need to decide how to encode a graph and a subgraph, how to enumerate subgraphs
in the most efficient possible way, and how to verify whether a subgraph is a stable set (i.e. it has induces
no edges in E) or not. In MP, you would simply write:

max

{∑
v∈V

xv
∣∣ ∀{u, v} ∈ E (xu + xv ≤ 1) ∧ ∀v ∈ V xv ∈ {0, 1}

}
, (2.1)

and then deploy an appropriate solver on the formulation in Eq. (2.1).

Note that most imperative and declarative languages are Turing-complete, (see Sect. 4.1.1). This
means one can program or design a universal Turing machine (UTM) with them (again, see Sect. 4.1.1).
Hence their expressive power is equivalent.

2.1.8 Exercise
Consider the imperative pseudocode
i = 1
A = ∅
while i ≤ 50 do
i← i+ 1
A← A ∪ {2x}

end while
return A

Write a declarative language equivalent of this code.

2.2 Definition of MP and basic notions

The formal definition of an MP formulation on n decision variables and m constraints is as follows:

min
x∈Rn

f(p, x)

∀i ≤ m gi(p, x) ≤ 0
∀j ∈ Z xj ∈ Z

x ∈ X,

 [P] (2.2)

where Z ⊆ {1, . . . , n}, X ⊆ Rn is the set of implicit constraints (see Sect. 2.1.2.5) x is a vector of n
decision variables taking values in R, p is a vector of parameters which, once fixed to values, make the

1Some computer scientists might call such languages “descriptive”, and reserve “declarative” for a different type of
programming languages.

2.2. DEFINITION OF MP AND BASIC NOTIONS 35

functions f and gi (for i ≤ m) functions Rn → R. The symbol P = P (n,m, p, Z,X) denotes the MP
formulation, i.e. the MP instance for given n,m, p, Z,X.

For a MP formulation P , we let feas(P) be the feasible set of P . We let val(P) be the globally
optimal value of P if feas(P) ̸= ∅ and if a global optimum of P exists (i.e. if feas(P) is bounded in the
optimization direction). By convention, if P is a minimization problem, we let val(P) =∞ if feas(P) = ∅,
and val(P) = −∞ if feas(P) is unbounded in the optimization direction (if P is a maximization problem,
we multiply val(P) by −1).

We let MP be the class of all instances of Eq. (2.2) as n,m range over all sizes, Z over all subsets of
{1, . . . , n} and p over all possible sizes and values, and f, g over all functions Rn → R.

The set of vectors in Rn that satisfy all constraints of the instance P is called the feasible set of P and
denoted by F(P) or simply F . The set of feasible vectors that are also optima (i.e. achieve the minimum
objective function value) in P is called the optimal set of P and denoted by G(P) or simply G.

There are three possibilities for a given a MP instance P , which we assume without loss of generality
(wlog) in minimization form:

1. there exists at least an optimum x∗ of P with optimal objective function value f∗;

2. P is unbounded, i.e. for any feasible solution x′ with objective function value f ′, there always exist
another feasible solution x′′ with objective function value f ′′ such that f ′′ < f ′;

3. P is infeasible, i.e. F(P) = ∅.

This ternary classification corresponds to two hierarchically dependent binary classifications: whether P
is feasible or not, and, if P is feasible, whether it has an optimum or not.

2.2.1 Certifying feasibility and boundedness

In general, it is possible to certify feasibility in practice: given a solution x′, it suffices to verify whether
x′ satisfies all the constraints. Certifying optimality is more difficult in general: whether it can be done or
not depends on many factors, the most important of which the behaviour of the objective over the feasible
region, the presence of linear/nonlinear terms in the description of the objective function, whether there
are finitely or infinitely many feasible solutions.

Infeasibility is also hard to certify: in general, given a MP formulation as in Eq. (2.2), assuming we
have an algorithm for optimizing over the implicit constraints x ∈ X, we can add non-negative slack
variables s1, . . . , sm to the rhs of the inequality constraints and minimize their sum:

min
x∈Rn,s≥0

∑
i≤m

si

∀i ≤ m gi(p, x) ≤ si
∀j ∈ Z xj ∈ Z

x ∈ X.

 [FP] (2.3)

The original instance P is infeasible if and only if (iff) the globally optimal objective function value of
Eq. (2.3) is strictly greater than zero. This poses two issues: (a) globally optimizing Eq. (2.3) is generally
just as hard as optimizing Eq. (2.2); and (b) in practice, using floating point computations, we might
well obtain optimal objective function values in the order O(10−5) where the parameters are in the range
O(1)-O(100): how do we decide whether the problem is infeasible or it is feasible up to some floating
point error?

36 CHAPTER 2. THE LANGUAGE OF OPTIMIZATION

2.2.2 Cardinality of the MP class

Since p might encode continuously varying parameters, and f, g range over all possible real functions of
n arguments, the class MP must contain uncountably many instances.

In practice, however, any continuous parameter in p must in fact range over the rationals, of which
there are countably many (in fact continuous parameters usually range over the floating point numbers, of
which there are finitely many). As for f, g, they must be recognized by the expression languages described
in Sect. 2.1 above. Since there are countably many arithmetical expressions, and only finitely many of
a given size, the subclass of instances in MP which can be explicitly described (a necessary condition in
order for an instance to be solved — if nothing else because the instance description is the input to the
solver) is countably infinite in theory. Given our language L , we call MPL the subclass of instances in
MP having a finite description in L . If L is fixed a priori (which it usually is), we drop the subscript
and simply write MP.

This means we cannot express (and hence solve) uncountably many instances. But the good news is
that, given any instance (and so any functions f, g described in some language L ′), we can extend our
language L to integrate L′ so that f, g can also be described in L.

2.2.3 Reformulations

Several features of Eq. (2.2) might appear arbitrary to the untrained eye. We will show in this section
that every assumption was made wlog.

2.2.3.1 Minimization and maximization

In Sect. 2.1.2.3 we stated that objective functions have a direction, either min or max. But in Eq. (2.2)
we only wrote min. However, given any MP formulation

P ≡ min{f(x) | x ∈ F} (2.4)

can be written as
Q ≡ max{−f(x) | x ∈ F} (2.5)

while keeping the set G of optima invariant. The only thing that changes is the value of the optimal
objective function: it is f∗ in P iff it is −f∗ in Q.

Some solvers only accept one of the two optimization directions (typically the min direction is more
common). So there is sometimes a practical need for carrying out this transformation.

2.2.3.2 Equation and inequality constraints

Eq. (2.2) only lists m inequality constraints gi(p, x) ≤ 0 (for i ≤ m). However, we can express an equation
constraint h(p, x) = 0 by requiring that there exist two indices i, j ≤ 0 such that gi(p, x) ≡ h(p, x) and
gj(p, x) ≡ h(p, x). This yields

h(p, x) ≤ 0

−h(p, x) ≤ 0,

which hold for fixed p iff h(p, x) = 0. Note that for each equation constraint we need two inequality
constraints, so the size m of the constraint list changes.

In practice, the large majority of solvers accept both inequality and equation constraints explicitly.

2.2. DEFINITION OF MP AND BASIC NOTIONS 37

2.2.3.3 Right-hand side constants

Although all RHSs in Eq. (2.2) have been set to zero, any other constant can simply be brought over
(with opposite sign) to the left-hand side (LHS) and considered part of the function gi(p, x) (for i ≤ m).

2.2.3.4 Symbolic transformations

All the simple transformations given in Sect. 2.2.3.1-2.2.3.3 are part of a much larger family of symbolic
and numerical transformations on MP formulations collectively known as reformulations [170, 305], some
of which will be discussed in more depth below.

2.2.3.5 Linearization

We note two easy, but very important types of reformulations.

• The linearization consists in identifying a nonlinear term t(x) appearing in f or gi, replacing it with
an added variable yt, and then adjoining the defining constraint yt = t(x) to the formulation.

• The constraint relaxation consists in removing a constraint: since this means that the feasible region
becomes larger, the optima can only improve with respect to those of the original problem. Thus,
relaxing constraints yields a relaxation of the problem.

These two reformulation techniques are often used in sequence: one identifies problematic nonlinear
terms, linearizes them, and then relaxes the defining constraints. Carrying this out recursively for every
term in an NLP [214], and only relaxing the nonlinear defining constraints yields an LP relaxation of an
NLP [276, 284, 38].

2.2.4 Coarse taxonomy

As we shall see below, MP formulations are classified in many different ways [177, 305]. For example,

• according to the properties of their descriptions: e.g. an MP where all the functions are linear and
Z = ∅ is called a Linear Program (LP), whereas if Z ̸= ∅ it is called a Mixed-Integer Linear
Program (MILP);

• according to their mathematical properties: e.g. if f is nonlinear but convex in x and F is a convex
set, P is a convex Nonlinear Program (convex NLP or cNLP);

• according to whether a certain class of solvers can solve them: this classification is obviously a
posteriori w.r.t. the solution process, and often changes in time, since solvers, operating systems
and hardware all evolve.

Unions of properties are also possible: for example an MP involving both integer variables and nonlinear
functions is called a Mixed-Integer Nonlinear Program (MINLP). If, when relaxing the integer variables
to take continuous values, the resulting problem is a cNLP, then the MINLP is referred to as a convex
MINLP (cMINLP). We remark that a cMINLP has a nonconvex feasible region (by virtue of the integrality
constraints).

38 CHAPTER 2. THE LANGUAGE OF OPTIMIZATION

2.2.5 Solvers state-of-the-art

In this section we examine the state of the art of current MP solvers according to our taxonomy
(Sect. 2.2.4) as regards robustness and solution size.

• Currently, LP solvers are the most advanced. Most of them are very robust. For sparse data,
current LP solvers might well solve instances with O(106) variables and constraints. For dense
data, unfortunately, the situation varies wildly depending on the data themselves: but most input
data in MP is sparse, and dense MPs mostly occur in specific fields, such as quantile regression or
signal processing.

• The most advanced MILP solvers are based on the Branch-and-Bound (BB) algorithm, which
essentially solves a sequence of LPs (this makes MILP solvers quite robust). However, this sequence
is exponentially long in the worst case. It is very hard to make predictions on the maximal size
of MILPs that current BB technology is able to solve in “acceptable times”, as there are minuscule
examples known to force the worst-case, as well as practical cases of MILPs with tens of thousands
of variables and/or constraints being solved very fast.

• SDP solvers (and conic solvers in general) are quite robust, but compared to LP solvers their
“size bottleneck” is much more restricted. You can hope to solve SDPs with O(103) variables
and constraints, and possibly even O(104) (but remember that SDPs involves matrices of decision
variables, so the number of decision variables is usually quite large).

• Local NLP solvers guarantee global optimality on the vast majority of practical cNLP instances; and
most of them will also be rather efficient at finding such optima. One might hope to solve instances
with tens of thousands of variables and/or constraints as long as the “linear part” of the problem
is large, sparse, and the solver is able to exploit it. Today, however, many cNLP applications are
from Machine Learning (ML), and their sizes are so large that special purpose solvers have to be
designed — and a guarantee of optimality often forsaken. While a local NLP solver deployed on a
cNLP is reasonably robust, the same solver deployed on a nonconvex NLP typically has many more
chances of failures, specially if an infeasible starting point was provided (which is often the case —
finding a feasible solution in a nonconvex NLP is as hard as finding an optimal one, in terms of
computational complexity in the worst case).

• The state of the art of global NLP solvers for nonconvex NLPs is less advanced than then the
previous ones. Currently, all of the solvers that are able to certify global optimality (to within a
given ε > 0 tolerance on the optimal objective function value) are based on a BB variant called
“spatial BB” (or sBB). The sBB algorithm solves a sequence of LP or cNLP relaxations of the given
(nonconvex) NLP, as well as locally solving the given NLP every so often. This procedure is as fragile
as its local solvers warrant — and since local NLP solvers are not so robust, sBB is no different.
Current sBBs perform reasonably well on problems with a quadratic structure, as those are the best
studied. sBB implementations can often exhibit their exponential worst-case behaviour even on tiny
instances, unfortunately. Expect some results in the size range O(102)-O(103) variables/constraints.

• cMINLP solvers are somewhat more robust than nonconvex NLP solvers, but much less advanced
than MILP solvers; they can probably be deployed on instance sizes of around O(103).

• General MINLP solvers implement sBB algorithms that can also branch on integer variables. There
is currently no sBB solver that can only deal with nonconvex NLPs but not with MINLP. Since
MILP solution technology is reasonably advanced, endowing an sBB implementation with mixed-
integer capabilities does not worsen its robustness or the limits of its maximal sizes.

You should take all of the information given above with a pinch of salt. It is the author’s own opinion,
formed after close to twenty years’ experience in the field. It is not a scientific statement, and has been
left suitably vague on purpose. Algorithmic research in MP is intense, and major improvements, even

2.2. DEFINITION OF MP AND BASIC NOTIONS 39

on much smaller subclasses than our taxonomy above lists, are often picked up by the major commercial
codes rather rapidly.

If you have a large instance for which your solver takes too long you should: (b) ask yourself whether
there exists a simple and efficient algorithm that can solve your problem independently of its MP formu-
lation; (b) attempt to reformulate the problem in order to be able to solve it with a more robust/efficient
solver; (c) give your solver a time limit, forsake its guarantees, and hope it finds a good solution within
the allotted time. While advice (c) sounds close to “give up”, remember that (i) in the large majority of
practical cases, having any solution is better than having none at all; (ii) for many classes of problems,
local optima tend to cluster together, and local optima close to the global optimum might be quite close
to it.2

2.2.6 Flat versus structured formulations

A formulation is flat if it has no quantifier over variable indices, and structured otherwise.

We have seen two examples of MP formulations so far: Eq. (2.1) and Eq. (2.2). Eq. (2.1) involves
the maximization of the sum of all the decision variables (one per vertex in the graph), subject to the
condition that, for each edge in the graph, the decision variables corresponding to the adjacent vertices
cannot both be set to one. Eq. (2.2) is completely general: it minimizes an objective subject to a list of
functional constraints introduced by a universal (“for all”) quantifier. In both formulations there appear
symbols quantified by indices (u, v in Eq. (2.1), i in Eq. (2.2)), and quantifiers (

∑
,∀ in Eq. (2.1), ∀ in

Eq. (2.2)). Therefore, both are structured.

The following is a simple example of a flat formulation:

min x1 + x2 + x3 + x4
x1 + x2 ≤ 1
x1 + x3 ≤ 1
x2 + x4 ≤ 1
x3 + x4 ≤ p

x1, x2, x3, x4 ∈ {0, 1},

(2.6)

where p is a (scalar) parameter. If we assign a fix value to p, e.g. p = 1, we obtain a flat formulation
representing an instance of the MP formulation in Eq. (2.1).

2.2.1 Exercise
Since Eq. (2.6) is an instance of Eq. (2.1) when p = 1, its optima are stable sets in a graph: recover the
graph from the formulation.

2.2.2 Exercise
Is Eq. (2.6) an instance of Eq. (2.1) whenever p ̸= 1? What about p = 0 or p = 2? Does it make sense
to consider other values of p?

2.2.6.1 Modelling languages

The distinction between flat and structured formulations is that solvers only accept flat (instance) for-
mulations, whereas humans naturally model optimization problems using structured formulations. This
calls for two MP languages: one that understand parameters and variable symbols with indices, as well
as quantifiers over those indices, and one that does not. It also calls for a translator between the two
languages.

2This is mostly an empirical observation [57]. Intuitive explanations have sometimes been attempted, based on the
distribution of optima in all points satisfying first-order conditions [40].

40 CHAPTER 2. THE LANGUAGE OF OPTIMIZATION

In MP, translators from structured to flat formulations are called modelling languages. In fact, they
do more than just translate. Since each solver accepts its input in a flat formulation language with its
own distinct syntax, most modelling languages act as interfaces to a set of solvers, each of which requires
a specific translation module.

2.2.3 Remark (Quantifiers over indices)
Quantifiers are only allowed to range over indices belonging to a set given as part of the parameters (the
input). In no case should a quantifier ever involve a decision variable symbol. The issue arises because
translating from a structured formulation to a flat one would be impossible if a quantifier involved a
decision variable (the value of which is not known before the solution process occurs). Though this
remark might appear innocuous at this time, wait until you need a “conditional constraint” (see the
discussion at the end of Sect. 2.2.7.5).

The best known purely MP-related translators are AMPL [115] and GAMS [58]. AMPL structured
formulation language syntax is very similar to the mathematical form of MP languages, and hence very
close to human-readable syntax, and can interface with many solvers. Its weak point is that it has very a
limited imperative sub-language, which makes it hard to reformulate and post-process solutions. GAMS
has a better imperative sub-language, but its structure formulation language syntax has a steep learning
curve (at best).

On the other hand, with the increasing need for complicated algorithms involving MP as elementary
steps, many imperative programming languages have been endowed with capabilities for modelling and
solving MP formulations. Python has a growing number of translators (e.g. PyOMO [132] and PICOS
[257]), and Matlab [207] has many extremely good translators, some commercial and some not. The
most complete Matlab translator appears to be TOMLAB [142], which interfaces with a large number
of solvers. A free equivalent to TOMLAB is the OPTI toolbox [83], which, however, unfortunately only
works on the Windows version of Matlab. Another excellent free translator for Matlab is YALMIP [197],
which focuses mostly (but not only) on conic optimization.

2.2.7 Some examples

2.2.7.1 Diet problem

A diet involving m nutrients (vitamins, proteins, fats, fibers, iron, etc.) is healthy if it has at least
quantities b = (b1, . . . , bm) of the nutrients. In order to compose such a diet, we need to buy quantities
x = (x1, . . . , xn) of n types of food having unit costs c = (c1, . . . , cn). Food j ≤ n contains aij units of
nutrient i ≤ m. The solution of the following LP problem yields an x that satisfies the requirements of a
healthy diet at minimum cost [88].

minx

n∑
i=1

c⊤x

Ax ≥ b
x ≥ 0.

 (2.7)

The parameters are A, b, c. The decision variables are the components of the vector x. The functional
constraints are the rows of the linear inequality system Ax ≤ b. The non-negativity constraints x ≥ 0
can be interpreted both as functional constraints (since x = f(x) where f is the identity function) and
as implicit constraints: in the latter case, the sentence x ≥ 0 encodes membership in the non-negative
orthant.

2.2. DEFINITION OF MP AND BASIC NOTIONS 41

2.2.7.2 Transportation problem

Consider a transportation network modelled by a weighted bipartite directed graph B = (U, V,A, d) with
a set of departure vertices U , a set of destinations V , a set of arcs A = {(u, v) | u ∈ U, v ∈ V } weighted by
a nonnegative distance function d : A→ R+. A certain amount of material au is stored at each departure
vertex u ∈ U . We associate to each destination v ∈ V a given demand bv of the same material. The cost
of routing a unit of material from u ∈ U to v ∈ V is directly proportional to the distance duv. We have to
determine the transportation plan of least cost satisfying the demands at the destinations. The variables
xuv in the LP formulation below, associated to each arc (u, v) ∈ A, denote the amount of material routed
on the arc.

minx
∑

(u,v)∈A
duvxuv

∀u ∈ U
∑
v∈V

xuv ≤ au

∀v ∈ V
∑
u∈U

xuv ≥ bv

∀(u, v) ∈ A xuv ≥ 0.

(2.8)

The parameters are all encoded in the weighted bipartite directed graph (digraph) B. The decision
variables represented by the double-indexed symbols xuv (for (u, v) ∈ A). This structure can also be seen
as a partial3 |U | × |V | matrix X with component (u, v) being present iff (u, v) ∈ A. There are two sets
of functional constraints and a non-negativity constraint.

2.2.7.3 Network flow

Given a network on a directed graph G = (V,A) with a source node s, a destination node t, and capacities
uij on each arc (i, j). We have to determine the maximum amount of material flow that can circulate on
the network from s to t. The variables xij in the LP formulation below, defined for each arc (i, j) in the
graph, denote the quantity of flow units.

maxx
∑

i∈δ+(s)

xsi

∀ i ≤ V, i ̸= s, i ̸= t
∑

j∈N+(i)

xij =
∑

j∈N−(i)

xji

∀(i, j) ∈ A 0 ≤ xij ≤ uij .

 (2.9)

The parameters include the array {uij | (i, j) ∈ A of upper bounds and the digraph G, represented
in Eq. (2.9) in the node adjacencies N+(i) (set of outgoing nodes j such that (i, j) ∈ A) and N−(i) (set
of incoming nodes j such that (j, i) ∈ A). The decision variables are xij for (i, j) ∈ A. The functional
constraints are in the form of equations (we remark that the form of the equation is not f(x) = 0 but
f1(x) = f2(x), trivially reducible to the former standard form). The range constraints 0 ≤ xij ≤ uij can
be seen as functional constraints. This is obtained by re-writing them as xij − uij ≤ 0 and xij ≥ 0 or as
an implicit constraint X ∈ [0, U] where X is the partial |V | × |V | matrix of decision variables, and U is
the partial |V | × |V | matrix of upper bounds.

2.2.7.4 Set covering problem

A certain territory containing n cities is partitioned in m regions. We must decide whether to build a
facility on region i ≤ m or not. For each i ≤ m and j ≤ n, the parameter aij is equal to 1 iff a facility on
region i can serve city j (otherwise aij = 0). The cost of building a facility on region i is ci. We require

3A partial matrix is a matrix with some components replaced by a placeholder indicating their absence.

42 CHAPTER 2. THE LANGUAGE OF OPTIMIZATION

that each city is served by at least one facility, and we want to find the construction plan of minimum
cost. We model the problem as the following MILP:

minx

m∑
i=1

cixi

∀ j ≤ n
m∑
i=1

aijxi ≥ 1

x ∈ {0, 1}n.

(2.10)

The parameters are (c, A) where A is the m × n matrix having aij as its (i, j)-th component (A is
an adjacency matrix). There is a decision variable vector x, a set of linear functional constraints and
an implicit integrality constraints of binary type. Note that, although Eq. (2.10) is a MILP, it only has
binary variables and no continuous ones. We usually call such problems Binary Linear Programs
(BLP).

2.2.7.5 Multiprocessor scheduling with communication delays

A scheduling problem generally has two main types of decision variables: assignment (of tasks to pro-
cessors) and sequencing (order of tasks for each processor). The makespan is the time taken to finish
processing the last task: an optimal schedule usually minimizes the makespan. The Multiprocessor
Scheduling Problem with Communication Delays (MSPCD) consists in finding a minimum makespan
schedule in order to run a set V of tasks with given duration Li (for i ∈ V) on an arbitrary network
P of homogeneous processors. Tasks must be executed according to a certain partial precedence order
encoded as a digraph G = (V,A), where (i, j) ∈ A if task i must be completed before task j can start.
If i, j ∈ V are assigned to different processors h, k ∈ P , they incur a communication cost penalty γhkij ,
which depends on the (given) distance dhk, which is in fact the length of a shortest path from h to k in
P , as well as on the (given) amount of exchanged data cij that needs to be passed from task i to task j.
In summary, γhkij = Γcijdhk, where Γ is a given constant.

2.2.4 Remark (Meanings of V)
We assume that V is actually a set of integers {1, . . . , |V |} indexing the tasks, so that we can talk about
task i (for i ∈ V) but also the s-th task on some processor (for s ∈ V). While syntactically this notation
is valid, it might engender some confusion to do with the fact that task i might not be the i-th task on
the processor it is assigned to. You should consider that V stands in fact for two different collections:
one of the task indices, and the other of the order indices. 2

We define two sets of decision variables as follows:

• binary variables y denoting assignment and sequencing:

∀i, s ∈ V, k ∈ P ysik =

{
1 task i is the s-th task on processor k
0 otherwise,

• continuous variables ti ≥ 0 determining the starting time for task i (for i ∈ V).

2.2. DEFINITION OF MP AND BASIC NOTIONS 43

The MSPCD can now be formulated as follows:

min
y,t

max
i∈V

(ti + Li) (1)

∀i ∈ V
∑
k∈P

∑
s∈V

ysik = 1 (2)

∀k ∈ P
∑
i∈V

y1ik ≤ 1 (3)

∀k ∈ P, s ∈ V ∖ {1}
∑
i∈V

ysik ≤
∑
i∈V

ys−1
ik (4)

∀j ∈ V, i ∈ N−(j) ti + Li +
∑
h∈P

∑
s∈V

∑
k∈P

∑
r∈V

γhkij y
s
ihy

r
jk ≤ tj (5)

∀i, j ∈ V, k ∈ P, s ∈ V ∖ {n} ti + Li −M
(
2−

(
ysik +

∑n
r=s+1 y

r
jk

))
≤ tj (6)

∀i, s ∈ V, k ∈ P ysik ∈ {0, 1} (7)
∀i ∈ V ti ≥ 0, (8)

(2.11)

where M ≫ 0 is a “sufficiently large” (given) penalty coefficient, and N−(j) is standard graph theoretical
notation to mean the incoming neighbourhood of node j ∈ V , i.e. the set of nodes i ∈ V such that
(i, j) ∈ A.

Equation (2) ensures that each task is assigned to exactly one processor. Inequalities (3)-(4) state
that each processor can not be simultaneously used by more than one task: (3) means that at most one
task will be the first one at k, while (4) ensures that if some task is the sth one (for s ≥ 2) scheduled to
processor k ∈ P then there must be another task assigned as (s− 1)-st to the same processor. Inequality
(5) expresses the precedence constraints together with communication time required for tasks assigned
to different processors. Inequality (6) defines the sequence of the starting times for the set of tasks
assigned to the same processor: it expresses the fact that task j must start at least Li time units after
the beginning of task i whenever j is executed after i on the same processor k; the M parameter must
be large enough so that constraint (6) is active only if i and j are executed on the same processor k and
r > s (for i, j, r, s ∈ V , k ∈ P).

2.2.5 Remark (Presenting a MP formulation)
Each row of a MP formulation is split in four columns.

• In the first column, quantifiers: min and max for objective functions, ∀ or none for constraints;

• In the second column, functional forms (objective and constraints);

• In the third column, equality sign or ≤,≥ signs for functional constraints, ∈ for implicit constraints
(nothing for objectives);

• In the fourth column, constants or functional forms for functional constraints, set names or labels
for implicit constraints (nothing for objectives).

2.2.6 Remark (Objective function)
The objective function has a minmax form, and is therefore not linear. Formulations exhibiting a minmax
optimization direction are known as saddle problems. Though this might deceptively look like one, it is
not: in saddle problems you minimize over a subset of variables and maximize over the rest. In Eq. (2.11)
the inner maximization occurs w.r.t. an index ranging over a set given as an input parameter. In other
words, the objective function expression f(p, x) given in Eq. (2.2) is max

i∈V
(ti + Li): it corresponds to the

ending time of the last task, i.e. the makespan.

2.2.7 Exercise
Reformulate the objective function (1) of Eq. (2.11) exactly so that it becomes linear in the decision
variables.

2.2.8 Remark (Products of binary variables)
Note that Constraint (5) in Eq. (2.11) involves a sum of products of two binary variables. Without any
further analysis on the problem structure, we are forced to conclude that this formulation belongs to the

44 CHAPTER 2. THE LANGUAGE OF OPTIMIZATION

(nonconvex) MINLP class. This is bad news according to Sect. 2.2.5. Fortunately, however, roducts of
binary variables can be reformulated exactly to a linear form. Whenever any MP involves a product xixj
where xi, xj ∈ {0, 1}, proceed as follows: replace the product with an additional variable Xij ∈ [0, 1] (this
is the linearization process described in Sect. 2.2.3.5), and adjoin the following constraints:

Xij ≤ xi (2.12)
Xij ≤ xj (2.13)
Xij ≥ xi + xj − 1. (2.14)

This reformulation was first proposed in [113]. It can be generalized to products where only one of
the variables is binary, as long as the other is bounded above and below [177]. If both variables are
continuous and bounded, Eq. (2.12)-(2.14) can be generalized to obtain a convex envelope of the set
X ij = {(Xij , xi, xj) ∈ Bij | Xij = xixj} (where Bij is a box defined by lower and upper bounds on xi, xj
and the corresponding bounds on Xij obtained by interval analysis) [214].

2.2.9 Exercise
With reference to Rem. 2.2.8, prove that Eq. (2.12)-(2.14) provide an exact reformulation of the set
X ij ∩ [0, 1]× {0, 1}2.

The formulation in Eq. (2.11) uses a rather standard set of variables for most scheduling problems.
It is not easy to solve, however, even for medium-sized instances, since it has O(|V |3) variables and
O(|V |3|P |) constraints. See [93] for a more compact formulation.

2.2.7.5.1 The infamous “big M” Anyone who is familiar with the integer programming literature
knows about the “big M”, its widespread use, and its unanimous condemnation. The need for a “large”
constant M arises when a constraint needs to be activated or deactivated according to the value of a
given binary decision variable (such constrained are known as conditional constraints). Suppose we have
a constraint g(x) ≤ g0 which should only be active when the variable y ∈ {0, 1} has value 1.

A maximally inexperienced reader would probably come up with the expression “∀y ∈ {1} g(x) ≤
g0”, which unfortunately involves the decision variable y appearing in a constraint quantifier, against
Rem. 2.2.3. A naive reader might propose multiplying both sides of the constraint by y, so that the
constraint (now reformulated as yg(x) ≤ yg0) will be inactive when y = 0 and active when y = 1, as
desired. The issue here is that this introduces unnecessary products in the formulation, which, according
to our analysis of the state of the art in solvers (Sect. 2.2.5) are best avoided.

The common practice is to assume that g(·) is bounded above over its domain, say g(x) ≤ gU for all
possible values of the decision variable vector x. One would then reformulate the constraint by choosing
some parameter M ≥ gU − g0 and writing:

g(x) ≤ g0 +M(1− y), (2.15)

so that when y = 1 we retrieve g(x) ≤ g0, whereas with y = 0 we simply have g(x) ≤ g0 +M , which
implies g(x) ≤ gU , which is always true (and therefore does not actively constrain the problem anymore).

MILP formulations involving “big M”s are often condemned because their continuous relaxations (ob-
tained by relaxing the integrality constraints) yield a bound that is known to often have a large gap with
the optimal objective function value of the original problem. MILP solvers therefore take much longer to
achieve termination. It is also known that this adverse impact is lessened when M is as small as possible.
So when people write “big M” what they really mean is “big enough”: make an effort to correctly estimate
M as an upper bound to the (possibly unknown) gU .

2.2. DEFINITION OF MP AND BASIC NOTIONS 45

2.2.7.6 Graph partitioning

The Graph Partitioning Problem (GPP), also known as min-k-cut problem is part of a larger family
of clustering problems, which form the methodological basis of unsupervised ML. Given an undirected
graph G = (V,E) and two integers L, k ≥ 2, it asks for a partition of V into k (disjoint) subsets, called
clusters, such that each cluster has cardinality bounded above by L, and such that the number of edges
{i, j} ∈ E such that i, j belong to different clusters is minimized [116, ND14].

In general, the GPP is NP-hard for all k ≥ 3. The particular case k = 2 is known as the min cut
problem, and can be solved in polynomial time by computing the solution of its dual,4 the max flow
problem (see Sect. 2.2.7.3).

The parameters of the problem are given by an encoding of G and the two integers L, k. As decision
variables we employ two-indexed binary variables in order to assign vertices to clusters:

∀i ∈ V, h ≤ k xih =

{
1 if vertex i is in cluster h
0 otherwise.

The formulation is as follows:

min
x

∑
{i,j}∈E

∑
h≤k

xih(1− xih) (1)

∀h ≤ k
∑
i∈V

xih ≤ L (2)

∀i ∈ V
∑
h≤k

xih = 1 (3)

∀i ∈ V, h ≤ k xih ∈ {0, 1}. (4)

(2.16)

We remark that, for each edge {i, j} ∈ E and h ≤ k, the product xih(1 − xjh) has value 1 iff i, j are
assigned to different clusters: thus the objective function (1).

2.2.10 Remark (Data structure representation for edges)
If you implement Eq. (2.16), be aware that if {i, j} is represented as a couple (i, j) rather than an
unordered pair, then you are likely to have to multiply the objective function by 1

2 , unless you remove the
repeated couples by means of a condition i < j. In general, however, whether you are allowed to express
i < j also depends on the other features of the MP you are considering; sometimes the most expedited
solution is to count edges twice and divide by two.

As for Constraint (2), it expresses the fact that each cluster must have cardinality bounded above by
L. Constraint (3) states that each vertex must be assigned to exactly one cluster (i.e. the clustering is a
partition).

The formulation in Eq. (2.16) belongs to the class of MINLP, since the objective function is quadratic,
and possibly nonconvex. An exact reformulation to a MILP can be achieved by employing Fortet’s
reformulation technique (see Remark 2.2.8).

2.2.7.7 Haverly’s Pooling Problem

Haverly’s Pooling Problem (HPP), first introduced in [134], is described visually in Fig. 2.2. We have
three input feeds with different levels of percentage of sulphur in the crude. Accordingly, the unit costs of
the input feeds vary. Two of the feeds go into a mixing pool, which makes the level of sulphur percentage
the same in the two streams coming out of the pool. The various streams are then blended to make two
end products with different requirements on the sulphur percentage and different unit revenues. We have
some market demands on the end products and we want to determine the quantities of input crude of

46 CHAPTER 2. THE LANGUAGE OF OPTIMIZATION

Figure 2.2: Haverly’s Pooling Problem.

each type to feed into the networks so that the operations costs are minimized. This problem can be
formulated in various ways. We present here what is known as the “p-formulation” of the HPP [25], with
comments on the constraints explaining their meaning.

min
x,y,p≥0

6x11 + 16x21 + 10x12 − 9(y11 + y21)− 15(y12 + y22) cost

s.t. x11 + x21 − y11 − y12 = 0 mass balance
x12 − y21 − y22 = 0 mass balance
y11 + y21 ≤ 100 demands
y12 + y22 ≤ 200 demands
3x11 + x21 − p(y11 + y12) = 0 sulphur balance
py11 + 2y21 ≤ 2.5(y11 + y21) quality req
py12 + 2y22 ≤ 1.5(y12 + y22) quality req,

where x, y are decision variable vectors representing input and intermediate stream quantities (as shown
in Fig. 2.2) and p is the decision variable scalar representing the percentage of sulphur in the streams out
of the pool. Notice that this NLP has three constraints involving bilinear terms, so Global Optimization
(GO) techniques are mandatory for its solution. Since bilinear terms can (and usually do) yield nonconvex
feasible regions when used in constraints, we can only say that this is a nonconvex NLP. Note that the
implicit non-negativity constraints appear under the minimization direction operator min.

The formulation presented above is the flat formulation (it has no quantifiers ranging over indices)
of a single instance (it has no parameters). This instance is part of the problem that can be obtained
by replacing the numbers 6, 16, 10, 9, 15, 100, 200, 2.5, 1.5 in the objective and constraints by parameter
symbols ranging over non-negative real scalars. It is this problem that is actually called HPP. Many
generalizations of the HPP have been studied in the literature, most notably with respect to the network
topology, to the types of oil impurity (e.g. the sulphur) and to the activation/de-activation of conducts
in the oil network [224], see Sect. 2.2.7.8 below.

2.2.7.8 Pooling and Blending Problems

The HPP (Sect. 2.2.7.7) is a subclass of more general problems termed Pooling/Blending problems.
Various types of crude oils of different qualities, coming from different feeds, are mixed together in
various pools to produce several end-products subject to quality requirements and quantity demands; the
objective is to minimize the net costs. These problems are usually modelled as continuous NLPs involving
bilinear terms. The literature on Pooling/Blending problems is vast (see e.g. [3, 114, 299, 285, 25, 190]).
We present the general blending problem formulation found in [3, p. 1958]. The formulation refers to a

4See e.g. [239] for an introduction to LP duality, as well as the special form of “combinatorial” duality given by the pair
max flow – min cut.

2.2. DEFINITION OF MP AND BASIC NOTIONS 47

setting with q pools each with nj input streams (j ≤ q) and r end products. Each stream has l qualities.

min
x,y,p≥0

q∑
j=1

nj∑
i=1

cijxij −
r∑

k=1

dk
q∑
j=1

yjk

nj∑
i=1

xij =
r∑

k=1

yjk ∀j ≤ q
q∑
j=1

yjk ≤ Sk ∀k ≤ r
nj∑
i=1

λijwxij = pjw
r∑

k=1

xjk ∀j ≤ q ∀w ≤ l
q∑
j=1

pjwxjk ≤ zkw
q∑
j=1

yjk ∀k ≤ r ∀w ≤ l

xL ≤ x ≤ xU , pL ≤ p ≤ pU , yL ≤ y ≤ yU ,

(2.17)

where xij is the flow of input stream i into pool j, yjk is the total flow from pool j to product k and pjw
is the w-th quality of pool j; cij , dk, Sk, Zkw, λijw are, respectively: the unit cost of the i-th stream into
pool j, the unit price of product k, the demand for product k, the w-th quality requirement for product
k and the w-th quality specification of the i-th stream into pool j.

The variable symbols are x, y, p, as emphasized under the optimization direction symbol min. The
other symbols indicate parameters.

2.2.7.9 Euclidean Location Problems

There are n plants with geographical positions expressed in Euclidean coordinates (ai, bi) (1 ≤ i ≤ n)
w.r.t. to an arbitrary point (0, 0). Daily, the i-th plant needs ri tons of raw material, which can be
delivered from m storage points each with storage capacity cj (1 ≤ j ≤ m). For security reasons, each
storage point must be located at least at D = 1 Km distance from the plant. The cost of raw material
transportation between each storage point and each plant is directly proportional to their distance as
well as the quantity of raw material. Find geographical positions where to place each storage point so
that the transportation costs are minimized. The MP formulation is as follows:

min
x,y,d,w

n∑
i=1

m∑
j=1

wijdij

s.t.
n∑
i=1

wij ≤ cj ∀j ≤ m storage capacity
m∑
j=1

wij ≥ ri ∀i ≤ n plant requirement

dij =
√

(xj − ai)2 + (yj − bi)2 ∀i ≤ m, j ≤ n Euclidean distance
dij ≥ D ∀i ≤ n, j ≤ m minimum distance

where (xj , yj) is the geographical position of the j-th storage point, dij is the distance between the i-th
plant and the j-th storage point, wij is the quantity of raw material transported from the j-th storage
point to the i-th plant (i ≤ n, j ≤ m). The decision variable symbols are x, y, d, w. The rest are parameter
symbols.

2.2.7.10 Kissing Number Problem

When billiard balls touch each other they are said to “kiss”. Accordingly, the kissing number in D
dimensions is the number of D-dimensional spheres of radius R that can be arranged around a central
D-dimensional sphere of radius R so that each of the surrounding spheres touches the central one without
their interiors overlapping. Determining the maximum kissing number in various dimensions has become
a well-known problem in combinatorial geometry. Notationally, we indicate the Kissing Number Problem
in D dimensions by KNP(D). In R2 the result is trivial: the maximum kissing number is 6.

48 CHAPTER 2. THE LANGUAGE OF OPTIMIZATION

2.2.11 Exercise
Prove that the kissing number in 2 dimensions is 6.

The situation is far from trivial in R3. The problem earned its fame because, according to Newton,
the maximum kissing number in 3D is 12, whereas according to his contemporary fellow mathematician
David Gregory, the maximum kissing number in 3D is 13 (this conjecture was stated without proof).
This question was settled, at long last, more than 250 years after having been stated, when J. Leech
finally proved that the solution in 3D is 12 [168]. As you can see in Fig. 2.3, there is some slack around
the sphere, so it is not obvious that 13 non-overlapping spheres cannot fit. Given parameters D (number

Figure 2.3: A solution of Kissing Number Problem in 3D with 12 spheres.

of dimensions) and N (number of spheres), the variables xi = (xi1, . . . , x
i
D), 1 ≤ i ≤ N determine the

position of the center of the i-th sphere around the central one. We maximize a decision variable α ≥ 0
which represents the minimum pairwise sphere separation distance in the N -sphere configuration being
tested, subject to the necessary geometric constraints. Since the constraints are nonconvex, there may
be multiple local minima. If the solution of the formulation determines that the global maximum is at
α ≥ 1, then there is enough space for N spheres; if the globally optimal α is strictly less than 1, it means
that the N configuration has overlapping spheres, hence the kissing number is N − 1. By solving this
decision problem repeatedly for different values of N , we are able to quickly pinpoint the maximum N
for which α > 1. The following formulation correctly models the problem:

max α (2.18)
∀i ≤ N ||xi||2 = 2R (2.19)

∀i < j ≤ N ||xi − xj ||2 ≥ 2Rα (2.20)
α ≥ 0 (2.21)

∀i ≤ N xi ∈ RD (2.22)

Constraints Eq. (2.19) ensure that the centers of the N spheres all have distance 2R from the center of
the central sphere (i.e., the N spheres kiss the central sphere). Constraints Eq. 2.20 make the N spheres
non-overlapping. This problem has been solved correctly up to D = 4 (and N = 24, which is KNP(4))
[186].

Chapter 3

The AMPL language

This chapter provides a brief tutorial to the AMPL language. A much better reference is the AMPL
book [115], the chapters of which can be downloaded from www.ampl.com free of charge. AMPL stands
for “A Mathematical Programming Language”. It was initially conceived by Robert Fourer, David Gay
and Brian Kernighan, although the current software and book are only authored by Fourer and Gay.

AMPL’s strong point is that can interface to many different solvers, for LP, MILP, NLP and MINLP.
Another endearing feature is that MP formulations written in AMPL are very close to the mathematical
syntax (much closer to it than, say, what the GAMS [58] language achieves). Its weak point is that its
algorithmic capabilities are quite limited.

AMPL is a commercial software: even with academic pricing, a yearly license runs into the hundreds of
dollars (but GAMS costs much more, and MATLAB [208] more than either, specially if you order a decent
set of add-ons). A subset of the AMPL language is implemented within the open-source GNU-licensed
GLPK [205] solver; but GLPK only offers two solvers (a good LP solver, and a somewhat primitive
MILP solver). Note that with both AMPL and GAMS the cost of the solvers is extra — and often you
need to purchase solvers from other distributors. Luckily, AMPL makes it possible for teachers to obtain
time-limited teaching licenses free of charge, which come with a lot of embedded solvers.

We will not cover installation here: we assume you obtained an AMPL distribution with a good set
of solvers (particularly CPLEX, IPOPT, BonMin and Couenne), and that paths are correctly set, so
that if you type ampl or cplex on the command line, you will invoke the correct executables.

3.1 The workflow

Although AMPL comes with a rather primitive GUI, we focus on a command-line driven workflow. You
can see the ampl executable as an interpreter: a program which inputs a text file containing instructions
and executes them one by one. Instruction files traditionally have the extension .run. So the basic calling
sequence (from Linux, MacOSX or Windows) is:

ampl < file.run

If you are on a Unix system (e.g. Linux and MacOSX, but to some extent this might also work with
Windows), you can exploit the operating system’s “pipe”-style filters: you instruct AMPL to provide its
output as formatted text, and pass the output to a second command which accepts that format:

ampl < file.run | command

49

www.ampl.com

50 CHAPTER 3. THE AMPL LANGUAGE

In this setting, command might perform tasks such as writing a graphical file with a visualization of the
output of your file.run program, or perform further algorithmics on the output of your program.

3.2 Input files

The simplest way to solve a MP formulation using AMPL involves three text files:

• a .run file, containing some imperative instructions (e.g. read/write data from/to the console or
files, perform loops and/or tests);

• a .mod file, containing some declarative instructions (e.g. declare and define index sets, parameters,
variables, objectives, constraints, formulations)

• a .dat file, containing the values to assign to the index sets and parameters.

Typically, all files share the same name (e.g. mymodel.run, mymodel.mod, mymodel.dat). The .run file
usually instructs AMPL to read the .mod and the the .dat file.

Dividing a formulation into two files (.mod and .dat) is meant to help separating symbolic entities
from numerical data. In a real world setting, one might need to solve large amounts of instances of the
same problem: in that case one would only need to update the .dat file, never the .mod file.

On the other hand, this division in three text files serves the purpose of making the organization of
information clearer to the user. AMPL does not care if you use one, two, three or more files (which might
be the case if solving your problem involves more than one formulation).

3.3 Basic syntax

AMPL embeds three sublanguages: one is imperative (used mostly in .run files), one is declarative (used
mostly in .mod files), and the third (the simplest) is only used within .dat files.

For all three sublanguages, comments are one line long and are introduced by the hash (#) character.
Every instruction is completed using a semicolon (;), with one exception: within the AMPL imperative
sublanguage, if the body of loops or tests is delimited by braces ({, }), there need not be a semicolon
after the closing brace. E.g.,

whole line comment
param i default 0; # rest of line is comment
let i := 4;

but

if (i == 4) then {
let i := i + 1;

} else {
let i := i - 1;

}

and

3.4. LP EXAMPLE 51

for {i in 1..5} {
let i := i + 1;

}

Note that imperative program variables are declared to be formulation parameters (keyword param).
Assignment of values to program variables requires the keyword let and the assignment operator :=,
while the equality test uses == (the operator = is reserved for use in the definition of equality constraints).
The notation 1..5 denotes the set {1, 2, 3, 4, 5}. For more about test/loop syntax, see the AMPL book
[115].

3.4 LP example

Let us model the following LP using AMPL:

min{c⊤x | Ax ≥ b ∧ x ≥ 0},

where c, A, b are parameters and x decision variables. AMPL will not accept matrix notation, so we really
have to write the formulation as follows:

min
∑
j∈N

cjxj

∀i ∈M
∑
j∈N

Aijxj ≥ bi,

which involves two index sets M (for the constraints) and N (for the variables), a cost vector c ∈ Rn, a
RHS vector b ∈ Rm and an m× n matrix A.

3.4.1 The .mod file

The syntax of a .mod file is declarative. It segments a MP formulation into five different entities: sets
(set), parameters (param), variables (var), objective (introduced by either minimize or maximize) and
constraints (introduced by subject to). Every entity is named. The name may be quantified over an
index set. For example if N is an index set, you can declare variables xi for i ∈ N as follows:

var x{i in N};

We write the .mod file as follows.

.mod file for an LP in form min cx : Ax >= b
parameters and sets
param m integer, >0, default 50; # number of constraints
param n integer, >0, default 10; # number of variables
set M := 1..m; # index set for constraints
set N := 1..n; # index set for variables
param c{N} default Uniform01(); # objfun coeff vector
param A{M,N} default Uniform(-1,1); # constr matrix
param b{M} default Uniform(1,2); # RHS vector
decision variables
var x{N} >= 0;
objective function
minimize myObj: sum{j in N} c[j]*x[j];
constraints

52 CHAPTER 3. THE AMPL LANGUAGE

subject to myConstr{i in M}: sum{j in N} A[i,j]*x[j] >= b[i];
solve the problem
option solver cplex; # choose the solver
solve; # solve it
display the output
display x, objective, solve_result;

Some remarks follow.

• Every entity declaration supports a list of modifiers separated by commas: the parameter symbol
m is required to be integer, positive, and, if uninitialized elsewhere, be assigned the value 50. The
decision variable symbol x, quantified over N, declares a variable vector each component of which is
constrained to be nonnegative.

• Modifiers such as integer, >0 and >=0 are applied to both parameters and variables: their meaning
in these different context is correspondingly different. When a parameter is constrained, it will force
AMPL to abort its execution whenever it is assigned (within the .run or .dat file) a value which
does not satisfy the constraints. When a variable is constrained, the constraint will be passed to the
solver. Constraining parameters is therefore a form of input data validation, whereas constraining
variables is an essential part of an MP formulation.

• The parameters c, A, b are quantified over index sets, and describe vectors and matrices. Notwith-
standing, their assigned default value is the output of the functions Uniform01 and Uniform, which
is a scalar. This means that every component of the vectors and matrix will be assigned the scalar
returned by the function, which is called on every component. In other words, c, A, b are random
vectors and a random matrix. Suppose we defined a parameter C quantified over N, to which we
would like to assign default values taken from c. In this case, the declaration should be written as
follows:

param C{j in N} default c[j];

Note that we explicitly mention the index j ranging over N in order to use it to index c (which is
also quantified over the same set N).

• In order to initialize the index sets M and N, we use two scalar integer parameters m and n, which
allow us to define M and N as sequence of consecutive integers from 1 to m (respectively, n). This is
often done when defining consecutive integer ranges. You can also initialize a set within a .mod file
by using normal set notation:

set M := {1,3,6};

or range notation:

set M := 1..m;

We remark that initialization of sets in .dat files follows a different syntax (see Sect. 3.4.2).

• Initializing a parameter or set with a value within a declaration instruction in a .mod can be done
with two constructs: the assignment operator := and the default keyword, e.g.:

param m default 50;
param n := 10;
set M := 1..50;
set N default {1,2,3,4};

3.4. LP EXAMPLE 53

Those sets/parameters initialized with an assignment operator := are initialized once and for all
during the AMPL execution. The initialization value assigned with the default keyword can be
changed (e.g. using let) during the AMPL execution.

• The label myObj is the name we chose for the objective function. The labelmyConstr is the name
we chose for the constraints. Since LPs only have one objective, we do not need to quantify myObj
over an index set. On the other hand, we need to quantify myConstr over the constraint index set
M.

• The choice of solver is made by specifying the option solver. The name which follows (in this
case, cplex) must correspond to a solver executable file by the same name available to AMPL for
calling (which requires adding the solver executable directory to the default path). The instruction
solve will flatten the formulation, pass it to the solver, retrieve the (flat) solution from the solver,
and re-organize the solution components in structured format.

• The display command is the simplest of AMPL’s output commands. See the AMPL book [115]
for more information.

• The variable solve_result is a system variable (i.e. it exists in AMPL’s namespace by default —
no need to declare it), in which solvers may store a string description of their return status.

3.4.2 The .dat file

An AMPL .dat file simply stores the input data in an AMPL-specific format. Users can define parameter
values and set contents in a .dat file.

Sets are initialized in .dat files by providing a list of elements separated by spaces, without brace
enclosure:

set N := 1 2 3;
set M := 1 2;

Parameters are initialized in various ways (see the AMPL book for more details). We shall only cover
the basics here.

• Initializing a vector is done as follows.

param c :=
1 0.4
2 0.1
3 1.23 ;

• Supposing you did not initialize the index set N in the .mod file, and you cannot be bother to list
its contents explicitly using the constructs above, you can do it implicitly in the definition of the
first parameter indexed on N.

param : N : c :=
1 0.4
2 0.1
3 1.23 ;

• If two (or more) vectors (such as c, C) are defined over the same index set N, you can list the index
set once only.

54 CHAPTER 3. THE AMPL LANGUAGE

param : c C :=
1 0.4 0.9
2 0.1 0.8
3 1.23 -0.7 ;

• You can also initialize N while defining both c and C.

param : N : c C :=
1 0.4 0.9
2 0.1 0.8
3 1.23 -0.7 ;

• Initializing a matrix (or a tensor) simply requires more index columns.

param A :=
1 1 1.1
1 2 0.0
1 3 0.3
2 1 0.0
2 2 -0.31
2 3 0.0;

• If your matrix is sparse, make sure you initialize it to zero in the .mod file (using the default 0
modifier in the declaration), and then simply initialize the nonzeros in the .dat file (otherwise your
.dat files will be enormous).

param A :=
1 1 1.1
1 3 0.3
2 2 -0.31;

• Note that the format (columns, line breaks) is arbitrary. By leveraging its knowledge of the index
sets of the parameters, necessarily declared in the .mod file, AMPL will not mind whether you write
the previous matrix definition as follows.

param A := 1 1 1.1 1 3 0.3 2 2 -0.31;

Since the previous syntax is clearer (to a human), it is preferable.

3.4.3 The .run file

A minimal .run file, sufficient for reading the model, the data, selecting the solver and solving the instance
is as follows.

.run file
read the model file
model file.mod;
read the data file
model file.dat;
choose the solver
option solver cplex;
solve the problem
solve;
display the solver status
display solve_result;

3.5. THE IMPERATIVE SUBLANGUAGE 55

3.5 The imperative sublanguage

Although some heuristics can easily be coded in AMPL, more complicated algorithms might be unwieldy,
as AMPL has (among other limitations) no construct for function calls. Mostly, the imperative sub-
language is very useful for formatting the output. You might for example instruct AMPL to write the
solution of a circle packing problem (Sect. 1.3.10) in Python, and then use the latter to display the
solution graphically, as in the following AMPL code snippet:

print "import matplotlib.pyplot as plt" > circlepacking_out.py;
for {i in N} {

printf "circle%d = plt.Circle((%g,%g),%g)\n", i, x[i], y[i], r >> circlepacking_out.py;
}
print "fig = plt.gcf()" >> circlepacking_out.py;
for {i in N} {

printf "fig.gca().add_artist(circle%d)\n", i >> circlepacking_out.py;
}
print "fig.savefig(’circlepacking_out.png’)" >> circlepacking_out.py;

56 CHAPTER 3. THE AMPL LANGUAGE

Part II

Computability and complexity

57

Chapter 4

Computability

In this chapter we treat the very basic question “can we even solve an optimization problem using a
computer?” In general, this question can be asked of any type of broad problem category, be it decision,
search or optimization. The field of logic that studies this question is called computability. The questions
are asked in a given computing model, which is usually the Turing machine (TM) model of computation
(though it need not be). We want the answers to be valid for every problem in the class of interest.
For example, every (finite) LP with rational input data can be solved using a TM that implements the
simplex method. Conversely, there can be no TM that is able to solve every MINLP.

4.1 A short summary

We first give a very short summary of concepts in computability theory.

4.1.1 Models of computation

The computer was first conceived by Alan Turing in 1936 [287]. Turing’s mathematical model of the
computer is called Turing machine. A TM consists of an infinite tape, divided into a countably infinite
number of cells, with a device (called head) that can read or write symbols out of a given alphabet A
on each cell of the tape. According to the state s ∈ S the TM is in, the head either reads, or writes, or
moves its position along the tape. The description of any TM includes a set of instructions which tell it
how to change its state. Turing showed that there exist TMs which can simulate the behaviour of any
other TM: such TMs are called Universal TMs

Turing’s work spawned further research, from the 1950s onwards, aimed at simplifying the description
of UTMs, involving scientists of the caliber of Shannon [270] and Minsky [223]. More recently, Rogozhin
[253] described UTMs with low values of (|S|, |A|), e.g. (24, 2), (10, 3), (7, 4), (5, 5), (4, 6), (3, 10), (2, 18).
It appears clear that there is a trade-off between number of states and number of symbols in the alphabet.

UTMs are not the only existing models of computation — several others exist, sometimes very different
from each other (see e.g. the Game of Life, a model for bacteria diffusion [42]). Such models are said to be
Turing-complete if they can simulate a UTM. “Simulating”, in this context, means using a different model
C of computation in order to mimick the behaviour of a UTM. To prove this, it suffices to show that
every instruction, state and symbol of the UTM can be simulated by C. If the UTM can also simulate
C, then C is said to be Turing-equivalent.

Church’s Thesis is the statement that every Turing-complete model of computation is also Turing-

59

60 CHAPTER 4. COMPUTABILITY

equivalent. So far, no Turing-complete model of computation was found to be more “powerful” than the
UTM.

4.1.2 Decidability

Functions N → N described by a TM are called computable. The term decidable applies to relations
instead of functions: a k-ary relation R on Dk is decidable if, given d1, . . . , dk ∈ D, there exists a TM
that decides whether the k-tuple d = (d1, . . . , dk) is in R. Since “being in R” can be encoded as a YES/NO
type of question, decidability applies to decision problems.

Sets V ⊆ N that are domains (or co-domains) of computable functions are called recursively enu-
merable. If V and N ∖ V are both recursively enumerable, then they are both also called recursive or
decidable.

Given a set V ⊆ N and an integer v ∈ N, one may ask whether v ∈ V or not. This is a fundamental
decision problem (in number theory — but a computer represents every data structure with numbers in
base 2, so this limitation is only formal). It turns out that V is recursively enumerable if and only if there
is a program that answers YES when v ∈ V , but may answer wrongly or even fail to terminate when
v ̸∈ V ; moreover, V is decidable if and only if there is a program that answers YES when v ∈ V and NO
when v ̸∈ V .

It should appear clear that recursively enumerable sets are of limited value as far as proving that
an answer to a problem is correct: if the algorithm answers YES, it may be a true positive or a false
negative, and there is no way to tell. Moreover, how is a user supposed to know whether a program fails
to terminate or is simply taking a long time? Accordingly, we hope to consider problems so that the
solution set is decidable. On the other hand, many interesting sets arising in optimization problems are
only recursively enumerable (or worse).

4.2 Solution representability

The solutions of LPs and MILP have rational components as long as the input data is rational. For
MINLP, the situation is not so clear: solution components might involve irrational numbers (both alge-
braic and transcendental, depending on the involved functions). We list four approaches that attempt to
deal with the issue of representing such solutions within a finite amount of storage.

4.2.1 The real RAM model

The computation model of Blum, Shub and Smale [47] (often referred to as real RAM model) essentially
eschews the problem of representation, as it defines the real equivalent of computational complexity
classes such as P, NP and their relationships. In the real RAM model, storing, reading or performing
arithmetic on real numbers has unit cost [47, p. 24]. This model of computation is mostly used for
theoretical results concerning algorithms in numerical analysis and scientific computing.

4.2.2 Approximation of the optimal objective function value

The approach taken by the GO community, specially those who develop sBB algorithms, consists in
finding a (rational, or rather floating point encoded) solution x∗ yielding an objective function value
f∗ = f(x∗) that is within a given ε > 0 of the true globally optimal function value f̃ at a true global

4.2. SOLUTION REPRESENTABILITY 61

optimum x̃:
|f∗ − f̃ | ≤ ε. (4.1)

Since the true optimal value f̃ is not known, in practice Eq. (4.1) is enforced by requiring that |f∗−f̄ | ≤ ε,
where f̄ is a guaranteed lower bound to the optimal objective function value, computed e.g. by solving
an LP relaxation of Eq. (2.2). One of the issues with this approach is that, depending on the instance
being solved, Eq. (4.1) might be satisfied even if ∥x∗ − x̃∥ is arbitrarily large.

4.2.3 Approximation of the optimal solution

The approach taken by Dorit Hochbaum [141] is more accurate, as it insists that the solution x∗ is within
a given ε > 0 tolerance of the true optimum x̃:

∥x∗ − x̃∥∞ ≤ ε. (4.2)

This means that x∗ is the same as x̃ inO(log 1
ε) decimal digits. Other than that, all arithmetical operations

on reals take O(1) time. Since one only needs to consider O(log 1
ε) decimal digits, this assumption places

this representation approach within the TM model of computation.

4.2.4 Representability of algebraic numbers

A more credible attempt at representing an algebraic number α has been made using of minimal polyno-
mials. The most common is the Thom encoding, a pair (pα, σ), where pα(x) is the minimal polynomial
of α (of degree d, say) and σ : {0, . . . , d} → {0,−1, 1} encodes the sign of the k-th derivative of pα at
α [33, Prop. 2.28]. Simpler representations are possible for specific tasks, e.g. σ might be replaced by a
rational number a which is closer to α than to any other real root of pα [35].

4.2.4.1 Solving polynomial systems of equations

Solving polynomial systems of equations exactly is sometimes possible by “diagonalizing” them using
Gröbner bases and then perform back-substitution, similar to Gaussian elimination.

Gröbner bases can be found by Buchberger’s algorithm [59]. It takes as input a rational multivariate
polynomial equation system:

∀i ≤ m pi(x) = 0. (4.3)

It then proceeds by diagonalizing Eq. (4.3) to a new polynomial system:

∀i ≤ m′ qi(x) = 0, (4.4)

such that the leading terms of pi’s and qi’s, w.r.t. some given monomial order, generate the same ideal. Let
F = {p1, . . . , pm}. Buchberger’s algorithm proceeds as follows:
1: Fix an ordering <F on the monomials of F
2: Let G← F
3: repeat
4: Let H ← G
5: for p, q ∈ G s.t. p ̸= q do
6: Let p̂, q̂ be the leading terms of p, q w.r.t. <F
7: Let a be the least common multiple (lcm) of p̂, q̂
8: Let s← a

p̂p−
a
q̂ q # This cancels the leading terms of p, q in s

9: Reduce s w.r.t. G using multivariate polynomial division
10: if s ̸≡ 0 then
11: Update G← G ∪ {s}

62 CHAPTER 4. COMPUTABILITY

12: end if
13: end for
14: until G = H

Buchberger’s algorithm monotonically increases the size of the ideal generated by the leading terms of G.
The algorithm terminates because, by Hilbert’s basis theorem, ascending chains of ideals must eventually
become stationary. The termination condition is verified even if the last considered polynomial is not
univariate.

Like Gaussian elimination, this diagonalization can be used for performing back-substitution as long
as the last considered equation q(x) only depends on a single variable. Unlike Gaussian elimination,
however, m′ generally exceeds m, and it does not yield a guarantee that qi will contain strictly fewer
variables than qi+1: the diagonal structure might contain blocks of polynomials depending on the same
set of variables. Even if the back-substitution procedure fails to provide a solution, the diagonal form
will still hold after a failure occurs, a condition which might be described as “back-substitute as far as
possible”.

Unfortunately, Buchberger’s algorithm has doubly exponential worst-case complexity in general (see
Ch. 5), though it behaves singly exponentially in some cases [28].

An interesting development of Gröbner’s bases is given by chordal networks [68]. They supply polyno-
mial systems that are cheaper to construct, provide the same back-substitution functionality for finding
a solution of a polynomial system of equations. Unfortunately, their size is larger than for Gröbner bases.

4.2.4.2 Optimization using Gröbner bases

There are at least two articles [129, 66] where Gröbner bases are used to diagonalize the first-order opti-
mality conditions, also known as Karush-Kuhn Tucker (KKT) system (see Thm. 6.2.7), of a Polynomial
Programming (PP) problem. In both articles, the last phase of the procedure performs back-substitution
on the diagonalized polynomial system using floating point numbers, thereby forsaking exactness; but
those floating point numbers could in principle be used as “closest rationals” in the representation men-
tioned above.

4.3 Computability in MP

As mentioned above, we can solve LPs (by means of the simplex method, see Sect. 7.1). We can solve
MILPs (by means of the BB algorithm). We cannot solve all cNLPs (and hence even the including classes
NLPs, cMINLPs and MINLPs) at least because we have issues with representing the solution exactly, as
detailed in Sect. 4.2.

We focus on MINLP. While we cannot solve them in full generality (see Sect. 4.3.2 below), the full
answer is rather more interesting: MINLP is a class of problems containing two bordering theories1, one
of which is decidable, while the other is not.

4.3.1 Polynomial feasibility in continuous variables

MINLP contains (as a strict subset) all Polynomial Feasibility Problems (PFP) with variables ranging
over the reals:

∀i ≤ m pi(x) R 0, (4.5)

1By theory we mean a class of formal sentences provable from a given set of axioms; also see Footnote 3 on p. 64.

4.3. COMPUTABILITY IN MP 63

where the pi’s are rational polynomials and the relation symbol R is one of the relations in the set {≥,=}.
We question the existence of a general method for deciding whether there exists a solution to Eq. (4.5).

4.3.1 Remark (Polynomial equations and inequalities)
Note that Eq. (4.5) can in fact be expressed with a single relation R, either ≥ or =, since every equation
can be expressed by a pair of inequalities with opposite sign, and every inequality pi(x) ≥ 0 can be
rewritten as pi(x) + s2i = 0, where si is an additional continuous variable.

4.3.1.1 Quantifier elimination

Tarski proved in [283] that systems like Eq. (4.5) are decidable. Most algorithms for deciding Eq. (4.5)
are based on a technique known as quantifier elimination. This is an algorithm which turns a quantified
logical sentence with variable terms into one without quantifiers or free variables. Forthwith, deciding
truth or falsity can be achieved by elementary manipulations leading to either a tautology 1 = 1 or a
contradiction 0 = 1. Note that Tarski’s algorithm can be applied to a larger class of polynomial systems
than Eq. (4.5): the relation symbol R can actually range over {≥, >,=, ̸=}.

Tarski’s proof extends for 57 pages of a RAND Corporation technical report [283]. To showcase an
easier quantifier elimination example, Lyndon discusses dense linear orders in his book [201, p. 38]. This
theory includes logical formulæ involving ∀,∃,¬,∧,∨, the variable symbols x1, x2, . . ., the terms True,
False, the real numbers as constants, and the relation symbols <,=. Sentences of this theory can be
inductively reduced to a disjunctive normal form (DNF) such that each clause is ∃xi s.t. qi(x), where qi
is an unquantified conjunction of sentences

∧
qij , where, in turn, each qij has one of the forms s = t or

s < t with s, t are either variables or real constants. Each qij is then reduced to either True or False: if
s, t are both constants, the conditions s < t or s = t are immediately verified and can be replaced with
True or False. If both s and t are xi, then s = t ⇒ xi = xi is True, and s < t ⇒ xi < xi is False: so
s, t can be assumed to be different. If s is the variable xi, a formula xi = t (independently of whether t
is a constant or another variable) can be interpreted to mean “replace xi with t”, so the variable xi can
be eliminated. The remaining case is that qi is a conjunction of formulae of the form s < xi and xi < t
(with s, t either other variables or constants), which amounts to writing s < t — again, this eliminates
xi. Since every occurrence of xi can be eliminated from qi, ∃xiqi can be more simply re-written as qi:
hence the name quantifier elimination..

4.3.1.2 Cylindrical decomposition

Well after Tarski’s 1948 quantifier elimination algorithm, Collins discovered [71] that the decision proce-
dure of systems such as Eq. (4.5) is in some sense a nontrivial extension of the dense linear order case.
The solution set of Eq. (4.5) consists of finitely many connected components, which can be recursively
built out of cylinders with bases shaped as points or intervals the extremities of which are either points, or
±∞, or algebraic curves depending on variables involved in previous recursion levels. Although Collins’
algorithm is doubly exponential in the number of variables, a singly exponential algorithm was described
in [33].

The cylindrical decomposition result of [71] consists of a topological and a geometric part. The
topological part states that the feasible regions of Eq. (4.5) (where R ranges in {>,≥,=, ̸=}), also called
semi-algebraic sets, consist of a finite number of connected components. The geometrical part gives the
recursive description mentioned above in terms of cylinders. The topological part was known previous to
Collins’ contribution, see e.g. [221].

64 CHAPTER 4. COMPUTABILITY

4.3.2 Polynomial feasibility in integer variables

In this section, we shall consider Eq. (4.5) subject to integrality constraints on the vector x of decision
variables. In fact, it suffices to consider equations only (see Rem. 4.3.1):

∀i ≤ m pi(x) = 0
∀j ≤ n xj ∈ Z.

}
(4.6)

Given a system Eq. (4.6) of polynomial equations in integers, can we decide whether it has a solution?

4.3.2.1 Undecidability versus incompleteness

The question of deciding whether a polynomial system has integer solutions is related but different from
completeness2. A consistent formal system3 S is complete when, for any sentence p of the system, either
p is provable within S, or ¬p is. A system S is incomplete when there are sentences p such that neither
p nor ¬p are provable within S. Gödel’s (first) incompleteness theorem states that any S capable of
representing N and its arithmetic is either inconsistent or incomplete. This leaves open the question of
decidability, i.e. of whether there exists an algorithm that, given any p in S, decides whether p is provable
within S or not.

4.3.2 Remark (Decidability does not imply completeness)
There is a common misconception that decidability should imply completeness. The (faulty) argument
goes as follows. If a formal system S is decidable, then for any given p the system S can be used to
decide whether p is provable in S (e.g. by exhibiting a proof of p within S). So, in case p is provable,
then ¬p cannot be, and vice versa. Hence, either p or ¬p must be provable within S, which implies that
S is complete.

The error resides in thinking that the “vice versa” above exhausts all possibilities. For two sentences
p and ¬p in S, there are four assignments of “provability within S” to the two sentences: (i) both are
provable, (ii) the first is provable and the second is not, (iii) the first is not and the second is, and
(iv) neither is provable. The first assignment leads to the inconsistency of S: it should be discarded
since we assumed that S is consistent. The second and third assignments are part of the above (faulty)
argument. The error stems from forgetting the fourth assignment: i.e., that both p and ¬p may fail to be
provable within S. This condition is described by saying that p is independent of S. A decision algorithm
for provability in S might answer NO when given either p or ¬p as input. So a formal system can be
decidable but incomplete (e.g., the Wikipedia page https://en.wikipedia.org/wiki/Decidability_
(logic)#Relationship_with_completeness states that the theory of algebraically closed fields bears
this property).

As it turns out, if S encodes arithmetic in N and is consistent, it is not only incomplete (by Gödel’s
first incompleteness theorem) but also undecidable. This was settled by Turing [287] using a diagonal-
ization argument involving another undecidable decision problem called the halting problem — is there
an algorithm for deciding whether a given TM terminates or not?

4.3.2.2 Hilbert’s 10th problem

We now come back to our MINLP feasibility problem in Eq. (4.6). Each equation in the system is known
as a Diophantine equation (DE). Let S be a formal system encoding arithmetic in N. Systems of DEs are

2We mean “completeness” as in Gödel’s incompleteness theorem, rather than Gödel’s completeness theorem — these two
notions, though bearing related names, are distinct.

3A formal system S is a finite language L, together with a grammar that defines a set of well-formed formulæ (called
sentences) over L, a chosen set of sentences called axioms, and a set of inference rules (e.g. modus ponens) which define
relations over sentences. Given a sentence p, a proof for p in S is a sequence of iterative applications of inference rules to
sentences that are either axioms or for which a proof was already provided.

https://en.wikipedia.org/wiki/Decidability_(logic)#Relationship_with_completeness
https://en.wikipedia.org/wiki/Decidability_(logic)#Relationship_with_completeness

4.3. COMPUTABILITY IN MP 65

certainly well-formed formulæ within S. Although the set of all well-formed formulæ in S is undecidable,
we still do not know whether the limited subset described by the form of Eq. (4.6) is “general enough” to
be undecidable. The common property of all feasibility systems is that the integer variables x1, . . . , xn are
implicitly quantified by existential quantifiers “∃”, but no universal quantifier “∀”. Moreover, Eq. (4.6)
only consists of sentences involving polynomials, whereas exponentiation is also part of arithmetic in
integers. We can now frame the question as follows: is the set of all existentially quantified polynomial
sentences of S decidable or not? This can be seen as a modern restatement of Hilbert’s 10th problem.

From the proof of Gödel’s first incompleteness theorem [122], it is clear that Gödel only used a finite
number of bounded universal quantifiers. Davis, in [94], shows that a single bounded universal quantifier
is sufficient to encode undecidable problems:

∃y∀z ≤ y∃x1, . . . , xn p(y, z, x) = 0, (4.7)

where p is an integral polynomial, and x1, . . . , xn, y, z are all in N. In [95], it is shown that there exist
undecidable problems that are almost in the desired form:

∃x1, . . . , xn ∈ N η(x) = 0, (4.8)

but where η is an exponential DE (EDE), i.e. a function that can be written using arithmetical operations
and exponentiation. In a landmark result, Matiyasevich proved in 1970 [209] that the exponential relation-
ship a = bc can be expressed by means of a DE (i.e. without exponentiation), thereby settling Hilbert’s
10th problem in the negative. This result is now known as the Matiyasevich-Davis-Putnam-Robinson
(MDPR) theorem. In the setting of this paper, the MDPR theorem means that

∃x1, . . . , xn ∈ N p(x) = 0, (4.9)

where p is a polynomial, is generally undecidable. This makes Eq. (4.6) undecidable, which, by inclusion,
makes MINLP undecidable, too.

4.3.3 Remark (DE systems)
A system of DEs such as Eq. (4.6) is equivalent to a single DE such as Eq. (4.9): it suffices to write

p(x) =
∑
i≤m

(pi(x))
2.

4.3.4 Remark (Undecidability in Z)
The undecidability results relate to N rather than Z, but this is wlog: we can transform any DE with
solutions in Z to one with solutions in N by writing xi = y+i −y

−
i (where y+i , y

−
i ∈ N), and, conversely, since

every non-negative integer is the sum of four squares, the opposite transformation as xi = a2i +b
2
i +c

2
i +d

2
i

for the i-th component xi occurring in the arguments of p(x).

4.3.5 Remark (Polynomials over Q)
The result also holds for polynomials over Q: it suffices to write rational coefficients as fractions, find the
lcm L of the denominators, and consider Lp(x) instead of p(x).

It might seem strange to stare at a single polynomial equation such as Eq. (4.9), and claim that it is
undecidable: it sounds like saying that a single instance of a problem is undecidable. In fact, the variable
vector of p(x) is partitioned in two subsequences α = (α1, . . . , αℓ) and y = (y1, . . . , yN), so that α encodes
the parameter of an “instance”, and y the solution. Since:

(a) every recursively enumerable set W can be encoded by a single polynomial equation pW (α, y) = 0
such that any string w is encoded in α, and w ∈W iff p(α, y) = 0 has a solution in y;

(b) there exist recursively enumerable sets that are undecidable,

the MDRP result follows.

66 CHAPTER 4. COMPUTABILITY

4.3.3 Universality

As remarked in [153], recursively enumerable sets can be enumerated in some order W1,W2, . . . such that
the relation w ∈Wv for some v is also recursively enumerable. This implies the existence of a DE

U(w, v, y) = 0 (4.10)

for some parameters w and v such that U(α, v, y) = 0 has an integer solution y iff w ∈ Wv. Such
polynomials U are known as universal Diophantine equations (UDE). This is equivalent to a UTM, which
takes as input an encoding of any TM Tv and any instance w, and simulates Tv(w). In this setting, Tv
is a TM that is supposed to determine whether w ∈Wv.

Finding a UDE presents potential applications, as it would allow the encoding of any computer
program into a single polynomial. Studying its properties might help shed light on the program itself.
Jones [153] conducted a thorough study of two complexity measures for UDEs: their degrees δ and the
number ν of variables occuring in them.

The minimum known value for δ is 4. It suffices to take any UDE, and repeatedly replace any degree
2 term with a new variable until we obtain a system of DEs ∀i ≤ m (ti(x) = 0) where each ti(x) consists
of monomials of degrees 1 and 2. The equation∑

i≤m

(ti(x))
2 = 0 (4.11)

(see Rem. (4.3.3)) is therefore a UDE with degree δ = 4. In passing, we also conclude that, in general,
systems of (many) quadratic DEs (QDE) are also undecidable. Jones reports the existence of a UDE
with (δ = 4, ν = 58). Decreasing ν unfortunately yields large increases on δ: Jones [153] reports a new
(δ, ν) pair due to Matiyasevich valued at (1.638× 1045, 9).

4.3.6 Remark (Proofs in N involve at most 100 operations)
By way of an application, Jones exploits the (4, 58) UDE, suitably modified to minimize the number
B basic operations (additions and multiplications) required to evaluate the polynomial, and obtains
B = 100. This implies that for any statement p that can be proved within the formal system S of
arithmetic in N, p has at least a proof that only involves 100 integer additions and multiplications.

Coming back to MINLP, since UDEs are subsets of MINLP, MINLP inherits their properties, which
means that there exist universal MINLP formulations, though they may be hard to exploit in practice.
The dynamics of a universal register machine (another computation model which is more similar to
modern computers than TMs are) have been modelled in [187] using an infinite MINLP. This MINLP
becomes finite, and hence practically solvable, on bounded executions, as boundedness ensures termination
of the underlying TM.

4.3.4 What is the cause of MINLP undecidability?

Considering Sect. 4.3.1 and Sect. 4.3.2, we can ascribe the undecidability of MINLP to the presence of
integer variables. This is apparently in contrast with the fact that any integer can be expressed within a
theory encoding polynomials and continuous variables: given any a ∈ Z, the equation

x− a = 0

is polynomial and encodes the fact that the continuous variable x should take the integer value a. Taking
this further, we can write x ∈ {a1, . . . , ak} for any integer values a1, . . . , ak using the polynomial equation

(x− a1) · · · (x− ak) = 0.

4.3. COMPUTABILITY IN MP 67

A different approach uses the length ℓ of the finite sum y + y + · · ·+ y (say it has ℓ occurrences of y) to
express the integer ℓ using the polyomial equation xy =

∑
ℓ y. Aside from the zero solution, any other

solution with y > 0 yields x = ℓ.

However, every finite set F is decidable, at least if its elements are all given explicitly: any total
order on F provides an enumeration algorithm. Obviously, the complement F̄ of F w.r.t. N is recursively
enumerable: just list N and verify if the current element is in F or not.

To achieve undecidability, we have to look at infinite subsets of N. Is it possible to encode any
such set as solutions over R of some (multivariate) polynomial equation? The answer is no: supposing
there exists a real polynomial system with a countably infinite set of (integer) solutions would yield an
infinite number of connected components in the corresponding variety, contrary to Milnor’s topological
result [221]. Another way of proving this is that, if it were possible to encode N as solutions of a real
polynomial system in any (even nonstandard) way, then the theory of polynomials over R would be
undecidable, contrary to Tarski’s decision algorithm. It is common knowledge that, in order to encode
all integers in a system of nonlinear equations with variables ranging over Rn, one needs at least one
periodic function, e.g. the set of solutions of sin(πx) = 0 is Z. If the polynomials range over Cn, the
exponential function (which is periodic over the complex numbers) is also a candidate.

These arguments suggest that a cause of undecidability is the issue of boundedness versus unbound-
edness of the decision variables. This is well known in polynomial optimization theory. With unbounded
variables, even the continuous relaxation of a MILP may need to be reformulated using nonlinear functions
for practical usefulness [138].

4.3.5 Undecidability in MP

Although the theories of polynomial equations over the reals and the natural numbers belongs de re to
MINLP, since PFP is clearly a subclass of MINLP, the results above are traditionally a part of logic and
axiomatic set theory. Here follow two results from the MP community.

The earliest paper investigating MP and (un)decidability is possibly Jeroslow’s 1971 paper [150] about
the undecidability of Integer Quadratic Programming. Consider the formulation

min c⊤x
∀i ≤ m x⊤Qix+ a⊤i x ≤ bi
∀j ≤ n xj ∈ Z,

 (4.12)

where c ∈ Qn, Qi are rational n × n matrices for each i ≤ m, A = (ai | i ≤ m) is a rational m × n
matrix, and b ∈ Qm. Witzgall’s algorithm [306] solves Eq. (4.12) when each quadratic form x⊤Qix+a⊤i x
is parabolic, i.e. each Qi is diagonal with non-negative diagonal entries (for i ≤ m).

In contrast, Jeroslow observed that this is a limiting case, since if the quadratic forms are diagonal but
are allowed to have some negative entries, then they can encode an undecidable set, via the undecidability
theory of DEs. The proof is as follows: given an undecidable DE p(x) = 0, we consider the following
subclass of Eq. (4.12):

min xn+1

(1− xn+1)p(x) = 0
xn+1 ≥ 0

∀j ≤ n xj ∈ Z.

 (4.13)

Obviously, the minimum of Eq. (4.13) is 0 iff p(x) = 0 has a solution, and 1 otherwise. Now we follow
the argument given above Eq. (4.11), and iteratively linearize products occurring in the k monomials of
p(x) until p can be reformulated to a linear form y1 + · · ·+ yk, subject to a set of defining constraints in
the form yh = τh(x, y), where each τh only involves linear occurrences of variables, or their squares, or
bilinear products of two variables. This is already undecidable, since finding the optimum of Eq. (4.13)
would solve the undecidable DE p(x) = 0, but Jeroslow notes that one can write each bilinear product

68 CHAPTER 4. COMPUTABILITY

of decision variables uv (where u, v are decision variable symbols occurring in either x or y), by means of
an additional variable w, as w = u + v while replacing uv by 1

2 (w
2 − u2 − v2). This yields the required

form.

Jeroslow also notes that whenever the integer variables are bounded, the problem becomes decidable
(since there is only a finite number of possible solutions of p(x) = 0).

Another paper about optimization and undecidability is [314], which focuses on undecidable problems
in MINLP and GO as detailed here below.

1. PP in integers is undecidable. Consider:

min q(x)
∀j ≤ n xj ∈ Z,

}
(4.14)

where q is a polynomial. We define q(x) = (p(x))2 so that minx q(x) = 0 iff p(x) = 0, since q
is a square and its minimum value must be ≥ 0. If we could compute the minimum of q(x), we
could decide on the solvability of p(x) = 0 according to whether minx q(x) = 0 or > 0. But this is
impossible since p(x) = 0 is undecidable.

2. Solving system of nonlinear equations is undecidable. Consider:

∀i ≤ m gi(x) = 0, (4.15)

where gi : Rn → R are nonlinear functions: is this problem decidable? The paper [314] remarks
that if p(x) = 0 is an undecidable DE, then

(p(x))2 +
∑
j≤n

(sin(πxj))
2 = 0, (4.16)

where x ranges in Rn, is precisely a restatement of the DE, and so it is undecidable. Note that
Eq. (4.16) is obviously a subclass of Eq. (4.15).

3. Unconstrained NLP is undecidable. Consider:

min
x
q(x), (4.17)

for some nonlinear function q(x). Let p(x) = 0 be an undecidable DE. Let q(x) = (p(x))2 +∑
j≤n(sin(πxj))

2, and suppose q∗ = minx q(x) is computable. Then if q∗ = 0 we have p(x) = 0
and xj ∈ Z for all j ≤ n, otherwise we do not, which is equivalent to the decidability of p(x) = 0,
against assumption.

4. Box-constrained NLP is undecidable. Consider

min
xL≤x≤xU

q(x), (4.18)

for some nonlinear function q(x) and some variable bound vectors xL, xU . Let p(y) = 0 be an
undecidable DE. Let

q(x) = (p(tanx1, . . . , tanxn))
2 +

∑
j≤n

(sin(π tanxj))
2,

then we can enforce −π2 ≤ xj ≤ π
2 for all j ≤ n, i.e. xL = −π2 and xU = π

2 without changing the
values of q(x). The argument runs as above: if we could compute the minimum q∗ of q(x) over
xL ≤ x ≤ xU , we could establish whether p(y) = 0 has a solution or not, which is impossible.

Chapter 5

Complexity

In this chapter, we look at the computational complexity of some MINLP problems. We shall mostly
focus on nonconvex NLPs, since the presence of integer variables, even bounded to {0, 1}, makes it very
easy to prove MINLP hardness, as shown in Sect. 5.2.

5.1 Some introductory remarks

Many variants of TMs have been proposed in the first years of research on theoretical computer science:
larger alphabets, half-infinite or multiple tapes to name a few. For most of these variants, simulation
proofs were quickly devised to show that none of them was essentially more powerful than the “basic”
TM. Driven by the need for faster computation, the issue of computational complexity became more
pressing: given an algorithm and some input data, how many steps1 would a TM need to perform before
termination? Given that the same algorithm is routinely run on different inputs, the paradigm of worst
case complexity was brought to attention. Infinite sets of input data of the same type and increasing size,
together with a specification of the goal the algorithm is supposed to achieve, were grouped in classes
named problems; conversely, each member of a given problem is an instance (also see Sect. 2.1.3). We
recall that a decision problem consists in answering a YES/NO question.

Given any problem P , if there exists an algorithm taking a number of steps bounded by a polynomial
function of the instance size n in the worst case, we denote its complexity by O(nd), where d is the degree
of the polynomial, and call the algorithm polynomial-time (or simply polytime). If we are only able to
establish an exponential bound, we denote it by O(2n), and call the algorithm exponential-time.

5.1.1 Problem classes

5.1.1.1 The class P

The focus of computational complexity rapidly shifted from algorithms to problems. Given a decision
problem P , the main issue of computational complexity is: what is the worst-case complexity of the best
algorithm for solving P? Edmonds [104] and Cobham [69] remarked around 1965 that problems having
a polytime complexity are invariant w.r.t. changes in the TM definitions concerning alphabet size (as
long as it contains at least 3 characters), number of tapes, and more. This is the reason why today we
partition decision problems into two broad categories called “tractable” and “intractable”. The tractable
problems are those having polytime complexity. The class of such problems is called P.

1The issue of whether the TM would actually stop or not was discussed in Ch. 4.

69

70 CHAPTER 5. COMPLEXITY

5.1.1.2 The class NP

For those decision problems for which no-one was able to find a polytime algorithm, it was remarked
that a somewhat “magic” TM, one that is able to pursue every test branch concurrently (this is called
nondeterministic TM), gives another useful partition on the class of all decision problems. Those for
which there exists a nondeterministic TM that runs in polytime are all grouped in a class called NP.

5.1.1 Remark (NP and certificates)
An equivalent definition of NP, which is often used, is the following: NP is the class of all problems for
which YES instances come with a polytime verifiable certificate, i.e. a proof that the instance is indeed
YES, which can be checked in polytime.

To see this, we first define NP as the class of all problems which can be solved by a nondeterministic
TM in polytime. We run the solution algorithm nondeterministically (i.e. by following all test branches
concurrently) on a given instance. At termination we look at the trace of the algorithm, i.e. the sequence of
instructions followed by the algorithm: we “unfold” loops, and list every occurrence of repeated steps. This
will yield a set of step sequences each pair of which shares an initial subsequence, i.e. a tree where branches
correspond to tests. Each tree leaf identifies the end of the sequence it corresponds to. If the algorithm
terminates with a YES, it is because one of the sequences ends with a solution of the instance. We
identify this sequence with the certificate: it has polynomial length since the nondeterministic algorithm
runs in polytime; and by following its steps we can convince ourselves that the answer is indeed YES, as
we verify each computation along the terminating YES sequence. We note that NO answers generally
occur because every branch was explored, and not necessarily because a particular sequence has some
specific property (but see Ex. 5.1.2), which makes this argument non-symmetric w.r.t. YES and NO.

Conversely, we now define NP as the class of problems for which YES instances have a polytime veri-
fiable certificate. We assume that the given certificate is a binary string with length bounded by a (given)
polynomial in function of the instance size. We devise a brute-force algorithm which explores the set of all
such strings by branching (on zeros and ones) at each component. Since the TM is nondeterministic, all
branches will be followed concurrently, and since we only need to explore polynomially bounded strings,
it will terminate in polytime. The certificate will be found if it exists (i.e. if the instance is YES).

Consider the clique problem: given a graph G and an integer k, does G possess a clique of size at
least k? If the instance is YES, then it has a clique of size at least k, and this clique can be supplied
as certificate to a verification algorithm which is able to establish in polytime whether the certificate is
valid. Therefore clique is in NP.

While it is easy to show that P ⊆ NP, no-one was ever able to establish whether P is different or
equal to NP. This is the famous P vs. NP question.

5.1.2 Exercise
Prove that P ⊆ NP.

5.1.2 Reductions

The class NP is very useful because, in absence of a complement of P allowing us to tell problems apart
into “easy” and “hard”, it provides a good proxy.

Given two problems P and Q in NP, suppose we know a polytime algorithm A to solve P but we know
of no such algorithm for Q. If we can identify a polytime algorithm R that transforms a YES instance
of Q into a YES instance of P and, conversely, a NO instance of Q into a NO instance of P , then we
can compose R and A to obtain a polytime algorithm for Q. An algorithm R mapping instances Q→ P

5.1. SOME INTRODUCTORY REMARKS 71

while keeping their membership in YES and NO classes invariant is called a polynomial reduction2 from
Q to P .

5.1.2.1 The hardest problem in the class

This gives an interesting way to define the “hardest problem in NP”. Let P be a problem in NP such
that any problem in NP polynomially reduces to P . Pick any Q ∈ NP: can Q be harder to solve than
P? Since there is a polynomial reduction R : Q → P , if we know how to solve P then we know how to
solve Q, so there is no real additional difficulty in solving Q other than knowing how to solve P . In this
sense, P is hardest in the class NP. The set of such problems are said to be NP-complete. Since this
notion of hardness only depends on polynomial reductions rather than membership in NP, we also define
as NP-hard those problems which are as hard as any problem in NP without necessarily being members
of NP. Thus, NP-complete problems are the subset of NP-hard problems which also belong to NP.

In a landmark result, S. Cook proved in [74] that the class of NP-complete problems is non-empty,
since it contains the satisfiability problem (sat). The sat problem involves a decision about the truth or
falsity of the sentences defined over variable symbols, the ¬ unary operator, the ∧ and ∨ binary operators,
and the constants True and False (represented by 1 and 0). Traditionally, in sat notation, one writes x̄
instead of ¬x. An instance (i.e. a sentence) is YES if there is an assignment of 1 and 0 to the variables for
which the sentence is True, and NO otherwise. The evaluation uses the common meaning of the boolean
operators ¬,∧,∨.

Cook’s result is based on the idea that sat can be used as a declarative language to model the
dynamics of any polytime TM. The modelling exploits the fact that TMs (tapes, instructions, states) can
be described by 0-1 vectors each component of which is modelled as a sat variable. Since the definition
of NP involves a polytime-checkable certificate, sat can be used to model the (deterministic) polytime
TM used to verify the certificate. The sat instance has finite length because we know that the number
of steps of the TM is bounded by a polynomial in the input size.

5.1.3 Remark (Cook’s Theorem)
In order to prove that sat is NP-complete, we must prove that it is in NP and that is NP-hard.

The hard part is the reduction of any problem P in NP to sat. We use the definition of NP: given a
problem in this class, there exists a deterministic polytime TM TP which certifies the YES instances of
the problem. Cook showed that the dynamics of TP can be modelled by a polynomially sized sat that
yields YES if the P instance is YES, and NO otherwise. Since this is a book about MP, we reduce to a
MILP instead: so, instead of proving that sat is NP-complete, we shall prove that MILP is NP-hard.

A deterministic TM M is described by a tuple (Q,Σ, s, F, δ) where Q is the set of states of the machine,
Σ is the alphabet (characters to be written on the tape), s ∈ Q is the initial state, F ⊆ Q is the set of
termination states, and δ is the transition function Q∖F ×Σ 7→ Q×Σ×{−1, 1}, where {−1, 1} signals
the left or right movement of the head on the tape. Let n be the size of the input π. We know that M
terminates in polytime nκ for some constant integer κ. So we only need tape cells indexed by i where
−nκ ≤ i ≤ nκ, and steps indexed by k where 0 ≤ k ≤ p(n). We index alphabet characters by j ∈ Σ. The
dynamics of the TM M can be described by the following statements [116].

1. Initialization:

(a) the tape has the initial string (NO, π) at step k = 0;

(b) M is in the initial state s at step k = 0;

2Technically, this is known as a Karp reduction. A Cook reduction occurs from Q to P if Q can be solved by a polynomial
number of standard operations and calls to an oracle that solves P . A Karp reduction is like a Cook reduction allowing
for a single oracle call. Karp reductions allow for a distinction between hard problems where polynomial certificates are
available for YES instances and for NO ones — in other words, it allows for the definition of the class co-NP.

72 CHAPTER 5. COMPLEXITY

(c) the initial position of the read/write head at k = 0 is on cell i = 0;

2. Execution:

(a) at each step k each cell i contains exactly one symbol j;
(b) at each step k the TM M is in exactly one state ℓ;
(c) at each step k the tape head of M is at exactly one cell i;
(d) if cell i changes symbol between step k and k + 1, the head must be on cell i at step k;
(e) each step k, cell i and symbol j lead to possible head positions, machine states and symbols

as prescribed by the transition function δ;

3. Termination:

(a) M reaches a termination state in F at some step k ≤ nκ, such that cell 1 contains YES if π is
a YES instance of P , and NO otherwise.

Next, we translate the above description into a set of MILP constraints, with one twist: the termination
constraint will require YES to be written at cell 1 at termination. Thus, if π is a YES instance of P the
MILP will be feasible, and, conversely, if π is a NO instance of P the MILP will be infeasible.

As parameters of this MILP we have the initial tape string π (a vector indexed by −nκ ≤ i ≤ nκ).
We introduce the following decision variables:

• ∀ cell i, symbol j, step k tijk = 1 iff tape cell i contains symbol j at step k;

• ∀ cell i, step k hik = 1 iff head is at tape cell i at step k;

• ∀ state ℓ, step k qℓk = 1 iff M is in state ℓ at step k.

Finally, we express the above statements by means of constraints in function of the variables t, h, q:

1. Initialization:

(a) t1,NO,0 = 1 ∧ ∀i > 1 (ti,πi,0 = 1);
(b) qs,0 = 1;
(c) h0,0 = 1.

2. Execution:

(a) ∀i, k
∑
j tijk = 1;

(b) ∀k
∑
ℓ qℓk = 1;

(c) ∀k
∑
i hik = 1;

(d) ∀i, j ̸= j′, k < nκ (tijk ti,j′,k+1 ≤ hik);
(e) ∀i, ℓ, ℓ′, j, j′, k, d : (ℓ′, j′, d) = δ(ℓ, j) hik qℓk tijk = hi+d,k+1 qℓ′,k+1 ti,j′,k+1.

3. Termination:

(a) t1,YES,nκ = 1;
(b)

∑
f∈F,k

qfk = 1.

The number of variables and constraints is bounded by a polynomial in the input size. We observe that
some constraints involve products of binary variables, but these can all be reformulated exactly to linear,
by means of a polynomial quantity of additional variables and constraints (see Rem. 2.2.8).

5.1.4 Exercise
Prove that feasibility-only MILPs are in NP.

5.1. SOME INTRODUCTORY REMARKS 73

5.1.2.2 The reduction digraph

After Cook’s result, sat became known as the “primitive problem” in the theory of NP-hardness. While
the first proof of NP-hardness was difficult to devise (since it necessarily has to encode every TM,
following the definition), subsequent proofs are of an altogether different nature, as they can rely on the
mechanism of reduction.

Let P be an NP-hard problem. We want to establish the NP-hardness of Q. Can Q be any easier
than P? Suppose we find a polynomial reduction R : P → Q: if Q could be solved by an algorithm A that
is asymptotically faster than that of P , then we could compose R with A to derive a better algorithm
for P , which is impossible since P was defined to be hardest for NP. In [156], R. Karp used this idea to
prove that many common problems are NP-complete. Since then, when discussing a new problem, an
effort is made to establish either membership in P or NP-hardness.

Note that polytime reductions define an asymmetric relation on the class NP, i.e. two problems P,Q
in NP are related if there is a reduction R : P → Q. This turns NP in an (infinite) digraph, called the
reduction digraph, where the problems are represented by nodes, and reductions by arcs. This digraph is
strongly connected by Cook’s result, which proves exactly that there is a reduction from any problem in
NP to sat. This makes the reduction digraph strongly connected.

5.1.2.3 Decision vs. optimization

As mentioned above, a problem P is NP-complete if it is NP-hard and belongs to NP. Many theoretical
results in computational complexity concern decision problems, but in practice we also need to solve
function evaluation and optimization problems. In the Wikipedia page about “Decision problem” (en.
wikipedia.org/wiki/Decision_problem), we read:

There are standard techniques for transforming function and optimization problems into de-
cision problems, and vice versa, that do not significantly change the computational difficulty
of these problems.

The “decision version” of the MINLP in Eq. (2.2) adds a threshold value ϕ to the input and asks
whether the system

f(x) ≤ ϕ
g(x) ∈ [gL, gU]
x ∈ [xL, xU]

∀j ∈ Z xj ∈ Z

 (5.1)

is feasible. The class of optimization problems that can be reducible to their decision version Eq. (5.1) is
called NPO (the “O” stands for “optimization”). It has the following properties: (i) the feasibility of any
solution can be established in polytime; (ii) every feasible solution has polynomially bounded size; (iii)
the objective function and constraints can be evaluated in polytime at any fasible solution.

5.1.2.4 When the input is numeric

For problems involving arrays of rational numbers in the input data, such as vectors or matrices, more
notions are used to distinguish complexity in function of the numerical value of the input versus the
number of bits of memory required to store it.

An algorithm is pseudopolynomial if it is polynomial in the value of the numbers in the input, but
not in their storage size. E.g., testing whether a number n is prime by trying to divide it by 2, . . . , ⌊

√
n⌋

takes
√
n divisions. In the classic TM computational model, the number of divisions is polynomial in the

value of the input n, but exponential in the size of the input ⌈log2(n)⌉, since
√
n = 2

1
2 log2(n).

en.wikipedia.org/wiki/Decision_problem
en.wikipedia.org/wiki/Decision_problem

74 CHAPTER 5. COMPLEXITY

5.1.5 Remark (Pseudopolynomial and unary encoding)
An equivalent definition of a pseudopolynomial algorithm is that it is polytime in the unary encoding
of the data (but not in the binary encoding). The equivalence of these two definitions is readily seen
because an integer in encoded in base 1 needs as many bits of storage as its value, whereas in base 2 it
can be encoded in ⌈log2(n)⌉ bits.

In the arithmetic computational model, where elementary operations on numbers take unit time,
an algorithm is strongly polytime if its worst case running time is bounded above by a polynomial in
function of the length of the input arrays, and the worst-case amount of memory required to run it
(a.k.a. the worst-case space) is bounded by a polynomial in the number of bits required to store their
values, a.k.a. the size of the input (e.g. Dijkstra’s shortest path algorithm on weighted graphs is strongly
polytme). By contrast, if the running time also depends nontrivially (i.e. aside from read/write and
elementary arithmetic operations) on the actual input storage size, including the bits required to represent
the numbers in the arrays, the algorithm is weakly polytime (e.g. the ellipsoid method for LP is weakly
polytime: whether there exists a strongly polytime algorithm for LP is a major open question).

A problem P is strongly NP-hard if there is a strongly polytime reduction algorithm R from every
problem in NP to P , or, equivalently, from a single NP-hard problem to P . P is strongly NP-complete
if it is strongly NP-hard and also belongs to the class P . An equivalent definition of strong NP-hardness
is the class of those NP-hard problems that remain NP-hard even if the input is encoded in unary (see
Rem. 5.1.5), i.e. when the value of all of their numerical data is bounded by a polynomial in the input
size. A problem P is weakly NP-hard when it is NP-hard but there exists a pseudopolynomial algorithm
that solves it. E.g. often dynamic programming based solutions search the set of values that a given
variable can take, so that the number of iterations might remain polynomial in the value rather than the
number of bits required to store it. When proving NP-hardness for a new problem P , using reductions
from a strongly NP-hard problem gives more flexibility, as one can use a pseudopolynomial reduction
and still claim NP-hardness of P . This technique was used in [56].

5.1.6 Remark (Strong and weak)
Algorithms may be strongly or weakly polytime, and problems may be strongly or weakly NP-hard.
But the opposition of the terms “strong” and “weak” are expressed in different terms for algorithms and
problems. I.e. the weak notion of problem NP-hardness rests on pseudopolynomial (rather than “weak”)
reductions.

5.2 Complexity of solving general MINLP

MINLP is not in NP because it is not a decision problem. It is NP-hard because it includes MILP as
a subclass. MILP, in turn, is NP-hard by means of a trivial reduction from sat. Transform the sat
instance to conjunctive normal form3 (CNF), write x̄ as 1 − x, ∨ as + and let ∧ mark the separation
between constraints. This yields a set of MILP constraints that are feasible if and only if the sat instance
is YES.

This argument, however, only brushes the surface of the issue, as it is essentially an argument about
MILP. We know by Sect. 4 that nonlinearity makes unbounded MINLPs undecidable, whereas finite
bounds make it decidable. But what about the continuous variables? We know that PP without integer
variables is decidable, but is it NP-hard? Again, the answer is yes, and it follows from the fact that
polynomials can express a bounded number of integer variables (see the beginning of Sect. 4.3.4). All
that the sat→ MILP reduction above needs is a sufficient number of binary (boolean) variables, which
can be defined by requiring a continuous variable x to satisfy the polynomial x(1− x) = 0.

In the rest of this section, we shall survey the field of computational complexity of several different
MINLP problems, with a particular attention to NLPs (which only involve continuous variables).

3I.e. a sequence of clauses involving exclusively ∨, each separated from the next by ∧.

5.3. QUADRATIC PROGRAMMING 75

5.3 Quadratic programming

The general Quadratic Programming (QP) problem is as follows:

min 1
2x

⊤Qx + c⊤x
Ax ≥ b.

}
(5.2)

5.3.1 NP-hardness

QP was shown in [258] to contain an NP-hard subclass of instances (and hence QP itself is NP-hard by
inclusion). The reduction is from an NP-complete problem called subset-sum: given a list s of non-
negative integers s1, . . . , sn and an integer σ, is there an index set J ⊆ {1, . . . , n} such that

∑
j∈J sj = σ?

Consider the QP formulation:

max f(x) =
∑
j≤n

xj(xj − 1) +
∑
j≤n

sjxj∑
j≤n

sjxj ≤ σ

∀j ≤ n 0 ≤ xj ≤ 1.

 (5.3)

This defines a transformation from an instance of subset-sum to one of QP. Obviously, it can be carried
out in polytime. We now prove that it maps YES instances of subset-sum to QP instances where
f(x) < σ and NO instances to instances of QP where f(x) = σ.

Assume (s, σ) is a YES instance of subset-sum with solution J . Then setting xj = 1 for all j ∈ J
satisfies all constraints of Eq. (5.3): in particular, the constraint is satisfied at equality. Solution integrality
mkes the first sum in the objective function yield value zero, which yields f(x) = σ. Conversely, assume
(s, σ) is a NO instance, and suppose first that Eq. (5.3) has an integer solution: then the constraint must
yield

∑
j sjxj < σ; solution integrality again zeroes the first sum in the objective function, so f(x) < σ.

Next, if Eq. (5.3) has no integer solution, there is at least one j ≤ n such that 0 < xj < 1, which makes
the objective function term xj(xj − 1) negative, yielding again f(x) < σ, as claimed.

The paper [258] also contains another proof that shows that a Nonlinear Programming (NLP) problem
with just one nonlinear constraint of the form

∑
j xj(xj − 1) ≥ 0 is also NP-hard.

5.3.1.1 Strong NP-hardness

A different proof, reducing from sat, was given in [294, Thm. 2.5]. It shows that the following QP
subclass is NP-hard:

min f(x) =
∑
j≤n

xj(1− xj)

sat→ MILP
∀j ≤ n 0 ≤ xj ≤ 1,

 (5.4)

where sat→ MILP indicates the MILP constraints encoding a sat instances which were discussed in the
first paragraph of this section. The proof shows that the given sat instance is YES iff f(x) = 0. Assume
first that the sat instance is YES: then there is an assignment of boolean values to the sat variables
that satisfies the sat → MILP constraints. Moreover, since the solution is integral, we get f(x) = 0.
Conversely, assume the sat instance is NO, and suppose, to aim at a contradiction, that a solution x∗

to Eq. (5.4) exists, and is such that f(x∗) = 0. Since the quadratic form
∑
j xj(1 − xj) is zero iff each

xj ∈ {0, 1}, we must conclude that x∗ is integral. Since the sat → MILP constraints are feasible iff the
sat instance is YES, and x∗ satisfies those constraints, it follows that the sat instance is YES, against
assumption. Hence, if the sat instance is NO, either Eq. (5.4) is infeasible or f(x∗) > 0.

These two arguments prove the same fact, i.e. that QP is NP-hard. However, the first reduction
is from subset-sum, while the second is from sat. This has some consequences, since while sat is

76 CHAPTER 5. COMPLEXITY

strongly NP-hard, subset-sum is not: namely, the first reduction only proves the weak NP-hardness of
QP, leaving the possibility of a pseudopolynomial algorithm open. The second reduction rules out this
possibility.

5.3.2 NP-completeness

While QP cannot be in NP since it is not a decision problem, the decision problem corresponding to QP
is a candidate. The question is whether the following decision problem is in NP:

1
2x

⊤Qx+ c⊤x ≤ ϕ
Ax ≥ b,

}
(5.5)

where ϕ is a threshold value that is part of the input.

As shown in [294], the proof is long and technical, and consists of many intermediate results that are
very important by themselves.

1. If the QP of Eq. (5.2) is convex, i.e. Q is positive semidefinite (PSD), and has a global optimum,
then it has a globally optimal solution vector where all the components are rational numbers — this
was shown in [252]. The main idea of the proof is as follows: only consider the active constraints
in Ax ≥ b, then consider the KKT conditions, which consist of linear equations in x, and derive a
global optimum of the convex QP as a solution of a set of linear equations.

2. Again by [252], there is a polytime algorithm for solving convex QPs (cQP): in other words, cQP is
in P. This is a landmark result by itself — we note that the algorithm is an interior point method
(IPM) and that it is weakly polytime. Specifically, though, this result proves that the size of the
rational solution is bounded by a polynomial in the input size. By [294, p. 77], this is enough to
prove the existence of a polynomially sized certificate in case Eq. (5.5) is bounded.

3. The unbounded case is settled in [291].

This allows us to conclude that the decision version of QP is NP-complete.

5.3.3 Box constraints

A QP is box-constrained if the constraints Ax ≥ b in Eq. (5.2) consist of variable bounds xL ≤ x ≤ xU .
The hyper-rectangle defined by [xL, xU] is also known as a “box”. As for the NP-hardness proof of QP,
there are two reductions from NP-complete problems to box-constrained QP: one from subset-sum [234,
Eq. (3)] and one from sat [294, §4.2]. Since reductions from sat imply strong NP-hardness, we only
focus on the latter.

We actually reduce from 3sat in CNF, i.e. instances consisting of a conjunction of m clauses each of
which is a disjunction of exactly 3 literals. As before, we write the i-th literal as xi or 1− xi if negated.
A disjunction xi ∨ x̄j ∨ xk, for example, is written as a linear constraint xh + (1− xj) + xk ≥ 1, yielding

∀i ≤ m a⊤i x ≥ bi (5.6)

for appropriate vectors ai ∈ Zm and b ∈ Z. By adding a slack variable vℓ ∈ [0, 2] to each of the m clauses,
Eq. (5.6) becomes ∀i ≤ m (a⊤i x = bi + vi). Next, we formulate the following box-constrained QP:

min f(x, v) =
∑
j≤n

xj(1− xj) +
∑
i≤m

(a⊤i x− bi − vi)2

x ∈ [0, 1]n, v ∈ [0, 2]m.

}
(5.7)

5.3. QUADRATIC PROGRAMMING 77

We are going to show that the 3sat instance is YES iff the globally optimal objective function value of
Eq. (5.7) is zero.

Obviously, if the 3sat formula is satisfiable, there exists a feasible solution (x∗, v∗) where x∗ ∈ {0, 1}n
and v∗ ∈ {0, 1, 2}m that yields a zero objective function value. Conversely, suppose there exists (x∗, v∗)
such that f(x∗, v∗) = 0, which yields

a⊤i x
∗ = bi + v∗i (5.8)

for all i ≤ m. Supposing some of the x variables take a fractional value, the corresponding term x∗j (1−x∗j)
would be nonzero, against the assumption f(x∗, v∗) = 0. From integrality of the x variables, Eq. (5.8)
ensures that v∗i is integer, for all i ≤ m. Since integrality and feasibility w.r.t. Eq. (5.8) are equivalent
to Eq. (5.6) and therefore encode the clauses of the 3sat instance, x∗ is a YES certificate for the 3sat
instance. Thus, finding the global optimum of the box-constrained QP in Eq. (5.7) is NP-hard.

5.3.4 Trust region subproblems

Trust Region Subproblems (TRS) take their name from the well-known trust region method for black-box
optimization. TRSs are essentially instances of QP modified by adding a single (convex) norm constraint
∥x∥ ≤ r, where r (which is part of the input) is the radius of the trust region. If the norm is ℓ2 and
Ax ≥ b has a special structure, then the problem can be solved in polytime [44]. In this case the solution
is generally irrational (due to the nonlinear norm constraint — note that because of that constraint, the
TRS is not formally a subclass of QP in general), though for the simple case of ∥x∥2 ≤ 1 and no linear
constraints, the technical report [293] states that the decision problem is actually in P.

Most TRSs arising in practical black-box optimization problems, however, are formulated with an ℓ∞
norm constraint. This makes the resulting QP easier to solve numerically, to a given ε > 0 approximation
tolerance, using local NLP solvers. This is because the ℓ∞ norm yields simple box constraints on the de-
cision variables, and therefore the ℓ∞ TRS does belong to the class QP, specifically it is a box-constrained
QP. From a worst-case computational complexity point of view, however, we recall that box-constrained
QPs form an NP-hard subclass of QP, as mentioned above.

5.3.5 Continuous Quadratic Knapsack

The reduction is from subset-sum. Consider the following formulation, called continuous Quadratick
Knapsack Problem (cQKP):

min x⊤Qx + c⊤x∑
j≤n

ajxj = γ

x ∈ [0, 1]n,

 (5.9)

where Q is a square diagonal matrix, a, c ∈ Qn, and γ ∈ Q.

We encode a subset-sum instance ({s1, . . . , sn}), σ) in Eq. (5.9) as follows [294, §4.2]:

min f(x) =
∑
j≤n

xj(1− xj)∑
j≤n

sjxj = σ

x ∈ [0, 1]n,

 (5.10)

We are going to show that the instance is YES iff the global optimum of Eq. (5.10) is zero. If the instance
is YES, then there is a subset J ⊂ {1, . . . , n} such that

∑
j∈J

sj = σ. Let x∗j = 1 for all j ∈ J and x∗j = 0

for all j ̸∈ J : then x∗ is feasible in the constraints of Eq. (5.9), and yields f(x∗) = 0. Conversely, if x∗
is a feasible solution of Eq. (5.9) yielding f(x∗) = 0, then each term x∗j (1 − x∗j) in f(x) has value zero,
which implies x∗ ∈ {0, 1}n. Now let J = {j ≤ n | x∗j = 1} be the support of x∗. By construction, J is a
YES certificate for the subset-sum instance. Thus finding a global optimum of a cQKP is NP-hard.

78 CHAPTER 5. COMPLEXITY

5.3.5.1 Convex QKP

Since a convex QKP is a subclass of convex QP, it can be solved in polytime — but no strongly polytime
algorithm is known. On the other hand, if Q is a diagonal matrix, then the objective function of Eq. (5.9)
is separable.4 As remarked in [294, §3.1] there is an O(n log n) algorithm for solving this specific variant
of convex QKP [135].

5.3.6 The Motzkin-Straus formulation

In 1965, Motzkin and Straus established an interesting relationship between the maximum clique C in a
graph G = (V,E) and the following QP [231]:

max f(x) =
∑

{i,j}∈E
xixj∑

j∈V
xj = 1

∀j ∈ V xj ≥ 0 ;

 (5.11)

namely, that there exists a global optimum x∗ of Eq. (5.11) such that

f∗ = f(x∗) =
1

2

(
1− 1

ω(G)

)
,

where ω(G) is the size of a maximum cardinality clique in G. In other words, this gives the following
formula for computing the clique number of a graph:

ω(G) =
1

1− 2f∗
.

Moreover, a maximum clique is encoded in a global optimum x∗ of Eq. (5.11), which has the form

∀j ∈ V x∗j =

{ 1
ω(G) if j ∈ C
0 otherwise.

Eq. (5.11) is called the Motzkin-Straus formulation for the max clique optimization problem. Its decision
version clique is well known to be NP-complete, which makes the Motzkin-Straus formulation an
appropriate candidate for reductions from clique to various problems related to QP and NLP.

We follow the proof of Motzkin and Straus as related in [10]. Let x∗ be a global optimum of Eq. (5.11)
with as many zero components as possible. Consider C = {j ∈ V | x∗j > 0}. We claim that C is a
maximum clique in G.

• First, we claim C is a clique. Suppose this is false to aim at a contradiction, and assume wlog that
1, 2 ∈ C and {1, 2} ̸∈ E. For some ϵ in the interval [−x∗1, x∗2], let xϵ = (x∗1 + ϵ, x∗2 − ϵ, x∗3, . . . , x∗n).
Note that xϵ satisfies the simplex constraint

∑
j xj = 1, as well as the non-negativity constraints.

Since the edge {1, 2} is not in E, the product x1x2 does not appear in the objective function f(x).
This means that ϵ2 never occurs in f(xϵ). In particular, f(x) is linear in ϵ. We temporarily look at
f as a function fϵ of ϵ, parametrized by x∗. By the choice of x∗ (a global optimum), fϵ achieves its
maximum at ϵ = 0. Since ϵ = 0 is in the interior of its range [−x∗1, x∗2] and fϵ is linear in ϵ, fϵ must
necessarily be constant over this range. Hence setting ϵ = −x∗1 and ϵ = x∗2 yields global optima
with a smaller number of nonzero components x∗, which is a contradiction as x∗ was chosen with
the maximum possible number of zero components. Thus C is a clique.

4A multivariate function is separable if it can be written as a sum of univariate functions.

5.3. QUADRATIC PROGRAMMING 79

• Now, we claim C has maximum cardinality |C| = ω(G). Consider the simplex constraint
∑
j xj = 1

and square both sides:

1 =

∑
j∈V

xj

2

= 2
∑
i<j∈V

xixj +
∑
j∈V

x2j . (5.12)

Since by construction of C we have x∗j = 0 iff j ̸∈ C, the above reduces to

ψ(x∗) = 2
∑
i<j∈C

x∗i x
∗
j +

∑
j∈C

(x∗j)
2.

Moreover, ψ(x) = 1 for all feasible x by Eq. (5.12). So the objective function f(x) =
∑
i,j xixj

achieves its is maximum when the second term of ψ(x) is minimum (given that the sum of the
two terms is constant by Eq. (5.12)), i.e. when

∑
j∈C(x

∗
j) attains its minimum, which occurs at

x∗j =
1
|C| . Again by the simplex constraint, we have

f(x∗) = 1−
∑
j∈C

(x∗j)
2 = 1− |C| 1

|C|2
= 1− 1

|C|
≤ 1− 1

ω(G)
,

with equality when |C| = ω(G), as claimed.

By reduction from clique, it follows therefore that Eq. (5.11) describes an NP-hard subclass of QP.
Using the same basic ideas, Vavasis gives a proof by induction on |V | in [294, Lemma 4.1]. A bijection
between the local optima of Eq. (5.11) and the maximal cliques of G is discussed in [49].

5.3.6.1 QP on a simplex

Consider the following formulation:

min x⊤Qx + c⊤x∑
j≤n

xj = 1

∀j ≤ n xj ≥ 0,

 (5.13)

where Q is a square n×n rational matrix and c ∈ Qn. Since Eq. (5.11) describes a subclass of Eq. (5.13),
the latter is NP-hard by inclusion.

5.3.7 QP with one negative eigenvalue

So far, we established that cQPs are in P, and that a variety of nonconvex QPs are NP-hard (with their
decision version being NP-complete). Where does efficiency end and hardness begin? In an attempt
to provide an answer to this question, Pardalos and Vavasis proved in [240] that an objective function
minx⊤Qx where Q has rank one and has a single negative eigenvalue suffices to make the problem
NP-hard. The problem of solving a QP with one negative eigenvalue is denoted by QP1NE.

The construction is very ingenious. It reduces clique to QP1NE in two stages. First, it provides
a QP formulation attaining globally optimal objective function value zero iff the main decision variable
vector x takes optimal values in {0, 1}. Second, it encodes a clique of given cardinality k in a given graph
G = (V,E) by means of the following constraints:

∀{i, j} ̸∈ E xi + xj ≤ 1 (5.14)∑
j∈V

xj = k (5.15)

0 ≤ x ≤ 1. (5.16)

80 CHAPTER 5. COMPLEXITY

The rest of the formulation, which essentially ensures integrality of the decision variables, is as follows:

min z − w2 (5.17)

w =
∑
j∈V

4jxj (5.18)

z =
∑
j∈V

42jxj + 2
∑
i<j

4i+jyij (5.19)

∀i < j ∈ V yij ≥ max(0, xi + xj − 1). (5.20)

Eq. (5.17) clearly is of rank one and has a single nonzero eigenvalue which is negative. Note that the
definitions of w2 (by means of Eq. (5.18)) and z in Eq. (5.19) almost match: we should have yij = xixj
for them to be equal. Eqs. (5.16), (5.20) and (5.19) ensure that z cannot be negative, which also holds
for w2 since it is a square. A couple of technical lemmata ensure that the QP in Eqs. (5.17)-(5.20) has
optimal value zero iff the optimal solution is binary. Integrating the constraints Eqs. (5.14)-(5.16) encodes
clique in this QP so that G has a clique of cardinality k iff the optimal objective function value is zero,
as claimed.

5.3.8 Bilinear programming

The Bilinear Programming Problem (BPP) reads as follows:

min
∑
j≤n xjyj

Ax+By ≥ b.

}
(5.21)

The NP-hardness of BPP has been established in [41], by a reduction from a problem in computational
geometry called 2-Linear Separability (2LS), consisting in determining whether two sets of points in
a Euclidean space can be separated by a piecewise linear curve consisting of two pieces. In turn, 2LS was
proven NP-complete in [215].

Bennett and Mangasarian show in [41] that the 2LS reduces to one of three possible BPP formulations,
all of which with general inequality constraints and non-negativity constraints on the decision variables.

5.3.8.1 Products of two linear forms

In [292, p. 37], Vavasis proposed as an open question whether the following QP:

min f(x) = (c⊤x+ γ)(d⊤x+ δ)
Ax ≥ b

}
(5.22)

is NP-hard. Note that that although Eq. (5.22) is a subclass of QP, which is itself an NP-hard problem,
there is the possibility that this might be a tractable case. This question was eventually settled in the
negative in [212], which gives an NP-hardness proof for Eq. (5.22).

The proof is constructed very ingeniously by borrowing the functional form minx1−x22 from QP1NE.
First, it presents a reduction of the (NP-complete) set partition problem to the formulation

min
n∑
i=1

n∑
j=1

pi+jyij −
(

n∑
i=1

pixi

)2

Sx = 1
∀i ̸= j ≤ n yij ≤ xi
∀i ̸= j ≤ n yij ≤ xj
∀i ̸= j ≤ n yij ≥ xi + xj − 1
∀i ≤ n yii = xi

x ∈ [0, 1]n

y ∈ [0, 1]n
2

,

(5.23)

5.3. QUADRATIC PROGRAMMING 81

where p is any positive integer and Sx = 1 is a set of constraints modelling set partition. This is
achieved by showing that the objective function is positive if and only if there are fractional feasible
solutions x′ with 0 < x′i < 1 for some i ≤ n. The crucial point of the proof is that the reformulation
constraints xi + xj + 1 ≤ yij ≤ min(xi, xj) and yii = xi are exact only for x ∈ {0, 1}. A technical (but
easy to follow) argument shows that the objective function is positive at the optimum if and only if some
fractional solution exists.

This proof is then extended to the generalization of Eq. (5.23) where the objective function is replaced
by a general function g(x0, y0) where x0 =

∑
i p
ixi, y0 =

∑
i,j p

i+jyij and two more conditions on x0, y0
designed to endow g with positivity/negativity properties similar to that of the objective function of
Eq. (5.23). This new problem also has non-positive objective function value at the optimum if and only
if the optimum is binary. This provides the reduction mechanism from set partition (encoded in the
constraints Sx = 1).

Finally, the function g(x0, y0) = (y0− p+2p4n)2− 4p4nx20− 4p8n is shown to satisfy the requirements
on g and also to factor as a product of two linear forms plus a constant, which provides the necessary
form shown in Eq. (5.22).

The same proof mechanism can also prove NP-hardness of the related problems

min {x1x2 | Ax ≥ b} (5.24)

min

{
x1 −

1

x2
| Ax ≥ b

}
(5.25)

min

{
1

x1
− 1

x2
| Ax ≥ b

}
. (5.26)

5.3.9 Establishing local minimality

The problem of deciding whether a given x is a local minimum of a QP or not has attracted quite a
lot of attention in the late 1980s and early 1990s. There appear to be three distinct proofs of this fact:
in [234, Problem 1], in [243, §3], and in [294, §5.1]. The first [234] reduces subset-sum to the problem
of deciding whether a quadratic form over a translated simplex is negative, shown to be equivalent to
unboundedness of a constrained quadratic form, and to the problem of deciding whether a given point
is not a local optimum of a given QP. Moreover, [234] also shows that deciding copositivity of a given
matrix is co-NP-hard; it further proves co-NP-hardness of verifying that a point is not a local optimum
in unconstrained minimization (of a polynomial of degree 4). The second [243] presents a QP where a
certain point is not a local minimum iff a given 3sat instance is YES. The third [294] is based on an
unconstrained variant of the Motzkin-Straus formulation, where the zero vector is a local minimum iff a
given clique instance is NO.

These proofs all show that it is as hard to prove that a given point is not a local minimum of a QP as
to show that a given NP-hard problem instance is YES. Implicitly, using the reduction transformation,
this provides certificates for the NO instances of the QP local minimality problem (QPLOC) rather than
for the YES instances. In computational complexity, this shows that QPLOC is co-NP-hard5 rather than
NP-hard.

Currently, no-one knows whether NP = co-NP. Assume we could prove that NP ̸= co-NP (†); we
know that P = co-P (the whole polynomially long trace of the algorithm provides a polynomially long
certificate of both YES and NO instances). Suppose now P = NP: then it would follow from P = co-P
that NP = co-NP, a contradiction with (†), which would prove P ̸= NP, the most famous open question
in computer science and one of the most famous in mathematics. This tells us that proving NP ̸= co-NP
looks exceedingly difficult.

5See Footnote 2.

82 CHAPTER 5. COMPLEXITY

It is remarkable that many NP-hard problems have QP formulations (proving that solving QPs is
NP-hard), but verifying whether a given point is a local optimum is actually co-NP-hard. Looking
in more depth, most of the NP-hardness reductions about QP actually reduce to deciding whether a
given QP has zero optimal objective function value or not. On the other hand, the co-NP-hardness
reductions in [234, 243, 294] all establish local optimality of a given solution vector. The former setting
sometimes allows for clear dichotomies: for example, for the box-constrained QP in [234, Eq. (8)], it
is shown that there is a finite gap between the optimal value being zero or less than a finite negative
value (this implies that the corresponding decision problem is actually in NP). In practice, a sufficiently
close approximation to zero can be rounded to zero exactly, which means that a certificate for “equal to
zero” can be exhibited. Moreover, a YES instance of a problem might have multiple certificates, each
of which is mapped (through the reduction) to a different solution of the corresponding QP having the
same objective function value. The latter setting (about local optimality), on the other hand, is about
a specific point. Since QP involves continuous functions of continuously varying variables, it seems hard
to find cases where gap separations are possible. Furthermore, encoding a YES instance, possibly with
multiple certificates, in the verification of optimality of a single point appears to be a hard task. These
two considerations might be seen as an intuitive explanation about why QPLOC is co-NP-hard.

A completely different (again, intuitive) argument could be brought against the fact that QPLOC
should be a hard problem at all. Given a candidate local minimum x̄ in a QP, why not simply verify
first and second order conditions? First-order conditions are equivalent to KKT conditions, and second-
order conditions are well-known to involve the Hessian, i.e. the square symmetric matrix having second
derivatives w.r.t. two decision variables as components. The main issue with this approach is that all
QPs that have been proved hard in this section are constrained, so the Hessian alone is not sufficient:
indeed, local solution algorithms for constrained QPs all look at the Hessian of the Lagrangian function,
which involves the constraints; moreover, the Hessian of a QP objective is constant, so it cannot depend
on x̄. The second issue is that, in general, local and global optima of QPs may involve algebraic numbers,
for which we do not know a compact representation in terms of the length of the input (see Sect. 4.2).

5.4 General Nonlinear Programming

The general NLP formulation is like Eq. (2.2) where Z = ∅. It obviously contains QP, so NLP is NP-hard
in general. Murty and Kabadi’s proof of co-NP-hardness of verifying whether a given point is a local
minimum (see previous section) uses the following formulation

min
u

(u2)
⊤
Qu2,

where u2 denotes the vector (u21, . . . , u
2
n). This is a minimization of a quartic polynomial, and so it is

not, strictly speaking, quadratic (although it is readily seen to be equivalent to the quadratic problem
min
x≥0

x⊤Qx).

In Sect. 4.3.5 we discussed undecidable NLP problems, so the hardness issue is somewhat moot. Two
hardness results in NLP are nonetheless worth mentioning: deciding whether a given function is convex,
and optimization over the copositive cone. These two problems are related by the notion of convexity
— which, according to Rockafellar, is the real barrier between easy and difficult optimization problems.
Given any function, can we efficiently decide whether it is convex? If so, then we may hope to optimize
it efficiently using a special-purpose algorithm for convex functions. This paradigm was doubly shattered
by relatively recent results. On the one hand, Ahmadi et al. proved NP-hardness of deciding convexity
of polynomials of 4th degree. On the other, the realization that many NP-hard problems have natural
copositive formulations [103] made Rockafellar’s remark obsolete.

5.4. GENERAL NONLINEAR PROGRAMMING 83

5.4.1 Verifying convexity

In [241], Pardalos and Vavasis presented a list of open questions in the field of computational complexity
in numerical optimization problems. Problem 6, due to Shor, reads as follows.

Given a degree-4 polynomial of n variables, what is the complexity of determining whether
this polynomial describes a convex function [over the whole variable range]?

Polynomials of degree smaller than 4 are easy to settle: degree-1 are linear and hence convex, degree-2 have
constant Hessian which can be computed in polytime in order to decide their convexity, and odd-degree
polynomials are never convex over their whole domain (although they may be pseudo- or quasi-convex,
see [162, Thm. 13.11]). Degree-4, the smallest open question concerning the efficient decidability of
polynomial convexity, was settled in [9] in the negative.

The proof provided in [9] reduces from the problem of determining whether a given biquadratic form∑
i≤j
k≤ℓ

αi,j,lℓxixjykyℓ is non-negative over all its range is strongly NP-hard by reduction from clique [193]

by way of the Motzkin-Straus formulation Eq. (5.11). It shows how to construct a (variable) Hessian
form from any biquadratic form such that the former is non-negative iff the latter is. This Hessian form
allows the construction of a quartic polynomial that is convex over its range iff the original biquadratic
form is non-negative.

This result is extended to deciding other forms of convexity as well: strict and strong convexity, as
well as pseudo- and quasi-convexity.

5.4.1.1 The copositive cone

First, a square symmetric matrix A is copositive if x⊤Ax ≥ 0 for all x ≥ 0. If we removed the non-
negativity condition x ≥ 0, we would retrieve a definition of A being PSD: while every PSD matrix is
copositive, the converse is not true. Establishing copositivity of non-PSD matrices is NP-hard, as it
involves verifying whether the optimal objective function value of the QP P ≡ min{x⊤Ax | x ≥ 0} is ≥ 0
or either < 0 or unbounded [234].

We consider a variant of Eq. (5.13) where c is the zero vector (so the objective function is purely
quadratic). This variant is called Standard Quadratic Programming (StQP). Surprisingly, the
(NP-hard) StQP can be exactly reformulated to a convex continuous cNLP, as reported here below.

(a) We linearize each product xixj occurring in the quadratic form x⊤Qx to a new variable Xij . This
yields:

min Q •X∑
j≤n

xj = 1

∀j ≤ n xj ≥ 0
X = xx⊤,

where • denotes trace(Q⊤X). Note that X = xx⊤ encodes the whole constraint set

∀i < j ≤ n Xij = xixj .

(b) We square both sides of the simplex constraint
∑
j xj = 1 to obtain

∑
i,j xixj = 1, which can be

written as 1 •X = 1, where 1 is the all-one n× n matrix.

(c) We replace the (nonconvex) set C = {X | X = xx⊤ ∧ x ≥ 0} by its convex hull C = conv(C). This

84 CHAPTER 5. COMPLEXITY

yields:
min Q •X

1 •X = 1
X ∈ C.

 (5.27)

The set C is a convex combination of rank-one matrices, and as such forms a convex cone.

(d) We write the dual of Eq. (5.27):

max y
Q− y1 ∈ C∗,

}
(5.28)

where C∗ is the dual cone of C. Unlike the PSD cone, which is self-dual, C∗ ̸= C. In fact, C∗ turns
out to be the cone of all copositive matrices:

C∗ = {A | ∀x ≥ 0 (x⊤Ax ≥ 0)},

see [130, Thm. 16.2.1] for a detailed proof. Both cones are convex and achieve strong duality. Hence
Eq. (5.28) is a cNLP, as claimed.

This is extremely surprising, as cNLPs are known to be “easy to solve”, since every local optimum is
also global: thus a local solution algorithm should immediately find the global optimum (this proabably
motivated Rockafellar to put the barrier of complexity in MP at the frontier of convexity and nonconvexity,
see Sect. 5.4).

The issue is that no-one knows of any efficient algorithm for solving the cNLP in Eq. (5.28), and this is
exactly because of the copositive cone C∗ [50, 103]. Those cNLPs which we know how to solve efficiently
are usually defined over the non-negative orthant or the PSD cone. We can obviously test whether a
vector is in the non-negative orthant in linear time, and we can also test whether a given matrix is PSD
in polytime [268, p. 1152]. The polynomially long traces of the checking algorithms provide compact
certificates for both YES and NO instances. On the other hand, since testing copositivity is NP-hard,
there is no hope of achieving such compact descriptions for the copositive cone C∗.

A different way to see this issue is to consider that cNLPs over matrix cones are routinely solved
by IPMs, the polytime analysis of which rest on the existence of some functions called “self-concordant
barriers”, that deviate the search path for the optimum away from the border of the cone. Barrier
functions are used as penalty functions to be added to the objective function, which is made to increase
towards the boundary of the cone. Self-concordant barriers can be optimized efficiently using Newton’s
method. Self-concordant barriers are known for many convex cones (orthants, PSD and more), but not
for C∗. In [51], an IPM-based heuristic is proposed to solve copositive programs such as [51].

Another interpretation of the complexity inherent in the copositive cone is the classification of extremal
matrices of copositive cones of small dimension, pursued by Roland Hildebrand [140]. He emphasizes that
the description complexity of these extreme rays increases dramatically as the dimension increases.

Part III

Mathematical Programming

85

Chapter 6

Convex analysis

This chapter contains a condensed treatment of the basics of convex analysis and duality.

6.0.1 Definition
Given a set X ⊆ Rn, a function f : X → R and a point x′ ∈ X:

• we say that x′ is a local minimum of f if there is a ball S(x′, ϵ) (for some ϵ > 0) such that
∀x ∈ S(x′, ϵ) ∩X we have f(x′) ≤ f(x) — the local minimum is strict if f(x′) < f(x);

• we say that x′ is a global minimum of f if ∀x ∈ X we have f(x′) ≤ f(x) — again, the global
minimum is strict if f(x′) < f(x).

Similar definitions hold for (strict) local/global maxima. If the objective function direction is not specified,
the corresponding points are called optima.

6.1 Convex analysis

6.1.1 Definition
A set S ⊆ Rn is convex if for any two points x, y ∈ S the segment between them is wholly contained in
S, that is, ∀λ ∈ [0, 1] (λx+ (1− λ)y ∈ S).

A linear equation a⊤x = b where a ∈ Rn defines a hyperplane in Rn. The corresponding linear
inequality a⊤x ≤ b0 defines a closed half-space. Both hyperplanes and closed half-spaces are convex sets.
Since any intersection of convex sets is a convex set, the subset of Rn defined by the system of closed
half-spaces Ax ≥ b, x ≥ 0 is convex (where A ∈ Rm×n, b ∈ Rm).

6.1.2 Definition
A subset S ⊆ Rn defined by a finite number of closed half-spaces is called a polyhedron. A bounded,
non-empty polyhedron is a polytope.

Polyhedra and polytopes are very important in optimization as they are the geometrical representation
of a feasible region expressed by linear constraints.

6.1.3 Definition
Let S = {xi | i ≤ n} be a finite set of points in Rn.

1. The set span(S) of all linear combinations
∑n
i=1 λixi of vectors in S is called the linear hull (or

linear closure, or span) of S.

87

88 CHAPTER 6. CONVEX ANALYSIS

2. The set aff(S) of all affine combinations
∑n
i=1 λixi of vectors in S such that

∑n
i=1 λi = 1 is called

the affine hull (or affine closure) of S.

3. The set cone(S) of all conic combinations
∑n
i=1 λixi of vectors in S such that ∀i ≤ n (λi ≥ 0) is

called the conic hull (or conic closure, or cone) of S. A conic combination is strict if for all i ≤ n
we have λi > 0.

4. The set conv(S) of all convex combinations
∑n
i=1 λixi of vectors in S such that

∑n
i=1 λi = 1 and

∀i ≤ n (λi ≥ 0) is called the convex hull (or convex closure) of S. A convex combination is strict if
for all i ≤ n we have λi > 0.

6.1.4 Definition
Consider a polyhedron P and a closed half-space H in Rn. Let H ∩ P be the affine closure of H ∩P and
d = dim(H ∩ P). If d < n then H ∩P is a face of P . If d = 0, H ∩P is called a vertex of P , and if d = 1,
it is called an edge. If d = n− 1 then H ∩ P is a facet of P .

The following technical result is often invoked in the proofs of LP theory.

6.1.5 Lemma
Let x∗ ∈ P = {x ≥ 0 | Ax ≥ b}. Then x∗ is a vertex of P if and only if for any pair of distinct points
x′, x′′ ∈ P , x∗ cannot be a strict convex combination of x′, x′′.

Proof. (⇒) Suppose x∗ is a vertex of P and there are distinct points x′, x′′ ∈ P such that there is a
λ ∈ (0, 1) with x∗ = λx′ + (1− λ)x′′. Since x∗ is a vertex, there is a half-space H = {x ∈ Rn | h⊤x ≤ d}
such thatH∩P = {x∗}. Thus x′, x′′ ̸∈ H and h⊤x′ > d, h⊤x′′ > d. Hence h⊤x∗ = h⊤(λx′+(1−λ)x′′) > d,
whence x∗ ̸∈ H, a contradiction. (⇐) Assume that x∗ cannot be a strict convex combination of any pair
of distinct points x′, x′′ of P , and suppose that x∗ is not a vertex of P . Since x∗ is not a vertex, it belongs
to a face H∩P of P (with H a closed half-space) with d = dim aff(H∩P) > 0. Then there must be a ball
S (of dimension d) within H ∩P , having radius ε > 0 and center x∗. Let x′ ∈ S such that ||x′−x∗|| = ε

2 .
Let x′′ = (x∗ − x′) + x∗. By construction, x′′ is the point symmetric to x′ on the line through x′ and
x∗. Thus, ||x′′ − x∗|| = ε

2 , x′′ ̸= x′, x′′ ∈ P , and x∗ = 1
2x

′ + 1
2x

′′, which is a strict convex combination of
x′, x′′, a contradiction. 2

Having defined convex sets, we now turn our attention to convex functions.

6.1.6 Definition
A function f : X ⊆ Rn → R is convex if for all x, y ∈ X and for all λ ∈ [0, 1] we have:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Note that for this definition to be consistent, λx+ (1− λ)y must be in the domain of f , i.e. X must be
convex. This requirement can be formally relaxed if we extend f to be defined outside X.

The main theorem in convex analysis, and the fundamental reason why convex functions are useful
in optimization, is that a local optimum of a convex function over a convex set is also a global optimum,
which we prove in Thm. 6.1.7. The proof is described graphically in Fig. 6.1.

6.1.7 Theorem
Let X ⊆ Rn be a convex set and f : X → R be a convex function. Given a point x∗ ∈ X, suppose that
there is a ball S(x∗, ε) ⊂ X such that for all x ∈ S(x∗, ε) we have f(x∗) ≤ f(x). Then f(x∗) ≤ f(x) for
all x ∈ X.

Proof. Let x ∈ X. Since f is convex over X, for all λ ∈ [0, 1] we have f(λx∗ + (1 − λ)x) ≤ λf(x∗) +
(1− λ)f(x). Notice that there exists λ̄ ∈ (0, 1) such that λ̄x∗ + (1− λ̄)x = x̄ ∈ S(x∗, ε). Consider x̄: by

6.2. CONDITIONS FOR LOCAL OPTIMALITY 89

Figure 6.1: Graphical sketch of the proof of Thm. 6.1.7. The fact that f(x∗) is the minimum in S(x∗, ε)
is enough to show that for any point x ∈ X, f(x∗) ≤ f(x).

convexity of f we have f(x̄) ≤ λ̄f(x∗) + (1− λ̄)f(x). After rearrangement, we have

f(x) ≥ f(x̄)− λ̄f(x∗)
1− λ̄

.

Since x̄ ∈ S(x∗, ε), we have f(x̄) ≥ f(x∗), thus

f(x) ≥ f(x∗)− λ̄f(x∗)
1− λ̄

= f(x∗),

as required. 2

6.2 Conditions for local optimality

In this section we shall give necessary and sufficient conditions for a feasible point x∗ to be locally optimal.
Most of the work deals with deriving necessary conditions. The sufficient conditions are in fact very close
to requiring convexity of the objective function and feasible region, as we shall see later.

For a scalar function f : Rn → R we define the function vector ∇f as (∇f)(x) =
(
∂f(x)
∂x1

, . . . , ∂f(x)∂xn

)⊤
,

where x = (x1, . . . , xn)
⊤. We denote by ∇f(x′) the evaluation of ∇f at x′. If g is a vector-valued

function g(x) = (g1(x), . . . , gm(x)), then ∇g is the set of function vectors {∇g1, . . . ,∇gm}, and ∇g(x′) is
the evaluation of ∇g at x′.

6.2.1 Equality constraints

We first deal with the case of an optimization problem as in Eq. (2.2) with all equality constraints,
unbounded variables and Z = ∅. Consider the following NLP:

min
x∈Rn

f(x)

s.t. g(x) = 0,

}
(6.1)

90 CHAPTER 6. CONVEX ANALYSIS

where f : Rn → R and g : Rn → Rm are C1 (i.e., continuously differentiable) functions.

A constrained critical point of Eq. (6.1) is a point x∗ ∈ Rn such that g(x∗) = 0 and the directional
derivative1 of f along g is 0 at x∗. It is easy to show that such an x∗ is a (local) maximum, or a minimum,
or a saddle point of f(x) subject to g(x) = 0.

6.2.1 Theorem (Lagrange Multiplier Method)
If x∗ is a constrained critical point of Eq. (6.1), m ≤ n, and ∇g(x∗) is a linearly independent set of
vectors, then ∇f(x∗) is a linear combination of the set of vectors ∇g(x∗).

Proof. Suppose, to get a contradiction, that ∇g(x∗) and ∇f(x∗) are linearly independent. In the case
∇f(x∗) = 0, the theorem is trivially true, so assume ∇f(x∗) ̸= 0. Choose vectors wm+2, . . . , wn such
that the set J = {∇g1(x∗), . . . ,∇gm(x∗),∇f(x∗), wm+2, . . . , wn} is a basis of Rn. For m + 2 ≤ i ≤ n
define hi(x) = ⟨wi, x⟩. Consider the map

F (x) = (F1(x), . . . , Fn(x)) = (g1(x), . . . , gm(x), f(x), hm+2(x), . . . , hn(x)).

Since the Jacobian (i.e., the matrix of the first partial derivatives of each constraint function) of F
evaluated at x∗ is J , and J is nonsingular, by the inverse function theorem F is a local diffeomorphism of
Rn to itself. Thus, the equations yi = Fi(x) (i ≤ n) are a local change of coordinates in a neighbourhood
of x∗. With respect to coordinates yi, the surface S defined by g(x) = 0 is the coordinate hyperplane
0 × Rn−m. Notice that the (k + 1)-st coordinate, yk+1 = f(x), cannot have a critical point on the
coordinate plane 0× Rn−m, so x∗ is not a constrained critical point, which is a contradiction. 2

In the proof of the above theorem, we have implicitly used the fact that the criticality of points is
invariant with respect to diffeomorphism (this can be easily established by showing that the derivatives
of the transformed functions are zero at the point expressed in the new coordinates). The classical proof
of the Lagrange Multiplier Theorem 6.2.1 is much longer but does not make explicit use of differential
topology concepts (see [22], p. 153). The proof given above was taken almost verbatim from [248].

By Thm. 6.2.1 there exist scalars λ1, . . . , λm, such that

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) = 0.

The above condition is equivalent to saying that if x∗ is a constrained critical point of f s.t. g(x∗) = 0,
then x∗ is a critical point of the following (unconstrained) function:

L(x, λ) = f(x) +

m∑
i=1

λigi(x). (6.2)

Eq. (6.2) is called the Lagrangian of f w.r.t. g, and λ1, . . . , λm are called the Lagrange multipliers.
Intuitively, when we are optimizing over a subspace defined by Ax = b, the optimization direction must
be a linear combination of the vectors which are normal to the hyperplane system Ax = b. The situation
is shown in Fig. 6.2.

Hence, in order to find the solution of Eq. (6.1), by Thm. 6.2.1, one should find all critical points
of L(x, λ) and then select the one with minimum objective function value. This approach is of limited
use on all but the simplest formulations. It does, however, provide at least necessary conditions for the
characterization of a constrained minimum.

1A formal definition is given in [222], p. 7-8.

6.2. CONDITIONS FOR LOCAL OPTIMALITY 91

Figure 6.2: If ∇f is linearly dependent on the constraint gradients, there is no feasible descent direction.
∇f ′, which does not have this property, identifies a feasible descent direction when projected on the
feasible space (the thick line).

6.2.2 Inequality constraints

Notice, however, that Eq. (6.1) only deals with equality constraints; moreover, the proof of Thm. 6.2.1
is heavily based on the assumption that the only constraints of the problem are equality constraints. In
order to take into account inequality constraints, we introduce the following simple example.

6.2.2 Example
Consider the problem min{−x1−x2 | x1−1 ≤ 0, x2−1 ≤ 0}. The minimum is obviously at x∗ = (1, 1) as
shown in Fig. 6.3 (the figure only shows the non-negative quadrant; the feasible region actually extends to
the other quadrants). By inspection, it is easy to see that at the point x∗ = (1, 1) any further movement

Figure 6.3: The problem of Example 6.2.2.

towards the direction of objective function decrease would take x∗ outside the feasible region, i.e. no
feasible direction decreases the objective function value. Notice that the descent direction at x∗ is in the
cone defined by the normal vectors to the constraints in x∗. In this particular case, the descent direction
of the objective function is the vector −∇f(x∗) = (1, 1). The normal vector to g1(x) = x1 − 1 at x∗ is
∇g1(x∗) = (1, 0) and the normal vector to g2(x) = x2 − 1 at x∗ is ∇g2(x∗) = (0, 1). Notice that we can
express −∇f(x∗) = (1, 1) as λ1(1, 0) + λ2(0, 1) with λ1 = 1 > 0 and λ2 = 1 > 0. In other words, (1, 1) is
a conic combination of (1, 0) and (0, 1).

If we now consider the problem of minimizing f̄(x) = x1 + x2 subject to the same constraints as
above, it appears clear that x∗ = (1, 1) cannot be a local minimum, as there are many feasible descent
directions. Take for example the direction vector y = (−1,−1). This direction is feasible w.r.t. the

92 CHAPTER 6. CONVEX ANALYSIS

constraints: ∇g1(x∗)y = (1, 0)(−1,−1) = (−1, 0) ≤ 0 and ∇g2(x∗)y = (0, 1)(−1,−1) = (0,−1) ≤ 0.
Moreover, it is a nonzero descent direction: −∇f̄(x∗)y = −(1, 1)(−1,−1) = (1, 1) > 0.

In summary, either the descent direction at x∗ is a conic combination of the gradients of the constraints
(and in this case x∗ may be a local minimum), or there is a nonzero feasible descent direction (and in
this case x∗ cannot be a local minimum).

The example above is an application of a well known theorem of alternatives called Farkas’ Lemma.
The following three results are necessary to introduce Farkas’ Lemma, which will then be used in the
proof of Thm. 6.2.7.

6.2.3 Theorem (Weierstraß)
Let S ⊆ Rn be a non-empty, closed and bounded set and let f : S → R be continuous on S. Then there
is a point x∗ ∈ S such that f attains its minimum value at x∗.

Proof. Since f is continuous on S and S is closed and bounded, then f is bounded below on S. Since
S is non-empty, there exists a greatest lower bound α for the values of f over S. Let ε be such that
0 < ε < 1 and consider the sequence of sets Sk = {x ∈ S | α ≤ f(x) ≤ α + εk} for k ∈ N. By the
definition of infimum, Sk is non-empty for each k, so we can select a point x(k) ∈ Sk for each k. Since
S is bounded, there exists a convergent subsequence of x(k) which converges to a point x∗. Since S is
closed, x∗ ∈ S. By continuity of f , and because α ≤ f(x(k)) ≤ α + εk, we have that the values f(x(k))
(taken on the convergent subsequence) converge to α. Thus x∗ is a point where f attains its minimum
value f(x∗) = α (see Fig. 6.4). 2

Figure 6.4: Weierstraß’ Theorem 6.2.3.

6.2.4 Proposition
Given a non-empty, closed convex set S ⊆ Rn and a point x∗ ̸∈ S, there exists a unique point x′ ∈ S
with minimum distance from x∗. Furthermore, x′ is the minimizing point if and only if for all x ∈ S we
have (x∗ − x′)⊤(x− x′) ≤ 0.

Proof. Let x′ ∈ S be the point minimizing f(x) = ||x∗−x|| subject to x ∈ S (which exists by Weierstraß
Theorem 6.2.3). To show that it is unique, notice first that f is convex: for λ ∈ [0, 1] and x1, x2 ∈ S
we have f(λx1 + (1 − λ)x2) ≤ f(λx1) + f((1 − λ)x2) = λf(x1) + (1 − λ)f(x2) by triangular inequality
and homogeneity of the norm. Suppose now y ∈ Rn such that f(y) = f(x′). Since x′, y ∈ S and S

is convex, the point z = x′+y
2 is in S. We have f(z) ≤ f(x′)

2 + f(y)
2 = f(x′). Since f(x′) is minimal,

f(z) = f(x′). Furthermore, f(z) = ||x∗−z|| = ||x∗− x′+y
2 || = ||

x∗−x′

2 + x∗−y
2 ||. By the triangle inequality,

f(z) ≤ 1
2 ||x

∗ − x′|| + 1
2 ||x

∗ − y||. Since equality must hold as f(z) = f(x′) = f(y), vectors x∗ − x′ and
x∗ − y must be collinear, i.e. there is θ ∈ R such that x∗ − x′ = θ(x∗ − y). Since f(x′) = f(y), |θ| = 1.
Supposing θ = −1 we would have x∗ = x′+y

2 , which by convexity of S would imply x∗ ∈ S, contradicting
the hypothesis. Hence θ = 1 and x′ = y as claimed. For the second part of the proposition, assume x′

6.2. CONDITIONS FOR LOCAL OPTIMALITY 93

is the minimizing point in S and suppose there is x ∈ S such that (x∗ − x′)⊤(x− x′) > 0. Take a point
y ̸= x′ on the segment x, x′. Since S is convex, y ∈ S. Furthermore, since y − x′ is collinear to x − x′,
(x∗ − x′)⊤(y−x′) > 0. Thus, the angle between y−x′ and x∗−x′ is acute. Choose y close enough to x′ so
that the largest angle of the triangle T having x∗, x′, y as vertices is the angle in y (such a choice is always
possible) as in Fig. 6.5. By elementary geometry, the longest side of such a triangle is the segment x∗, x′
opposite to the angle in y. This implies ||x∗ − y|| < ||x∗ − x′||, which is a contradiction, as x′ was chosen
to minimize the distance from x∗. Conversely, suppose for all x ∈ S we have (x∗ − x′)⊤(x − x′) ≤ 0.
This means that the angle in x′ is obtuse (and hence it is the largest angle of T), and consequently the
opposite side x, x∗ is longer than the side x′, x∗. 2

Figure 6.5: Second part of the proof of Prop. 6.2.4: the point y can always be chosen close enough to
x′ so that the angle in the vertex y is obtuse. The figure also shows that it is impossible for x′ to be
the minimum distance point from x∗ if the angle in x′ is acute and the set S containing points x′, x, y is
convex.

6.2.5 Proposition (Separating hyperplane)
Given a non-empty, closed convex set S ⊆ Rn and a point x∗ ̸∈ S, there exists a separating hyperplane
h⊤x = d (with h ≥ 0) such that h⊤x ≤ d for all x ∈ S and h⊤x∗ > d.

Proof. Let x′ be the point of S having minimum (strictly positive, since x∗ ̸∈ S) distance from x∗. Let
y = x′+x∗

2 be the midpoint between x′, x∗. The plane normal to the vector x∗ − y and passing through y
separates x∗ and S (see Fig. 6.6). 2

Figure 6.6: Prop. 6.2.5: separating hyperplane between a point x∗ and a convex set S.

94 CHAPTER 6. CONVEX ANALYSIS

6.2.6 Theorem (Farkas’ Lemma)
Let A be an m × n matrix and c be a vector in Rn. Then exactly one of the following systems has a
solution: (a) Ax ≤ 0 and c⊤x > 0 for some x ∈ Rn; (b) µ⊤A = c⊤ and µ ≥ 0 for some µ ∈ Rm.

Proof. Suppose system (b) has a solution. Then µ⊤Ax = c⊤x; supposing Ax ≤ 0, since µ ≥ 0, we have
c⊤x ≤ 0. Conversely, suppose system (b) has no solution. Let Im+(A) = {z ∈ Rn | z⊤ = µ⊤A,µ ≥ 0};
Im+(A) is convex, and c ̸∈ Im+(A). By Prop. 6.2.5, there is a separating hyperplane h⊤x = d such that
h⊤z ≤ d for all z ∈ Im+(A) and h⊤c > d. Since 0 ∈ Im+(A), d ≥ 0, hence h⊤c > 0. Furthermore,
d ≥ z⊤h = µ⊤Ah for all µ ≥ 0. Since µ can be arbitrarily large, µ⊤Ah ≤ d implies Ah ≤ 0. Take x = h;
then x solves system (a). 2

We can finally consider the necessary conditions for local minimality subject to inequality constraints:
Consider the following NLP:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0,

}
(6.3)

where f : Rn → R and g : Rn → Rm are C1 functions. A constrained optimum of Eq. (6.3) is an optimum
x∗ of f(x) such that g(x∗) = 0 — a condition described as the constraint g being active at x∗. It can be
shown that if x∗ is a constrained minimum then there is no nonzero feasible descent direction at x∗ (see
[34], p. 141). We shall define a feasible direction at x∗ as a direction vector y such that (∇g(x∗))⊤y ≤ 0,
and a nonzero descent direction at x∗ as a direction vector y such that (−∇f(x∗))⊤y > 0.

6.2.7 Theorem (KKT)
If x∗ is a constrained minimum of Eq. (6.3), I is the maximal subset of {1, . . . ,m} such that gi(x∗) = 0
for all i ∈ I, and ∇ḡ is a linearly independent set of vectors (where ḡ = {gi(x∗) | i ∈ I}), then −∇f(x∗)
is a conic combination of the vectors in ∇ḡ, i.e. there exist scalars λi for all i ∈ I such that the following
conditions hold:

∇f(x∗) +
∑
i∈I

λi∇gi(x∗) = 0 (6.4)

∀i ∈ I (λi ≥ 0). (6.5)

Proof. Since x∗ is a constrained minimum and ∇ḡ is linearly independent, there is no nonzero feasible
descent direction at x∗ such that (∇ḡ(x∗))⊤y ≤ 0 and −∇f(x∗)y > 0. By a direct application of Farkas’
Lemma 6.2.6, there is a vector λ ∈ R|I| such that ∇(ḡ(x∗))λ = −∇f(x∗) and λ ≥ 0. 2

The KKT necessary conditions (6.4)-(6.5) can be reformulated to the following:

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) = 0 (6.6)

∀i ≤ m (λigi(x
∗) = 0) (6.7)

∀i ≤ m (λi ≥ 0). (6.8)

This is easily verified by defining λi = 0 for all i ̸∈ I. Conditions (6.7) are called complementary slackness
conditions, and they express the fact that if a constraint is not active at x∗ then its corresponding
Lagrange multiplier is 0. A point x∗ satisfying the KKT conditions is called a KKT point.

6.3. DUALITY 95

6.2.3 General NLPs

Consider now a general NLP with both inequality and equality constraints:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0
h(x) = 0,

 (6.9)

where f : Rn → R, g : Rn → Rm and h : Rn → Rp are C1 functions.

By applying theorems 6.2.1 and 6.2.7, we can define the Lagrangian of Eq. (6.9) by the following:

L(x, λ, µ) = f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

µihi(x), (6.10)

and the corresponding KKT conditions as:

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +
p∑
i=1

µi∇hi(x∗) = 0

λigi(x
∗) = 0 ∀i ≤ m
λi ≥ 0 ∀i ≤ m.

 (6.11)

In order to derive the general KKT conditions (6.11), it is sufficient to sum Eq. (6.4) and (6.6) and then
divide by 2.

This completes the discussion as regards the necessary conditions for local optimality. If a point x∗ is
a KKT point, the objective function is convex in a neighbourhood of x∗, and the objective direction is
minimization, then x∗ is a local minimum These are the sufficient conditions which are used in practice
in most cases. It turns out, however, that they are not the most stringent conditions possible: many
variants of convexity have been described in order to capture wider classes of functions for which all local
optima are also global.

6.2.8 Definition
Consider a function f : X ⊆ Rn → Rn.

1. f is quasiconvex if for all x, x′ ∈ X and for all λ ∈ [0, 1] we have:

f(λx+ (1− λ)x′) ≤ max{f(x), f(x′)}.

2. f is pseudoconvex if for all x, x′ ∈ X such that f(x′) < f(x) we have:

(∇f(x))⊤(x′ − x) < 0.

We state the sufficiency conditions in the following theorem; the proof can be found in [34, p. 155].

6.2.9 Theorem
Let x∗ be a KKT point of Eq. (6.3), I be as in Thm. 6.2.7, and X be the feasible region of a relaxation
of Eq. (6.9) where all constraints gi such that i ̸∈ I have been discarded from the formulation. If there is
a ball S(x∗, ε) with ε > 0 such that f is pseudoconvex over S(x∗, ε) ∩X and gi are differentiable at x∗
and quasiconvex over S(x∗, ε) ∩X for all i ∈ I, then x∗ is a local minimum of Eq. (6.9).

6.3 Duality

Given an MP formulation P , the term “dual” often refers to an auxiliary formulation Q such that the
decision variables of P are used to index the constraints of Q, and the constraints of P are used to index

96 CHAPTER 6. CONVEX ANALYSIS

the variables of Q. For minimization problems, this is shown by setting up a special saddle problem can
sometimes be re-cast in terms of an ordinary MP where variables and constraint indices are swapped
(this is not the only relationship between primal and dual formulations, of course). Duality is important
because of weak and strong duality theorems. The former guarantees that dual formulations provide
lower bounds to primal minimization formulations. The latter guarantees that the “gap” between this
lower bound and the optimal objective function value of the original primal formulation is zero.

In the following, we shall employ the terms primal variables, dual variables, primal constraints, dual
constraints, primal objective, dual objective to denote variables, constraints and objectives in the primal
and dual problems in primal/dual problem pairs.

6.3.1 The Lagrangian function

The primordial concept in duality theory is the Lagrangian function (see Eq. (6.2)) of a given formulation,
which, for a problem

min{f(x) | g(x) ≤ 0} (6.12)
is given by L(x, y) = f(x)+yg(x). The row vector y ∈ Rm is called the vector of the Lagrange multipliers.

The Lagrangian aggregates the constraints on the objective, penalizing them by means of the multi-
pliers. The solution x∗(y) (itself a function of the multiplier vector y) to minx L(x, y) must surely have
g(x∗(y)) ≤ 0 as long as y ≥ 0, since we are minimizing w.r.t. x (the term yg(x) must become negative for
L to attain its minimum). In other words, the solution x∗(y) is feasible in the original problem Eq. (6.12).
We write L(y) = minx L(x, y) = minx(f(x) + yg(x)).

It is easy to show that for all y ≥ 0, L(y) is a lower bound to the optimal objective function value f∗
of the original formulation. Thus, it makes sense to find the best (i.e. maximum) achievable lower bound.
This leads us to maximize L(y) with respect to y and subject to y ≥ 0. The Lagrangian dual problem of
Eq. (6.12) is a saddle problem defined as:

p∗ = max
y≥0

min
x
L(x, y). (6.13)

The considerations above show that
p∗ ≤ f∗ (6.14)

which is known as the weak duality theorem.

6.3.2 The dual of an LP

Consider the LP in standard form

min{c⊤x | Ax = b ∧ x ≥ 0}. (6.15)

Its Lagrangian function is L(x, y) = c⊤x+ y(b−Ax). We have

max
y≥0

min
x
L(x, y) =

= max
y≥0

min
x

(c⊤x+ y(b−Ax)) =

= max
y≥0

min
x

(c⊤x+ yb− yAx) =

= max
y≥0

(yb+min
x

(c⊤ − yA)x).

In general, if y increases, the expression above may become unbounded. Assume therefore that the
equation yA = c⊤ holds; this implies min

x
(c⊤ − yA)x = min

x
0 = 0, and so the above reduces to finding

max
y≥0,yA=c⊤

yb.

6.3. DUALITY 97

We define the above maximization problem to be the dual of the LP Eq. (6.15), which is usually written
as follows:

maxy yb
yA = c⊤

y ≥ 0.

 (6.16)

6.3.2.1 Alternative derivation of LP duality

Eq. (6.16) can also be achieved as follows: we seek the best possible lower bound for Eq. (6.15) by
considering a weighted sum of the constraints Ax ≥ b, using weights y1, . . . , ym. We obtain yAx ≥ yb,
which are only valid if y ≥ 0. To get a lower bound, we need yb ≤ c⊤x: since yAx ≥ yb, we must require
yA = c⊤. To make the lower bound tightest, we maximize yb subject to y ≥ 0 and yA = c⊤, obtaining
Eq. (6.16) again.

6.3.2.2 Economic interpretation of LP duality

Consider the diet problem of Sect. 2.2.7.1. Its dual, max{yb | yA ≤ c⊤ ∧ y ≥ 0}, can be interpreted as
follows. A megalomaniac pharmaceutical firm wishes to replace human food with nutrient pills: it wishes
to set the prices of the pills as high as possible, whilst being competitive with the cost of the foods. In
this setting, y are the prices of the m nutrient pills, b is the quantity of nutrients required, and c are the
costs of the food.

6.3.3 Strong duality

In this section we shall prove the strong duality theorem for cNLP: namely that for any cNLP Eq. (6.12)
having feasible region with a non-empty interior, strong duality holds:

p∗ = f∗ (6.17)

holds. The condition on the non-emptiness of the interior of the feasible region is called Slater’s constraint
qualification, and it asserts that:

∃x′ (g(x′) < 0). (6.18)

6.3.1 Theorem (Strong Duality)
Consider a cNLP Eq. (6.12) s.t. Eq. (6.18) holds. Then we have p∗ = f∗.

Proof. Consider the sets A = {(λ, t) | ∃x (λ ≥ g(x) ∧ t ≥ f(x))} and B = {(0, t) | t < f∗}. It is easy
to show that A ∩ B = ∅, for otherwise f∗ would not be optimal. Furthermore, both A and B are convex
sets. Thus, there must be a separating hyperplane defined by (u, µ) ̸= 0 and α ∈ R such that

∀(λ, t) ∈ A (uλ+ µt ≥ α) (6.19)
∀(λ, t) ∈ B (uλ+ µt ≤ α). (6.20)

Since both λ and t can increase indefinitely, in order for the expression uλ+ µt to be bounded below in
Eq. (6.19), we must have

u ≥ 0, µ ≥ 0. (6.21)

Condition (6.20) is equivalent to µt ≤ α for all t < f∗, that is µf∗ ≤ α, since λ = 0 in B. Combining the
latter with (6.19) we conclude that for all x (in particular, for all feasible x),

ug(x) + µf(x) ≥ µf∗. (6.22)

98 CHAPTER 6. CONVEX ANALYSIS

Suppose now that µ = 0: this implies, by Eq. (6.22), that ug(x) ≥ 0 for all feasible x. In particular, by
Eq. (6.18) there exists x′ feasible such that g(x′) < 0, which implies u ≤ 0, and by Eq. (6.21), this means
u = 0, yielding (u, µ) = 0 which contradicts the separating hyperplane theorem (Prop. 6.2.5). Thus µ > 0
and we can set y = 1

µu in Eq. (6.22):
f(x) + yg(x) ≥ f∗. (6.23)

This implies that for all feasible x we have L(x, y) ≥ f∗. The result follows from the weak duality theorem
Eq. (6.14). 2

The above proof applies to LPs Eq. (6.15) as a special case.

Chapter 7

Linear Programming

This chapter is devoted to LP. We summarize the main LP solution methods: simplex, ellipsoid, and
interior point.

7.1 The Simplex method

The simplex method1 is the fundamental algorithm used in LP. We remark straight away that it is one
of the practically most efficient algorithms for LP, although all known implementations have exponential
worst-case behaviour.

The simplex algorithms rests on four main observations.

• The LP in canonical form
min{c⊤x | Ax ≤ b} (7.1)

is equivalent to minimizing a linear form over a polyhedron.

• The minimum of a linear form over a polyhedron is attained at a vertex of the polyhedron (cf. Thm. 7.1.9):
since there are finitely many vertices in a polyhedron in Rn, there exists a finite search procedure
to solve the (continuous) LP.

• Verifying whether a vertex of a polyhedron is a local minimum w.r.t. a linear form is easy: it suffices
to check that all adjacent vertices have higher associated objective function value.

• Polyhedra are convex sets and linear forms are convex functions, so any local minimum is also a
global minimum.

Obviously, corresponding statements can be made for maximization.

The simplex algorithm starts from a feasible polyhedron vertex and moves to an adjacent vertex with
lower associated objective function value. When no such vertex exists, the vertex is the minimum and the
algorithm terminates. The simplex algorithm can also be used to detect unboundedness and infeasibility.

1The simplex method was invented by G. Dantzig in the late forties [89]; rumour has it that the young Dantzig approached
J. Von Neumann to present his results, and met with the response that his algorithm was correct but not very innovative.
Dantzig himself, for the very same reason, chose not to immediately publish his algorithm in a scientific journal paper,
although, to date, the simplex algorithm is the most famous algorithm in Operations Research and one of the most famous
in the whole field of applied mathematics.

99

100 CHAPTER 7. LINEAR PROGRAMMING

7.1.1 Geometry of Linear Programming

The material in this section is taken from [239, 111]. Consider the LP (in standard form)

min
x∈P

c⊤x (7.2)

where P is the polyhedron {x ∈ Rn+ | Ax = b} and c ∈ Rn.

7.1.1 Definition
A set {Ai | i ∈ β} of m linearly independent columns of A is a basis of A. The variables {xi | i ∈ β}
corresponding to the indices β of the basis are called basic variables. All other variables are called nonbasic
variables.

Defn. 7.1.1 suggests that we can partition the columns of A in (B|N) where B is the nonsingular, square
matrix of the basic columns and N are the nonbasic columns. Correspondingly, we partition the variables
x into (xB , xN).

7.1.2 Definition
Given a polyhedron P = {x ∈ Rn+ | Ax = b}, the feasible vectors x having xB = B−1b ≥ 0 and xN = 0
are called basic feasible solutions (bfs) of P .

7.1.3 Lemma
Given a polyhedron P = {x ∈ Rn+ | Ax = b} and a bfs x∗ for P , there exists a cost vector c ∈ Rn such
that x∗ is the unique optimal solution of the problem min{c⊤x | x ∈ P}.

Proof. Let cj = 0 for all j such that xj is a basic variable, and cj = 1 otherwise. 2

The most important result in this section states that bfs’s correspond to vertices of P .

7.1.4 Theorem
Given a polyhedron P = {x ∈ Rn+ | Ax = b}, any bfs for P is a vertex of P , and vice versa.

Proof. (⇒) Let x∗ = (x∗B , 0), with x∗B ≥ 0, be a bfs for P . By Lemma 7.1.3 there is a cost vector c such
that for all x ∈ P , x∗ is the unique vector such that c⊤x∗ ≤ c⊤x for all x ∈ P . Thus, the hyperplane
c⊤(x−x∗) = 0 intersects P in exactly one point, namely x∗. Hence x∗ is a vertex of P . (⇐) Assume now
that x∗ is a vertex of P and suppose, to get a contradiction, that it is not a bfs. Consider the columns Aj
of A such that j ∈ β = {j ≤ n | x∗j > 0}. If Aj are linearly independent, we have immediately that x∗ a
bfs for P , which contradicts the hypothesis. Thus, suppose Aj are linearly dependent. This means that
there are scalars dj , not all zero, such that

∑
j∈β djAj = 0. On the other hand, since x∗ satisfies Ax = b,

we have
∑
j∈β xjAj = b. Thus, for all ε > 0, we obtain

∑
j∈β(xj−εdj)Aj = b and

∑
j∈β(xj+εdj)Aj = b.

Let x′ have components xj − εdj for all j ∈ β and 0 otherwise, and x′′ have components xj + εdj for all
j ∈ β and 0 otherwise. By choosing a small enough ε we can ensure that x′, x′′ ≥ 0. Since Ax′ = Ax′′ = b
by construction, both x′ and x′′ are in P . Thus, x∗ = 1

2x
′ + 1

2x
′′ is a strict convex combination of two

points of P , hence by Lemma 6.1.5 it cannot be a vertex of P , contradicting the hypothesis. 2

We remark that Thm. 7.1.4 does not imply that there is a bijection between vertices and bfs. In fact,
multiple bfs may correspond to the same vertex, as Example 7.1.5 shows.

7.1.5 Example
Consider the trivial LP min{x1 | x1 + x2 ≤ 0 ∧ x1, x2 ≥ 0}. The feasible polyhedron P ≡ {(x1, x2) ≥
0 | x1 + x2 ≤ 0} = {0} consists of a single vertex at the origin. On the other hand, we can partition the
constraint matrix (1 1) so that the basic column is indexed by x1 (and the nonbasic by x2) or, conversely,

7.1. THE SIMPLEX METHOD 101

so that the basic column is indexed by x2 (and the nonbasic by x1): both are bfs of the problem, both
correspond to a feasible vertex, but since there is only one vertex, obviously both must correspond to the
origin.

7.1.6 Remark
Geometrically, multiple bfs corresponding to a single vertex is a phenomenon known as degeneracy, which
corresponds to more than n constraint hyperplanes passing through a single point (where n is the number
of variables). Degenerate vertices correspond to bfs having strictly less thanm nonzero components (where
m is the number of constraints).

In the case of our example, n = 2 but there are three lines passing through the (only) feasible vertex
(0, 0): x2 = 0, x1 = 0 and x1 + x2 = 0.

The event of more than n hyperplanes intersecting in a single point has probability zero if their
coefficients are sampled from a uniform distribution: this might lead the reader to believe that degeneracy
is a rare occurrence. This, however, is not the case: many formulations put together by humans are
degenerate. This is sometimes explained by noticing that LPs are used to model technological processes
conceived by humans, which — according to a human predisposition to simplicity — involve a fair amount
of symmetry, which, in turn, is likely to generate degeneracy.

7.1.7 Exercise
“A bfs is degenerate iff it has fewer than m nonzero components”: is this statement true or false?

7.1.8 Exercise
Prove the statement “degenerate vertices correspond to bfs having strictly less than m nonzero compo-
nents” in Rem. 7.1.6.

By the following theorem, in order to solve an LP all we have to do is compute the objective function
at each vertex of the feasible polyhedron.

7.1.9 Theorem
Consider Eq. (7.2). If P is non-empty, closed and bounded, there is at least one bfs which solves the
problem. Furthermore, if x′, x′′ are two distinct solutions, any convex combination of x′, x′′ is also a
solution.

Proof. Since the polyhedron P is closed and bounded, the function f(x) = c⊤x attains a minimum on
P , say at x′ (and by convexity of P , x′ is the global minimum). Since x′ ∈ P , x′ is a convex combination

of the vertices v1, . . . , vp of P , say x′ =
p∑
i=1

λivi with λi ≥ 0 for all i ≤ p and
p∑
i=1

λi = 1. Thus,

c⊤x′ =

p∑
i=1

λic
⊤vi.

Let j ≤ p be such that c⊤vj ≤ c⊤vi for all i ≤ p. Then

p∑
i=1

λic
⊤vi ≥ c⊤vj

p∑
i=1

λi = c⊤vj ,

whence c⊤x′ ≥ c⊤vj . But since c⊤x′ is minimal, we have c⊤x′ = c⊤vj , which implies that there exists a
vertex of P , which by Thm. 7.1.4 corresponds to a bfs, having mimum objective function value; in other
words, there is a bfs which solves the problem. For the second part of the theorem, consider a convex
combination x = λx′ + (1 − λ)x′′ with λ ≥ 0. We have c⊤x = λc⊤x′ + (1 − λ)c⊤x′′. Since x′, x′′ are
solutions, we have c⊤x′ = c⊤x′′, and hence

c⊤x = c⊤x′(λ+ (1− λ)) = c⊤x′,

102 CHAPTER 7. LINEAR PROGRAMMING

which shows that x is also a solution. 2

Thm. 7.1.9 states that P should be closed and bounded, so it requires that P should in fact be a
polytope (polyhedra may be unbounded). In fact, this theorem can be modified [43, Prop. 2.4.2] to apply
to unbounded polyhedra by keeping track of the unboundedness directions (also called extreme rays).

7.1.2 Moving from vertex to vertex

Since vertices of a polyhedron correspond to bfs by Thm. 7.1.4, and a bfs has at most m nonzero
components out of n, there are at worst (nm) vertices in a given polyhedron. Thus, unfortunately,
polyhedra may possess a number of vertices which is exponential in the size of the instance, so the above
approach is not practical.

However, it is possible to look for the optimal vertex by moving from vertex to vertex along the edges
of the polyhedron, following the direction of decreasing cost, and checking at each vertex if an optimality
condition is satisfied: this is a summary description of the simplex method. In order to fully describe it,
we need an efficient way of moving along a path of edges and vertices.

Consider a bfs x∗ for P = {x ≥ 0 | Ax = b} and let β be the set of indices of the basic variables. Let
Ai be the i-th column of A. We have: ∑

i∈β

x∗iAi = b. (7.3)

Now, fix a j ̸∈ β; Aj is a linear combination of the Ai in the basis. Thus, there exist multipliers xij such
that for all j ̸∈ β, ∑

i∈β

xijAi = Aj . (7.4)

Multiply Eq. (7.4) by a scalar θ and subtract it from Eq. 7.3 to get:∑
i∈β

(x∗i − θxij)Ai + θAj = b. (7.5)

Now suppose we want to move (by increasing θ from its initial value 0) from the current bfs to another
point inside the feasible region. In order to move to a feasible point, we need x∗i − θxij ≥ 0 for all i ∈ β.
If xij ≤ 0 for all i, then θ can grow indefinitely (this means the polyhedron P is unbounded). Assuming
a bounded polyhedron, we have a bounded θ > 0. This means

θ = min
i∈β

xij>0

x∗i
xij

. (7.6)

If θ = 0 then there is i ∈ β such that x∗i = 0. This means that the bfs x∗ is degenerate (see Example 7.1.5
and Remark 7.1.6). We assume a nondegenerate x∗ in this summary treatment. Let k ∈ β be the index
minimizing θ in the expression above. The coefficient of Ak in Eq. 7.5 becomes 0, whereas the coefficient
of Aj is nonzero.

7.1.10 Proposition
Let x∗ be a bfs, j ̸∈ β, xij be as in Eq. (7.5) for all i ∈ β and θ be as in Eq. (7.6). The point
x′ = (x′1, . . . , x

′
n) defined by

x′i =

 x∗i − θxij ∀i ∈ β ∖ {k}
θ i = k
0 otherwise

is a bfs.

7.1. THE SIMPLEX METHOD 103

Proof. First notice that x′ is a feasible solution by construction. Secondly, for all i ̸∈ β, i ̸= we have
x′i = x∗i = 0 and for all i ∈ β, i ̸= k we have x′i ≥ 0. By the definition of x′, we have x′j ≥ 0 and
x′k = 0. Thus, if we define β′ = β\{k} ∪ {j}, it only remains to be shown that {xi | i ∈ β′} is a set
of basic variables for A. In other words, if we partition the columns of A according to the index set β′,
obtaining A = (B′|N ′), we have to show that B′ is nonsingular. Notice (B|N) = A = (B′|N ′) implies
B−1A = (I|B−1N) = (B−1B′|B−1N ′) (here the equality sign is considered “modulo the column order”:
i.e. the two matrices are equal when considered as sets of columns). Eq. (7.4) can be stated in matrix
form as BX⊤ = N where X is the (n−m)×m matrix whose (p, q)-th entry is xpq, thus B−1N = X⊤.
By construction of B′ we have B′ = B\{Ak}∪{Aj}. Thus, B−1B′ = (e1, . . . , ek−1, B

−1Aj , ek+1, . . . , en),
where ei is the vector with i-th component set to 1 and the rest set to zero, and B−1Aj is the j-th
column of X, i.e. (x1j , . . . , xnj)

⊤. Hence, |det(B−1B′)| = |xkj | > 0, since θ > 0 implies xkj ̸= 0. Thus,
detB′ ̸= 0 and B′ is nonsingular. 2

Intuitively, Thm. 7.1.10 says that any column Aj outside the basis can replace a column Ak in the
basis if we choose k as the index that minimizes θ in Eq. 7.6. Notice that this implies that the column
Ak exiting the basis is always among those columns i in Eq. 7.4 which have multiplier xij > 0. In other
words, a column Aj can replace column Ak in the basis only if the linear dependence of Aj on Ak is
nonzero (Ak is a “nonzero component” of Aj). Informally, we say that xj enters the basis and xk leaves
the basis.

In order to formalize this process algorithmically, we need to find the value of the multipliers xij . By
the proof of Prop. 7.1.10, xij is the (i, j)-th component of a matrix X satisfying X⊤ = B−1N . Knowing
xij makes it possible to calculate β′ and the corresponding partition B′, N ′ of the columns of A. The
new bfs x′ can be obtained as (B′)−1b, since Ax′ = b implies (B′|N ′)x′ = b and hence Ix′ = (B′)−1b
(recall N ′x′ = 0 since x′ is a bfs).

7.1.3 Decrease direction

All we need now is a way to identify “convenient” variables to enter the basis. In other words, from
a starting bfs we want to move to other bfs (with the method described above) so that the objective
function value decreases. To this end, we iteratively select the variable xj having the most negative
reduced cost to enter the basis (the reduced costs are the coefficients of the objective function expressed
in terms of the current nonbasic variables). Writing c as (cB , cN) according to the current basic/nonbasic
partition, the reduced costs c̄⊤ are obtained as c⊤ − cBB−1A. The algorithm terminates when there is
no negative reduced cost (i.e. no vertex adjacent to the current solution has a smaller objective function
value). This criterion defines a local optimum. Since LP problems are convex, any local minimum is also
a global one by Thm. 6.1.7.

7.1.4 Bland’s rule

When a vertex is degenerate, an application of the simplex algorithm as stated above may cause the
algorithm to cycle. This happens because a reduced cost in the objective function identifies a variable
xj to enter the basis, replacing xk, with (degenerate) value x′j = θ = 0. This results in a new basis
yielding exactly the same objective function value as before; at the next iteration, it may happen that
the selected variable to enter the basis is again xk. Thus, the current basis alternatively includes xk and
xj without any change to the objective function value. It can be shown that the following simple rule
entirely avoids these situations: whenever possible, always choose the variable having the lowest index
for entering/leaving the basis [67, Thm. 3.3].

104 CHAPTER 7. LINEAR PROGRAMMING

7.1.5 Simplex method in matrix form

Here we give a summary of the algebraic operations involved in a simplex algorithm step applied to a LP
in standard form

min{c⊤x | Ax = b ∧ x ≥ 0}. (7.7)

Suppose we are given a current bfs x ordered so that variables xB = (x1, . . . , xm, 0, . . . , 0) are basic and
xN = (0, . . . , 0, xm+1, . . . , xn) are nonbasic. We write A = B +N where B consists of the basic columns
1, . . .m of A and 0 in the columns m+ 1, . . . n, and N consists of 0 in the first m columns and then the
nonbasic columns m+ 1, . . . n of A.

1. Express the basic variables in terms of the nonbasic variables. From Ax = b we get BxB+NxN = b.
Let B−1 be the inverse of the square submatrix of B consisting of the first m columns (i.e. the basic
columns). We pre-multiply by B−1 to get:

xB = B−1b−B−1NxN . (7.8)

2. Select an improving direction. Express the objective function in terms of the nonbasic variables:
c⊤x = c⊤BxB + c⊤NxN = c⊤B(B

−1b−B−1NxN) + c⊤NxN , whence:

c⊤x = c⊤BB
−1b+ c̄⊤NxN , (7.9)

where c̄⊤N = c⊤N − c⊤BB−1N are the reduced costs. If all the reduced costs are nonnegative there
is no nonbasic variable which yields an objective function decrease if inserted in the basis, since
the variables must also be nonegative. Geometrically speaking it means that there is no adjacent
vertex with a lower objective function value, which in turn, by Thm. 6.1.7, means that we are at an
optimum, and the algorithm terminates. Otherwise, select an index h ∈ {m+1, . . . n} of a nonbasic
variable xh with negative reduced cost (or, as in Section 7.1.4, select the least such h). We now
wish to insert xh in the basis by increasing its value from its current value 0. Geometrically, this
corresponds to moving along an edge towards an adjacent vertex.

3. Determine the steplength. Inserting xh in the basis implies that we should determine an index
l ≤ m of a basic variable which exits the basis (thereby taking value 0). Let b̄ = B−1b, and let
āij be the (i, j)-th component of B−1N (notice āij = 0 for j ≤ m). By Eq. (7.8) we can write

xi = b̄i−
n∑

j=m+1

āijxj for all i ≤ m. Since we only wish to increase the value of xh and all the other

nonbasic variables will keep value 0, we can write xi = b̄i − āihxh. At this point, increasing the
value of xh may impact on the feasibility of xi only if it becomes negative, which can only happen
if āih is positive. Thus, we get xh ≤ b̄i

āih
for each i ≤ m and āih > 0, and hence:

l = argmin{ b̄i
āih
| i ≤ m ∧ āih > 0} (7.10)

xh =
b̄l
ālh

. (7.11)

The above procedure fails if āih ≤ 0 for all i ≤ m. Geometrically, it means that xh can be increased
in value without limit: this implies that the value of the objective function becomes unbounded. In
other words, the problem is unbounded.

7.1.6 Sensitivity analysis

Material from this section has been taken from [111]. We write the optimality conditions as follows:

b̄ = B−1b ≥ 0 (7.12)
c̄⊤ = c⊤ − c⊤BB−1A ≥ 0. (7.13)

7.1. THE SIMPLEX METHOD 105

Eq. (7.12) expresses primal feasibility and Eq. (7.13) expresses dual feasibility.

Suppose now we have a variation in b, say b → b + ∆b: Eq. (7.12) becomes B−1b ≥ −B−1∆b. This
system defines a polyhedron in ∆b where the optimal basis does not change. The variable values and
objective function obviously change. The variation of the objective function is (c⊤BB

−1)∆b = y∗∆b, where
y∗ are the optimal dual variable values: these, therefore, can be seen to measure the sensitivity of the
objective function value to a small change in the constraint coefficients.

7.1.7 Simplex variants

We briefly describe some of the most popular variants of the simplex algorithm. Material in this section
has been taken from [239, 111].

7.1.7.1 Revised Simplex method

The revised simplex mehod is basically a smart storage and update scheme for the data of the current
iteration of the simplex algorithm. In practice, we only need to store B−1, as the rest of the data can be
obtained via premultiplication by B−1. The disadvantages of this method reside in the high numerical
instability of updating B−1 directly. This issue is usually addressed by storing B−1 in various factorized
forms.

7.1.7.2 Two-phase Simplex method

If no starting bfs is available for Eq. (7.7), we can artificially look for one by solving the auxiliary LP:

min
x,y

1y

s.t. Ax+ yI = b
x ∈ Rn+
y ∈ Rm+

where 1 is the row vector consisting of all 1’s. Here, the bfs where B = I is immediately evident (all
x are nonbasic, all y are basic), and if Eq. (7.7) is feasible, the optimal objective function value of the
auxiliary LP will be 0 with y = 0, yielding a bfs in the x variables only. This solution can then be used
as a starting bfs for the original LP.

7.1.7.3 Dual Simplex method

Another way to deal with the absence of a starting bfs is to apply the dual simplex method. What
happens in the (primal) simplex algorithm is that we maintain primal feasibility by moving from vertex
to vertex, while trying to decrease the objective function until this is no longer possible. In the dual
simplex algorithm, we maintain the optimality of the objective function (in the sense that the current
dual simplex objective function value is always a lower bound with respect to the primal minimum value)
whilst trying to achieve feasibility. We use the same notation as in Section 7.1.5.

We start with a (possibly infeasible) basic primal solution where all the reduced costs are nonnegative.
If b̄ = B−1b = xB ≥ 0 the algorithm terminates: if xB is primal feasible, then we have an optimal basis.
Otherwise, the primal problem is infeasible. If b ̸≥ 0, we select l ≤ m such that b̄l < 0. We then find
h ∈ {m + 1, . . . , n} such that ālh < 0 and alh is minimum among { c̄j

|ālj | | j ≤ n ∧ ālj < 0} (this ensures
that the reduced costs will stay nonnegative), and we swap xl with xh in the current basis. If ālj ≥ 0 for
all j ≤ n, then the primal problem is infeasible.

106 CHAPTER 7. LINEAR PROGRAMMING

The advantage of the dual simplex method is that we can add cutting planes (valid inequalities) to
the main data structure of the simplex algorithm (called simplex tableau) during the execution of the
algorithm. A valid cut should make the current optimal solution infeasible, but since dual simplex bases
are not primal feasible, this is not an issue.

7.1.8 Column generation

It may sometimes happen that the number of variables in a LP is much larger than the number of
constraints. Consequently, while the basis has a manageable cardinality, the computational costs of
running the simplex algorithm on the LP are huge. If there exists an efficient procedure for finding the
reduced cost of minimum value, we can insert columns in the simplex tableau as the need arises, thus
eliminating the need of dealing with all variables at once. The problem of determining the reduced cost
of minimum value (of a variable that is not yet in the simplex tableau) is called pricing problem. Column
generation techniques are only useful if the pricing problem can be solved efficiently. The procedure stops
when the pricing problem determines a minimum reduced cost of non-negative value.

One example of application of column generation is the multicommodity network flow problem formu-
lated so that each variable corresponds to a path on the network. There are exponentially many paths,
but the pricing problem is a shortest path problem, which can be solved very efficiently.

7.2 Polytime algorithms for LP

Material for this section (except for Sect. 7.3) has been taken from [34, 112, 282, 149, 55].

L. Khachiyan showed in 1979 that finding an optimal solution to a LP problem has polynomial worst-
case complexity. Even though Kachiyan’s ellipsoid algorithm has polynomial worst-case complexity, it
does not work well in practice. In 1984, Karmarkar presented another polynomial algorithm for solving
LP which was claimed to have useful practical applicability. Gill et al. showed in 1985 that Karmarkar’s
algorithm was in fact an IPM with a log-barrier function applied to an LP. IPMs had been applied to
nonlinear problems with considerable success in the late 60’s [110]. This spawned considerable interest
in IPMs applied to LP; so-called barrier solvers for LP were incorporated in most commercial software
codes [144]. Barrier solvers compete well with simplex-based implementations especially on large-scale
LPs. We look at these methods below.

7.3 The ellipsoid algorithm

Material for this section has been taken from [236, 159, 239]. The ellipsoid algorithm actually solves a
different problem, which is called

Linear Strict Inequalities (LSI). Given b ∈ Qm and a rational m × n matrix A, decide
whether there is a rational vector x ∈ Qn such that Ax < b.

First, we show a computational complexity equivalence between LP and LSI, by reducing the former to
the latter in polytime.

7.3. THE ELLIPSOID ALGORITHM 107

7.3.1 Equivalence of LP and LSI

By the term LP we mean both a MP formulation and a problem. Formally, but rather unusually, LP “as
a problem” is stated as a conditional sequence of (formal) subproblems:

Linear Optimization Problem (LOP). Given a vector c ∈ Qn, an m × n rational matrix
A, and a vector b ∈ Qm, consider the LP formulation in Eq. (7.7), and:

1. decide whether the feasible set is empty;

2. if not, decide whether Eq. (7.7) is unbounded in the objective direction

3. if not, find the optimum and the optimal objective function value.

Namely, we check feasibility, unboundedness (two decision problems) and then optimality (an optimization
problems). We must show that all of these tasks can be carried out in a polynomial number of calls to
the “oracle” algorithm A .

7.3.1.1 Reducing LOP to LI

Instead of reducing LOP to LSI directly, we show a reduction to

Linear Inequalities (LI). Given b ∈ Qm and a rational m × n matrix A, decide whether
there is a rational vector x ∈ Qn such that Ax ≤ b.

7.3.1.1.1 Addressing feasibility First, we note that if A is an algorithm for LI, A also trivially
solves (with just one call) the feasibility subproblem 1 of LOP: it suffices to reformulate {x ≥ 0 | Ax = b}
to {x ≥ 0 | Ax ≤ b ∧Ax ≥ b}.

7.3.1.1.2 Instance size For boundedness and optimality, we need to introduce some notions about
the maximum possible size of LOP solutions (if they exist) in function of the input data A, b, c. We define
the size L = mn+ ⌈log2 P ⌉ of the LOP instance (A, b, c), where P is the product of all numerators and
denominators occurring in the components of A, b, c (L is an upper bound to the storage required to
write A, b, c in binary representation).

7.3.1.1.3 Bounds on bfs components By [239, Lemma 8.5], bfs consist of rational components
such that the absolute values of numerators and denominators are bounded above by 2L (while this is
not the strictest possible bound, it is a valid bound). This bound arises a consequence of three facts: (i)
bfs can be computed as xB = B−1b (see Eq. (7.8) and set nonbasic variables xN to zero), where B is a
basis of A; (ii) components of B−1 can be expressed in terms of the determinants of the adjoints of B;
(iii) the absolute value of the determinant of B is bounded above by the product of the absolute values
of the numerators of the components of B. Thus, we know that

x is a bfs of Eq. (7.7) ⇐⇒ ∀j ≤ n (0 ≤ xj ≤ 2L), (7.14)

which implies in particular that if the instance is feasible and bounded and x∗ is a bfs which solves
Eq. (7.7), then x∗ ∈ [0, 2L].

7.3.1.1.4 Addressing unboundedness This observation allows us to bound the optimal objective
function min c⊤x below: since cj ≥ −2L for each j ≤ n, c⊤x∗ ≥ −n22L. On the other hand, if the
LOP instance is unbounded, there are feasible points yielding any value of the objective function, namely

108 CHAPTER 7. LINEAR PROGRAMMING

strictly smaller than n22L. This allows us to use LSI in order to decide the boundedness subproblem 2
of LOP: we apply A (the LI oracle) to the system Ax ≤ b ∧ Ax ≥ b ∧ x ≥ 0 ∧ c⊤x ≤ −n22L − 1. If the
system is feasible, then the LOP is unbounded.

7.3.1.1.5 Approximating the optimal bfs If the LOP instance was not found infeasible or un-
bounded, we know it has an optimal bfs x∗. We first find an approximation x̂ of x∗ using bisection
search, one of the most efficient generic algorithms in combinatorial optimization More precisely, we
determine x̂ and an integer K ∈ [−24L, 24L] such that K22L < c⊤x̂ ≤ (K + 1)22L as follows:

1. Let aL = −22L, aU = 22L;

2. Let a = aL+aU

2 ;

3. Solve the LI instance:
Ax ≤ b ∧ Ax ≥ b ∧ x ≥ 0 ∧ c⊤x ≤ a ; (7.15)

using the oracle A ;

4. If Eq. (7.15) is infeasible:

• update aL ← a and repeat from Step 2;

5. If Eq. (7.15) is feasible:

• let x̂ be the solution of Eq. (7.15)
• if aU − aL < 2−2L return x̂ and stop, else aU ← a and repeat from Step 2.

We note this bisection search makes O(log2(2
2L+1) = 2L+ 1 calls to the oracle A .

7.3.1.1.6 Approximation precision Terminating the bisection search when the objective function
approximation of x̂ is within an ϵ = 2−2L has the following significance: by [239, Lemma 8.6], if there
are two bfs x, y of Eq. (7.7) and K ∈ Z such that

K2−2L < c⊤x ≤ (K + 1)2−2L ∧ K2−2L < c⊤y ≤ (K + 1)2−2L, (7.16)

then c⊤x = c⊤y. Note that Eq. (7.16) states that the two rational numbers q1 = c⊤x and q2 = c⊤y
are as close to each other as 2−2L. We suppose q1 ̸= q2 to aim at a contradiction: since these are
different rational numbers with denominators bounded above by 2L [239, Lemma 8.5], we must have
|c⊤x− c⊤y| ≥ 2−2L, which contradicts Eq. (7.16).

7.3.1.1.7 Approximation rounding Since we found a point x̂ with aL < c⊤x̂ ≤ aU , and we know
that requiring the objective function value to be equal to aL yields an infeasible LI, by the existence of
optimal bfs, there must be an optimal bfs x∗ such that aL < c⊤x∗ ≤ aU . We shall now give an algorithm
for finding x∗ using A , which works as long as there is no degeneracy (see Rem. 7.1.6).

• Let S = ∅.

• For j ∈ {1, . . . , n} repeat:

1. Append j to S;
2. Solve the LI instance:

Ax ≤ b ∧ Ax ≥ b ∧ x ≥ 0 ∧ c⊤x ≤ aU ∧ c⊤x ≥ aL ∧ ∀j ∈ S (xj ≤ 0) ; (7.17)

using the oracle A ;

7.3. THE ELLIPSOID ALGORITHM 109

3. If Eq. (7.17) is infeasible then remove j from S.

• Let B be square m × m submatrix of A indexed by any subset of m columns indexed by S̄ =
{1, . . . , n}∖ S

• Let x∗ = B−1b.

This algorithm is correct since it chooses basic columns from A indexed by variables which could not be
set to zero in Eq. (7.17) (and hence they could not be nonbasic).

This completes the polynomial reduction from LOP to LI.

7.3.1.2 Reducing LI to LSI

By [239, Lemma 8.7], a LI instance Ax ≤ b is feasible if and only if the LSI instance Ax < b + ϵ, where
ϵ = 2−2L, is feasible. Let x′ satisfy Ax ≤ b; then by definition it satisfies Ax ≤ (b− ϵ)+ ϵ, i.e. Ax < b+ ϵ.
Now let x∗ satisfy Ax < b+ ϵ. If x∗ also satisfies Ax < b then it satisfies Ax ≤ b by definition, so let I be
the largest set I of constraint indices of Ax < b + ϵ such that AI = {ai | i ∈ I} is linearly independent.
A technical argument (see [239, p. 174]) shows that the solution x̂ to AIx = bI also satisfies Ax ≤ b.

The ellipsoid algorithm presentation in [267] works with closed polyhedra and hence does not need
this last reduction from LI to LSI (although there is a simpler equivalence between Ax ≤ b and Ax ≤ b+ϵ
based on Farkas’ lemma [267, p. 169]).

7.3.2 Solving LSIs in polytime

Let Pε be the (open) polyhedron corresponding to the feasible set of the given system of strict linear
inequalities, and let E0 be an ellipsoid such that Pε ⊆ E0. The ellipsoid algorithm either finds a feasible
solution x∗ ∈ Pε or determines that Pε is empty. We assume that the volume of Pε is strictly positive
if Pε is nonempty, i.e. Pε ̸= ∅ → Vol(Pε) > 0. Let v be a number such that Vol(Pε) > v if Pε ̸= ∅ and
V = Vol(E0), and let

K = ⌈2(n+ 1)(lnV − ln v)⌉.
Initially, k = 0.

1. Let x(k) be the centre of the ellipsoid Ek. If x(k) ∈ Pε, the algorithm terminates with solution x(k).
Otherwise, there exists a violated strict constraint Aix < bi such that Aix(k) ≥ bi. The hyperplane
Aix = bi slices Ek through the centre; the part which does not contain Pε can be discarded.

2. Find the minimum volume ellipsoid Ek+1 containing the of part of Ek containing Pε, and let x(k+1)

be the centre of Ek+1.

3. If k ≥ K, stop: Pε = ∅.

4. Repeat from 1.

An ellipsoid Ek with centre x(k) is described by {x ∈ Rn | (x− x(k))⊤D−1
k (x−x(k)) ≤ 1} where Dk is an

n× n PSD matrix. We compute x(k+1) and Dk+1 as follows:

Γk =
DkAi√
Ai

⊤DkAi

x(k+1) = x(k) +
Γk
n+ 1

Dk+1 =
n2

n2 − 1

(
Dk −

2ΓkΓk
⊤

n+ 1

)
.

110 CHAPTER 7. LINEAR PROGRAMMING

It turns out that Ek+1 defined by the matrix Dk+1 contains the part of Ek containing Pε, and furthermore

Vol(Ek+1) ≤ e−
1

2(n+1) Vol(Ek). (7.18)

The volume of EK is necessarily smaller than v: by Eq. (7.18) we have

Vol(EK) ≤ e−
K

2(n+1) Vol(E0) ≤ V e−
K

2(n+1) ≤ V e− ln(V/v) = v,

hence by the assumption on v we must have Pε = ∅ if k ≥ K. Since it can be shown that K is polynomial
in the size of the instance (which depends on the number of variables, the number of constraints as well
as the bits needed to store A and b), the ellipsoid algorithm is a polytime algorithm which can be used
to solve LPs.

One last point to be raised is that in Eq. (7.18) we rely on an irrational computation, which is never
precise on a computer. It can be shown that computations carried out to a certain amount of accuracy
can still decide whether Pε is empty or not (see [239, §8.7.4]).

7.4 Karmarkar’s algorithm

Karmarkar’s algorithm addresses all LPs with constraints Ax = 0, x ≥ 0 and 1⊤x = 1, and known a
priori to have optimal objective function value zero. The constraints evidently imply that x̄ = 1/n is an
initial feasible solution (where 1 = (1, . . . , 1)

⊤.

It can be shown that any LP can be reduced to this special form.

• If no constraint
∑
j xj = 1 is present in the given LP instance, one can be added as follows:

– adjoin a constraint
∑
j xj ≤ M = O(2L) (where L is the size of the instance) to the formu-

lation: this will not change optimality properties, though it might turn unboundedness into
infeasibility;

– add a new (slack) variable xn+1 and rewrite the new constraint as
∑

j≤n+1

xj =M ;

– scale all variables so that x ← 1
M x, and accordingly scale the constraint RHSs b ← 1

M b,
yielding

∑
j xj = 1.

• The system Ax = b appearing in Eq. (7.7) can be written as

∀i ≤ m
∑
j≤n

aijxj − b
∑
j≤n

xj = 0

since we have the constraint 1⊤x = 1; this yields

∀i ≤ m
∑
j≤n

(aij − bi)xj = 0,

which is homogeneous in x, as desired.

• If the optimal objective function value is known to be c̄ ̸= 0, it can be “homogenized” in the same
way as Ax = b, namely optimize the objective c⊤x − c̄ (adding constants does not change the
optima) and rewrite it as c⊤x− c̄

∑
j xj based on the constraint 1⊤x = 1.

• If the optimal objective function value is unknown, proceed with a bisection search (see Sect. 7.3.1).

Let X = diag(x̄) and B =

(
AX
1

)
. The algorithm is as follows:

7.5. INTERIOR POINT METHODS 111

1. Project Xc into the null space of B: c∗ = (I −B⊤(BB⊤)−1B)Xc.

2. Normalize the descent direction: d = γ c∗

||c∗|| . If c∗ = 0 terminate with optimal solution x∗.

3. Move in projected space: y = e/n− sd where s is a fixed step size.

4. Project back into x-space: x̄← Xy
e⊤Xy

.

5. Repeat from 1.

Taking γ = 1√
n(n−1)

and s = 1
4 guarantees that the algorithm has polynomial complexity.

Let us look at the first iteration of Karmarkar’s algorithm in more detail. The initial point x̄ is taken
to be the feasible solution x̄ = 1/n; notice 1/n is also the centre of the simplex 1⊤x = 1 ∧ x ≥ 0. Let
Sr = {x ∈ Rn | ||x − x∗|| ≤ r ∧ 1⊤x = 1 ∧ x ≥ 0} be the largest sphere that can be inscribed in the
simplex, and let SR be the smallest concentric sphere that circumscribes the simplex. It can be shown
that R/r = n − 1. Let xr be the minimum of c⊤x on Fr = Sr ∩ {x | Ax = 0} and xR the minimum on
FR = SR ∩ {x | Ax = 0}; let fr = c⊤xr, fR = c⊤xR and f̄ = c⊤x̄. By the linearity of the objective
function, we have f̄−fR

f̄−fr
= n− 1. Since FR contains the feasible region of the problem, fR ≤ f∗ = 0, and

so (n− 1)f̄ − (n− 1)fr = f̄ − fR ≥ f̄ − f∗ = f̄ , whence

fr ≤
n− 2

n− 1
f̄ < e−

1
n−1 f̄ . (7.19)

Finally, we update x̄ with xr and repeat the process. If this reduction in objective function value
could be attained at each iteration, O(nL) iterations would be required to get within 2−L tolerance
from f∗ = 0, and the algorithm would be polynomial. The only issue lies in the fact that after the
first iteration the updated current point xr is not the centre of the simplex anymore. Thus, we use a
projective transformation (step 4 of the algorithm) to “re-shape” the problem so that the updated current
point is again at the centre of the simplex. The linearity of the objective function is not preserved by
the transformation, so a linear approximation is used (step 1 of the algorithm). Karmarkar showed that
Eq. (7.19) holds for the modified objective function too, thus proving correctness and polytime complexity.

7.5 Interior point methods

Karmarkar’s algorithm turns out to be equivalent to an IPM applied to an LP in standard form with
orthant constraints x ≥ 0 reformulated by means of log-barrier penalties on the objective function [118].
We consider the LP in Eq. (7.7), and reformulate it as follows:

minx c⊤x− β
n∑
j=1

lnxj

s.t. Ax = b,

 (7.20)

where β > 0 is a parameter. Notice that since − lnxj tends to ∞ as xj → 0+, minimizing the objective
function of Eq. (7.20) automatically implies that x > 0. Furthermore, as β decreases towards 0, Eq. (7.20)
describes a continuous family of NLP formulations converging to Eq. (7.7). This suggests a solution
method based on solving a discrete sequence of convex problems

minx(β) c⊤x(β)− β
n∑
j=1

lnxj(β)

s.t. Ax(β) = b

 (7.21)

for β = β1, . . . , βk, We expect the solutions x∗(βk) of Eq. (7.21) to tend to x∗ as k → ∞, where x∗
is the solution of Eq. (7.7). The set {x∗(β) | β > 0} is a path in Rn called the central path.

112 CHAPTER 7. LINEAR PROGRAMMING

7.5.1 Primal-Dual feasible points

We show that each point x(β) on the central path yields a dual feasible point. The Lagrangian L1(x, λ, ν)
for Eq. (7.7) (where λ are the dual variables for the constraints −x ≤ 0 and ν for Ax = b) is:

L1(x, λ, ν) = c⊤x−
n∑
j=1

λjxj + ν(Ax− b), (7.22)

while the Lagrangian L2(x, ν) for Problem (7.21) is:

L2(x, ν) = c⊤x(β)− β
n∑
j=1

lnxj(β) + ν(Ax− b).

Deriving the KKT condition (6.6) from L1 we get:

∀j ≤ n (cj − λj + νAj = 0),

where Aj is the j-th column of A. From L2 we get:

∀j ≤ n (cj −
β

xj
+ νAj = 0).

Therefore, by letting

λj =
β

xj
(7.23)

for all j ≤ n, we show that each point x(β) on the central path gives rise to a dual feasible point (λ, ν)
for the dual of Eq. (7.7):

max
ν

b⊤ν

s.t. A⊤ν + λ = c
λ ≥ 0.

 (7.24)

Notice that the dual Problem (7.24) has been derived from Eq. (6.16) by setting ν = −µ and using λ
as slack variables for the inequalities in Eq. (6.16). Since λ, ν also depend on β, we indicate them by
λ(β), ν(β). That (λ(β), ν(β)) is dual feasible in Eq. (7.24) follows because (x(β), λ(β), ν(β)) satisfies
Eq. (6.6) as shown above. Now, notice that by definition λj(β) = β

xj(β)
implies

∀j ≤ n (λj(β)xj(β) = β) (7.25)

which means that, as β converges to 0, the conditions (7.25) above imply the KKT complementarity
conditions (6.8). Since λ(β) ≥ 0 by definition Eq. (7.23), we have that (x∗, λ∗, ν∗) = (x(0), λ(0), µ(0)) is
an optimal primal-dual pair solving Eq. (7.7) and Eq. (7.24).

7.5.2 Optimal partitions

LPs may have more than one optimal solution. In such cases, all optimal solutions are on a single (non
full-dimensional) face of the polyhedron. The simplex method would then find more than one optmial
bfs. The analysis of the IPM sketched above provides a unique characterization of the optimal solutions
even when there is no unique optimal solution. We show that the central path converges to a strictly
complementary optimal solution, i.e. an optimal solution for which

(x∗)
⊤
λ∗ = 0

x∗ + λ∗ > 0.

7.5. INTERIOR POINT METHODS 113

These solutions are used to construct the optimal partition,, i.e. a partition of the n solution components
in two index sets B,N such that:

B = {j ≤ n | x∗i > 0}
N = {j ≤ n | λ∗i > 0}.

The partition obtained in this way is unique, and does not depend on the strictly complementary optimal
solution used to define it. Optimal partitions provide a unique and well-defined characterization of
optimal faces.

In the rest of this section we write x = x(β) and λ = λ(β) to simplify notation. The proof of the
following theorem was taken from [149].

7.5.1 Theorem (Goldman-Tucker, 1956)
With the same notation of this section, the limit point (x∗, λ∗) of the primal-dual central path (x(β), λ(β))
is a strictly complementary primal-dual optimal solution for Eq. (7.7).

Proof. By Eq. (7.25) we have that x⊤λ = nβ, thus (x∗)
⊤
λ∗ converges to zero as β → 0. Now, both x∗

and x are primal feasible, so Ax∗ = Ax = b, hence A(x∗ − x) = 0. Furthermore, since both λ∗ and λ are
dual feasible, we have ν∗A+ λ∗ = νA+ λ = c, i.e. (ν − ν∗)A = λ∗ − λ. In other words, x∗ − x is in the
null space of A and λ∗ − λ is in the range of A⊤: thus, the two vectors are orthogonal. Hence we have:

0 = (x∗ − x)⊤(λ∗ − λ) = (x∗)
⊤
λ∗ + x⊤λ− (x∗)

⊤
λ− x⊤λ∗,

and thus
(x∗)

⊤
λ+ x⊤λ∗ = nβ.

Dividing throughout by β = xjλj we obtain:
n∑
j=1

(
x∗j
xj

+
λ∗j
λj

)
= n.

Since

lim
β→0

x∗j
xj

=

{
1 if x∗i > 0
0 otherwise

and similarly for the λ component, for each j ≤ n exactly one of the two components of the pair (x∗j , λ∗j)
is zero and the other is positive. 2

7.5.3 A simple IPM for LP

The prototypical IPM for LP is as follows:

1. Consider an initial point x(β0) feasible in Eq. 7.21, a parameter α < 1 and a tolerance ε > 0. Let
k = 0.

2. Solve Eq. (7.21) with initial point x(βk), to get a solution x∗.

3. If nβk < ε, stop with solution x∗.

4. Update βk+1 = αβk, x(βk+1) = x∗ and k ← k + 1.

5. Go to Step 2.

By Eq. (7.22), L1(x, λ, ν) = c⊤x − nβk, which means that the duality gap is nβk. This implies that
x(βk) is never more than nβk-suboptimal. This is the basis of the termination condition in Step 3. Each
subproblem in Step 2 can be solved by using Newton’s method.

114 CHAPTER 7. LINEAR PROGRAMMING

7.5.4 The Newton step

In general, the Newton descent direction d for an unconstrained problem min f(x) at a point x̄ is given
by:

d = −(∇2f(x̄))−1∇f(x̄). (7.26)

If ∇2f(x̄) is PSD, we obtain

(∇f(x̄))⊤d = −(∇f(x̄))⊤(∇2f(x̄))−1∇f(x̄) < 0,

so d is a descent direction. In this case, we need to find a feasible descent direction such that Ad = 0.
Thus, we need to solve the system(

∇2f(x̄) A⊤

A 0

)(
d
ν⊤

)
=

(
−∇f(x̄)

0

)
,

for (d, ν), where ν are the dual variables associated with the equality constraints Ax = b. Step 4 in the
IPM of Section 7.5.3 becomes x(βk+1) = x(βk)+γd, where γ is the result of a line search (see Rem. 9.1.1),
for example

γ = argmins≥0f(x̄+ sd). (7.27)

Notice that feasibility with respect to Ax = b is automatically enforced because x̄ is feasible and d is a
feasible direction.

Chapter 8

Mixed-Integer Linear Programming

This chapter is devoted to some basic notions arising in MILP. We discuss total unimodularity, valid cuts,
the Branch-and-Bound (BB) algorithm, and Lagrangean relaxation.

8.1 Total unimodularity

The continuous relaxation of a MILP is a MILP formulation where the integrality constraints have been
dropped: in other words, an LP. In Sect. 7.1.1 and 7.1.5 we characterized LP solutions as bfs, which
encode the combinatorics and geometry of an intersection of at least m hyperplanes in Rm.

The question we try and answer in this section is: when does a solution of the continuous relaxation of
a MILP automatically satisfy the integrality constraints too? In other words, when can we solve a MILP
by simply solving an LP? The question is important because, as we noted above (see Sect. 5.2) MILP is
NP-hard, whereas we can solve LPs in polytime (see Sect. 7.2): and this is a worst-case analysis which
applies to practical computation (see Sect. 2.2.5).

As mentioned in Sect. 7.1.5, if we consider the continuous relaxation of a MILP as an LP in standard
form (7.7), a bfs x∗ corresponds to a basis B of the constraint matrix A appearing in the linear system
Ax = b. The values of the basic variables in x∗ are computed as x∗B = B−1b, whereas the nonbasic
variables have value zero. So the question becomes: what are the conditions on a square nonsingular
matrix B and on a vector b such that B−1b is an integer vector?

We first note that any MILP with rational input (A, b, c) can be reformulated to a MILP with integer
input by simply rescaling by the minimum common multiple (mcm) of all the denominators (a better
rescaling can be carried out by considering each constraint in turn). So we shall assume in the rest of
this chapter that A, b, c all have integer components.

8.1.1 Definition
An m × n integral matrix A such that each m ×m invertible square submatrix has determinant ±1 is
called unimodular.

8.1.2 Proposition
If A is unimodular, the vertices of the polyhedron Ps = {x ≥ 0 | Ax = b} all have integer components.

8.1.3 Exercise
Prove Prop. 8.1.2.

115

116 CHAPTER 8. MIXED-INTEGER LINEAR PROGRAMMING

Proving unimodularity is hard (computationally) for any instance, and even harder (theoretically) for
problems. We now consider a stronger condition.

8.1.4 Definition
An m × n integral matrix A where all square submatrices of any size have determinant in {0, 1,−1} is
called totally unimodular (TUM).

8.1.5 Example
The identity matrix is TUM: square submatrices on the diagonal have determinant 1, while off-diagonal
square submatrices have determinant zero.

The following propositions give some characterizations of TUM matrices which can be used to prove
the TUM property for some interesting problems.

8.1.6 Proposition
A matrix A is TUM iff A⊤ is TUM.

8.1.7 Exercise
Prove Prop. 8.1.6.

8.1.8 Proposition
If a matrix is TUM, then its entries can only be {0, 1,−1}.

8.1.9 Exercise
Prove Prop. 8.1.8.

8.1.10 Proposition
The m × n matrix A is TUM iff the matrix (A, I), obtained by appending an m ×m identity to A, is
TUM.

Proof. Let B be a square submatrix of (A, I): if it is wholly contained in A or in I, then its determinant
is {0, 1,−1} because A is TUM. Otherwise, by permuting its rows, we can write B as follows:

B =

(
A′ 0
A′′ Iℓ

)
,

where A′ is a k × k submatrix of A and A′′ is an ℓ × k submatrix of A. By elementary linear algebra,
|B| = |A′| ∈ {0, 1,−1} since A′ is a square submatrix of a TUM matrix. 2

We now give a sufficient condition for checking the TUM property.

8.1.11 Proposition
An m × n matrix A is TUM if: (a) for all i ≤ m, j ≤ n we have aij ∈ {0, 1,−1}; (b) each column of A
contains at most two nonzero coefficients; (c) there is a partition R1, R2 of the set of rows such that for
all columns j having exactly two nonzero coefficients, we have

∑
i∈R1

aij −
∑
i∈R2

aij = 0.

Proof. Suppose that conditions (a), (b), (c) hold but A is not TUM. Let B be the smallest square
submatrix of A such that det(B) ̸∈ {0, 1,−1}. B cannot contain a column with just one nonzero entry,
otherwise B would not be minimal (just eliminate the row and column of B containing that single nonzero
entry). Hence B must contain two nonzero entries in every column. By condition (c), adding the rows
in R1 to those in R2 gives the zero vector, and hence det(B) = 0, contradicting the hypothesis. 2

8.1.12 Theorem
If A is TUM, the vertices of the polyhedron Pc = {x ≥ 0 | Ax ≥ b} all have integer components.

8.2. CUTTING PLANES 117

Proof. Let x∗ be a vertex of Pc, and s∗ = Ax∗ − b. Then (x∗, s∗) is a vertex of the standardized
polyhedron P̄c = {(x, s) ≥ 0 | Ax− s = b}: suppose it were not, then by Lemma 6.1.5 there would be two
distinct points (x1, s1), (x2, s2) in P̄c such that (x∗, s∗) is a strict convex combination of (x1, s1), (x2, s2),
i.e. there would be a λ ∈ (0, 1) such that (x∗, s∗) = λ(x1, s1) + (1 − λ)(x2, s2). Since s1 = Ax1 − b ≥ 0
and s2 = Ax2 − b ≥ 0, both x1 and x2 are in Pc, and thus x∗ = λx1 + (1 − λ)x2 is not a vertex of Pc
since 0 < λ < 1, which is a contradiction. Now, since A is TUM, (A,−I) is unimodular by Prop. 8.1.10,
and (x∗, s∗) is an integer vector. 2

8.1.13 Example
The transportation formulation Eq. (2.8) and network flow formulation Eq. (2.9) both have TUM con-
straint matrices. Solving them using the simplex method yields an integer solution vector.

8.1.14 Exercise
Prove that network flow constraints (see Eq. (2.9)) yield a TUM constraint matrix.

8.1.15 Exercise
Prove that transportation constraints (see Eq. (2.8)) yield a TUM constraint matrix.

8.2 Cutting planes

The convex hull of the feasible region of any MILP is a polyhedral set. Moreover, optimizing over
the convex hull yields the same optima as optimizing over the mixed-integer feasible region of the MILP.
Therefore, potentially, any MILP could be reformulated to an LP. Let me refrain the reader from jumping
to the conclusion that the complexity of MILP (NP-hard) is the same as that of LP (P): there are
obstacles of description and size. First, in order to even cast this equivalent LP formulation, we need to
explicitly know all integer vectors in the feasible region of the MILP, including the optimal one: so already
writing this LP formulation is as hard as solving the MILP. Moreover, there might be exponentially (or
even infinitely) many feasible vectors to a given MILP instance, yielding an exponentially large description
of the convex hull. On the other hand, finding some inequalities belonging (or just close) to the convex
hull improves the performance of MILP solution methods, which is the subject of this section.

Consider a MILP min{c⊤x | x ∈ Zn ∩ P} where P = {x ≥ 0 | Ax ≥ b}. Let P̄ be the convex hull of
its integer feasible solutions (thus min{c⊤x | x ∈ P̄} has the same solution as the original MILP). We
are interested in finding linear constraints defining the facets of P̄ . The polyhedral analysis approach is
usually expressed as follows: given an integral vector set X ⊆ Zn and a valid inequality h⊤x ≤ d for X,
show that the inequality is a facet of conv(X). We present two approaches below.

1. Find n points x1, . . . , xn ∈ X such that h⊤xi = d∀i ≤ n and show that these points are affinely
independent (i.e. that the n− 1 directions x2 − x1, . . . , xn − x1 are linearly independent).

2. Select t ≥ n points x1, . . . , xt satisfying the inequality. Suppose that all these points are on a generic
hyperplane µ⊤x = µ0. Solve the equation system

∀k ≤ t
n∑
j=1

xkjµj = µ0

in the t+ 1 unknowns (µj , µ0). If the solution is (λhj , λd) with λ ̸= 0 then the inequality h⊤x ≤ d
is facet defining.

One of the limits of polyhedral analysis is that the theoretical devices used to find facets for a given MILP
are often unique to the problem it models.

118 CHAPTER 8. MIXED-INTEGER LINEAR PROGRAMMING

8.2.1 Separation Theory

Finding all of the facets of P̄ is overkill, however. Since the optimization direction points us towards a
specific region of the feasible polyhedron, what we really need is an oracle that, given a point x′ ∈ P ,
tells us that x′ ∈ P̄ or else produces a separating hyperplane h⊤x = d such that for all h⊤x̄ ≤ d, x̄ ∈ P̄
and h⊤x′ > d, adjoining the constraint h⊤x ≥ d to the MILP formulation tightens the feasible region
P of the continuous relaxation. The problem of finding a valid separating hyperplane is the separation
problem. It is desirable that the separation problem for a given NP-hard problem should have polynomial
complexity.

8.2.1 Example (Valid cuts for the TSP)
A classic example of a polynomial separation problem for a NP-hard problem is the Travelling Sales-
man Problem (TSP): given a nonnegatively edge-weighted clique Kn, with weight cij ≥ 0 on each edge
{i, j} ∈ E(Kn), find the shortest Hamiltonian cycle in Kn.

Now consider the following MILP:

min
∑

i̸=j∈V
cijxij

s.t.
∑

i̸=j∈V
xij = 2 ∀ i ∈ V

xij ∈ {0, 1} ∀ i ̸= j ∈ V.

 (8.1)

Some of its feasible solutions are given by disjoint cycles. However, we can exclude them from the feasible
region by requesting that each cut should have cardinality at least 2, as follows:

∀ S ⊊ V (
∑

i∈S,j ̸∈S

xij ≥ 2).

There is an exponential number of such constraints (one for each subset S of V), however we do not need
them all: we can add them iteratively by identifying cuts δ(S) where

∑
{i,j}∈δ(S) xij is minimum. We

can see this as the problem of finding a cut of minimum capacity in a flow network (so the current values
xij are used as arc capacities — each edge is replaced by antiparallel arcs). The formulation we look for
is the LP dual of Eq. (2.9); we can solve it in weakly polytime with the ellipsoid method or in strongly
polytime with a combinatorial algorithm (O(n3) if we use the Goldberg-Tarjan push-relabel algorithm
[123]). So if each nontrivial cut has capacity at least 2, the solution is an optimal Hamiltonian cycle.

Otherwise, supposing that δ(S) has capacity K < 2, the following is a valid cut:∑
{i,j}∈δ(S)

xij ≥ 2,

which can be added to the formulation. The problem is then re-solved iteratively to get a new current
solution until the optimality conditions are satisfied. This approach is also known as row generation.

In the following sections 8.2.2-8.2.6 we shall give examples of four different cut families which can be
used to separate the incumbent (fractional) solution from the convex hull of the integer feasible set.

8.2.2 Chvátal Cut Hierarchy

A cut hierarchy is a finite sequence of cut families that generate tighter and tighter relaxed feasible sets
P = P0 ⊇ P1 ⊇ . . . ⊇ Pk = P̄ , where P̄ = conv(X).

Given the relaxed feasible region P = {x ≥ 0 | Ax = b} in standard form, define the Chvátal first-
level closure of P as P1 = {x ≥ 0 | Ax = b,∀u ∈ Rn+⌊uA⌋ ≤ ⌊ub⌋}. Although formally the number of

8.2. CUTTING PLANES 119

inequalities defining P1 is infinite, it can be shown that these can be reduced to a finite number [307].
We can proceed in this fashion by transforming the Chvátal first-level inequalities to equations via the
introduction of slack variables. Reiterating the process on P1 to obtain the Chvátal second-level closure
P2 of P , and so on. It can be shown that any fractional vertex of P can be “cut” by a Chvátal inequality.

8.2.3 Gomory Cuts

Gomory cuts are a special kind of Chvátal cuts. Their fundamental property is that they can be inserted
in the simplex tableau very easily. This makes them a favorite choice in cutting plane algorithms, which
generate cuts iteratively in function of the current incumbent.

Suppose x∗ is the optimal solution found by the simplex algorithm deployed on a continuous relaxation
of a given MILP. Assume the component x∗h is fractional. Since x∗h ̸= 0, column h is a basic column; thus
there corresponds a row t in the simplex tableau:

xh +
∑
j∈ν

ātjxj = b̄t, (8.2)

where ν are the nonbasic variable indices, ātj is a component of B−1A (B is the nonsingular square
matrix of the current basic columns of A) and b̄t is a component of B−1b. Since ⌊ātj⌋ ≤ ātj for each row
index t and column index j,

xh +
∑
j∈ν
⌊ātj⌋xj ≤ b̄t.

Furthermore, since the LHS must be integer, we can restrict the RHS to be integer too:

xh +
∑
j∈ν
⌊ātj⌋xj ≤ ⌊b̄t⌋. (8.3)

We now subtract Eq. (8.3) from Eq. (8.2) to obtain the Gomory cut:∑
j∈ν

(⌊ātj⌋ − ātj)xj ≤ (⌊b̄t⌋ − bt). (8.4)

We can subsequently add a slack variable to the Gomory cut, transform it to an equation, and easily add
it back to the current dual simplex tableau as the last row with the slack variable in the current basis.

8.2.3.1 Cutting plane algorithm

In this section we illustrate the application of Gomory cut in an iterative fashion in a cutting plane
algorithm. This by solving a continuous relaxation at each step. If the continuous relaxation solution
fails to be integral, a separating cutting plane (a valid Gomory cut) is generated and added to the
formulation, and the process is repeated. The algorithm terminates when the continuous relaxation
solution is integral.

Let us solve the following MILP in standard form:

min x1 − 2x2
t.c. −4x1 + 6x2 + x3 = 9

x1 + x2 + x4 = 4
x ≥ 0 , x1, x2 ∈ Z

In this example, x3, x4 can be seen as slack variables added to an original formulation in canonical form
with inequality constraints expressed in x1, x2 only.

We identify xB = (x3, x4) as an initial feasible basis; we apply the simplex algorithm obtaining the
following tableau sequence, where the pivot element is framed .

120 CHAPTER 8. MIXED-INTEGER LINEAR PROGRAMMING

x1 x2 x3 x4
0 1 -2 0 0
9 -4 6 1 0
4 1 1 0 1

x1 x2 x3 x4
3 − 1

3 0 1
3 0

3
2 − 2

3 1 1
6 0

5
2

5
3 0 − 1

6 1

x1 x2 x3 x4
7
2 0 0 3

10
1
5

5
2 0 1 1

10
2
5

3
2 1 0 − 1

10
3
5

The solution of the continuous relaxation is x̄ = (32 ,
5
2), where x3 = x4 = 0.

We derive a Gomory cut from the first row of the optimal tableau: x2 + 1
10x3 + 2

5x4 = 5
2 . The cut is

formulated as follows:
xi +

∑
j∈N
⌊āij⌋xj ≤ ⌊b̄i⌋, (8.5)

where N is the set of nonbasic variable indices and i is the index of the chosen row. In this case we obtain
the constraint x2 ≤ 2.

We introduce this Gomory cut in the current tableau. Note that if we insert a valid cut in a simplex
tableau, the current basis becomes primal infeasible, thus a dual simplex iteration is needed. First of all,
we express x2 ≤ 2 in terms of the current nonbasic variables x3, x4. We subtract the i-th optimal tableau
row from Eq. (8.5), obtaining:

xi +
∑
j∈N

āijxj ≤ b̄i

⇒
∑
j∈N

(⌊āij⌋ − āij)xj ≤ (⌊b̄i⌋ − b̄i)

⇒ − 1

10
x3 −

2

5
x4 ≤ −1

2
.

Recall that the simplex algorithm requires the constraints in equation (rather than inequality) form, so
we add a slack variable x5 ≥ 0 to the formulation:

− 1

10
x3 −

2

5
x4 + x5 = −1

2
.

We ajoin this constraint as the bottom row of the optimal tableau. We now have a current tableau with
an additional row and column, corresponding to the new cut and the new slack variable (which is in the
basis):

8.2. CUTTING PLANES 121

x1 x2 x3 x4 x5
7
2 0 0 3

10
1
5 0

5
2 0 1 1

10
2
5 0

3
2 1 0 − 1

10
3
5 0

− 1
2 0 0 − 1

10 − 2
5 1

The new row corresponds to the Gomory cut x2 ≤ 2 (labelled “constraint (3)” in the figure below).

We carry out an iteration of the dual simplex algorithm using this modified tableau. The reduced costs
are all non-negative, but b̄3 = − 1

2 < 0 implies that x5 = b̄3 has negative value, so it is not primal feasible
(as x5 ≥ 0 is now a valid constraint). We pick x5 to exit the basis. The variable j entering the basis is
given by:

j = argmin{ c̄j
|āij |

| j ≤ n ∧ āij < 0}.

In this case, j = argmin{3, 12}, corresponding to j = 4. Thus x4 enters the basis replacing x5 (the pivot
element is indicated in the above tableau). The new tableau is:

x1 x2 x3 x4 x5
13
4 0 0 1

4 0 1
2

2 0 1 0 0 1
3
4 1 0 − 1

4 0 3
2

5
4 0 0 1

4 1 − 5
2

The optimal solution is x̃ = (34 , 2). Since this solution is not integral, we continue. We pick the second
tableau row:

x1 −
1

4
x3 +

3

2
x5 =

3

4
,

to generate a Gomory cut
x1 − x3 + x5 ≤ 0,

which, written in terms of the variables x1, x2 is

−3x1 + 5x2 ≤ 7.

122 CHAPTER 8. MIXED-INTEGER LINEAR PROGRAMMING

This cut can be written as:
−3

4
x3 −

1

2
x5 ≤ −

3

4
.

The new tableau is:

x1 x2 x3 x4 x5 x6
13
4 0 0 1

4 0 1
2 0

2 0 1 0 0 1 0
3
4 1 0 − 1

4 0 3
2 0

5
4 0 0 1

4 1 − 5
2 0

− 3
4 0 0 − 3

4 0 − 1
2 1

The pivot is framed; the exiting row 4 was chosen because b̄4 < 0, the entering column 5 because
c̄3

|ā43| =
1
3 < 1 = c̄5

|ā45|). Pivoting, we obtain:

x1 x2 x3 x4 x5 x6
3 0 0 0 0 1

3
1
3

2 0 1 0 0 1 0
1 1 0 0 0 5

3 − 1
3

1 0 0 0 1 − 8
3

1
3

1 0 0 1 0 2
3 − 4

3

This tableau has optimal solution x∗ = (1, 2), which is integral (and hence optimal). The figure below
shows the optimal solution and the last Gomory cut to be generated.

8.2.4 Disjunctive cuts

A condition such as “either. . . or. . . ” can be modelled using disjunctive constraints (stating e.g. member-
ship of a variable vector in a disjunction of two or more sets), wchich are themselves written using binary
variables.

8.2. CUTTING PLANES 123

8.2.2 Example
Consider two polyhedra P = {x ∈ Rm | Ax ≤ b} and Q = {x ∈ Rn | Cx ≤ d}. Then the constraint
x ∈ P ∪Q can be written as (x ∈ P) ∨ (x ∈ Q) by means of an additional binary variable y ∈ {0, 1}:

yAx ≤ yb

(1− y)Cx ≤ (1− y)d.

We remark that the above constraints are bilinear, as they involve products of variables yxj for all j ≤ n.
This can be dealt with using the techniques in Rem. 2.2.8. On the other hand, if P,Q are polytopes
(i.e. they are bounded), it suffices to find a large constant M such that Ax ≤ b +M and Cx ≤ d +M
hold for all x ∈ P ∪Q, and then adjoin the linear constraints:

Ax ≤ b+My

Cx ≤ d+M(1− y)

We caution the reader against the indiscriminate use of “big M ” constants (see Sect. 2.2.7.5.1). How
would one find a “good” big M? First of all, if one really needed to find a single constant M valid
for x ∈ P ∪ Q, one possible way to go about it would be to find the smallest possible hyper-rectangle
containnig P and Q, describe it by xL ≤ x ≤ xU , and then compute M as the maximum upper bound
w.r.t. each row in Ax − b: this involves using interval arithmetic on A[xL, xU] − b [229]. Secondly, we
need not use the same constant M to bound both Ax ≤ b and Cx ≤ d: we might be able to find smaller
M1,M2 such that Ax ≤ b+M1 and Cx ≤ d+M2 are always valid for all x ∈ P ∪Q. This would allow
us to write

Ax ≤ b+M1y

Cx ≤ d+M2(1− y).

8.2.3 Exercise
Propose an algorithm for finding the smallest hyper-rectangle [xL, xU] containing a given polytope P =
{x ∈ Rn | Ax ≤ b}.

We now describe a method for computing a cut valid for the union of two polyhedra P ∪ Q, where
P = {x ≥ 0 | Ax ≤ b} and Q = {x ≥ 0 |;Cx ≤ d} (note that we are explicitly requiring x ≥ 0 for both
P,Q). We construct our cut from row i in the description of P and row ℓ in the description of Q. For
each j ≤ n choose some hj ≤ min(Aij , Cℓj) and some h0 ≥ max(bi, dℓ). Then the inequality

h⊤x ≤ h0 (8.6)

is valid for P ∪Q.

8.2.4 Exercise
Prove that Eq. (8.6) is valid for P ∪Q.

8.2.5 Lifting

It is possible to derive valid inequalities for a given MILP

min{cx | Ax ≤ b ∧ x ∈ {0, 1}n} (8.7)

by lifting lower-dimensional inequalities to a higher-dimensional space. If the inequality
∑n
j=2 πjxj ≤ π0

(with πj ≥ 0 for all j ∈ {2, . . . , n}) is valid for the restricted

min{
n∑
j=2

cjxj |
n∑
j=2

aijxj ≤ bi∀i ≤ m ∧ xj ∈ {0, 1} ∀ j ∈ {2, . . . , n}},

124 CHAPTER 8. MIXED-INTEGER LINEAR PROGRAMMING

then by letting

π1 = max (π0 −
n∑
j=2

πjxj)

n∑
j=2

aijxj ≤ bi − ai1 ∀i ≤ m

xj ∈ {0, 1} ∀j ∈ {2, . . . , n}.

we can find the inequality

∑n
j=1 πjxj ≤ π0 which is valid for (8.7), as long as the above formulation is

not infeasible; if it is, then x1 = 0 is a valid inequality. Of course the lifting process can be carried out
with respect to any variable index (not just 1).

8.2.6 RLT cuts

Reformulation-Linearization Techniques (RLT) cuts, described in [273], are a form of nonlinear lifting.
From each constraint a⊤i x ≥ bi of a feasible set

F = {x ∈ {0, 1}n | Ax ≤ b}

we derive the i-th constraint factor
γ(i) = a⊤i x− bi

(for i ≤ m). We then form the bound products

p(I, J) =
∏
j∈I

xj
∏
ℓ∈J

(1− xℓ)

for all partitions I, J of the index set {1, . . . , d}. The set of all of the cuts

p(I, J) γ(i) ≥ 0 (8.8)

obtained by multiplying each constraint factor γ(i) (for i ≤ m) by all the bound products p(I, J) over all
I, J s.t. I ∪J = {1, . . . , d}, is called the RLT d-th level closure. We remark that d refers to the maximum
degree of the bound products.

Notice that Eq. (8.8) are nonlinear inequalities. As long as they only involve binary variables, we can
apply a linearization which generalizes the one in Rem. 2.2.8: after replacing each occurrence of x2j by
xj (because xj ∈ {0, 1}) for each j, we linearize the inequalities Eq. (8.8) by lifting them in a higher-
dimensional space: replace all products

∏
j∈H xj by a new added variable wH =

∏
j∈H xj , to obtain

linearized cuts of the form
L i
IJ(x,w) ≥ 0, (8.9)

where L i
IJ is a linear function of x,w. We define the RLT d-th level closure as:

Pd = {x | ∀i ≤ m and I, J partitioning {1, . . . , d}, L i
IJ(x,w) ≥ 0}.

The RLT cut hierarchy is defined as the union of all the RLT d-th level closures Pd up to and including
level n. It was shown in [272] that

conv(F) = projx(Pn) ⊆ projx(Pn−1) ⊆ . . . ⊆ projx(P0) = relax(F), (8.10)

where conv(X) denotes the convex hull of a set X, projx(X) denotes the projection on the x variables
of a set description X involving the x variables and possibly other variables (e.g. the w linearization
variables), and relax(X) denotes the continuous relaxation of a mixed-integer set X. In other words, the
whole RLT hierarchy yields the convex hull of any linear set involving binary variables.

This cut hierarchy has two main shortcomings: (a) the high number of additional variables and (b) the
huge number of generated constraints. It is sometimes used heuristically to generate tighter continuous
relaxations various mixed-integer formulations.

8.3. BRANCH-AND-BOUND 125

8.3 Branch-and-Bound

BB is an iterative method that endows the search space with a tree structure. Each node of this tree
defines a subproblem. BB processes each subproblem in turn. Lower and upper bounds to the objec-
tive function value are computed at the current subproblem, and globally valid upper and lower bounds
(w.r.t. all remaining subproblems) are maintained during the search. Usually, and assuming a minimiza-
tion direction, upper bounds are derived from feasible solutions, computed using various heuristics. Lower
bounds are computed by solving a relaxation of the subproblem (unlike upper bounds, lower bounds do
not always correspond to a feasible solution). If the lower bound at the current subproblem is larger than
the globally valid upper bound, the current subproblem cannot yield a global optimum, so it is pruned
by bound (i.e., discarded because its lower bound is worse than a global upper bound). If the lower and
upper bounds are equal (or sufficiently close), then the current upper bound solution is assumed to be
globally optimal for the subproblem — and if it improves the globally valid optimum (called incumbent),
it is used to update it. Otherwise, a partition of the feasible region of the current subproblem is defined,
and the search is branched, yielding as many new subproblems as there are sets of the partition. The BB
algorithm terminates when there are no more subproblems to process.

Most BB implementations define the search tree implicitly by storing subproblems into a priority
queue, with highest priority given to subproblems with lowest lower bound. This is because, intuitively,
relaxations are expected to yield lowest lower bounds in part of the feasible region containing global
optima. The queue is initialized with the original formulation. In a typical iteration, a subproblem is
extracted from the priority queue, processed as described above, and then discarded.

For MILP, lower bounds are usually computed by solving the continuous relaxations. If the lower
bound does not prune the current subproblem by bound, the most common branching strategy in MILP
selects an integer variable xj ∈ [xLj , x

U
j] ∩ Z where the lower bounding solution x̄ obtained from the

continuous relaxation is such that x̄j ̸∈ Z. The feasible set is partitioned in two: a part where xj ≤ ⌊x̄j⌋,
and the other where xj ≥ ⌈x̄j⌉. This is equivalent to splitting the parent subproblem range [xLj , x

U
j]

in two ranges [xLj , ⌊x̄j⌋] and [⌈x̄j⌉, xUj]. If x̄ ∈ Zn, lower and upper bounds for the current subproblem
clearly have the same value, which is used to update the incumbent if needed. Then the problem is
discarded.

8.3.1 Example

Initially, we let x∗ = (0, 0) e f∗ = −∞. Let L be the list (priority queue) containing the unsolved
subproblems, initialized to the original formulation N1:

max 2x1 + 3x2
x1 + 2x2 ≤ 3

6x1 + 8x2 ≤ 15
x1, x2 ∈ Z+.

 (8.11)

We remark that in this situation we are maximizing rather than minimizing the objective, which implies
that the roles of lower and upper bounds are exchanged.

The solution of the continuous relaxation is P (corresponding to the intersection of line (1) x1+2x2 = 3
with (2) 6x1 +8x2 = 15), as shown in the Fig. 8.1 We obtain an upper bound f = 21

4 corresponding to a
fractionary solution x = P = (32 ,

3
4). We choose the fractionary component x1 as the branching variable,

and form two subproblems N2, N3. We adjoin the constraint x1 ≤ 1 (labelled (3)) to N2 and x1 ≥ 2
(labelled (4)) to N3. Finally, we insert N2 and N3 in L with priority f = 21

4 .

Next, we choose N2 and remove it from L. The solution of the continuous relaxation of N2 is at the
intersection Q of (1) and (3): we therefore obtain x = Q = (1, 1) and f = 5. Since the solution is integral,
we do not branch. Furthermore, since f > f∗ we update x∗ = x and f∗ = f .

126 CHAPTER 8. MIXED-INTEGER LINEAR PROGRAMMING

Figure 8.1: Graphical representation of the problem in Eq. (8.11).

Finally, we choose N3 and remove it from L. The solution of the continuous relaxation of N3 is at
the intersection R of (2) and (4): we obtain x = R = (2, 38) and f = 41

8 . Since the upper bound is 41/8,
and ⌊ 418 ⌋ = 5, each integral solution found in the feasible region of N3 will never attain a better objective
function value than f∗; hence, again, we do not branch.

Since the L is now empty, the algorithm terminates with solution x∗ = (1, 1). The algorithmic process
can be summarized by the following tree:

8.3.2 Branch-and-Cut

Branch-and-Cut (B&C) algorithms are a mixture of BB and cutting plane algorithms (Sect. 8.2.3.1). In
practice, they follow a BB framework where valid cuts are generated at each subproblem [238].

8.3.3 Branch-and-Price

Branch-and-Price might be described as a mixture of BB and column generation algorithms (Sect. 7.1.8).
Extremely large LP formulations are solved using column generation at each BB subproblem [289].

8.4 Lagrangean relaxation

Although the most common way to obtain a lower bound for a MILP is to solve its continuous relaxation,
as mentioned in Sect. 8.3, there are other techniques. The technique we sketch in this section leverages

8.4. LAGRANGEAN RELAXATION 127

duality theory (see Sect. 6.3) in order to exploit the formulation structure, which may be a great help for
large-scale instances.

Consider the following MILP formulation:

minx,y c⊤1 x+ c⊤2 y
A1x ≥ b1
A2y ≥ b2

Bx+Dy ≥ d
x ∈ Zn1

+ , y ∈ Zn2
+

 (8.12)

where x, y are two sets of integer variables, c⊤1 , c⊤2 , b1, b2, d are vectors and A1, A2, B,D are matrices of
appropriate sizes. Observe that, were it not for the “complicating constraints” Bx+Dy ≥ d, we would be
able to decompose Eq. (8.12) into two smaller independet subproblems, and then solve each separately
(usually a much easier task). Such formulations are sometimes referred to as “nearly decomposable”.

A tight lower bound for nearly decomposable formulations can be obtained by solving a Lagrangean
relaxation. The complicating constraints are penalized as part of the objective function, with each
constraint weighted by a Lagrange multiplier:

L(λ) = minx,y c⊤1 x+ c⊤2 y + λ(Bx+Dy − d)
A1x ≥ b1
A2y ≥ b2

x ∈ Zn1
+ , y ∈ Zn2

+

 (8.13)

For each vector λ ≥ 0, L(λ) is a lower bound to the solution of the original formulation. Since we
want to find the tightest possible lower bound, we maximize L(λ) w.r.t. λ:

max
λ≥0

L(λ). (8.14)

The lower bound obtained by solving (8.14) is guaranteed to be at least as tight as that obtained by solving
the continuous relaxation of the original problem: let us see why. Consider the following formulation:

minx c⊤x
Ax ≤ b
x ∈ X,

 (8.15)

where X is a discrete but finite set X = {x1, . . . , xℓ}, and its Lagrangean relaxation obtained as if each
constraint were complicating:

max
λ≥0

min
x∈X

c⊤x+ λ(Ax− b). (8.16)

Let p∗ be the solution of Eq. (8.16). By definition of X, Eq. (8.16) can be written as follows:

maxλ,u u
u ≤ c⊤xt + λ(Axt − b) ∀t ≤ ℓ
λ ≥ 0.

The above formulation is linear. Hence, its dual:

minv
∑ℓ
t=1 vt(c

⊤xt)∑ℓ
t=1 vt(Aix

t − bi) ≤ 0 ∀i ≤ m∑ℓ
t=1 vt = 1

vt ≥ 0 ∀t ≤ ℓ

(where Ai is the i-the row of A), has the same optimal objective function value p∗. Notice now that∑ℓ
t=1 vtx

t subject to
∑ℓ
t=1 vt = 1 and vt ≥ 0 for all t ≤ ℓ is the convex hull of {xt | t ≤ ℓ}, and so the

128 CHAPTER 8. MIXED-INTEGER LINEAR PROGRAMMING

above dual formulation can be written as follows:

minx c⊤x
Ax ≤ b
x ∈ conv(X).

Thus, the bound given by the Lagrangean relaxation is at least as strong as that given by the continuous
relaxation restricted to the convex hull of the original discrete domain. Specifically, for problems with
the integrality property, the Lagrangean relaxation bound is no tighter than the continuous relaxationWhat is it?
bound. On the other hand, the above result leaves the possibility open that Lagrangian relaxations may
be tighter.

Solving (8.14) is not straightforward, as L(λ) is a piecewise linear (but non-differentiable) function.
The most popular method for solving such problems is the subgradient method. Its description is very
simple, although the implementation is not.

1. Start with an initial multiplier vector λ∗.

2. If a pre-set termination condition is verified, exit.

3. Evaluate L(λ∗) by solving Eq. (8.13) with fixed λ, yielding a solution x∗, y∗.

4. Choose a vector d in the subgradient of L w.r.t. λ and a step length t, and set λ′ = max{0, λ∗+ td}.define subgradient

5. Update λ∗ = λ′ and go back to step 2.

Choosing appropriate subgradient vectors and step lengths at each iteration to accelerate convergence is,
unfortunately, a non-trivial task that takes a lot of testing.

Chapter 9

Nonlinear Programming

This chapter is devoted to NLP. As we have seen in Chapter 6, much of the existing theory in NLP
concerns local optimality. We start our treatment by summarizing a well-known local optimization
algorithm called sequential quadratic programming (SQP), which can be seen as a solution method for
cNLP as well as a heuristic algorithm for nonconvex NLP. We then overview the field of GO, focusing on
general NLP.

9.1 Sequential quadratic programming

There are many different algorithmic approaches to local optimization of NLPs in the form (6.9), most of
which are based on the theoretical results of Section 6.2. The vast majority of local optimization methods
will take in input a NLP formulation as well as an “starting point” assumed to be feasible: as an output,
it will return a local optimum close to the starting point. The assumption that a feasible starting point
is known a priori is often false in practice: which implies that some of the theoretical guarantees might
not hold. On the other hand, many local NLP algorithms deliver good computational performance and
good quality solutions even from infeasible starting points.

One of the best known local optimization algorithms for NLP is SQP: it aims at solving the KKT con-
ditions (6.6)-(6.8) iteratively by solving a sequence of quadratic approximations of the objective function
subject to linearized constraints.

We start with a given starting point x ∈ X and generate a sequence x(k) of points using the update
relation:

x(k+1) = x(k) + αd,

where α is the step length and d the search direction vector. In other words, at each iteration we move
from x(k) in the direction of d by an amount αd. Both α and d are updated at each iteration. The step
length α ∈ (0, 1] is updated at each iteration using a line search optimization method.

9.1.1 Remark (Line search)
A line search is a lifting of an optimization problem in a single scalar variable into a higher-dimensional
space. Given a multivariate function f(x) where t ∈ [xL, xU] ⊆ Rn is a decision variable vector, it
sometimes happens that one would wish to optimize f(x) for x belonging to a line, half-line or segment.
Thus, if x = x0+αd, where x0, d ∈ Rn and α ∈ R+, x belongs to a half-line, and f(x) = f(x0+αd) = uf (α)
becomes the problem of optimizing the univariate function uf in the single variable α.

If f is monotonic, line searches can be carried out to a given ϵ > 0 precision using a bisection search
(see Sect. 7.3.1.1.5). Otherwise, bisection searches might help finding local optima. If f is a polynomial,

129

130 CHAPTER 9. NONLINEAR PROGRAMMING

global optima can be found by listing all the roots A = {α1, . . . , αℓ} of the polynomial equation df
dα = 0

and choosing the αi such that uf (αi) is minimum in U = {uf (αj) | j ≤ ℓ}.

The search direction vector d is obtained at each step by solving the following QP, where m, p, f , g
and h are as in Eq. (6.9):

min
d

(∇f(x(k)))⊤d+ 1
2d

⊤H(x(k))d

s.t. (∇gi(x(k)))
⊤
d ≤ 0 ∀i ≤ m

(∇hi(x(k)))
⊤
d = 0 ∀i ≤ p.

 (9.1)

In Eq. (9.1), H(x(k)) is a PSD approximation to the Hessian of the objective function evaluated at x(k).
As remarked in Sect. 5.4.1, a quadratic function can be shown to be convex by verifying that its Hessian
is PSD, so Eq. (9.1) is the best convex quadratic approximation of Eq. (6.9). Thus, a KKT point for
(9.1) is a globally optimal solution of (9.1) by Thm. 6.2.9.

The KKT conditions for each subproblem (9.1) are solved directly (e.g. by Newton’s method) to obtain
the solution of (9.1). If ∥d∥ is smaller than a pre-defined ε > 0 tolerance, the current point x(k) solves
the KKT conditions for (6.9) and the process terminates. Notice that solving the KKT conditions for
Eq. (9.1) also provides current solution values for the Lagrange multipliers µ, λ, which upon termination
are also valid for the original formulation Eq. (6.9).

9.2 The structure of GO algorithms

Most of the algorithms for globally solving NLPs (and MINLPs) have two phases: a global one and a local
one [264]. During the global phase, calls are made to other possibly complex algorithms which belong
to the local phase. The function of the global phase is to survey the whole of the search space, while
local phase algorithms identify local optima. The global phase is also tasked with selecting the best local
optima to return to the user as “global”.

9.2.1 Deterministic vs. stochastic

GO algorithms are usually partitioned into two main categories: deterministic and stochastic. While this
partition mostly concerns the global phase, it may occasionally also refer to the local phase. An algorithm
is stochastic when it involves an element of random choice, whereas a deterministic algorithm does not.
We do not enter into philosophical discussions of what exactly is a “random choice”: for our purposes, a
pseudo-random number generator initialized with the current exact time as a seed is “random enough”
to warrant the qualification of “stochastic” to the calling algorithm.

Stochastic algorithms typically offer a theoretical guarantee of global optimality only in infinite time
with probability 1 (or none at all). Deterministic algorithm typically offer theoretical guarantees of either
local or global optimality in finite time under certain conditions on their input (such as, e.g., Slater’s
constraint qualification in Sect. 6.3.3). Moreover, “global optimality” for NLP incurs the issue of solution
representability (Sect. 4.2). The approach encountered most often in GO is sketched in Sect. 4.2.2, and
is “the easiest approach” in the sense that one uses floating point numbers instead of reals, and hopes
everything will turn out well in the end. In any case, all general-purpose deterministic GO algorithms
require an ϵ > 0 tolerance in input, which is used to approximate with floating point numbers some
computational tasks that should in theory be performed with real numbers (such as, e.g., whether two
real numbers are equal or not).

9.2. THE STRUCTURE OF GO ALGORITHMS 131

9.2.2 Algorithmic reliability

As we shall see below, GO algorithms are usually quite complicated: either because the global phase is
complicated (this is the case for BB), or because the local phase is complicated, or both. In practice,
complicated algorithms require complicated implementations, and these in turn make it more difficult
for programmers to avoid or even remove bugs. Therefore, the overall (practical) reliability of many
implementations of GO algorithms might not be perfect.

While this is a point that could be made for any sufficiently complicated algorithm, there is however
an inherent unreliability in all local optimization algorithms for NLPs which affects the reliability of the
calling algorithm. In other words, GO algorithms are only as reliable as their most unreliable component.

Let us consider the SQP algorithm of Sect. 9.1 as an example. The theory of SQP guarantees conver-
gence subject to conditions: in general, these conditions are that the starting point should be feasible, and
that some constraint qualification conditions should hold. In practice, SQP implementations are often
called from global phases of GO algorithms with either of these conditions not holding. There are good
reasons for this: (a) verifying feasibility in NLP is just as hard, for computational complexity purposes,
as verifying optimality (see Sections 4.3.1, 4.3.2, 4.3.2.2, 5.1.2.3); (b) verifying constraint qualification
conditions might in general require precise real number computation, which may be impossible. This
implies that the local phase might fail: either in a controlled fashion (reporting some proof of failure),
or, more spectacularly, by not converging or simply crashing.

The following issues provide the most popular reasons why SQP implementations might fail on even
the most innocent-looking NLPs:

• the linearized constraints of (9.1) may be infeasible, even though the original constraints of (6.9)
are feasible;

• the Jacobian of the constraints may not have full rank (see Thm. 6.2.1).

Tracing a definite cause for such occurrences is generally very difficult. Subproblems may be defective
locally (because the approximation is poor) or because the original formulation is ill-posed. Some of these
issues may be overcome by simply changing the starting point.

9.2.3 Stochastic global phase

Stochastic global phases may be based on sampling and/or escaping.

9.2.3.1 Sampling approaches

In sampling approaches, a local phase is deployed from each of many different starting points, sampled
according to various rules (Fig. 9.1). Typical examples are provided by multistart algorithms, such as
Multi-Level Single Linkage (MLSL) [196]. The best local optimum is returned as putative global optimum
One of the most common artificial termination conditions is the Bayesian stopping rule, which is based
on the expected number of local minima in the sampling set. CPU time limit may also be employed.

Sampling stochastic algorithms (without artificial termination) are guaranteed to converge in infinite
time with probability 1, but in practice there is no guarantee that the returned point will actually be
the global optimum. These algorithms work reasonably well for small- and medium-sized instances. The
chance of finding global optima worsens considerably as the number of dimensions of the search space
increases.

132 CHAPTER 9. NONLINEAR PROGRAMMING

Figure 9.1: Sampling approach of the stochastic global phase. The arrows indicate a local optimization
descent path from a starting point to the target local minimum.

9.2.3.2 Escaping approaches

In the escaping approach (see e.g. Tabu Search [160], Simulated Annealing [194] and tunneling methods
[200]), various strategies are devised in order to “escape from local optima”, so that after the local phase
terminates, the global phase is able to reach another feasible point, from which a new local phase can be
deployed (Fig. 9.2). Termination conditions for these methods are usually based on the number of calls
to the local phase, or on a CPU time limit. As in the sampling approach, there are no definite guarantees
on global optimality apart from convergence in infinite time with probability 1.

9.2.1 Remark
In Tabu Search, successive candidate points are located by performing some “moves” in the search space
(e.g. x ← x + αd for some scalar α and vector d). The inverse of the move is then put into a tabu
list and forbidden from being applied for as long as it stays in the list. This makes it unlikely to fall
back on the same local minimum we are escaping from. In Simulated Annealing, the search procedure
is allowed to escape from local optima with a decreasing probability. Tunneling methods are inspired by
the quantum-mechanical idea of a particle in a potential well which escapes from the well with a certain
probability.

9.2.3.3 Mixing sampling and escaping

There are also some stochastic methods, such as e.g. Variable Neighbourhood Search (VNS), which use
both approaches at the same time. VNS is structured in a major and a minor iteration loop. Each major
iteration is as follows: from the current local optimum x′ loop over increasingly larger neighbourhoods
centered at x′; run a multistart in each neighbourhood (minor iteration) until an improved local optimum
x̄ is found (this concludes a major iteration); if x̄ improves the incumbent, update it with x̄, then update
x′ with x̄ and repeat. If no improving optimum is found during the minor iterations, terminate.

9.2.3.4 Clustering starting points

In both approaches, a nontrivial issue is that of reducing the number of local phase deployments converging
to the same local optimum, which is a waste of computational resources. The idea of clustering for the
stochastic global phase suggests that the sampling of starting points should be grouped into clusters of
nearby points: only one local phase from each cluster should be performed [264]. The MLSL algorithm

9.2. THE STRUCTURE OF GO ALGORITHMS 133

Figure 9.2: Escaping approach of the stochastic global phase. The trail consists of local optimization
descents alternating with random escaping paths. Observe that certain escaping paths (e.g. arc 4) might
position the new starting point in the same basin of attraction as the previous local optimum.

proposes a clustering based on linkage: a point x is clustered with a point y if x is “not too far” from y
and the objective function value at y is better than that at x. The clusters are represented by a directed
tree, and the local phase is deployed with the root of this tree (Fig. 9.3).

Figure 9.3: Linkage clustering in the stochastic global phase. The points in the cluster are those incident
to the arcs; each arc (x, y) expresses the relation “x is clustered to y”. The arcs point in the direction of
objective function descent. The root of the tree isthe “best starting point” in the cluster.

9.2.4 Deterministic global phase

This section contains a very general treatment (mostly taken from [288, §5.5]) of a class of algorithms,
called Branch-and-Select (B&S), which is an abstract model for BB, B&C and sBB algorithms. Although
B&S is not the only deterministic global phase approach to GO, it is nonetheless the most widely used.

B&S algorithms can be used to solve Eq. (2.2) in full generality to global optimality. Without any
“acceleration devices” (such as e.g. pre-processing) they often show their exponential worst-case complex-
ity even on very small-sized instances, and tend to be very inefficient in practice. Furthermore, their
performance may depend strongly on the formulation: a different algebraic form of the same equations

134 CHAPTER 9. NONLINEAR PROGRAMMING

and inequalities might lead to a different algorithmic performance.

Let Ω ⊆ Rn. A finite family of sets S is a net for Ω if it is pairwise disjoint and it covers Ω, that is,
∀s, t ∈ S (s ∩ t = ∅) and Ω ⊆

⋃
s∈S s. A net S ′ is a refinement of the net S if S ′ has been obtained from

S by finitely partitioning some set s in S and then replacing s by its partition; that is, given s ∈ S with
s =

⋃
i∈I si where I is an index subset of {1, . . . , |S ′|} and each si ∈ S ′, we have

S ′ = (S\s) ∪ {si | i ∈ I}.

Let ⟨Sn⟩ be an infinite sequence of nets for Ω such that, for all i ∈ N, Si is a refinement of Si−1; let
⟨Mn⟩ be an infinite sequence of subsets of Ω such that Mi ∈ Si. Then ⟨Mn⟩ is a filter for ⟨Sn⟩ if ∀i ∈ N
we have (Mi ⊆Mi−1). We call M∞ =

⋂
i∈NMi the limit of the filter.

We will now present a general algorithmic framework (Fig. 9.4) to solve the generic problem min{f(x) | x ∈
Ω}.

Given any net S for Ω and any objective function value γ ∈ R, we consider a selection rule which
determines:

(a) a distinguished point x∗M for every M ∈ S;

(b) a subfamily of qualified sets R ⊂ S such that, for all x ∈
⋃
s∈S\R s, we have f(x) ≥ γ;

(c) a distinguished set BR of R.

For each set of R, B&S iteratively calculates a distinguished point (for example, by deploying a local
phase within the specified region); BR is then picked for further net refinement.

Branch-and-Select:

1. (Initialization) Start with a net S1 for Ω, set x0 = ∅ and let γ0 be any strict upper bound for
f(Ω). Set P1 = S1, k = 1, σ0 = ∅.

2. (Evaluation) Let σk = {x∗M |M ∈ Pk} be the set of all distinguished points.

3. (Incumbent) Let xk be the point in {xk−1} ∪ σk such that γk = f(xk) is lowest; set x∗ = xk.

4. (Screening) Determine the family Rk of qualified sets of Sk (in other words, from now on ignore
those sets that can be shown not to contain a solution with objective value lower than γk).

5. (Termination) If Rk = ∅, terminate. The problem is infeasible if γk ≥ γ0; otherwise x∗ is the
global optimum.

6. (Selection) Select the distinguished set Mk = BRk
∈ Rk and partition it according to a pre-

specified branching rule. Let Pk+1 be a partition of BRk
. In Rk, replace Mk by Pk+1, thus

obtaining a new refinement net Sk+1. Set k ← k + 1 and go back to Step 2.

Figure 9.4: The B&S algorithm.

A B&S algorithm is convergent if γ∗, defined as limk→∞ γk, is such that γ∗ = inf f(Ω). A selection
rule is exact if:

(i) inf(Ω∩M) ≥ γ∗ for all M such that M ∈ Rk for all k (i.e. each region that remains qualified forever
in the solution process is such that inf(Ω ∩M) ≥ γ∗);

(ii) the limit M∞ of any filter ⟨Mk⟩ is such that inf f(Ω ∩M∞) ≥ γ∗.

9.2. THE STRUCTURE OF GO ALGORITHMS 135

9.2.2 Theorem
A B&S algorithm using an exact selection rule converges.

Proof. Suppose, to get a contradiction, that there is x ∈ Ω with f(x) < γ∗. Let x ∈M with M ∈ Rn for
some n ∈ N. Because of condition (i) above, M cannot remain qualified forever; furthermore, unqualified
regions may not, by hypothesis, include points with better objective function values than the current
incumbent γk. Hence M must necessarily be split at some iteration n′ > n. So x belongs to every Mn

in some filter {Mn}, thus x ∈ Ω ∩M∞. By condition (2) above, f(x) ≥ inf f(Ω ∩M∞) ≥ γ∗. The result
follows. 2

We remark that this algorithmic framework does not provide a guarantee of convergence in a finite
number of steps. Consequently, most B&S implementations make use of the concept of ε-optimality,
(Sect. 4.2.2). By employing this notion and finding lower and upper bound sequences converging to the
incumbent at each step of the algorithm, finite termination can be ensured. For finite termination with
ε = 0, some additional regularity assumptions are needed (see e.g. [271, 12]). While ε-optimality (with
ε > 0) is sufficient for most practical purposes, it is worth pointing out that a ε-optimum x′ is such that
f(x′) is at most ε away from the true globally optimal objective function value f∗: this says nothing at
all about the distance between x′ and a true global optimum x∗; in fact, ∥x′ − x∗∥2 might be arbitrarily
large.

9.2.4.1 Fathoming

Let Sk be the net at iteration k. For each region M ∈ Sk, find a lower bounding solution x∗M for f(x)
defined on Ω ∩M and the corresponding lower bounding objective function value ℓ(M). A set M ∈ Sk
is qualified if ℓ(M) ≤ γk. The distinguished region is usually selected as the one with the lowest ℓ(M).

The algorithm is accelerated if one also computes an upper bound u(M) for inf f(x) on Ω∩M and uses
it to bound the problem from above by rejecting any M for which ℓ(M) exceeds the best upper bound
u(M) encountered so far. In this case, we say that the rejected regions have been fathomed (Fig. 9.5).
This acceleration device has become part of all BB implementations. Usually, the upper bound u(M) is
computed by solving the problem to local optimality in the current region: this also represents a practical
alternative to the implementation of the evaluation step (Step (2) of the B&S algorithm), since we can
take the distinguished points ω(M) to be the local solutions u(M) of the problem in the current regions.
With a numerically precise local phase, the accuracy of ε-global optima is likely to be better than if we
simply use ℓ(M) to define the distinguished points.

Figure 9.5: Fathoming via upper bound computation.

The convergence of B&S with fathoming is ensured if every filter {Mk|k ∈ K} contains an infinite

136 CHAPTER 9. NONLINEAR PROGRAMMING

nested sequence {Mk|k ∈ K1 ⊆ K} such that:

lim
k→∞
k∈K1

ℓ(Mk) = γ∗. (9.2)

To establish this, we will show that under such conditions the selection procedure is exact, and then invoke
Thm. 9.2.2. Let {Mk|k ∈ K} be any filter and M∞ its limit. Because of equation (9.2), inf f(Ω∩Mk) ≥
ℓ(Mk)→ γ∗, hence inf f(Ω ∩M∞) ≥ γ∗. Furthermore, if M ∈ Rk for all k then inf f(Ω ∩M) ≥ ℓ(M) ≥
ℓ(Mk) → γ∗ as k → ∞, i.e. inf f(Ω ∩M) ≥ γ∗. Thus the selection procedure is exact and, by theorem
9.2.2, the B&S algorithm with fathoming converges.

9.2.5 Example of solution by B&S

The formulation
min{f(x) = 1

4
x+ sin(x) | x ≥ −3, x ≤ 6}

describes a simple NLP with two minima, only one of which is global (Fig. 9.6). We solve it (graphically)
with a sBB approach: at each iteration we find lower and upper bounds to the optimum within a subregion
of the search space; if these bounds are not sufficiently close, say to within a ε > 0 tolerance, we split
the subregion in two, repeating the process on each subregion until all the regions have been examined).
In this example we set ε to 0.15, but note that this is not realistic: in practice ε is set to values between
1 × 10−6 and 1 × 10−3. At the first iteration we consider the region consisting of the whole x variable

Figure 9.6: The problem min{ 14x+ sin(x) | x ≥ −3, x ≤ 6}.

range −3 ≤ x ≤ 6. We calculate a lower bound by underestimating the objective function with a convex
function: since for all x we have −1 ≤ sin(x) ≤ 1, the function 1

4x− 1 is a convex underestimator of the
objective function. Limited to this example only, We can draw the tangents to f(x) at the range endpoints
x = −3 and x = 6 to make the underestimator tighter, as in Fig. 9.7. The whole underestimator is the
pointwise maximum of the three linear functions emphasized in Fig. 9.7. The tangent to the objective
function in the point x = −3 is the line y = −0.74x−3.11, whereas in the point x = 6 it is y = 1.21x−6.04.
Thus the convex underestimator is f̄(x) = max{−0.74x−3.11, 14x−1, 1.21x−6.04}. Finding the minimum
of f̄(x) in the region −3 ≤ x ≤ 6 yields a solution x̄ = −2.13 with objective function value l = −1.53
which is a valid lower bound for the original problem (indeed, the value of the original objective function
at x̄ is −1.42). Now we find an upper bound to the original objective function by locally solving the
original problem. Suppose we pick the range endpoint x = 6 as a starting point and we employ Newton’s
method in one dimension: we find a solution x̃ = 4.46 with objective function value u = 0.147. Since

9.2. THE STRUCTURE OF GO ALGORITHMS 137

Figure 9.7: Convex underestimation of the objective function in Sect. 9.2.5 and optimal solution of the
convex underestimating problem.

|u− l| = |0.147− (−1.53)| = 1.67 > ε shows that u and l are not sufficiently close to be reasonably sure
that x̃ is the global optimum of the region under examination, we split this region in two. We choose
the current x̃ = 4.46 as the branching point, we add two regions −3 ≤ x ≤ 4.46, 4.46 ≤ x ≤ 6 to a list
of “unexamined regions” and we discard the original region −3 ≤ x ≤ 6. At the second iteration we pick
the region −3 ≤ x ≤ 4.46 for examination and compute lower and upper bounds as in Fig. 9.8. We find

Figure 9.8: Second iteration of the sBB algorithm.

the same underestimating solution x̄ as before (with l = −1.53) and by deploying Newton’s method from
the endpoint x = −3 we locate the local optimum x̃ = −1.823 with u = −1.42. Since |u− l| = 0.11 < ε,
we accept x̃ as the global optimum for the region under examination, and we update the “best solution
found” x∗ = −1.823 with associated function value U = −1.42. Since we have located the global optimum
for this region, no branching occurs. This leaves us with just one region to examine, namely 4.46 ≤ x ≤ 6.
In the third iteration, we select this region and we compute lower and upper bounds (Fig. 9.9) to find
x̄ = x̃ = 4.46 with l = 1.11 and u = 1.147. Since |u− l| = 0.04 < ε, we have located the global optimum
for this region, so there is no need for branching. Since U = −1.42 < 1.147 = u, we do not update
the “best solution found”, so on discarding this region from the list, the list is empty. The algorithm

138 CHAPTER 9. NONLINEAR PROGRAMMING

Figure 9.9: Third iteration of the sBB algorithm.

terminates with global optimum x∗ = −1.823.

This example shows most of the important features of a typical sBB algorithm run, save three:

(a) the convex underestimation can (and usually is) modified in each region, so that it is tighter;

(b) in formulations with many variables, the choice of the branching variable is a crucial task. This will
be discussed in detail in Sect. 9.4;

(c) in practice, pruning of region occurs when the lower bound in a region is higher than the current best
solution.

In this example there was no pruning, as the region 4.46 ≤ x ≤ 6 did not need to be branched upon. Had
there been need for branching in that region, at the subsequent iterations two new regions would have
been created with an associated lower bound l = 1.11. Since the current best solution has an objective
function value of −1.42, which is strictly smaller than 1.11, both regions would have been pruned before
being processed.

9.3 Variable Neighbourhood Search

The VNS approach was briefly sketched in Sect. 9.2.3.3. Here we describe a version of VNS which
addresses nonconvex NLP formulations. An extension to MINLP was proposed in [188].

As mentioned in Sect. 9.2.3.3, VNS rests on sampling starting points, a local phase, and a neighbour-
hood structure designed both to delimit sampling, and to make it easier to escape from current local
minima towards improved ones. The pseudocode for the VNS algorithm is given in Alg. 1

We adapt Alg. 1 to Eq. (6.9) in the following fashion.

• We employ a local NLP solver, such as SQP (Sect. 9.1), as the local phase delivering the current
local minma x∗, x′.

• We consider a neighbourhood structure formed by a set of embedded hyper-rectangles, each side of
which has length proportional to the corresponding variable range length and scaled by rk = k

kmax
all “centered” at the incumbent x∗.

9.4. SPATIAL BRANCH-AND-BOUND 139

Algorithm 1 The VNS algorithm.
0: Input: maximum number of neighbourhoods kmax, number of local searches in each neighbourhood L
0: Output: a putative global optimum x∗.

loop
Set k ← 1, pick a random point x̃, perform a local search to find a local minimum x∗.
while k ≤ kmax do

Consider a neighbourhood Nk(x∗) of x∗ s.t. ∀ k > 1 (Nk(x
∗) ⊃ Nk−1(x

∗)).
for i = 1 to L do

Sample a random point x̃ from Nk(x
∗).

Perform a local search from x̃ to find a local minimum x′.
If x′ is better than x∗, set x∗ ← x′, k ← 0 and exit the FOR loop.

end for
Set k ← k + 1.
Verify termination condition; if true, exit.

end while
end loop

• Termination conditions based on maximum allowable CPU time.

More formally, let Hk(x
∗) be the hyper-rectangle yL ≤ x ≤ yU where, for all i ≤ n,

yLi = x∗i −
k

kmax
(x∗i − xLi)

yUi = x∗i +
k

kmax
(xUi − x∗i).

This construction forms a set of hyper-rectangles “centered” at x∗ and proportional to xL ≤ x ≤ xU . Two
strategies are possible to define each neighbourhood Nk(x∗):

• Nk(x
∗) = Hk(x

∗);

• Nk(x
∗) = Hk(x

∗)∖Hk−1(x
∗),

for all k ≤ kmax.

This extremely simple algorithm has a very small number of configurable parameters: the maximum
neighbourhood size kmax, the number of sampling points and local searches started in each neighbourhood
(L in Alg. 1), a ε tolerance to allow accepting a new optimum, and the maximum CPU time allowed for
the search. Notwithstanding its simplicity, this was found to be a very successful algorithm for nonconvex
NLP [178].

9.4 Spatial Branch-and-Bound

In this section we shall give a detailed description of the sBB algorithm, which belongs to the B&S class
(Sect. 9.2.4). This provides an example of a deterministic global phase. Although it is designed to address
nonconvex NLP as in Eq. (6.9), an extension to address Eq. (2.2) in full generality can be provided quite
simply by adding the possibility of branching on integer variables, as is done by the BB algorithm of
Sect. 8.3. The convergence proof theorem 9.2.2 also covers the sBB algorithm described in this section.

The history of sBB algorithms for nonconvex NLP starts in the 1990s [255, 20, 5, 6, 4, 106, 157]. Here,
we follow a particular type of sBB algorithm called spatial Branch-and-Bound with symbolic reformulation
[275, 276, 169].

140 CHAPTER 9. NONLINEAR PROGRAMMING

sBB algorithms all rely on the concept of a convex relaxation of the original nonconvex NLP. This
is a convex NLP formulation, the solution of which provides a guaranteed lower bound to the optimal
objective function value of the original NLP. At each iteration, the sBB algorithm solves restrictions to
particular subregions of space of the original formulation and of its convex relaxation, in order to obtain
upper and lower bounds to the optimal value of the objective function value in the subregion. If the
bounds are very close, a global optimum relative to the subregion has been identified. The selection rule
choosing next subregions makes it possible to exhaustively explore the search space. When subregions
are defined by hyper-rectangles (i.e. simple variable ranges), starting with the smallest possible ranges
speeds up the sBB considerably. This issue is addressed in Sect. 9.4.1.

Most sBB algorithms have the following form:

1. (Initialization) Initialize a list of regions to a single region comprising the entire set of variable
ranges. Set the convergence tolerance ε > 0; set the best objective function value found up so far
U :=∞ and the corresponding solution x∗ := (∞, . . . ,∞). Optionally, perform Optimization-Based
Bounds Tigthening (OBBT), see 9.4.1.1.

2. (Choice of Region) If the region list is empty, terminate the algorithm with solution x∗ and ob-
jective function value U . Otherwise, choose a region R (the “current region”) from the list (see
Sect. 9.4.2). Remove R from the list. Optionally, perform Feasibility-Based Bounds Tightening on
R (see Sect. 9.4.1.2).

3. (Lower Bound) Generate a convex relaxation from the original formulation in the selected region
R (see Sect. 9.4.3), and solve it to obtain an underestimation ℓ of the objective function, with
corresponding solution x̄. If ℓ > U or the relaxation is infeasible, go back to Step 2.

4. (Upper Bound) Attempt to solve the original formulation restricted to the selected region to obtain
a (locally optimal) solution x̃ with objective function value u (see Sect. 9.4.4). If this fails, set
u := +∞ and x̃ = (∞, . . . ,∞).

5. (Pruning) If U > u, set x∗ = x̃ and U := u. Remove all regions from the list having lower bounds
greater than U , since they cannot possibly contain the global minimum.

6. (Check Region) If u− ℓ ≤ ε, accept u as the global minimum for this region and return to Step 2.
Otherwise, we may not have located the global minimum for the current region yet, so we proceed
to the next step.

7. (Branching) Apply a branching rule to the current region, in order to split it into subregions (see
Sect. 9.4.5). Append these to the list of regions, assigning to them ℓ as an (initial) lower bound.
Go back to Step 2.

The convex relaxation is generated automatically by means of a symbolic analysis of the mathematical
expressions occurring in the original formulation. Below, we consider some of the key steps of the
algorithm in more detail.

9.4.1 Bounds tightening

Bounds tightening procedures appear in steps 1 and 2. They are optional in the sense that the algorithm
will converge even without them. In practice, however, bounds tightening is essential. Two major bounds
tightening schemes have been proposed in the literature: OBBT and FBBT.

9.4.1.1 Optimization-based bounds tightening

OBBT identifies the smallest range of each variable, subject to feasibility of the convex relaxation. This
prevents the sBB algorithm from exploring subregions that can be proved infeasible a priori.

9.4. SPATIAL BRANCH-AND-BOUND 141

OBBT requires the solution of at least 2n convex relaxations, where n is the number of variables.
Let α ≤ ḡ(x) ≤ β be the set of constraints in the convex relaxation: the OBBT procedure, given below,
constructs sequences xL,k, xU,k of possibly tighter lower and upper variable bounds.

1. Set xL,0 ← xL, xU,0 ← xU , k ← 0.

2. Repeat

xL,ki ← min{xi | α ≤ ḡ(x) ≤ β ∧ xL,k−1 ≤ x ≤ xU,k−1}, ∀i ≤ n;
xU,ki ← max{xi | α ≤ ḡ(x) ≤ β ∧ xL,k−1 ≤ x ≤ xU,k−1}, ∀i ≤ n;
k ← k + 1.

until xL,k = xL,k−1 and xU,k = xU,k−1.

Because of its computational cost, OBBT is usually only performed at the root node of the sBB.

9.4.1.2 Feasibility-based bounds tightening

FBBT is computationally cheaper than OBBT, and as such it can be applied at each region. Variable
ranges are tightened using the constraints, which are exploited in order to calculate extremal values
attainable by the variables. This is done by isolating a variable on the LHS of a constraint and evaluating
the extremal values of the RHS by means of interval arithmetic.

FBBT is easiest for the case of linear constraints. Given constraints l ≤ Ax ≤ u where A is an m× n
matrix, interval analysis immediately yields:

xj ∈

[
max

(
xLj ,mini

(
1
aij

(
li −

∑
k ̸=j

max(aikx
L
k , aikx

U
k)

)))
,

min

(
xUj ,maxi

(
1
aij

(
ui −

∑
k ̸=j

min(aikx
L
k , aikx

U
k)

)))]
if aij > 0

xj ∈

[
max

(
xLj ,mini

(
1
aij

(
li −

∑
k ̸=j

min(aikx
L
k , aikx

U
k)

)))
,

min

(
xUj ,maxi

(
1
aij

(
ui −

∑
k ̸=j

max(aikx
L
k , aikx

U
k)

)))]
if aij < 0

for all 1 ≤ j ≤ n. As pointed out in [275, p. 202], FBBT can also be carried out for factorable nonlinear
constraints.

9.4.1 Remark (Factorable expressions)
A constraint is factorable if it involves factorable expressions. Although a precise definition of factorability
is provided in [214], a more useful characterization is “an expression which can be parsed using an
arithmetic expression language” (see Sect. 2.1.1). In this sense, all expressions occurring in this book are
factorable.

9.4.2 Choice of region

The region selection at Step 2 follows the simple policy of choosing the region in the list with the smallest
lower objective function bound ℓ. Intuitively, this is the most promising region for further analysis.

142 CHAPTER 9. NONLINEAR PROGRAMMING

9.4.3 Convex relaxation

The convex relaxation solved at Step 3 of the sBB algorithm aims at finding a guaranteed lower bound
to the objective function value in the current region. It is generated automatically for Eq. (2.2) in two
stages.

The formulation is first reduced to a standard form where each nonlinear term is linearized, i.e. replaced
by an additional variable. Each linearization is then encoded in a new constraint of the form:

additional variable = linearized nonlinear term.

These constraints, called defining constraints, are all adjoined to the formulation: this yields a formulation
where nonlinear terms only occur in defining constraints.

In the second stage, each defining constraint is replaced by pair of constraints, each defining a convex
portion of space. One provides a convex underestimator, and the other a concave overestimator. This
pair of convex estimating constraints is known as convexification (the union of all such pairs is also known
as “convexification”).

9.4.3.1 Reformulation to standard form

The symbolic reformulation algorithm scans the expression trees (see Sect. 2.1.1 recursively from the
leaves. If the current node is a nonlinear operator ⊗ with arity k, it will have k subnodes s⊗1 , . . . , s

⊗
k , each

of which is either a variable xj in the original formulation or an additional variable wh (by recursion)
for some index h. We then create a new additional variable wp, where p is the next available unused
additional variable index, and adjoin the defining constraint

wp = ⊗(x,w)

to the standard form reformulation, where (x,w) is an appropriate sequence of k variables (some of
which may be original and some additional). The new additional variable wp replaces the subexpression
represented by the subtree rooted at the current node ⊗. See [275, 276] for more details.

9.4.2 Remark
Note that the linearization process is not well-defined, as there may be different linearizations correspond-
ing to a single mathematical expression, depending on associativity. For example, the expression x1x2x3
might be linearized as w1 = x1x2∧w2 = w1x3, w1 = x1x3∧w2 = w1x2 or as w1 = x2x3∧w2 = w2x3, but
also simply as w1 = x1x2x3, as long as the symbolic algorithm is able to recognize the product operator
as an arbitrary k-ary operator (rather than just binary).

In general, if a tight convexification is available for a complicated subexpression, it is advisable to
generate a single additional variable linearizing the whole subexpression [37, 60].

A standard form reformulation based on a symbolic parser which recognizes nonlinear operators of
arity k ∈ {1, 2} is as follows:

min vω (9.3)
a ≤ Av ≤ b (9.4)
vk = vivj ∀(i, j, k) ∈M (9.5)

vk =
vi
vj

∀(i, j, k) ∈ D (9.6)

vk = vνi ∀(i, k, ν) ∈ P (9.7)
vk = ϕµ(vi) ∀(i, k, µ) ∈ U (9.8)

vL ≤ v ≤ vU (9.9)

9.4. SPATIAL BRANCH-AND-BOUND 143

where v = (v1, . . . , vq) are the decision variables (including both original and additional variables), ω ≤ q,
A is the constraint matrix, a, b are the linear constraint bound vectors, vL, vU are the variable bounds
vectors, and ϕµ is a given sequence of labels denoting unary functions such as log, exp, sin, cos, which
the parser is aware of.

The defining constraints (9.5)-(9.8) encode all of the nonlinearities occurring in the original formula-
tion: M,D are sets of variable index triplets defining bilinear and linear fractional terms respectively. P
is a set of variable index triplets defining power terms (each triplet consists of two variable indices i, k
and the corresponding power exponent ν ∈ R). U is a set of triplets which define terms involving the
univariate function labels ϕµ (each triplet consists of two variable indices i, k and a label index µ).

Note that we also replace the objective function with the additional variable xω, corresponding to a
defining constraint of the form xω = objective function.

9.4.3 Example
In this example we show the reformulation obtained for Sect. 9.2.5, together with its graphical repre-
sentation. Since there is only one nonconvex term in the problem (namely, sin(x)), the reformulation is
immediate:

min
x,y

1
4x+ y

s.t. y = sin(x)
−3 ≤ x ≤ 6
−1 ≤ y ≤ 1.

The standard form reformulation is a lifting, since introducing new variables lifts the formulation into a
higher-dimensional space. This is immediately apparent in this simple example. Compare Fig. 9.6 (the
original formulation) and its reformulation shown in Fig. 9.10.

Figure 9.10: The problem min{ 14x+ sin(x) | x ≥ −3, x ≤ 6} reformulated to standard form.

144 CHAPTER 9. NONLINEAR PROGRAMMING

9.4.4 Example (Reformulation of the HPP)
The reformulation obtained for the HPP (see Sect. 2.2.7.7) is as follows:

min
x,y,p,w

6x11 + 16x21 + 10x12 − 9(y11 + y21)− 15(y12 + y22) cost

s.t. x11 + x21 − y11 − y12 = 0 mass balance
x12 − y21 − y22 = 0 mass balance
y11 + y21 ≤ 100 demands
y12 + y22 ≤ 200 demands
3x11 + x21 − w1 = 0 sulphur balance
w1 = pw2 defining constraint
w2 = y11 + y12 (linear) defining constraint
w3 + 2y21 ≤ 2.5(y11 + y21) quality requirement
w3 = py11 defining constraint
w4 + 2y22 ≤ 1.5(y12 + y22) quality requirement
w4 = py12. defining constraint

Note that linear terms do not undergo any linearization. Among the defining constraints, some are
nonlinear (hence nonconvex, since they are equality constraints) and some are linear. This conveniently
splits the problem into a linear and a nonlinear part.

9.4.3.2 Convexification

The convex relaxation of the original formulation consists of the convexification of the defining constraints
in the standard form. The convexification depends on the current region [vL, vU], and is generated as
follows:

1. The defining constraint vi = vjvk is replaced by four linear inequalities:

vi ≥ vLj vk + vLk vj − vLj vLk (9.10)

vi ≥ vUj vk + vUk vj − vUj vUk (9.11)

vi ≤ vLj vk + vUk vj − vLj vUk (9.12)

vi ≤ vUj vk + vLk vj − vUj vLk . (9.13)

Note that Eq. (9.10)-(9.13) provide the convex envelope of the set B(i, j, k) = {(vi, vj , vk) | vi =
vjvk ∧ v ∈ [vL, vU]} (i.e. the smallest convex set containing B(i, j, k)).

2. The defining constraint vi = vj/vk is reformulated to vivk = vj , and the convexification rules
for bilinear terms (9.10)-(9.13) are applied. Note that this introduces the possibility that vk =
0 is feasible in the convex relaxation, whereas the original constraint where vk appears in the
denominator forbids it.

3. The defining constraints vi = ϕµ(vj) where ϕµ is concave univariate is replaced by two inequalities:
the function itself and the secant:

vi ≤ fµ(vj) (9.14)

vi ≥ fµ(v
L
j) +

fµ(v
U
j)− fµ(vLj)
vUj − vLj

(vj − vLj). (9.15)

4. The defining constraint vi = ϕµ(vj) where ϕµ is convex univariate is replaced by:

vi ≤ fµ(v
L
j) +

fµ(v
U
j)− fµ(vLj)
vUj − vLj

(vj − vLj) (9.16)

vi ≥ fµ(vj). (9.17)

9.4. SPATIAL BRANCH-AND-BOUND 145

5. The defining constraint vi = vνj , where 0 < ν < 1, is treated as a concave univariate function in the
manner described in Step 3 above.

6. The defining constraint vi = v2mj for any m ∈ N is treated as a convex univariate function in the
manner described in Step 4 above.

7. The defining constraint vi = v2m+1
j for any m ∈ N may be convex, concave, or piecewise convex and

concave with a turning point at 0. If the range of vj does not include 0, the function is convex or
concave and falls into a category described above. A complete discussion of convex underestimators
and concave overestimators for this term when the range includes 0 can be found in [189].

8. Other defining constraints involving trigonometric functions need to be analysed on a case-by-case
basis, similarly to Step 7.

9.4.4 Local solution of the original problem

This is usually obtained by deploying a local phase on the original formulation restricted to the current
region (see Sect. 9.1). This is also typically the most computationally expensive step in each iteration of
the sBB algorithm.

9.4.4.1 Branching on additional variables

An issue arises when branching on additional variables (say wh): when this happens, the current region
is partitioned into two subregions along the wh axis, the convex relaxation is modified to take the new
variable ranges into account, and lower bounds are found in each subregion.

The upper bounds, however, are found by solving the original formulation, which is not dependent on
the additional variables. Thus the same original formulation is solved at least three times in the course
of the algorithm (i.e. once for the original region and once for each of its two sub-regions).

We address this issue by storing the upper bounds to each region. Whenever the branching variable
is an additional variable, we use the stored bounds rather than deploying the local phase.

9.4.4.2 Branching on original variables

Even when branching occurs on an original variable, there are some considerations that help avoid solving
local optimization problems unnecessarily. Suppose that the original variable x is selected for branching
in a certain region. Then its range [xL, xU] is partitioned into [xL, x′] and [x′, xU]. If the solution of
the original formulation restricted to [xL, xU] is x∗, and x∗ ∈ [xL, x′], then deploying the local phase in
the subregion [xL, x′] is unnecessary. Of course, the lolca phase still needs to be deployed on the other
subregion [x′, xU] (see Fig. 9.11).

9.4.5 Branching

There are many branching strategies [105, 38] available for use in sBB algorithms, most of which are
based on branching along coordinate directions, i.e. by partitioning the variable ranges. It is known
that best results on some particularly difficult MILP instances (e.g. [75]) are achieved by branching
along constraints [76], but such branching schemes have apparently not been used in sBB algorithms yet.
Other approaches include [195, 79, 80, 250]. Henceforth, we shall assume that “branching” implies “along
coordinate directions”.

146 CHAPTER 9. NONLINEAR PROGRAMMING

Figure 9.11: If the locally optimal solution in [xL, xU] has already been determined to be at x∗, solving
in [xL, x′] is unnecessary.

Generally, branching involves two steps: determining the index of the variable on which to branch
(called branching variable), and determining the point (called branching point) on which to partition the
branching variable range. Several heuristics exist (see [275, p. 205-207] and [38]). Here, we use the upper
bounding solution x̃ (obtained in Step 4 of the sBB algorithm) as the branching point, if such a solution
is found; otherwise the lower bounding solutoin v̄ (Step 3) is used. Recall that v = (x,w), where x are
the original variables and w the additional ones.

We then employ the standard form to identify the nonlinear term with the largest error with respect
to its convex relaxation. By definition of the standard form Eq. (9.3) (see Sect. 9.4.3.1), this is equivalent
to evaluating the defining constraints (9.5)-(9.8) at v̄ and choosing the one giving rise to the largest error.
In case the chosen defining constraint represents a unary operator, the only variable operand is chosen
as the branching variable; if it represents a binary operator, the branching variable is chosen as the one
having branching point value closest to the range midpoint.

Part IV

Advanced Topics

147

Chapter 10

Distance Geometry

Distance Geometry (DG) is the study of geometry with the basic entity being distance (instead of lines,
planes, circles, polyhedra, conics, surfaces and varieties). Its interest in this context is that it provides an
a good problem for studying certain current conic techniques in MP. The problem of interest is the reverse
of the following direct problem: given a set V of points in RK , find some of their pairwise distances, and
use them to define and weigh the edges of a graph defined on V . The reverse problem is

Distance Geometry Problem (DGP). Given a simple edge-weighted graph G = (V,E)
where d : E → R+ is the edge weight function, and an integer K, determine whether there
exists a mapping x : V → RK such that:

∀{i, j} ∈ E ∥xi − xj∥ = dij . (10.1)

We remark that we denote x(i), x(j) by xi, xj and d({i, j}) by dij . If a mapping x satisfies Eq. (10.1),
it is called a realization. Sometimes we refer to “invalid realizations” for mappings that do not satisfy
Eq. (10.1), and to “approximate realizations” for mappings that satisfy Eq. (10.1) with an approximation
error. In Eq. (10.1), the norm can be arbitrary, but we mostly use ℓ norms with ℓ ∈ {1, 2,∞}. When the
norm has ℓ = 2, we usually use the definition

∀{i, j} ∈ E ∥xi − xj∥22 = d2ij . (10.2)

10.1 Some applications of DG

We review some important DG applications briefly.

10.1.1 Clock synchronization

Alice just told you her watch is wrong by 5 minutes, Bob’s is wrong by 7 with respect to Alice’s, Charles’
by 3 with respect to Alice’s and 4 with respect to Bob’s. Exasperated, you check the atomic clock public
website to find that it is precisely 16:27. Can you find out the time on Alice’s, Bob’s and Charles’
watches? Is there only one solution, or can there be many?

When K = 1, a typical application of DG is that of clock synchronization [274]. Network protocols
for wireless sensor networks are designed so as to save power in communication. When synchronization
and battery usage are key, the peer-to-peer communications needed to exchange the timestamp can be

149

150 CHAPTER 10. DISTANCE GEOMETRY

limited to the exchange of a single scalar, i.e. the time (or phase) difference. The problem is then to
retrieve the absolute times of all of the clocks, given some of the phase differences. This is equivalent to
a DGP on the time line, i.e. in a single dimension.

More precisely, let K = 1 and V be a set of clocks. An edge {i, j} is in E if the time difference
between clocks i and j is dij . Suppose that each clock i knows its own time as well as the weighted graph
G. Then a solution x∗ ∈ R1 = R is a consistent evaluation of the absolute times of each clock in V .

10.1.2 Sensor network localization

WIFI-enabled smartphones can create what is known as an “ad-hoc network”, i.e. they can create a WIFI
network where each communication is peer-to-peer, as long as the distance between two smartphones is
not excessive. Also, smartphones can estimate pairwise distances (with close enough peers) by measuring
how much battery they use to send/receive a data packet: the higher the battery consumption, the larger
the distance. The network administrator at headquarters must locate each person in the building at any
time: (s)he defines a protocol that has every corporate smartphone send out the distance to each of its
neighbours to a central server. Using these distances, the problem is that of finding positions for each
smartphone (and hopefully its owner), see Fig. 10.1.

Figure 10.1: Realizing the graph in R2.

Let K = 2 and V be a set of mobile devices in a wireless network at a certain given time t. An
edge {i, j} is in E if the distance between i and j is known to be dij at time t. Such distances can be
measured up to a certain threshold, for example by estimating how much battery power a peer-to-peer
communication between i and j takes. By exploiting network communication, the weighted graph G can
be transmitted to a central server. A solution x∗ ∈ R2 gives a consistent position of the devices at time t.
This application arises naturally in the localization of sensors in wireless networks [311, 46, 27, 102, 81].

This, by the way, appears to be the application that first motivated the study of the DGP. Originally,
the DGP was only studied on complete graphs, i.e. there were no missing distances. As we shall see later,
arbitrarily good approximations of realizations of complete graphs can be found in polynomial time. The
DGP was then seen as the inverse problem to “compute the distance matrix of a set of n points in RK”.
To the best of my knowledge, the first mention of the DGP on complete graphs is [311].1

1The paper is titled “The positioning problem: a draft of an intermediate summary”. Rarely was such a cautiously
titled paper accepted by a conference for inclusion in the corresponding proceedings. One can almost imagine the young
Yemini being pressured into submitting an incomplete work and putting up a fierce but ultimately futile resistance to taking
responsibility for it.

10.1. SOME APPLICATIONS OF DG 151

10.1.3 Molecular structure from distance data

Let K = 3 and V be a set of atoms in a molecule such as e.g. a protein. It is well known that proteins
interact with cells because of their geometrical (as well as chemical) properties: in other words, their shape
matters. Being so small, we cannot directly observe their shape. We can, however, measure inter-atomic
distances up to a certain threshold, usually 5Å to 6Å [263], using Nuclear Magnetic Resonance (NMR)
[310]. Although NMR only really gives a frequency for each triplet (atom type, atom type, length), which
means that we can only know how frequent it is to observe a certain distance between, say, a hydrogen
and a carbon, using these data we can reconstruct a weighted graph where {i, j} is in E if the distance
dij between atom i and atom j is known. A solution x∗ ∈ R3 gives a consistent conformation of the
protein [230, 251, 309, 82, 166, 96, 63], see Fig. 10.2.

Figure 10.2: Realizing the graph in R3.

10.1.4 Autonomous underwater vehicles

Let K = 3 and V be a set of unmanned submarines, such as e.g. those used by Shell when trying to fix
the oil spill in the Gulf of Mexico. Since GPS cannot be used underwater, the position of each submarine
must be inferred. An edge {i, j} is in E if the distance between submarines i and j can be obtained using
the sonars. A solution x∗ ∈ R3 gives a consistent snapshot of the positions of the submarines at a certain
time instant.

10.1.5 Finding graph embeddings for deep learning

Artificial Neural Networks (ANN) are supervised Machine Learning (ML) models: once trained, they
encode a function mapping an input vector to an output vector (usually having different dimensions and
different domains). In order to use ANNs with discrete input (such as graphs), it is necessary to define
a vector representation. Obvious ones, such as support vectors of incidence or adjacency structures, are
usually very high-dimensional. Contemporary deep learning wisdom endows ANNs with auto-encoder
modules: basically a preliminary layer which maps the very high dimensional support vectors to lower-
dimensional vectors. An alternative to this view is to solve a DGP on the given graph [176, 175].

152 CHAPTER 10. DISTANCE GEOMETRY

10.2 A short summary of DG history

Distance Geometry (DG) became fashionable around about 50AD, when Heron of Alexa ndria published
a book called Metrica [137]. At the time, the Alexa ndria library was the most prominent place of learning
and research in civilizat ion. It employed people who were paid to just sit and think, and solve the world
’s problems. Among them, Heron was concerned with applied geometry, and came up with what is now
known as Heron’s theorem: a formula for computing the area of a ny triangle given the length of its sides
— the first result of DG in history. It is at least plausible that a motivation for his work might have been
to decr ease fights among farmers trying to enlarge their own triangular fields at the e xpense of their
neighbors, e.g., by surreptitiously moving milestones a few cubi ts within a bordering field in the dead
of night, hoping no-one would notice. Previously known formulæ for the area of triangles would require
the measure of a height of the triangle. But walking in a straight line down from a vertex (marked by a
milestone) hoping you would reach the opposite side (exactly perpendicularly) is an endeavor prone to
mistakes (accidental or else). Instead, walking around the triangle touching all milestones is an easier
feat. Heron made sure this was enough to measure the plowable area: if a farmer suddenly found his area
smaller by a fraction, he would be able to prove it and claim justice.

DG was again fashionable throughout history: in 1766 in Saint Petersburg, in 1813 in Paris, in 1841
in Cambridge, in 1864 in London, in 1928 and in 1933 in Vienna, in 1953 at Columbia, Missouri, and in
1978 in Ithaca, New York (see Figure 10.3). After these events the activity became too frantic to be able
to list it by place/date stamps, but the events themselves are important in the history of mathematics,
and deserve some more attention.

The year 1766 is believed to be the time when Leonhard Euler wrote his well-known rigidity conjecture,
stated in the form of a problem to be solved: find two [triangulated] surfaces such that it is possible to
[continuously] transform one into the other, in such a way that corresponding [pairs of] points on either
keep the same pairwise distance. Towards the end of this fragment [109], Euler writes as soon as the shape
is everywhere closed, it can no longer be continuously transformed. In modern terms, we would ask: are
closed polyhedra rigid? Euler simply wrote that they are, without proving the claim. The first progress
on this famous conjecture was made by Augustin Cauchy in 1813, who was at the time a professor at École
Polytechnique in Paris: he proved that Euler’s conjecture held for strictly convex polyhedra [64]. His
proof, admired for its elegance in mixing geometry and topology, contained two errors, which were fixed
later. We should also explain that we mention “convex polyhedra” since we take polyhedra to be defined
by their face incidence lattice and metric (which can give rise to nonconvex polyhedral surfaces) rather
than as intersections of half-spaces (which are always convex). The story of this conjecture is interesting
and gave rise to a considerable amount of mathematical research, see e.g., [181] for more information.
Here we will only say that the conjecture was disproved by Robert Connelly, who provided in 1978 [72]
an example of a closed nonconvex three-dimensional polyhedron with a hinge and a flexible movement.

Another historical trend is given by the events which occurred in 1841, 1928, and 1953. The earliest
refers to Arthur Cayley publishing a paper about the geometry of position [65]. In this paper, Cayley
proved that the four-dimensional volume of a four-dimensional simplex that can be embedded in three
dimensions is zero. It would perhaps be tempting to react to this statement with supreme indifference. But
Cayley’s result is obtained as an algebraic relation on the side lengths only, which makes the achievement
much less trivial (and in fact entirely nontrivial for Cayley’s times). This result is related to the 1928 work
of Karl Menger on the foundations of geometry through distances [218] (translated in [219]): in fact the
determinant appearing in Cayley’s paper for 5-simplices was generalized by Menger to arbitrary (K+1)-
simplices, and is now known as the Cayley-Menger determinant. Menger’s extensive work on metric
spaces was organized and clearly laid out by one of his students, Leonard Blumenthal, who published his
work in 1953 [48]. In a sense, this is the completion of the line of work started by Heron almost 2000
years before, as the simplex volumes in terms of the sides are direct generaliziations of Heron’s theorem.

In carrying out his work, Menger, then a young professor at the University of Vienna, was following
another mathematical fashion: that of axiomatization. Hilbert’s influence on foundations and axiomati-
zation was very strong in the 1930s Mitteleuropa [139]. This pushed many people towards axiomatizing

10.2. A SHORT SUMMARY OF DG HISTORY 153

Figure 10.3: Above: the frequency of DG landmark events is reasonably well approximated by the function
2000(1− e−2(x−1)) (a “fun fact” according to a certain Sheldon Cooper). Below: geography of the history
of distance geometry.

existing mathematical theories [136]. The Vienna Circle was a group of philosophers and mathematicians
which convened in Vienna’s Reichsrat café around the nineteen-thirties to discuss philosophy, mathemat-
ics and, presumably, drink coffee. When the meetings became excessively politicized, Menger distanced
himself from it, and organized instead a seminar series, which ran from 1929 to 1937 [220]. A notable
name crops up in the intersection of Menger’s geometry students, the Vienna Circle participants, and the
speakers at Menger’s Kolloquium: Kurt Gödel. Most of the papers Gödel published in the Kolloquium’s
proceedings are about logic and foundations, but two, dated 1933, are about the geometry of distances
on spheres and surfaces. The first [220, 18 Feb. 1932, p. 198] answers a question posed at a previous
seminar by Laura Klanfer,2 and shows that a set X of four points in any metric space, congruent to four
non-coplanar points in R3, can be realized on the surface of a three-dimensional sphere using geodesic
distances. The second [220, 17 May 1933, p. 252] shows that Cayley’s relationship hold locally on certain
surfaces which behave locally like Euclidean spaces.

The pace quickens: in 1935, Isaac Schoenberg published some remarks on a paper [265] by Fréchet
on the Annals of Mathematics, and gave, among other things, an algebraic proof of equivalence between
Euclidean Distance Matrices (EDM) and Gram matrices. This is almost the same proof which is nowadays
given to show the validity of the classic Multidimensional Scaling (MDS) technique [53, § 12.1].

This brings us to the computer era, where the historical account ends and the contemporary treatment
begins. Computers allow the efficient treatment of masses of data, some of which are incomplete and

2See Appendix A.

154 CHAPTER 10. DISTANCE GEOMETRY

noisy. Many of these data concern, or can be reduced to, distances, and DG techniques are the subject
of an application-oriented renaissance [184, 232]. Motivated by the Global Positioning System (GPS),
for example, the old geographical concept of trilateration (a system for computing the position of a point
given its distances from three known points) makes its way into DG in wireless sensor networks [107].
Wüthrich’s Nobel Prize for using Nuclear Magnetic Resonance (NMR) techniques in the study of proteins
brings DG to the forefront of structural bioinformatics research [133]. The massive use of robotics in
mechanical production lines requires mathematical methods based on DG [254].

DG is also tightly connected with graph rigidity [126]. This is an abstract mathematical formulation of
statics, the study of structures under the action of balanced forces [213], which is at the basis of architec-
ture [290]. Rigidity of polyhedra gave rise to a conjecture of Euler’s [108] about closed polyhedral surfaces,
which was proved correct only for some polyhedra: strictly convex [64], convex and higher-dimensional
[13], and generic (a polyhedron is generic if no algebraic relations on Q hold on the components of the
vectors which represent its vertices) [121]. It was however disproved in general by means of a very special,
non-generic nonconvex polyhedron [72].

10.2.1 A proof of Heron’s theorem

Although this section is strictly speaking unnecessary to the flow of this book, I found this proof so
elegant that I cannot refrain from presenting it here. This proof is due to a certain Miles Dillon Edwards,
while he was a high school student at Lassiter High School, Marietta, Georgia (USA) in 2007. Further
attempts to trace him and contact him unfortunately failed.

10.2.1 Theorem (Heron)
The area of any triangle with side lengths a, b, c and semiperimeter s = 1

2 (a + b + c) is equal to√
s(s− a)(s− b)(s− c).

Proof. We refer to the picture in Fig. 10.4 to define symbols used in the proofs. First, we note that

Figure 10.4: Proof of Heron’s theorem.

10.3. THE UNIVERSAL ISOMETRIC EMBEDDING 155

2α + 2β + 2γ = 2π, which implies α + β + γ = π. We then exploit these angles to represent orthogonal
vectors as complex numbers:

r + ix = ueiα

r + iy = veiβ

r + iz = weiγ .

Multiplying these together, we obtain (r + ix)(r + iy)(r + iz) = (uvw)ei(α+β+γ) = uvw eiπ = −uvw.
We remark that −uvw ∈ R, from which we infer that Im((r + ix)(r + iy)(r + iz)) = 0, and hence that
r2(x+ y + z) = xyz ⇒ r =

√
xyz

x+y+z .

We can now use this definition of r to prove the theorem as follows. We remark that s = 1
2 (a+b+c) =

x+ y + z, and that

s− a = x+ y + z − y − z = x

s− b = x+ y + z − x− z = y

s− c = x+ y + z − x− y = z.

Hence the area is:

1

2
(ra+ rb+ rc) = r

a+ b+ c

2
= rs =

√
s(s− a)(s− b)(s− c)

as claimed. 2

10.3 The universal isometric embedding

Let (X, d) be a finite metric space with distance matrix D = (dij). An embedding of X into a Euclidean
space of some dimension K is a mapping η : X → RK . An embedding is isometric for some norm ∥ · ∥ if
the distance matrix constructed on η(X) using ∥ · ∥ is equal to D.

We now look at the ℓ∞ norm, and ask whether there exists an isometric embedding valid for all finite
metric spaces X. Surprisingly, the answer is yes. If X = {1, . . . , n} we let U : X → Rn be the embedding
defined as follows:

∀i ∈ X U(i) = (di1, . . . , din)
⊤
.

We call U the universal isometric embedding (UIE).

10.3.1 Theorem
The embedding U is isometric for any finite metric space X.

Proof. Denote U(i) = (di1, . . . , din)
⊤

= xi for each i ∈ X. We must show that for all i ≤ j we have
∥xi−xj∥∞ = dij . We first note that, by the triangular inequalities due to the axioms of a matrice space,
we have

∀i, j ∈ X dik ≤ dij + djk ∧ djk ≤ dij + dik

⇒ dik − djk ≤ dij ∧ djk − dik ≤ dij
⇒ |dik − djk| ≤ dij .

Since these hold for all i, j, k, they also hold for the maximum over k, hence

∥xi − xj∥∞ = max
k≤n
|dik − djk| ≤ max

k≤n
|dij | = dij .

156 CHAPTER 10. DISTANCE GEOMETRY

Now we note that max
k≤n
|dik− djk| is achieved when k ∈ {i, j}. Wlog we take k = j, and write maxk |dik−

djk| = maxk |dij−djj | = maxk |dij−0| = |dij | = dij (since every entry of a distance matrix is non-negative
by definition). 2

We are now in a position where, given any symmetric matrix D, we can verify if it is a metric under
ℓ∞ norm by simply letting xi be its i-th row (or column), and checking whether the distance matrix
(∥xi − xj∥∞) is equal to D.

Isometric embeddings do not provide valid solution algorithms for the DGP, since (a) the DGP input
graph G is usually not a complete graph (this is equivalent to saying that the distance matrix D has
some “holes”, some unknown values — corresponding to the edges missing from G); (b) usually we solve
DGPs using the ℓ2 norm rather than ℓ∞.

The UIE, on the other hand, provides an amazingly easy construction. We can exploit it to devise a
heuristic method: we can try filling in the holes of the given partial distance matrix, and then we can
simply ignore Thm. 10.3.1, and hope that ℓ2 and ℓ∞ norms are not all that different. In fact, it is known
that

∀x ∈ RK ∥x∥∞ ≤ ∥x∥2 ≤ n∥x∥∞, (10.3)

so this can be used to derive some (slack) error bounds on the application of the UIE in norm ℓ2.

10.3.2 Example
The incomplete graph G on the left is realized in R2, where 4 is at the origin, 1 is at (0, 1), 3 is at (1, 0),
and 2 is at (1, 1). G corresponds to the partial distance matrix on the right — the question marks indicate
“holes”, i.e. missing values.

1

4

2

3

D =

0 1

√
2 1

1 0 1 ?√
2 1 0 1
1 ? 1 0

10.3.1 Matrix completion problems

Filling in the holes of a partially defined matrix gives rise to a class of problems called Matrix Comple-
tion Problems (MCP), see [163] or ieee-focs.org/focs2012/workshops/RandomNLA/Recht_RandNLA@
FOCS_2012.pdf.

We look at a specific MCP problem, namely completing a partial square symmetric matrix to a EDM.
An EDM is an n× n symmetric matrix D = (d2ij) of nonnegative values such that there exists an integer
K and a set of n points x1, . . . , xn in RK for which

∀i, j ≤ n d2ij = ∥xi − xj∥22.

Euclidean Distance Matrix Completion Problem (EDMCP). Given a partial square
symmetric matrix D̄ = (dij), determine whether it can be completed to a Euclidean distance
matrix D.

Note that D̄ can be seen as the adjacency matrix of a simple undirected graph G = (V,E) with an edge
weight function d : E → R+. The EDMCP asks to determine whether there exists an integer K > 0
and a realization x : V → RK such that Eq. (10.2) holds for G: this suffices to fill in the unspecified
components of D̄ with the values ∥xi − xj∥22 for all {i, j} ̸∈ E.

ieee-focs.org/focs2012/workshops/RandomNLA/Recht_RandNLA@FOCS_2012.pdf
ieee-focs.org/focs2012/workshops/RandomNLA/Recht_RandNLA@FOCS_2012.pdf

10.3. THE UNIVERSAL ISOMETRIC EMBEDDING 157

10.3.3 Remark
The difference between EDMCP and DGP may appear diminutive, but it is in fact very important. In
the DGP the integer K is part of the input, whereas in the EDMCP it is part of the output. This has
a large effect on worst-case complexity: while the DGP is NP-hard even when only an ε-approximate
realization is sought [262, §5], ε-approximate realizations of EDMCPs can be found in polynomial time
by solving an SDP [14]. See [180, 260] for more information about the relationship between EDMCP and
DGP.

In this context we consider the shortest-path metric method. As above, let G = (V,E) be the graph
defined by using the partially defined matrix D̄ = (dij) as its adjacency matrix. We assume that G is
connected. Then, for each {i, j} ̸∈ E, we fill the missing value dij in D with the squared values of the
shortest path length on G from i to j:

∀{i, j} ̸∈ E dij = (shortest_path_lengthG(i, j))
2. (10.4)

We shall see next how to compute the length of all shortest paths in a graph.

10.3.2 Floyd-Warshall algorithm

We can compute all shortest paths in a graph G = (V,E) in O(|V |3) worst-case time using the Floyd-
Warshall algorithm [216]. This algorithm can be easily modified so it does not change edge weights when
they are already given.

The algorithm works by checking each triplet of vertices u, v, z in V : is it cheaper to go from u to v
via z or not? If so, then update duv with duz + dzv, see Fig. 10.5. The algorithm is correct since it loops

Figure 10.5: The idea behind the Floyd-Warshall algorithm.

over all triplets. The order of the triplets in the loop is important (z first). As we can see in Alg. 2,
we can adapt the Floyd-Warshall algorithm to complete the given matrix by means of only updating the
entry duv if it was originally missing (i.e., a “hole”).

The technique consisting of: (i) completing the distance matrix of the given graph, then (ii) using an
UIE to find an approximate realization, provides an approximate solution to the DGP.

There is a serious issue with this technique, however, namely that K = n. In other words, the
embedding is in Rn. Since n is usually very large, this technique is not very useful. We shall next look
at a method for reducing this dimension without losing too much information.

10.3.3 Multidimensional scaling

The literature on Multidimensional Scaling (MDS) is extensive [77, 53], and many variants exist. The
basic version, called classic MDS, aims at finding an approximate realization of a partial distance matrix.
In other words, it is a heuristic solution method for the EDMCP.

158 CHAPTER 10. DISTANCE GEOMETRY

Algorithm 2 The Floyd-Warshall algorithm (input: a weighted graph G = (V,E, d)).
initialization
for u ≤ n, v ≤ n do

if dij =? then
duv ←∞

end if
end for
main loop
for z ≤ n do

for u ≤ n do
for v ≤ n do

if duv > duz + dzv then
duv ← duz + dzv # only execute this if duv is a “hole”

end if
end for

end for
end for

The Gram matrix of any set of n vectors x1, . . . , xn in RK is the square symmetric matrix G such
that:

∀i, j ≤ n Gij = ⟨vi, vj⟩. (10.5)

If x ∈ Rn×K is a realization of a graph, its Gram matrix G is obtained by setting its (i, j)-th component
to x⊤i xj . The special case where K = 1 yields the Gram matrix of a vector x = (x1, . . . , xn) ∈ Rn, where
Gij = xixj . We also introduce the following constant matrix for later reference:

J = In −
1

n
11⊤ =

1− 1

n − 1
n · · · − 1

n
− 1
n 1− 1

n · · · − 1
n

...
...

. . .
...

− 1
n − 1

n · · · 1− 1
n

 .

The MDS method is based on three results:

1. there is a linear relation between EDMs and Gram matrices;

2. the class of Gram matrices is the same as the class of PSD matrices;

3. PSD matrices A have a spectral decomposition PΛP⊤ where Λ is a diagonal matrix with non-
negative diagonal components.

The method works by completing a partial EDM D̄ using the shortest-path metric to obtain an ap-
proximate EDM D′, then deriving the corresponding approximate Gram matrix G′, then using spectral
decomposition in order to zero the negative elements of the diagonal matrix Λ. This yields a corrected
matrix G which is PSD by construction, and hence Gram by Item 2 above; the matrix G can be factored
(e.g. by again using spectral decomposition) into a product xx⊤, where x is an approximate realization
of the graph G = (V,E) having D̄ as adjacency matrix. Specifically, x satisfies Eq. (10.2) approximately.

10.3.4 Remark
Originally, the relation between EDMs and PSD matrices was exhibited and proved by the geometer
I. Schoenberg [265], who showed that D = (dij) is EDM iff 1

2 (d
2
1i + d21j − d2ij |2 ≤ i, j ≤ n) is PSD.

We begin by proving Item 1.

10.3. THE UNIVERSAL ISOMETRIC EMBEDDING 159

10.3.5 Theorem
For any integer K > 0 and any set x1, . . . , xn of n vectors in RK yielding an EDM D and Gram matrix
G, we have:

G = −1

2
JDJ. (10.6)

Proof. This proof is technical, but not difficult. To make the steps clearer, they are presented by bullet
points. To improve readability, we denote the scalar product x⊤i xj simply by xixj .

• Assume that the set x1, . . . , xn ∈ RK has zero centroid, i.e. 1
n

∑
k≤K xik = 0 for all i ≤ n. This can

be achieved wlog since EDMs are invariant w.r.t. translations.

• Expand d2ij into ∥xi − xj∥22 = (xi − xj)(xi − xj) = xixi + xjxj − 2xixj . We denote the equation
d2ij = xixi + xjxj − 2xixj by (∗).

• We aim at “inverting” the equation (∗) in order to express xixj in function of d2ij

• We sum (∗) over i ≤ n: we obtain

∑
i≤n

d2ij =
∑
i≤n

xixi + nxjxj − 2xj

�
�
��

0 by zero centroid∑
i≤n

xi

• Similarly, we sum (∗) over j ≤ n, obtaining a similar equation.

• We divide both equations (over i and j) by n, and obtain:

1

n

∑
i≤n

d2ij =
1

n

∑
i≤n

xixi + xjxj (†)

1

n

∑
j≤n

d2ij = xixi +
1

n

∑
j≤n

xjxj (‡)

• We sum (†) over j ≤ n, and get:

1

n

∑
i,j≤n

d2ij = n
1

n

∑
i≤n

xixi +
∑
j≤n

xjxj = 2
∑
i≤n

xixi

• We divide by n, and get:
1

n2

∑
i,j≤n

d2ij =
2

n

∑
i≤n

xixi (∗∗)

• We rearrange (∗), (†), (‡) as follows:

2xixj = xixi + xjxj − d2ij (10.7)

xixi =
1

n

∑
j≤n

d2ij −
1

n

∑
j≤n

xjxj (10.8)

xjxj =
1

n

∑
i≤n

d2ij −
1

n

∑
i≤n

xixi (10.9)

• We replace the LHS of Eq. (10.8)-(10.9) in the RHS of Eq. (10.7), and obtain:

2xixj =
1

n

∑
k≤n

d2ik +
1

n

∑
k≤n

d2kj − d2ij −
2

n

∑
k≤n

xkxk.

160 CHAPTER 10. DISTANCE GEOMETRY

• By (∗∗), we replace 2
n

∑
i≤n

xixi with 1
n2

∑
i,j≤n

d2ij , and get

2xixj =
1

n

∑
k≤n

(d2ik + d2kj)− d2ij −
1

n2

∑
h,k≤n

d2hk (§),

which expresses xixj in function of D.

At this point, we only need to explicitly compute the expression − 1
2JDJ , and verify its relation to (§).

Again, this is long and technical but poses no logical difficulty: it is all computation. We first evaluate the
(i, j)-th component of the matrix product JD. The i-th row of J is (−1/n, . . . , (1−1/n)i, . . . ,−1/n), and
the j-th column of D is (d21j , . . . , 0j , . . . , d2nj). The scalar product is −(1/n)

∑
k ̸∈{i,j} d

2
kj +(1−1/n)d2ij =

d2ij − (1/n)
∑
k d

2
kj . Now the i-th row of JD is

(
d2i1 −

1

n

∑
k

d2k1, . . . ,−
1

n

∑
k

d2ki, . . . , d
2
in −

1

n

∑
k

d2kn
)

and the j-th column of J is (−1/n, . . . , (1− 1/n)j , . . . ,−1/n). Their scalar product is:

− 1

n

∑
h ̸∈{i,j}

(
d2ih −

1

n

∑
k

d2kh
)
+

1

n2

∑
k

d2ki +
(
1− 1

n

)(
d2ij −

1

n

∑
k

d2kj
)

= − 1

n

∑
h̸=i

(
d2ih −

1

n

∑
k

d2kh
)
− 1

n

∑
k

d2kj +
1

n2

∑
k

d2ki + d2ij

=
1

n

∑
h ̸=i

d2ih +
1

n2

∑
k≤n
h ̸=i

d2kh −
1

n

∑
k

d2kj +
1

n2

∑
k

d2ki + d2ij

= − 1

n

∑
h

d2ih −
1

n

∑
k

d2kj +
1

n2

∑
k,h

d2kh + d2ij

= − 1

n

∑
k

(d2ik + d2kj) +
1

n2

∑
k,h

d2kh + d2ij .

We note that multiplying the last quantity by −1 we obtain the RHS of (§). Now the claim holds because,
after multiplying (§) by 1

2 , we note that the LHS is the (i, j)-th entry of the Gram matrix G, whereas
the RHS is the (i, j)-th entry of the matrix − 1

2JDJ . 2

Now we prove Item 2.

10.3.6 Lemma
The set of Gram matrices is equal to the set of PSD matrices.

Proof. First we prove that any Gram matrix G is PSD. Since G is Gram, it arises from the product of
a realization x ∈ Rn×K by its transpose, i.e. G = xx⊤. So, for each y ∈ Rn we have:

y⊤Gy = y⊤(xx⊤)y = (y⊤x)(x⊤y) = (x⊤y)(x⊤y)
⊤
= ∥x⊤y∥22 ≥ 0,

which proves that G is PSD. Now we establish the converse. Let G by any PSD matrix. Since it is PSD,
it has a spectral decomposition G = PΛP⊤ where P is a matrix of eigenvectors and Λ = diag(()λ) is a
diagonal matrix with diagonal vector 0 ≤ λ ∈ Rn of eigenvalues. Since λ ≥ 0, the vector

√
λ = (

√
λi | i ≤

n) is real. Hence

PΛP⊤ = P (diag(
√
λ)diag(

√
λ)

⊤
)P⊤ = (Pdiag(

√
λ))(diag(

√
λ)

⊤
P⊤) = Pdiag(

√
λ)(Pdiag(

√
λ))

⊤
,

10.3. THE UNIVERSAL ISOMETRIC EMBEDDING 161

which shows that G is the Gram matrix of x = Pdiag(
√
λ). 2

Note that Item 3 is a well-known linear algebra property, which was also used in the second part of
Lemma 10.3.6.

Finally, we give a more detailed explanation of the MDS algorithm. Given a partial EDM D′, MDS
consists of the following steps:

1. complete D̄ with the shortest-path metric as in Eq. (10.4), obtaining a matrix D′;

2. compute G′ = − 1
2JD

′J

3. let PΛ′P⊤ be the spectral decomposition of G′ into an eigenvector matrix P and a diagonal matrix
Λ′ = diag(λ′);

4. if λ′ ≥ 0 then, by Eq. (10.6), D′ is a EDM, with corresponding (exact) realization x = P
√
Λ′ with

K = n;

5. otherwise, let λ+ = diag((max(λ′i, 0) | i ≤ n)) and Λ+ = diag(λ+): then x′ = P
√
Λ+ is an

approximate realization of D′.

Note that the last step reduces the dimensionality of the realization: instead of yielding a realization
in Rn, it achieves a realization in a lower dimensional space RK with K < n. The trade-off is between
dimensional reduction and approximation quality is as follows: the more negative components of λ′ are
discarded, the worse the approximation of the realization x′ is.

We also note that the input matrix D′ does not, strictly speaking, need to be a partial EDM. Any
symmetric matrix D′ can provide an input to the MDS algorithm. Naturally, the farther D′ is from an
EDM, the worse the approximate realization x′ will be. On the other hand, MDS is often used in order
to provide a graphical representation of “difference matrices” that have nothing to do with Euclidean
distances [53].

10.3.4 Principal component analysis

Principal Component Analysis (PCA) is one of the best known dimensional reduction techniques. It was
first proposed by Harold Hotelling3 [143].

Consider an n×m matrix X consisting of n data row vectors in Rm, and let K < m be a given integer.
We want to find a change of coordinates for X such that the first component has largest variance over
the transformed vectors, the second component has second-largest variance, and so on, until the K-th
component. The other components can be neglected, as the variance of the data in those directions is
low.

The usual geometric interpretation of PCA is to take the smallest enclosing ellipsoid E for X: then the
required coordinate change maps component 1 to the line parallel to the largest radius of E , component
2 to the line parallel to the second-largest radius of E , and so on until component K (see Fig. 10.6). The
statistical interpretation of PCA looks for the change of coordinates which makes the data vectors be
uncorrelated in their components. Fig. 10.6 should give an intuitive idea about why this interpretation
corresponds with the ellipsoid of the geometric interpretation. The cartesian coordinates in Fig. 10.6 are
certainly correlated, while the rotated coordinates look far less (linearly) correlated. The zero correlation

3A young and unknown George Dantzig had just finished his presentation of LP to an audience of “big shots”, including
Koopmans and Von Neumann. Harold Hotelling raised his hand, and stated: “but we all know that the world is nonlinear!”,
thereby obliterating the simplex method as a mathematical curiosity. Luckily, Von Neumann answered on Dantzig’s behalf
and in his defence [87].

162 CHAPTER 10. DISTANCE GEOMETRY

Figure 10.6: Geometric interpretation of PCA (image from [303]).

situation corresponds to a perfect ellipsoid. An ellipsoid is described by the equation
∑
j≤n

(xj

rj

)2
= 1,

which has no mixed terms xixj contributing to correlation. Both interpretations are well (and formally)
argued in [298, §2.1].

The interpretation we give here is motivated by DG, and related to MDS (Sect. 10.3.3). PCA can
be seen as a modification of MDS which only takes into account K (nonnegative) principal components.
Instead of Λ+ (step 5 of the MDS algorithm), PCA uses a different diagonal matrix Λpca: the i-th diagonal
component is

Λpca
ii =

{
max(Λii, 0) if i ≤ K
0 otherwise, (10.10)

where PΛP⊤ is the spectral decomposition of G′ = − 1
2JD

′J (using the same notation as in the MDS
algorithm in Sect. 10.3.3). In this interpretation, when given a partial EDM and the integer K as input,
PCA can be used as an approximate solution method for the DGP.

On the other hand, the PCA algorithm is most usually considered as a method for dimensionality
reduction, so it has a data matrix X and an integer K as input. It is as follows:

1. let G′ = XX⊤ be the n× n Gram matrix of the data matrix X;

2. let PΛP⊤ be the spectral decomposition of G′;

3. return x̃ = P
√
Λpca.

Then x̃ is an n×K matrix, where K < n. The i-th row vector in x̃ is a dimensionally reduced represen-
tation of the i-th row vector in X.

There is an extensive literature on PCA, ranging over many research papers, dedicated monographs
and textbooks [303, 152, 298]. Among the variants and extensions, see [99, 256, 91, 15, 100].

10.3.7 Example
Consider the Mathematical Genealogy Project (genealogy.math.ndsu.nodak.edu/). We extract a
subset of the vertices from the tree shown in Fig. 10.7. We evaluate their distances using shortest paths
on the tree. This yields:

genealogy.math.ndsu.nodak.edu/

10.4. COMPLEXITY 163

Figure 10.7: A subtree of the Mathematical Genealogy Project graph.

Euler Thibaut Pfaff Lagrange Laplace Möbius Gudermann Dirksen Gauss
Kästner 10 1 1 9 8 2 2 2 2
Euler 11 9 1 3 10 12 12 8

Thibaut 2 10 10 3 1 1 3
Pfaff 8 8 1 3 3 1

Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Möbius 4 4 2

Gudermann 2 4
Dirksen 4

corresponding to the distance matrix

D′ =

0 10 1 1 9 8 2 2 2 2
10 0 11 9 1 3 10 12 12 8
1 11 0 2 10 10 3 1 1 3
1 9 2 0 8 8 1 3 3 1
9 1 10 8 0 2 9 11 11 7
8 3 10 8 2 0 9 11 11 7
2 10 3 1 9 9 0 4 4 2
2 12 1 3 11 11 4 0 2 4
2 12 1 3 11 11 4 2 0 4
2 8 3 1 7 7 2 4 4 0

which is not necessarily Euclidean. By using PCA, we obtain the representations of these data in 2D and
3D shown in Fig. 10.8.

10.4 Complexity

We show that the DGP is NP-hard. The best known proof, given in [262], reduces from Partition (see
Sect. 5).

164 CHAPTER 10. DISTANCE GEOMETRY

Figure 10.8: PCA-derived representations in 2D and 3D.

10.4.1 Reduction proof

More precisely, Saxe’s first proof in [262] proves that the DGP is weakly NP-hard by inclusion of the
DGP with K = 1.

10.4. COMPLEXITY 165

Partition. Given a sequence A = (a1, . . . , an) of non-negative integers, is there a subset
I ⊆ {1, . . . , n} such that

∑
i∈I

ai =
∑
i ̸∈I

ai ?

For a given instance (a1, . . . , an) of Partition, consider a simple cycle C = (V,E) with |V | = |E| = n
and an edge weight function d such that di,i+1 = ai for i ≤ n − 1, and dn1 = an: by arbitrarily setting
K = 1, we make this weighted cycle graph into a DGP instance.

Assume that the given Partition instance is a YES instance: we show that the corresponding DGP
instance is also a YES instance, i.e. there is a realization x of C in 1D (i.e. on a line). We construct a
realization x of C in R inductively, as follows:

1. we fix x1 = 0;

2. if we know the position xi for i < n and i ∈ I, we let xi+1 = xi + di,i+1 (right placement), else
xi+1 = xi − di,i+1 (left placement).

Following the same induction on i, we easily prove that x is a valid realization for C: it suffices to assume
it is correct as far as vertex i and conclude, by the induction hypothesis, that it is also correct for vertex
i + 1, since we place xi+1 at distance di,i+1 from i. This induction holds as far as we are applying
rule 2 above, i.e. until i = n − 1, which yields position for i + 1 = n. In order for the realization to
be valid, however, we also need to ensure that the distance d1n is preserved. To this end, we define a
dummy index n+ 1 to be equivalent to index 1: the position xn+1, computed according to rule 2 where
dn,n+1 = dn1 = d1n, should turn out to be equal to x1, which we still need to prove.

We have: ∑
i∈I

(xi+1 − xi) =
∑
i∈I

di,i+1 [by defn. of the cycle graph]

=
∑
i∈I

ai =
∑
i ̸∈I

ai [Partition instance is YES]

=
∑
i ̸∈I

di,i+1 =
∑
i ̸∈I

(xi − xi+1).

This implies that the first and the last terms are equal, hence:

0 =
∑
i∈I

(xi+1 − xi)−
∑
i̸∈I

(xi − xi+1)

=
∑
i∈I

(xi+1 − xi) +
∑
i ̸∈I

(xi+1 − xi) [sign change in 2nd term]

=
∑
i≤n

(xi+1 − xi) [grouping terms from both sums]

= (xn+1 − xn) + (xn − xn−1) + . . .+ (x2 − x1)
= xn+1 + (xn − xn) + . . .+ (x2 − x2)− x1 = xn+1 − x1,

implying xn+1 = x1 as claimed. So the DGP instance is YES.

Now assume that the given Partition instance is a NO instance, and suppose, to get a contradiction,
that the corresponding DGP instance is a YES instance. So we suppose there is a realization x of C
in 1D. Since we are realizing on a line, for any two points xu, xv, we either have xu ≤ xv or xu > xv.
Let F = {{u, v} ∈ E | xu ≤ xv}, so that E ∖ F will only contain edges {u, v} for which xu > xv.
Because C is a cycle, starting with any vertex v, we must be able to walk the cycle from v back to itself
passing through every vertex: for this to hold, the walk must have one direction over all edges in F and

166 CHAPTER 10. DISTANCE GEOMETRY

the opposite direction for all edges in E ∖ F . Since there is a unique position xv for each vertex v, the
distance walked in one direction must be equal to the distance walked in the opposite direction. Hence:∑

{u,v}∈F

(xv − xu) =
∑

{u,v}∈E∖F

(xu − xv)

⇒
∑

{u,v}∈F

|xu − xv| =
∑

{u,v}∈E∖F

|xu − xv|

⇒
∑

{u,v}∈F

duv =
∑

{u,v}∈E∖F

duv. (10.11)

By definition, every edge in E has the form {i, i+1} for i < n or {n, 1}: let J be the set of all i < n such
that {i, i+ 1} is in F , and let it also contain n if {n, 1} is in F . Then Eq. (10.11) becomes:∑

i∈J
ai =

∑
i ̸∈J

ai,

which implies that J is a solution for the given Partition instance, against the assumption that it was
a NO instance. Hence the corresponding DGP instance must also be a NO instance, as claimed.

Lastly, it is easy to note that the transformation of a Partition instance into the corresponding DGP
instance can be carried out in time bounded by a polynomial in n, since for each i ≤ n we construct a
vertex and an edge in the cycle graph.

This means that we have a polytime transformation to turn Partition instances to DGP instances
with K = 1 so that YES instances map to YES instances and NO instances map to NO instances. In
other words, if we could solve the DGP in polytime then we could exploit this polytime transformation
to solve Partition in polytime too. But since Partition is NP-hard [116] then DGP must also be
NP-hard with K = 1. And since the case K = 1 determines a subset of instances of the DGP, the DGP
itself must be NP-hard.

10.4.1 Example
Consider the Partition instance a1 = 2, a2 = 1, a3 = 4, a4 = 1, a5 = 2. We construct the cycle C over
{1, 2, 3, 4, 5} with edges {i, i + 1} for i ≤ 4 and {5, 1} (which closes the cycle), weighted by ai for each
i ≤ 4 and d51 = a5. We realize C with x1 = 0, x2 = −2, x3 = −3, x4 = 1, x5 = 2, as shown in Fig. 10.9.
Now the set F of edges {u, v} with u < v and xu ≤ xv is {3, 4} and {4, 5}, so J = {3, 4}, and it is easy

x3

−3

x2

−2

x1

0

x4

1

x5

2

Figure 10.9: The realization of a cycle in 1D.

to verify that
∑
i∈J

ai = 4+ 1 = 5 = 2 + 1 + 2 =
∑
i ̸∈J

ai, showing that (a3, a4) and (a1, a2, a5) is the desired

partition.

Saxe also proved that the DGP is NP-hard for any fixed value of K, using a more complicated
reduction from a different NP-hard problem.

10.4.2 Membership in NP

In Sect. 10.4.1 we proved hardness of the DGP. Since the DGP is a decision problem, it makes sense to
ask whether it is in NP (and hence whether it is not only NP-hard but also NP-complete)..

10.5. NUMBER OF SOLUTIONS 167

The issue here is that, in general, even a graph having edges weighted with integers might yield a
realization with irrational components (e.g. a triangle graph with unit weights has a realization

(0, 0), (1, 0), (0.5, cosπ/6),

and there is no congruence that can simultaneously make all realization components rational). So the
problem is one of being able to represent a certificate in a polynomial amount of space, necessary to
membership in NP.

If K = 1, however, as long as the graph has rational edge weights, the realization must also have
rational components. It can therefore be proved that the DGP with = 1 is indeed in NP. Let G = (V,E)
be a graph and x ∈ Rn×1 be a valid realization. Suppose there is a component xi ̸∈ Q. Then, since
every edge weight is in Q, every neighbour j of i is realized at an irrational position xj , and so on for
every vertex in V . Take any translation t moving xi to a rational value, i.e. t : p → p − xi, so that
t(xi) = 0. Again since every edge weight is rational, every vertex must be realized at a rational position,
i.e. t(x) ∈ Q. This argument shows that if G can be realized in R1, then there is a rational realization x.
Lastly, we need to prove that x can be written using a polynomial amount of space. This follows because
every component can be obtained as a sum or difference of edge weights from any chosen component, say
x1.

If K > 1, as mentioned above, it is unlikely that the DGP is in NP. Since realizations are solu-
tions of a system of polynomial equations of degree 2 (Eq. (10.2)), we can at least rule out the need
for transcendental realizations: it suffices to consider algebraic numbers. Although there exist finitary
representations of algebraic numbers, [35] shows that the simplest such representation is not enough to
prove membership in NP of the DGP.

10.5 Number of solutions

A DGP instance may have no solutions if the given distances do not define a metric, a finite number of
solutions if the graph is rigid, or uncountably many solutions if the graph is flexible.

Restricted to the ℓ2 norm, there are several different notions of rigidity. We only define the simplest,
which is easiest to explain intuitively: if we consider the graph as a representation of a bar-and-joint
framework, a graph is flexible if the framework can move (excluding translations and rotations) and rigid
otherwise. The formal definition of rigidity of a graph G = (V,E) involves: (a) a mapping D from a
realization x ∈ RnK to the partial distance matrix

D(x) = (∥xu − xv∥ | {u, v} ∈ E);

and (b) the completion K(G) of G, defined as the complete graph on V . We want to say that G is
rigid if, were we to move x ever so slightly (excluding translations and rotations), D(x) would also vary
accordingly. We formalize this idea indirectly: a graph is rigid if the realizations in a neighbourhood χ of
x corresponding to changes in D(x) are equal to those in the neighbourhood χ̄ of a realization x̄ of K(G)
[182, Ch. 7]. We note that realizations x̄ ∈ χ̄ correspond to small variations in D(K(G)): this definition
makes sense because K(G) is a complete graph, which implies that its distance matrix is invariant, and
hence χ̄ may only contain congruences.

We thus obtain the following formal characterization of rigidity [24]:

D−1(D(x)) ∩ χ = D−1(D(x̄)) ∩ χ̄. (10.12)

Let us parse Eq. (10.12): for a partial distance matrix Y , D−1(Y) corresponds to all of the realizations
that give rise to Y (which are uncountably many because of congruences). Now, let x be a realization of
the partial distance matrix Y , and x̄ a realization of the metric completion Ȳ of Y (if it exists). Moreover,
χ is a neighbourhood of x and χ̄ is a neighbourhood of x̄ (in the vector space RnK). Since we know

168 CHAPTER 10. DISTANCE GEOMETRY

that Ȳ corresponds to a realizable complete graph, its framework is rigid. So the set D−1(D(x̄))∩ χ̄ only
contains realizations obtained from x̄ by means of congruences. Eq. (10.12) states that the framework
realized by x is rigid if the realizations of the partial distance matrix of x can be obtained from x only
from congruences: in other words, if it “behaves like” the framework of a complete graph.

Uniqueness of solution (modulo congruences) is sometimes a necessary feature in applications. Many
different sufficient conditions to uniqueness have been found [184, §4.1.1]. By way of example as concerns
the number of DGP solutions in graphs, a complete graph has at most one solution modulo congruences,
as remarked above. It was proved in [183] that protein backbone graphs have a realization set having
power of two cardinality with probability 1. As shown in Fig. 10.10 (bottom row), a cycle graph on four
vertices has uncountably many solutions.

Figure 10.10: Instances with one, two, and uncountably many realizations.

On the other hand, the remaining possibility of a countably infinite set of realizations of a DGP
instance cannot happen, as shown in Thm. 10.5.1. This result is a simple corollary of a well-known
theorem of Milnor [221]. It was noted informally in [184, p. 27] without details; we provide a proof here.

10.5.1 Theorem
No DGP instance may have an infinite but countable number of solutions.

Proof. Eq. (10.2) is a system of m quadratic equations associated with the instance graph G. Let
X ⊆ RnK be the variety associated to Eq. (10.2). Now suppose X is countable: then no connected
component of X may contain uncountably many elements. By the notion of connectedness, this implies
that every connected component is an isolated point in X. Since X is countable, it must contain a
countable numbers of connected components. By [221], the number of connected components of X is
finite; in particular, it is bounded by O(3nK). Hence the number of connected components of X is finite.
Since each is an isolated point, i.e. a single realization of G, |X| is finite. 2

10.6. FORMULATION-BASED SOLUTION METHODS 169

10.6 Formulation-based solution methods

DGP solution methods based on MP can be tailored to handle noisy or wrong data because MP allows for
modification of the objective and constraints, as well as adjoining of further side constraints. Moreover,
although we do not review these here, there are MP-based methodologies for ensuring robustness of
solutions [39], probabilistic constraints [244], and scenario-based stochasticity [45], which can be applied
to the formulations in this section.

10.6.1 Unconstrained quartic formulation

A system of equations such as Eq. (10.2) is itself a MP formulation with objective function identically
equal to zero, and X = RnK . It therefore belongs to the Quadratically Constrained Programming (QCP)
class. In practice, solvers for this class perform rather poorly when given Eq. (10.2) as input [164]. Much
better performances can be obtained by solving the following unconstrained formulation:

min
∑

{u,v}∈E

(
∥xu − xv∥22 − d2uv

)2
. (10.13)

We note that Eq. (10.13) consists in the minimization of a polynomial of degree four. It belongs to the
class of nonconvex NLP formulations. In general, this is an NP-hard class [174], which is not surprising,
as it formulates the DGP which is itself an NP-hard problem (see Sect. 10.4. Very good empirical results
can be obtained on the DGP by solving Eq. (10.13) with a local NLP solver (such as e.g. IPOPT [70] or
SNOPT[119] [120]) from a good starting point [164]. This is the reason why Eq. (10.13) is very important:
it can be used to improve approximate solutions obtained with other methods, as it suffices to let such
solutions be starting points given to a local solver acting on Eq. (10.13).

Even if the distances duv are noisy or wrong, optimizing Eq. (10.13) can yield good approximate
realizations. If the uncertainty on the distance values is modelled using an interval [dLuv, dUuv] for each
edge {u, v}, the following function [185] can be optimized instead of Eq. (10.13):

min
∑

{u,v}∈E

(
max(0, (dLuv)

2 − ∥xu − xv∥22) + max(0, ∥xu − xv∥22 − (dUuv)
2)
)
. (10.14)

The DGP variant where distances are intervals instead of values is known as the interval DGP (iDGP)
[125, 165]. We remark that, with interval distances, the formultions proposed in this section are no longer
exact reformulations of Eq. (10.2).

Note that Eq. (10.14) involves max functions with two arguments. Relatively few MP user inter-
faces/solvers would accept this function. To overcome this issue, we replace the two max terms by two
sets of added decision variables y, z, and obtain

min
∑

{u,v}∈E
(yuv + zuv)

∀{u, v} ∈ E yuv = max(0, (dLuv)
2 − ∥xu − xv∥22)

∀{u, v} ∈ E zuv = max(0, ∥xu − xv∥22 − (dUuv)
2).

Now we observe that, because of the objective function direction, we can replace the equality sense in
the constraint by an inequality of type ≥:

min
∑

{u,v}∈E
(yuv + zuv)

∀{u, v} ∈ E yuv ≥ max(0, (dLuv)
2 − ∥xu − xv∥22)

∀{u, v} ∈ E zuv ≥ max(0, ∥xu − xv∥22 − (dUuv)
2).

170 CHAPTER 10. DISTANCE GEOMETRY

Finally, we note that a ≥ max(b, c) is equivalent to a ≥ b ∧ a ≥ c. This yields:

min
∑

{u,v}∈E
(yuv + zuv)

∀{u, v} ∈ E ∥xu − xv∥22 ≥ (dLuv)
2 − yuv

∀{u, v} ∈ E ∥xu − xv∥22 ≤ (dUuv)
2 + zuv

y, z ≥ 0,

 (10.15)

which follows from Eq. (10.14) because of the objective function direction, and because a ≥ max(b, c) is
equivalent to a ≥ b ∧ a ≥ c. We note that Eq. (10.15) is no longer an unconstrained quartic, however,
but a QCP. It expresses a minimization of penalty variables to the quadratic inequality system

∀{u, v} ∈ E (dLuv)
2 ≤ ∥xu − xv∥22 ≤ (dUuv)

2. (10.16)

We also note that many local NLP solvers take rather arbitrary functions in input (such as functions
expressed by computer code), so the reformulation Eq. (10.15) may be unnecessary when only locally
optimal solutions of Eq. (10.14) are needed.

10.6.2 Constrained quadratic formulations

We propose two formulations in this section. The first is derived directly from Eq. (10.2):

min
∑

{u,v}∈E
s2uv

∀{u, v} ∈ E ∥xu − xv∥22 = d2uv + suv.

}
(10.17)

We note that Eq. (10.17) is a Quadratically Constrained Quadratic Programming (QCQP) formulation.
Similarly to Eq. (10.15) it uses additional variables to penalize feasibility errors w.r.t. (10.2). Differently
from Eq. (10.15), however, it removes the need for two separate variables to model slack and surplus errors.
Instead, suv is unconstrained, and can therefore take any value. The objective, however, minimizes the
sum of the squares of the components of s. In practice, Eq. (10.17) performs much better than Eq. (10.2);
on average, the performance is comparable to that of Eq. (10.13). We remark that Eq. (10.17) has a
convex objective function but nonconvex constraints.

The second formulation we propose is an exact reformulation of Eq. (10.13). First, we replace the
minimization of squared errors by absolute values, yielding

min
∑

{u,v}∈E

∣∣∥xu − xv∥22 − d2uv∣∣,
which clearly has the same set of global optima as Eq. (10.13). We then rewrite this similarly to Eq. (10.15)
as follows:

min
∑

{u,v}∈E
(yuv + zuv)

∀{u, v} ∈ E ∥xu − xv∥22 ≥ d2uv − yuv
∀{u, v} ∈ E ∥xu − xv∥22 ≤ d2uv + zuv

y, z ≥ 0,

which, again, does not change the global optima. Next, we note that we can fix zuv = 0 without changing
global optima, since they all have the property that zuv = 0. Now we replace yuv in the objective function
by d2uv−∥xu−xv∥22, which we can do without changing the optima since the first set of constraints reads
yuv ≥ d2uv − ∥xu − xv∥22. We can discard the constant d2uv from the objective, since adding constants to
the objective does not change optima, and change min−f to −max f , yielding:

max
∑

{u,v}∈E
∥xu − xv∥22

∀{u, v} ∈ E ∥xu − xv∥22 ≤ d2uv,

}
(10.18)

10.6. FORMULATION-BASED SOLUTION METHODS 171

which is a QCQP known as the “push-and-pull” formulation of the DGP, since the constraints ensure that
xu, xv are pushed closer together, while the objective attempts to pull them apart [217, §2.2.1].

Contrariwise to Eq. (10.17), Eq. (10.18) has a nonconvex (in fact, concave) objective function and
convex constraints. Empirically, this often turns out to be somewhat easier than tackling the reverse
situation. The theoretical justification is that finding a feasible solution in a nonconvex set is a hard task
in general, whereas finding local optima of a nonconvex function in a convex set is tractable: the same
cannot be said for global optima, but in practice one is often satisfied with “good” local optima.

10.6.3 Semidefinite programming

SDP is linear optimization over the cone of PSD matrices, which is convex: if A,B are two PSD matrices,
C = αA + (1 − α)B is PSD for α ∈ [0, 1]. Suppose there is x ∈ Rn such that x⊤Cx < 0. Then
αx⊤Ax + (1 − α)x⊤Bx < 0, so 0 ≤ αx⊤Ax < −(1 − α)x⊤Bx ≤ 0, i.e. 0 < 0, which is a contradiction,
hence C is also PSD, as claimed. Therefore, SDP is a subclass of cNLP.

The SDP formulation we propose is a relaxation of Eq. (10.2). First, we write ∥xu−xv∥22 = ⟨xu, xu⟩+
⟨xv, xv⟩ − 2⟨xu, xv⟩. Then we linearize all of the scalar products by means of additional variables Xuv:

∀{u, v} ∈ E Xuu +Xvv − 2Xuv = d2uv

X = xx⊤.

We note that X = xx⊤ constitutes the whole set of defining constraints Xuv = ⟨xu, xv⟩ (for each u, v ≤ n)
introduced by the linearization procedure (Sect. 2.2.3.5).

The relaxation we envisage does not entirely drop the defining constraints, as in Sect. 2.2.3.5. Instead,
it relaxes them from X − xx⊤ = 0 to X − xx⊤ ⪰ 0. In other words, instead of requiring that all of the
eigenvalues of the matrix X − xx⊤ are zero, we simply require that they should be ≥ 0. Moreover, since
the original variables x do not appear anywhere else, we can simply require X ⪰ 0, obtaining:

∀{u, v} ∈ E Xuu +Xvv − 2Xuv = d2uv
X ⪰ 0.

}
(10.19)

The SDP relaxation in Eq. (10.19) has the property that it provides a solution X̄, which is an n× n
symmetric matrix. Spectral decomposition of X̄ yields PΛP⊤, where P is a matrix of eigenvectors and
Λ = diag(λ) where λ is a vector of eigenvalues of X̄. Since X̄ is PSD, λ ≥ 0, which means that

√
Λ is a

real matrix. Therefore, by setting Y = P
√
Λ we have that

Y Y ⊤ = (P
√
Λ)(P

√
Λ)

⊤
= P
√
Λ
√
ΛP⊤ = PΛP⊤ = X̄,

which implies that X̄ is the Gram matrix of Y . Thus we can take Y to be a realization satisfying
Eq. (10.2). The only issue is that Y , as an n× n matrix, is a realization in n dimensions rather than K.
Naturally, rk(Y) = rk(X̄) need not be equal to n, but could be lower; in fact, in order to find a realization
of the given graph, we would like to find a solution X̄ with rank at most K. Imposing this constraint is
equivalent to asking that X = xx⊤ (which have been relaxed in Eq. (10.19)).

We note that Eq. (10.19) is a pure feasibility problem. Every SDP solver, however, also accepts
an objective function as input. In absence of a “natural” objective in a pure feasibility problem, we can
devise one to heuristically direct the search towards parts of the PSD cone which we believe might contain
“good” solutions. A popular choice is

min tr(X) = min tr(PΛP⊤) = min tr(PP⊤Λ) =

= min tr(PP−1Λ) = minλ1 + · · ·+ λn,

where tr is the trace, the first equality follows by spectral decomposition (with P a matrix of eigenvectors
and Λ a diagonal matrix of eigenvalues of X), the second by commutativity of matrix products under

172 CHAPTER 10. DISTANCE GEOMETRY

the trace, the third by orthogonality of eigenvectors, and the last by definition of trace. This aims at
minimizing the sum of the eigenvalues of X, hoping this will decrease the rank of X̄.

For the DGP applied to protein conformation (Sect. 10.1.3), the objective function

min
∑

{u,v}∈E

(Xuu +Xvv − 2Xuv)

was empirically found to be a good choice [101, §2.1]. We remark that the equality constraints in
Eq. (10.19) can be used to reformulate the function in Eq. (10.6.3) to the constant

∑
{u,v}∈E d

2
ij . The

reason why Eq. (10.6.3) did not behave like a constant function in empirical tests must be related to the
fact the current iterate is not precisely feasible at every step of the solution algorithm. More experimen-
tation showed that the scalarization of the two objectives:

min
∑

{u,v}∈E

(Xuu +Xvv − 2Xuv) + γtr(X), (10.20)

with γ in the range O(10−2)-O(10−3), is a good objective function for solving Eq. (10.19) when it is
applied to protein conformation.

In the majority of cases, solving SDP relaxations does not yield solution matrices with rank K, even
with objective functions such as Eq. (10.20). We discuss methods for constructing an approximate rank
K realization from X̄ in Sect. 10.6.5.

SDP is one of those problems which is not known to be in P (nor NP-complete) in the Turing machine
model. It is, however, known that SDPs can be solved in polytime up to a desired error tolerance ϵ > 0,
with the complexity depending on 1

ϵ as well as the instance size. Currently, however, the main issue with
SDP is technological: state-of-the art solvers do not scale all that well with size. One of the reasons is
that K is usually fixed (and small) with respect to n, so the while the original problem has O(n) variables,
the SDP relaxation has O(n2). Another reason is that the Interior Point Method (IPM), which often
features as a “state of the art” SDP solver, has a relatively high computational complexity [247]: a “big
oh” notation estimate of O(max(m,n)mn2.5) is given in Bubeck’s blog at ORFE, Princeton.4

10.6.4 Diagonally dominant programming

In order to address the size limitations of SDP, we employ some interesting linear approximations of the
PSD cone proposed in [204, 8]. An n× n real symmetric matrix X is Diagonally Dominant (DD) if

∀i ≤ n
∑
j ̸=i

|Xij | ≤ Xii. (10.21)

It is well known that every DD matrix is also PSD [124], while the converse may not hold. Specifically,
the set of DD matrices form a sub-cone of the cone of PSD matrices [29]. This follows from Gershgorin’s
circle theorem, given below.

10.6.1 Theorem (Gershgorin’s Circle Theorem)
Let A be a symmetric n × n matrix. For each i ≤ n let Ri =

∑
j ̸=i |Aij |, and let Ii be the interval

[Aii −Ri, Aii +Ri]. Then for every eigenvalue λ of A there is an i ≤ n such that λ ∈ Ii.

Proof. Let λ be an eigenvalue of A with corresponding eigenvector x. Since eigenvectors can be rescaled,
we let i = argmaxj |xj | and divide x by sgn(xi)|xi|. This gives x the property that xi = 1 and, for each
j ̸= i, we have |xj | ≤ 1. Thus,

Aix =
∑
j ̸=i

Aijxj +Aiixi =
∑
j ̸=i

Aijxj +Aii.

4blogs.princeton.edu/imabandit/2013/02/19/orf523-ipms-for-lps-and-sdps/

blogs.princeton.edu/imabandit/2013/02/19/orf523-ipms-for-lps-and-sdps/

10.6. FORMULATION-BASED SOLUTION METHODS 173

But Ax = λx because λ, x are an eigenvalue of A and its corresponding eigenvector: hence Aix = λxi,
which yields ∑

j ̸=i

Aijxj +Aii = λxi = λ.

Thus, we obtain
∑
j ̸=iAijxj = λ−Aii. Therefore,

|λ−Aii| =
∣∣∑
j ̸=i

Aijxj
∣∣ ≤∑

j ̸=i

|Aij | |xj |

by the triangle inequality. Moreover, since |xj | ≤ 1, we have

|λ−Aii| ≤
∑
j ̸=i

|Aij | = Ri.

This implies that λ ∈ Ii as claimed. 2

10.6.2 Corollary
If A is DD, then A is PSD.

Proof. Assume the n× n symmetric matrix A is DD. Let λ be any eigenvalue of A. For each i ≤ n we
let Ri =

∑
j ̸=i |Aij |. Then for each i ≤ n we have Aii − Ri ≥ 0. By Thm. 10.6.1, this implies λ ≥ 0,

which in turns proves that A is PSD. 2

The interest of DD matrices is that, by linearization of the absolute value terms, Eq. (10.21) can be
reformulated so it becomes linear: we introduce an added matrix T of decision variables, then write:

∀i ≤ n
∑
j ̸=i

Tij ≤ Xii (10.22)

−T ≤ X ≤ T, (10.23)

which are linear constraints equivalent to Eq. (10.21) [8, Thm. 10]. One can see this easily whenever
X ≥ 0 or X ≤ 0. Note that

∀i ≤ n Xii ≥
∑
j ̸=i

Tij ≥
∑
j ̸=i

Xij

∀i ≤ n Xii ≥
∑
j ̸=i

Tij ≥
∑
j ̸=i

−Xij

follow directly from Eq. (10.22)-(10.23). Now one of the RHSs is equal to
∑
j ̸=i |Xij |, which implies

Eq. (10.21). For the general case, the argument uses the extreme points of Eq. (10.22)-(10.23) and
elimination of T by projection.

We can now approximate Eq. (10.19) by the pure feasibility LP:

∀{u, v} ∈ E Xuu +Xvv − 2Xuv = d2uv
∀i ≤ n

∑
j ̸=i

Tij ≤ Xii

−T ≤ X ≤ T,

 (10.24)

which we call a diagonally dominant program (DDP). As in Eq. (10.19), we do not explicitly give an
objective function, since it depends on the application. Since the DDP in Eq. (10.24) is an inner approxi-
mation of the corresponding SDP in Eq. (10.19), the DDP feasible set is a subset of that of the SDP. This
situation yields both an advantage and a disadvantage: any solution X̃ of the DDP is PSD, and can be

174 CHAPTER 10. DISTANCE GEOMETRY

Figure 10.11: On the left, the DDP is infeasible even if the SDP is not; on the right, a relaxed set of
constraints makes the DDP feasible.

obtained at a smaller computational cost; however, the DDP might be infeasible even if the correspond-
ing SDP is feasible (see Fig. 10.11, left). In order to decrease the risk of infeasibility of Eq. (10.24), we
relax the equation constraints to inequality, and impose an objective as in the push-and-pull formulation
Eq. (10.18):

max
∑

{u,v}∈E
(Xuu +Xvv − 2Xuv)

∀{u, v} ∈ E Xuu +Xvv − 2Xuv ≤ d2uv
∀i ≤ n

∑
j ̸=i

Tij ≤ Xii

−T ≤ X ≤ T.

 (10.25)

This makes the DDP feasible set larger, which means it is more likely to be feasible (see Fig. 10.11, right).
Eq. (10.25) was successfully tested on protein graphs in [101].

If C is any cone in Rn, the dual cone C∗ is defined as:

C∗ = {y ∈ Rn | ∀x ∈ C ⟨x, y⟩ ≥ 0}.

Note that the dual cone contains the set of vectors making a non-obtuse angle with all of the vectors in the
original (primal) cone. We can exploit the dual DD cone in order to provide another DDP formulation
for the DGP which turns out to be an outer approximation. Outer approximations have symmetric
advantages and disadvantages w.r.t. inner ones: if the original SDP is feasible, than the outer DDP
approximation is also feasible; however, the solution X̃ we obtain from the outer DDP need not be a
PSD matrix. Some computational experience related to [259] showed that it often happens that more or
less half of the eigenvalues of X̃ are negative.

We now turn to the actual DDP formulation related to the dual DD cone. A cone C of n × n real
symmetric matrices is finitely generated by a set X of matrices if:

∀X ∈ C ∃δ ∈ R|X |
+ X =

∑
x∈X

δxxx
⊤.

It turns out [29] that the DD cone is finitely generated by

Xdd = {ei | i ≤ n} ∪ {ei ± ej | i < j ≤ n},

where e1, . . . , en is the standard orthogonal basis of Rn. This is proved in [29] by showing that the
following rank-one matrices are extreme rays of the DD cone:

• Eii = diag(ei), where ei = (0, . . . , 0, 1i, 0, . . . , 0)
⊤;

• E+
ij has a minor

(
1ii 1ij
1ji 1jj

)
and is zero elsewhere;

10.6. FORMULATION-BASED SOLUTION METHODS 175

• E−
ij has a minor

(
1ii −1ij
−1ji 1jj

)
and is zero elsewhere,

and, moreover, that the extreme rays are generated by the standard basis vectors as follows:

∀i ≤ n Eii = eie
⊤
i

∀i < j ≤ n E+
ij = (ei + ej)(ei + ej)

⊤

∀i < j ≤ n E−
ij = (ei − ej)(ei − ej)⊤.

This observation allowed Ahmadi and his co-authors to write the DDP formulation Eq. (10.25) in terms
of the extreme rays Eii, E±

ij [8], and also to define a column generation algorithms over them [7].

If a matrix cone is finitely generated, the dual cone has the same property. Let Sn be the set of real
symmetric n× n matrices; for A,B ∈ Sn we define an inner product ⟨A,B⟩ = A •B ≜ tr(AB⊤).

10.6.3 Theorem
Assume C is finitely generated by X . Then C∗ is also finitely generated. Specifically, C∗ = {Y ∈
Sn | ∀x ∈ X (Y • xx⊤ ≥ 0)}.

Proof. By assumption, C = {X ∈ Sn | ∃δ ∈ R|X |
+ X =

∑
x∈X δxxx

⊤}.
(⇒) Let Y ∈ Sn be such that, for each x ∈ X , we have Y • xx⊤ ≥ 0. We are going to show that Y ∈ C∗,
which, by definition, consists of all matrices Y such that for all X ∈ C, Y • X ≥ 0. Note that, for
all X ∈ C, we have X =

∑
x∈X δxxx

⊤ (by finite generation). Hence Y • X =
∑
x δxY • xx⊤ ≥ 0 (by

definition of Y), whence Y ∈ C∗.
(⇐) Suppose Z ∈ C∗ ∖ {Y | ∀x ∈ X (Y • xx⊤ ≥ 0)}. Then there is X ′ ⊂ X such that for any x ∈ X ′ we
have Z •xx⊤ < 0. Consider any Y =

∑
x∈X ′ δxxx

⊤ ∈ C with δ ≥ 0. Then Z •Y =
∑
x∈X ′ δxZ •xx⊤ < 0,

so Z ̸∈ C∗, which is a contradiction. Therefore C∗ = {Y | ∀x ∈ X (Y • xx⊤ ≥ 0)} as claimed. 2 2

We are going to exploit Thm. 10.6.3 in order to derive an explicit formulation of the following DDP
formulation based on the dual cone C∗

dd of the DD cone Cdd finitely generated by Xdd:

∀{u, v} ∈ E Xuu +Xvv − 2Xuv = d2uv
X ∈ C∗

dd.

}
We remark that X • vv⊤ = v⊤Xv for each v ∈ Rn. By Thm. 10.6.3, X ∈ C∗

dd can be restated as
∀v ∈ Xdd v

⊤Xv ≥ 0. We obtain the following LP formulation:

max
∑

{u,v}∈E
(Xuu +Xvv − 2Xuv)

∀{u, v} ∈ E Xuu +Xvv − 2Xuv = d2uv
∀v ∈ Xdd v⊤Xv ≥ 0.

 (10.26)

Note that the constraints v⊤Xv ≥ 0 for v ∈ Xdd are equivalent to the following constraints:

∀i ≤ n Xii ≥ 0

∀{i, j} ̸∈ E Xii +Xjj − 2Xij ≥ 0

∀i < j Xii +Xjj + 2Xij ≥ 0

With respect to the primal DDP, the dual DDP formulation in Eq. (10.26) provides a very tight bound
to the objective function value of the push-and-pull SDP formulation Eq. (10.18). On the other hand,
the solution X̄ is usually far from being a PSD matrix.

176 CHAPTER 10. DISTANCE GEOMETRY

10.6.5 Barvinok’s naive algorithm

By Eq. (10.19), we can solve an SDP relaxation of the DGP and obtain an n×n PSD matrix solution X̄
which, in general, will not have rank K (i.e., it will not yield an n×K realization matrix, but rather an
n×n one). In this section we shall derive a dimensionality reduction algorithm to obtain an approximation
of X̄ which has the correct rank K.

10.6.5.1 Quadratic Programming feasibility

Barvinok’s naive algorithm [31, §5.3] is a probabilistic algorithm which finds an approximate vector
solution x′ ∈ Rn to a system of quadratic equations

∀i ≤ m x⊤Qix = ai, (10.27)

where the Qi are n × n symmetric matrices, a ∈ Rm, x ∈ Rn, and m is polynomial in n. The analysis
of this algorithm provides a probabilistic bound on the maximum distance that x′ can have from the set
of solutions of Eq. (10.27). Thereafter, one can run a local NLP solver with x′ as a starting point, and
obtain a hopefully good (approximate) solution to Eq. (10.27). We note that this algorithm is still not
immediately applicable to our setting where K might be different from 1: we shall address this issue in
Sect. 10.6.5.4.

Barvinok’s naive algorithm solves an SDP relaxation of Eq. (10.27), and then retrieves a certain
randomized vector from the solution:

1. form the SDP relaxation

∀i ≤ m (Qi •X = ai) ∧X ⪰ 0 (10.28)

of Eq. (10.27) and solve it to obtain X̄ ∈ Rn×n;

2. let T =
√
X̄, which is a real matrix since X̄ ⪰ 0 (T can be obtained by spectral decomposition,

i.e. X̄ = PΛP⊤ and T = P
√
Λ);

3. let y be a vector sampled from the multivariate normal distribution Nn(0, 1);

4. compute and return x′ = Ty.

The analysis provided in [31] shows that ∃c > 0 and an integer n0 ∈ N such that ∀n ≥ n0

P

(
∀i ≤ m dist(x′,Xi) ≤ c

√
∥X̄∥2 lnn

)
≥ 0.9. (10.29)

In Eq. (10.29), dist(b, B) = infβ∈B ∥b− β∥2 is the Euclidean distance between the point b and the set B,
and c is a constant that only depends on lognm. We recall that P(·) denotes the probability of an event.
We note that the term

√
∥X̄∥2 in Eq. (10.29) arises from T being a factor of X̄. We note also that 0.9

follows from assigning some arbitrary value to some parameter — i.e. the constant 0.9 can be increased
as long as the problem size is large enough.

For cases of Eq. (10.27) where one of the quadratic equations is ∥x∥22 = 1 (namely, the solutions of
Eq. (10.27) must belong to the unit sphere), it is noted in [31, Eg. 5.5] that, if X̄ is “sufficiently generic”,
then ∥X̄∥2 = O(1/n), which implies that the bounding function c

√
X̄2 lnn→ 0 as n→∞. This, in turn,

means that x′ converges towards a feasible solution of the original problem in the limit.

10.6. FORMULATION-BASED SOLUTION METHODS 177

10.6.5.2 Concentration of measure

The term lnn in Eq. (10.29) arises from a phenomenon of high-dimensional geometry called “concentration
of measure”.

We first give an example of concentration of measure around the median value of a Lipschitz function.
We recall that a function f : X → R is Lipschitz if there is a constant M > 0 s.t. for any x, y ∈ X we
have |f(x) − f(y)| < M∥x − y∥2. A measure space (X , µ) has the concentration of measure property if
for any Lipschitz function f , there are constants C, c > 0 such that:

∀ε > 0 P(|f(x)−Mµ(f)| > ε | x ∈ X) ≤ C e−cε
2

(10.30)

where Mµ(f) is the median value of f w.r.t. µ. In other words, X has measure concentration if for any
Lipschitz function f , its discrepancy from its median value is small with arbitrarily high probability. It
turns out that the Euclidean space Rn with the Gaussian density measure ϕ(x) = (2π)n/2e−∥x∥2

2/2 has
measure concentration around the mean [32, §5.3].

Measure concentration is interesting in view of applications since, given any large enough closed subset
A of X , its ε-neighbourhood

A(ε) = {x ∈ X | dist(x,A) ≤ ε} (10.31)

contains almost the whole measure of X . More precisely, if (X , µ) has measure concentration and A ⊂ X
is closed, then for any p ∈ (0, 1) there is a ε0(p) > 0 such that [192, Prop. 2]:

∀ε ≥ ε0(p) µ(A(ε)) > 1− p. (10.32)

Eq. (10.32) is useful for applications because it defines a way to analyse probabilistic algorithms. For a
random point sampled in (X , µ) that happens to be in A on average, Eq. (10.32) ensures that it is unlikely
that it should be far from A. This can be used to bound errors, as Barvinok did with his naive algorithm.
Concentration of measure is fundamental in data science, insofar as it may provide algorithmic analyses
to the effect that some approximation errors decrease in function of the increasing instance size.

10.6.5.3 Analysis of Barvinok’s algorithm

We sketch the main lines of the analysis of Barvinok’s algorithm (see [30, Thm. 5.4] or [192, §3.2] for a
more detailed proof). We let X = Rn and µ(x) = ϕ(x) be the Gaussian density measure. It is easy to
show that

Eµ(x
⊤Qix | x ∈ Rn) = tr(Qi)

for each i ≤ m. From this fact and the factorization X̄ = TT⊤, one obtains

Eµ(x
⊤T⊤Qi Tx | x ∈ X) = tr(T⊤Qi T) = tr(QiX̄) = Qi • X̄ = ai.

This shows that, for any y ∼ Nn(0, 1), the average of y⊤T⊤Qi Ty is ai.

The analysis then goes on to show that, for some y ∼ Nn(0, 1), it is unlikely that y⊤T⊤Qi Ty should
be far from ai. It achieves this result by defining the sets A+

i = {x ∈ Rn | x⊤Qix ≥ ai}, A−
i =

{x ∈ Rn | x⊤Qix ≤ ai}, and their respective neighbourhoods A+
i (ε), A

−
i (ε). Using a technical lemma

[192, Lemma 4] it is possible to apply Eq. (10.32) to A+
i (ε) and A−

i (ε) to argue for concentration of
measure. Applying the union bound it can be shown that their intersection Ai(ε) is the neighbourhood
of Ai = {x ∈ Rn | x⊤Qix = ai}. Another application of the union bound to all the sets Ai(ε) yields the
result [192, Thm. 5].

We note that concentration of measure proofs often have this structure: (a) prove that a certain event
holds on average; (b) prove that the discrepancy from average gets smaller and/or more unlikely with
increasing size. Usually proving (a) is easier than proving (b).

178 CHAPTER 10. DISTANCE GEOMETRY

10.6.5.4 Applicability to the DGP

The issue with trying to apply Barvinok’s naive algorithm to the DGP is that we should always assume
K = 1 by Eq. (10.27). To circumvent this issue, we might represent an n × K realization matrix as a
vector in RnK by stacking its columns (or concatenating its rows). This, on the other hand, would require
solving SDPs with nK × nK matrices, which is prohibitive because of size.

Luckily, Barvinok’s naive algorithm can be very easily extended to arbitrary values of K. We replace
Step 3 by:

3b. let y be an n×K matrix sampled from Nn×K(0, 1).

The corresponding analysis needs some technical changes [192], but the overall structure is the same as
the case K = 1. The obtained bound replaces

√
lnn in Eq. (10.29) with

√
lnnK.

In the DGP case, the special structure of the matrices Qi (for i ranging over the edge set E) makes it
possible to remove the factor K, so we retrieve the exact bound of Eq. (10.29). As noted in Sect. 10.6.5.1,
if the DGP instance is on a sphere [191], this means that x′ = Ty converges to an exact realization with
probability 1 in the limit of n→∞. Similar bounds to Eq. (10.29) were also derived for the iDGP case
[192].

Barvinok also described concentration of measure based techniques for finding low-ranking solutions
of the SDP in Eq. (10.28) (see [30] and [32, §6.2]), but these do not allow the user to specify an arbitrary
rank K, so they only apply to the EDMCP.

10.6.6 Isomap

One of the most interesting applications of PCA to the DGP is possibly the Isomap algorithm [286].
Isomap uses PCA to perform a nonlinear dimensional reduction from the original dimension m to a given
target dimension K, as follows.

1. Form a connected graphH = (V,E) with the column indices 1, . . . , n ofX as vertex set V : determine
a threshold value τ such that, for each column vector xi in X (for i ≤ n), and for each xj in X
such that ∥xi − xj∥2 ≤ τ , the edge {i, j} is in the edge set E; the graph H should be as sparse as
possible but also connected.

2. Complete H using the shortest-path metric (Eq. (10.4)).

3. Use PCA in the MDS interpretation mentioned above. The completion of (V,E) is a metric space;
we construct its (approximate) EDM D̃, compute the corresponding (approximate) Gram matrix G̃,
compute the spectral decomposition of G̃, replace its diagonal eigenvalue matrix Λ as in Eq. (10.10),
and return the corresponding K-dimensional vectors.

Intuitively, Isomap works well because in many practical situations where a set X of points in Rm are
close to a (lower) K-dimensional manifold, the shortest-path metric is likely to be a better estimation
of the Euclidean distance in RK than the Euclidean distance in Rm, see [286, Fig. 3] (reproduced in
Fig. 10.12).

10.6. FORMULATION-BASED SOLUTION METHODS 179

Figure 10.12: The shortest-path distance gives a better approximation than the Euclidean one to the
natural distance defined on the manifold interpolating the data.

180 CHAPTER 10. DISTANCE GEOMETRY

Chapter 11

Quantile regression

Quantile Regression (QR) is similar to linear regression, but gives more information. In fact a better
analogy would be to median regression, since the median is the 0.5-quantile. More information about QR
can be found in [158, 312].

In general, quantile regression plots in 2D give a better visual information about a linear trend of the
data than linear regression does (see Fig. 11.1).

Figure 11.1: The two quantiles for 0.1 and 0.9 of a random dataset.

181

182 CHAPTER 11. QUANTILE REGRESSION

11.1 Quantiles

Consider a random variable (r.v.) X with cumulative distribution function F (x) = Prob(X ≤ x). The
median is the value m such that F (m) = 0.5. The τ -quantile is the value q such that F (q) = τ .

11.1.1 Example
Let X be a r.v. taking values in {2, 3, 5, 10, 11} with uniform distribution. Then the 0.8-quantile is the
value 10, since

F (10) = Prob(X ≤ 10) =
∑

x∈{2,3,5,10}

Prob(X = x) =
∑

x∈{2,3,5,10}

0.2 = 0.8.

11.2 Regression

The term regression refers to a particular (linear) form of conditional probability. Let B be a r.v. con-
ditional on the r.v.s A1, . . . , Ap. Assume further that B depends linearly on A1, . . . , Ap. Regression
methods find coefficients x1, . . . , xp such that B =

∑
j≤p xjA according to various criteria. In particular,

the components of the x vector (x1, . . . , xp) are estimated using data samples b, a1, . . . , ap ∈ Rm (each
sample is a vector of m components, meaning that we randomly sample m values of each r.v. according
to the corresponding distribution). We obtain a data matrix A = (aij | i ≤ m ∧ j ≤ p), where ai denotes
the i-th row and aj the j-th column of A (a stacking of the row vectors a1, . . . , ap).

There are multiple forms of regression. The best known is regression to the mean, also known as linear
regression. It is best understood using the definition of the sample mean of B:

µ̂ = argmin
µ∈R

∑
i≤m

(bi − µ)2.

Now, since we know that B is a linear combination of the r.v.s Aj , we can replace the single decision
variable µ in the above QP with νai, where ν ∈ Rp is a row vector of decision variables:

ν̂ = argmin
ν∈Rp

∑
i≤m

(bi − νai)2,

which yield a (multivariate) QP.

We can proceed similarly for the median. The median is obtained by solving the following single-
variable MP formulation:

ξ̂ = argmin
ξ∈R

∑
i≤m

|bi − ξ|

= argmin
ξ∈R

∑
i≤m

(
1

2
max(bi − ξ, 0)−

1

2
min(bi − ξ, 0)

)
.

After replacement of ξ by ζai, we obtain:

ζ̂ = argmin
ζ∈Rp

∑
i≤m

(
1

2
max(bi − ζai, 0)−

1

2
min(bi − ζai, 0)

)
.

Finally, we generalize the median, which is a 0.5-quantile, to a τ -quantile for any τ ∈ [0, 1]. From

ξ̂ = argmin
ξ∈R

∑
i≤m

(τ max(bi − ξ, 0)− (1− τ)min(bi − ξ, 0)) ,

after replacement of ξ by βai, we obtain:

β̂ = argmin
β∈Rp

∑
i≤m

(
τ max(bi − βai, 0)− (1− τ)min(bi − βai, 0)

)
. (11.1)

11.3. LP FORMULATION 183

11.3 LP formulation

In this section we propose an LP formulation for performing QR. The formulation is:

β̂ = argmin
u+,u−∈Rm

β∈Rp

τ1⊤u+ + (1− τ)1⊤u−

Aβ + u+ − u− = b
u+, u− ≥ 0,

 (11.2)

where the parameters are the m × p matrix A, the vector b ∈ Rm, and the scalar τ ∈ R. The decision
variables are β ∈ Rp, and u+, u− ∈ Rm+ .

11.3.1 Theorem
The LP in Eq. (11.2) has the same optima β̂ as the QR problem in Eq. (11.1).

Proof. The proof applies a linearization reformulation (Sect. 2.2.3.5) to Eq. (11.1). We then argue that
this yields Eq. (11.2). For all i ≤ m carry out the following replacement:

u+i = max(bi − βai, 0) u−i = −min(bi − βai, 0).

It is easy to see that we have u+, u− ≥ 0 by definition. We claim that either u+i or u−i or both are
going to be zero at any optimum: otherwise, we could assign to u±i the value u±i −min(u+i , u

−
i), which

immediately implies that min(u+i , u
−
i) = 0: this contradicts optimality since u+i + u−i decreases. Next,

we prove that:
∀i ≤ m u+i − u

−
i = bi − βai. (11.3)

By the claim above, at most one of u+i and u−i is nonzero at the optimum. If u+i ̸= 0 then u+i − u
−
i =

u+i = bi − βai. If u−i ̸= 0 then u+i − u
−
i = −u−i = bi − βai. Now it is simply a matter of notation: recall

A = (aij | i ≤ m ∧ j ≤ p). This means that(
∀i ≤ m bi − βai

)
≡ b−Aβ,

whence Aβ + u+ − u− = b as claimed. 2

We note that Eq. (11.2) is an LP having a form which is close to the standard form

min
x∈Rn

c⊤x

Āx = b
x ≥ 0.

This is apparent if we write x = (β, u+, u−) ∈ Rp+2m,

c = (0, . . . , 0︸ ︷︷ ︸
p

, τ, . . . , τ︸ ︷︷ ︸
m

, 1− τ, . . . , 1− τ︸ ︷︷ ︸
m

),

and Ā = (A, Im,−Im) (where Im is the m × m identity matrix). The only difference is that only
u+, u− ≥ 0, but β need not be constrained. It would be easy to achieve a standard form by replacing β
by β+ − β−, where β+, β− ∈ Rp+.

11.3.1 Density

Eq. (11.2) in standard form has a m × (p + 2m) constraint matrix Ā with p
p+2m density. Moreover,

the size of Ā depends on the size of A, which can grow as large as the database table it represents.
Compared with most large-sized LPs, the density of Eq. (11.2) for typical values of p,m is considerably
high (see Fig. 11.2). So much, in fact, that QR is known to be a numerically challenging problem (a few
experiments with R’s [249] QR module with a reasonably large dataset should convince you of this).

184 CHAPTER 11. QUANTILE REGRESSION

Figure 11.2: QR LP constraint matrices: left, with density 0.2; right, with density 0.0012. Both are large
densities w.r.t. typical LPs arising from combinatorial problems.

11.4 Solution properties

The QR problem can be expressed as min q(u) = τu+ + (1 − τ)u− such that u+ − u− = Aβ − b, where
u = (u+, u−). In other words, it minimizes a solution error to the linear system Aβ = b, where A is
m× p. We assume for now that A has full rank.

Let u∗ is a solution of the QR LP. The average solution error is 1
mq(u

∗). We are going to consider a
solution of Eq. (11.2) “good” if its average error is small with respect to the average data value in A. If
m < p, Aβ = b is underdetermined. If m = p, Aβ = b is a square system having a unique solution. If
m > p, Aβ = b is an overdetermined system with no solutions. Since we are minimizing the error q(u)
from solving Aβ = b exactly, if m ≤ p then 1

mq(u
∗) = 0, otherwise 1

mq(u
∗) > 0.

We now review the assumption that A should have full rank. This assumption may be unwarranted,
since A is realistically a numerical database table, which might have empty columns, empty rows, and
values outside our control. More precisely, real-world databases often have:

• large/negative values to indicate “invalid entry”;

• zero columns (unfilled database fields);

• different columns with the same values (for example, in European energy price databases it often
happens that different countries within the Schengen treaty might apply exactly the same prices in
some context).

These common occurrences worsen the degeneracy of the QR LP. Some of these effects can be lightened
using pre-processing techniques. It is easy, for example, to replace “invalid entry” with some scalar which
is not used elsewhere in the table. This might create a bias, but at least makes the computation possible.
Zero or equal columns can also be dealt with easily using pre-processing, as long as the table is static.
This ceases to be the case if the table is an aggregation of data from multiple sources arriving in real-time.

Post-processing can also help us. Assuming we could solve the QR LP and obtain a solution β∗, if the
j-th column is empty we can ignore β∗

j . If columns j, h have the same values, the QR LP has a solution
symmetry group [171, 172] including the swap (j, h).

In general, the IPM algorithm (a.k.a. “barrier method”) (see Sect. 7.5) is better suited to solve degen-
erate LPs than the simplex method. Note that most IPM implementations run some iterations of the
simplex method to achieve an exact LP solution (this is known as the crossover phase). It is important
to disable crossover whenever the LP input to the IPM-based solver is very degenerate.

11.5. PREDICTION AND VISUALIZATION 185

11.5 Prediction and visualization

Fig. 11.1 shows the quantiles as lines in the plane, which do not necessarily pass through the origin. On
the other hand, we defined QR as the determination of the best linear subspace satisfying some criteria.
Since all linear subspaces of the Euclidean space must necessarily pass through the origin, there seems
to be an apparent contradiction. To dispel this, it suffices to add one r.v. A0 to the list A1, . . . , Ap, and
set A0 to take the value 1 with certainty. This will yield a sample a0 = (1, . . . , 1) ∈ Rm, which, in turn,
means that the linear system Aβ = b becomes

(1|A)
(
β0
β

)
= b,

or, more explicitly,
∀i ≤ m β0 +

∑
j≤p

Aijβj = bi,

which defines m affine subspaces in Rp. We note that this “trick” to interpret linear as affine subspaces
is independent of QR.

The affine subspaces provided by QR can be used to predict trends based on data. Such predictions
can be based on purely quantitative analyses of the QR solution, but it sometimes help to visualize the
affine subspaces. The issue is that visualization can only occur in 2D or 3D. We focus here on the 2D
case, which means that the linear model for QR is about the dependence of the r.v. B from a single
r.v. from the set A1, . . . , Ap. We assume wlog that we look at the dependence of B from A1, which yields:

∀i ≤ m ai1β1 + β2 = bi. (11.4)

The QR LP in 2D therefore becomes:

minβ,u τ
∑
i≤m

u+i + (1− τ)
∑
i≤m

u−i

∀i ≤ m β1ai1 + β2 + u+i − u
−
i = bi

∀i ≤ m u+i , u
−
i ≥ 0.

 (11.5)

11.6 Constrained QR

In this section we denote the QR computation problem on data A, b for a given value of τ as QRτ (A, b).
Usually, one needs to solve QRτ (A, b) for different values of τ ranging in a discretization T = {τ1, . . . , τL}
of (0, 1), where we assume that τh ≤ τℓ for all h < ℓ (e.g. T = {0.1, 0.2, . . . , 0.9}). This can be achieved
by separately solving QRτ (A, b) for each τ ∈ T . Each solution β∗(τ) gives rise to a different subspace in
Rp.

On the other hand, prior knowledge about the data may influence the relative positions of these
subspaces. In [246] we find requirements such as “quantile subspaces must be parallel” and “quantile
subspaces cannot cross over the domain of the data points”. In order to satisfy side constraints of this
type, we leverage on the flexibility of MP. We arrange each constraint matrix corresponding to QRτℓ(A, b)
(for ℓ ≤ L) in a block structure, as shown in Fig. 11.3, and sum the objectives for each quantile:

min
∑
ℓ≤L

∑
i≤m

(τℓu
+
iℓ + (1− τℓ)u−iℓ). (11.6)

Note that each decision variable needs to be indexed by ℓ ≤ L too: in this setting, β is a (p + 1) × L
matrix, and u+, u− are m× L matrices. The block-structured formulation is:

min
u+,u−∈Rm×L

β∈R(p+1)×L

∑
ℓ≤L

τℓ1
⊤u+ℓ + (1− τℓ)1⊤u−ℓ

∀ℓ ≤ L Aβℓ + β0ℓ + u+ℓ − u
−
ℓ = b

u+, u− ≥ 0.

 (11.7)

186 CHAPTER 11. QUANTILE REGRESSION

Figure 11.3: Multiple QR problems in a single LP.

We can now adjoin side constraints to Eq. (11.7) in order to enforce the geometric requirements on β.

• Parallel quantile subspaces:

∀h < ℓ ≤ L, 1 ≤ j ≤ p βjh = βjℓ,

i.e. only the affine constant β0 may vary between subspaces h and ℓ.

• Non-crossing quantile subspaces:

∀h < ℓ ≤ L Aβh + β0h ≤ Aβℓ + β0ℓ.

Fig. 11.4 shows how the quantiles vary with these side constraints.

11.6. CONSTRAINED QR 187

Figure 11.4: Parallel and non-crossing quantiles.

188 CHAPTER 11. QUANTILE REGRESSION

Chapter 12

Sparsity and ℓ1 minimization

In this chapter we look at another type of LP which is usually even denser than the LPs arising in QR
(see Sect. 11.3.1). This LP arises originally from decoding messages received over a communication line.

12.1 Motivation

We present two applications where a dense LP is used to decode a received message.

12.1.1 Coding problem for costly channels

Suppose you need to send data over a costly communication line, e.g. a satellite link. Consider a digitized
wave representing a human voice over a time interval. Such a signal is usually easy to transform to a
reasonably sparse vector using some efficient pre-processing of patterns of consecutive equal data (this
might occur because of silences in conversation, or vowel sounds). Let y ∈ Rn be a long (n ≫ 1) sparse
vector representing the signal to be sent over the line.

We assume that the sender and the receiver both know a full rank m × n matrix A with m ≤ n
(in fact m ≪ n). Such a matrix can be randomly sampled, and can be used for every communication
of a similarly sparse vector in Rn. The density of the signal vector is related with m, as we shall see
later. Communicating the matrix itself is not an issue in this context — for example the two parties can
exchange the seed of a pseudorandom number generator.

The communication protocol is as follows:

1. the sender computes b = Ay ∈ Rm;

2. the sender puts b over the costly line (recall m≪ n);

3. the receiver retrieves y as the sparsest solution of the system Ax = b.

Step 3 makes two assumptions: (i) there is a unique sparsest solution of the linear system Ax = b; (ii) the
sparsest solution can be found efficiently. These assumptions do not hold in general, but, surprisingly,
they do hold with high probability depending on the relationship between the density of y and m, as we
shall see below.

189

190 CHAPTER 12. SPARSITY AND ℓ1 MINIMIZATION

12.1.2 Coding problems for noisy channels

Suppose you need to send a message w ∈ Rd (for some d ∈ N) over a noisy communication line with a
known error rate e ∈ [0, 1], i.e. a fraction e of the signal packets sent over the line may be corrupt in
unforeseeable ways. We assume that e≪ 1. We also assume (again) that both sender and receiver know
a certain n× d matrix Q, with n > d.

The communication protocol is as follows:

1. the sender computes z = Qw, which is a vector in Rn;

2. the receiver receives a vector z̄ = z + y, where y is the error vector: the density of y is the same as
the error rate e of the line;

3. the receiver chooses an m× n matrix A such that m = n− d (so m < n) and AQ = 0 (this can be
done efficiently in a number of ways);

4. the receiver computes b = Az̄: note that

b = Az̄ = A(z + y) = A(Qw + y) = AQw +Ax = Ay

since AQ = 0 by construction;

5. the receiver retrieves y as the sparsest solution of the system Ax = b.

6. the receiver recovers z as z̄ − x, and w as (Q⊤Q)−1Q⊤z.

Note that Step 5 is the same as Step 3 in Sect. 12.1.1, and therefore makes the same assumptions.

12.2 Sparsest solution of a linear system

We define the zero-norm (which is not actually a norm) ∥x∥0 of a vector x ∈ Rn as the number of zero
components of x. The sparsest solution of a linear system Ax = b, where A is m × n with m < n, is
defined as the globally optimal solution of the following MP:

min{∥x∥0 | Ax = b}. (12.1)

We note first that such a linear system is underdetermined, and if A has the same rank as (A, b), then it
has uncountably many solutions (otherwise it has no solution).

We note that Eq. (12.1) is NP-hard by reduction from exact cover by 3-sets [116, A6(MP5)].
On the other hand, it was empirically observed in the signal processing literature over many years that
solving the following relaxation

min{∥x∥1 | Ax = b} (12.2)

of Eq. (12.1) very often yielded the sparsest solution of Ax = b. Note that Eq. (12.2) is a convex NLP
which is easy to turn into an LP, as we shall see below. Although Eq. (12.2) fails to give the correct
optima in some cases, the coincidences became too many to be thought of as such. The theoretical
explanation behind such occurrences were given in [62, 277], which spawned a considerable body of
subsequent research. The best known collective names for this body of knowledge is compressed sensing.

12.3. MILP FORMULATION AND LP RELAXATION 191

12.3 MILP formulation and LP relaxation

Eq. (12.1) can be formulated as the following MILP:

min
∑
j≤n

sj

∀j ≤ n −Msj ≤ xj ≤Msj
Ax = b
s ∈ {0, 1}n,

 (12.3)

where M is a large enough constant (see Sect. 2.2.7.5.1).

The LP formulation of Eq. (12.2) is:

min
∑
j≤n

sj

∀j ≤ n −Msj ≤ xj ≤Msj
Ax = b.

 (12.4)

Note that Eq. (12.4) is basically the continuous relaxation of Eq. (12.3) (bar the constraints s ∈ [0, 1]n,
which, however, can be adjoined to Eq. (12.4) wlog). The method for finding sparsest solutions of linear
systems based on solving the LP in Eq. (12.4) is known as the basis pursuit method.

12.3.1 Exercise
Why can the constraints x ∈ [0, 1]n be adjoined to Eq. (12.4) wlog?

We recall the two assumptions in Sect. 12.1.1: (i) there is a unique sparsest solution of the linear
system Ax = b; (ii) the sparsest solution can be found efficiently. With respect to Eq. (12.3)-(12.4),
assumption (ii) can be restated as follows:

solving the LP in Eq. (12.4) yields a solution to the MILP in Eq. (12.3). (∗)

Finally, we note that, if the application warrants x to be in [−1, 1], then we can set M = 1. We shall
make this assumption in the rest of this section to simplify notation.

12.4 Intuitive explanations

Before the formal arguments, we supply some intuitive explanation as to why the assumptions (i) and (ii)
in Sect. 12.1.1 hold. These explanations are borrowed from [61], and they come with the same warning:
they are not a proof, and there are cases they cannot explain. Let us look at Fig. 12.1.

• Simplistic intuition: the minimum ℓ1 norm vector in the Ax = b subspace is represented as an
extreme vertex of the ℓ1 ball polytope. This vertex is sparse (since it is one of the standard basis
elements); and there is high probability for a subspace to have this property.

• More convoluted intuition: the descent cone of the ℓ1 norm is the cone pointed at x, i.e. moving
within that cone would reduce the ℓ1 norm. In order for x not to have minimum ℓ1 norm on Ax = b
would be that the Ax = b subspace intersects the descent cone (which is not the case in Fig. 12.1).
Moreover, the descent cone is narrow at sparse vectors, so if the dimensionality of the subspace
Ax = b is large enough, it will likely miss the descent cone.

Fig. 12.2 suggests the same intuition, but in 2D. It also explains why the ℓ1 norm is the only ℓp norm
to ensure assumptions (i) and (ii), and suggests that some nonconvex pseudonorms also have the same
property.

192 CHAPTER 12. SPARSITY AND ℓ1 MINIMIZATION

Figure 12.1: An intuitive explanation of compressed sensing (from [61]).

Figure 12.2: Some norms satisfy the assumptions with high probability, others do not (from [92]).

12.5 The phase transition

In this section we informally discuss the relationship between the density of x and m in Eq. (12.2).
Fig. 12.3 shows two empirical tests with A being m × n, and s being the number of nonzeroes in the
solution x∗ of Eq. (12.2). The pixels in the pictures are colored in grayscale: their intensity ranges in
the interval [0, 1], with 0 being black and 1 being white. Therefore, each pixel can represent, by means
of its color, a probability. More precisely, each pixel represents the frequency with which 10 solutions
of Eq. (12.2) with randomly sampled A matrices (with varying m) yield an optimal solution x∗ with at
most s nonzeroes. For example, if you want to find a unique sparse solution with up to 50 nonzeroes in
R100 with very high probability, you need m ≥ 90. If you limit the definition of “sparse” to 10 nonzeroes,
m can be around 40.

12.6 Theoretical results

In this section we give an analysis of the theory of compressed sensing. We mainly follow the treatment
in [86]. We denote P 0(A, b) the problem defined in Eq. (12.1), and by P 1(A, b) the problem defined in
Eq. (12.2).

12.6.1 Main theorem

We shall present a proof sketch of the following main result. Assume the following hold:

12.6. THEORETICAL RESULTS 193

Figure 12.3: The phase transition of compressed sensing, with n = 100 (left) and n = 600 (right) [19].

• x̂ ∈ Rn has s nonzeros and n− s near-zeros or zeros

• x̄ is the closest vector (in ℓ2 norm) to x̂ with exactly s nonzeros

• A is sampled from N(0, 1)mn (a multivariate standard normal distribution) with m < n, but such
that m is “not too small”

• b̂ = Ax̂ and x∗ is the unique s-sparse minimum of P 1(A, b̂)

then

x∗ is a “good approximation” of x̄ (⋆)

By “good approximation” we mean that we provide reasonably tight (theoretical) bounds to some rea-
sonable form of distance between x∗ and x̄, as detailed below.

In order to illustrate at least a part of the proof of this theorem, we shall need two notions: the null
space property (NSP), and the restricted isometry property (RIP), which we will formally introduce later.
Then (∗) will hold by the following propositions.

1. If A has the NSP, then (∗) holds.

2. If A has the RIP, then it has the NSP.

3. If A is sampled from N(0, 1)mn, then A has the RIP.

12.6.2 The null space property

We consider the system Ax = b where A is m × n and m < n. Let x ∈ Rn be such that Ax = b, Let
NA = null(A) be the null space of A, and let N0

A = NA ∖ {0}. Note that this implies that:

∀y ∈ NA A(x+ y) = Ax+Ay = Ax+ 0 = b.

We now look at the indices of the components of vectors in Rn. Let [n] = {1, . . . , n}. For any subset
S ⊆ [n] let S̄ = [n]∖S. We also define a vector restriction of any z ∈ Rn given a subset S of its component
indices, namely

z[S] = ((zj iff j ∈ S) xor 0 | j ≤ n).

194 CHAPTER 12. SPARSITY AND ℓ1 MINIMIZATION

We call z[S] the restriction of z to S. Note that this restriction does not remove components, it just
zeroes those that are outside of S. that we have

z = z[S] + z[S̄].

The NSP is a matrix property parametrized on an integer s. For a matrix A we denote it NSPs(A).
The formal definition of the NSP is as follows:

NSPs(A) ≡
[
∀S ⊆ [n]

(
|S| = s → ∀y ∈ N0

A ∥y[S]∥1 < ∥y[S̄]∥1
)]
. (12.5)

Basically, if A has the NSP property of order s, every nonzero solution of Ax = b have the property that
each restrictions on s components has smaller ℓ1 norm than the corresponding complementary restriction
on the other n− s components.

12.6.1 Lemma
For each m× n matrix A and for every pair of integers t, s such that t < s ≤ n we have that NSPs(A)⇒
NSPt(A).

Proof. Let T,U be two disjoint non-empty proper subsets of [n] such that |T | = t and |T ∪ U | = s. By
Eq. (12.6.2) we have:

∀y ∈ N0
A ∥y[T ∪ U]∥1 < ∥y[¯T ∪ U]∥1 = ∥y[[n]∖ (T ∪ U)]∥1
⇒ ∥y[T]∥1 + ∥y[U]∥1 < ∥y∥1 − ∥y[T]∥1 − ∥y[U]∥1
⇒ ∥y[T]∥1 < ∥y[T̄]∥1 − 2∥y[U]∥1.

since ∥y[U]∥1 > 0, for each T ⊆ [n] with |T | = t we have that ∀y ∈ N0
A ∥y[T]∥1 < ∥y[T̄]∥1, which implies

NSPt(A). 2

We are now ready to prove the proposition in Item 1 above.

12.6.2 Proposition
For each x∗ ∈ Rn such that (i) |supp(x∗)| ≤ s and (ii) b = Ax∗, x∗ is the unique minimum of P 1(A, b) iff
NSPs(A).

Proof. We first note that, by Lemma 12.6.1, we can replace condition (i) with |supp(x∗)| = s.

We prove the (⇒) direction, i.e.

∀x ∈ Rn (x is a unique minimum of P 1(A,Ax) ∧ |supp(x)| = s)⇒ NSPs(A).

Let y ∈ N0
A and S ⊆ [n] with |S| = s. Assume that Ay[S] ̸= 0 (this assumption is wlog since if there did

not exist any S ⊆ [n] with y[S] ̸= 0, then y = 0, which contradicts y ∈ N0
A). Note that |S| = s implies

|supp(y(S))| = s, so y[S] is the unique minimum of P 1(A,Ay[S]) by hypothesis. Now

y = y[S] + y[S̄] ∈ N0
A

⇒ 0 = Ay = Ay[S] +Ay[S̄]

⇒ A(−y[S̄]) = Ay[S] ̸= 0.

We also have that y[S] ̸= −y[S̄], since otherwise, by y = y[S] + y[S̄], both would be scalings of y, and
hence both in N0

A, which cannot happen since we assumed that Ay[S] ̸= 0. Therefore we have that y[S]
is the unique minimum of P 1(A,Ay[S]) and that −y[S̄] is feasible in P 1(A,Ay[S]), which implies that
∥ − y[S̄]∥1 > ∥y[S]∥1. Since ∥ − y[S̄]∥1 = ∥y[S̄]∥1, NSPs(A) holds.

Now we prove the (⇐) direction, i.e.

NSPs(A)⇒ ∀x∗ ∈ RN (x∗ is a unique minimum of P 1(A,Ax∗) ∧ |supp(x∗)| = s).

12.6. THEORETICAL RESULTS 195

Let x∗ ∈ Rn, b = Ax∗, S = supp(x∗) and |S| = s. Let x̄ be a solution of Ax = b, then x̄ = x∗ − y for
some y ∈ NA. We have:

∥x∗∥1 = ∥(x∗ − x̄[S]) + x̄[S]∥1 ≤ [by triangle inequality]
≤ ∥x∗ − x̄[S]∥1 + ∥x̄[S]∥1 = [since S = supp(x∗)]

= ∥x∗[S]− x̄[S]∥1 + ∥x̄[S]∥1 = [since x∗ − x̄ = y]
= ∥y[S]∥1 + ∥x̄[S]∥1 < [by NSPs(A)]
< ∥y[S̄]∥1 + ∥x̄[S]∥1 = [since x∗[S̄] = 0 ∧ y = x∗ − x̄]

= ∥ − x̄[S̄]∥1 + ∥x̄[S]∥1 = [since ∥ − z∥1 = ∥z∥1 ∧ z[S] + z[S̄] = z]
= ∥x̄∥1

Since the ℓ1 norm is strictly convex, we have that x∗ = x̄, which implies that x∗ is the unique minimum
of P 1(A,Ax∗). 2

12.6.2.1 A realistic variant of the NSP

The issue with the NSP is that it requires sparsity to be exact: in other words, the zero components
must be exactly zero. In computations, it often happens that there may be values that are close to zero,
but not exactly zero; and, worse, that one cannot decide whether rounding to zero is a valid operation.
In this setting we propose a variant of the NSP, as follows.

Given x̂ ∈ Rn with |supp(x̂)| ≥ s and b = Ax̂, we define a “sparsification” operation yielding the closest
s-sparse vector x̄ to x̂: let S = argmax

T⊆[n]:|T |=s
∥x̂∥1 and x̄ = x̂[S]. The maximum componentwise error of x̄

w.r.t. x̂ is ϵ = max
j∈S̄
|x̂j |. We say that x̂ almost has support size s up to an ϵ error. We want to find the

solution x∗ of P 1(A,Ax̂) closest to x̂ with |supp(x∗)| = s. To this end, we adapt the NSP by endowing
it with a further parameter ρ:

NSPρs(A) ≡
[
∃ρ ∈ [0, 1] ∀S ⊆ [n] (|S| = s → ∀y ∈ N0

A ∥y[S]∥1 ≤ ρ∥y[S̄]∥1)
]
. (12.6)

The difference of NSPρs(A) with respect to NSPs(A) is that, instead of requiring that ∥y[S]∥1 < ∥y[S̄]∥1,
we weaken the requirement to ∥y[S]∥1 ≤ ρ∥y[S̄]∥1.

A proposition similar to (but weaker than) Prop. 12.6.2 also holds for NSPρs(A).

12.6.3 Proposition
Let x̂ almost have support size s, let b = Ax̂, and assume NSPρs(A) holds. Then, if x∗ is a minimum of
P 1(A, b) we have

∥x∗ − x̂∥1 ≤ 2
1 + ρ

1− ρ
∥x̄− x̂∥1 ≤ (n− s)ϵ. (12.7)

We remark that Eq. (12.7) is the precise meaning of “good approximation” in Sect. 12.6.1.

Proof. First, we remark that for any two scalars µ, ν the triangle inequality immplies that |µ + ν| ≤
|µ| + |ν|, and hence that |µ + ν| − |ν| ≤ |µ|. We now carry out the change of variables α = µ + ν and
β = −ν, which implies |α| − | − β| ≤ |α + β|, whence |α + β| ≥ |α| − |β|. Below, we apply the triangle
inequality in this form.

Note that x∗ is feasible in Ax = b = Ax̂. So there is a unique y ∈ NA such that x∗ = x̂ + y. This
implies ∥x∗∥1 = ∥x̂ + y∥1 ≤ ∥x̂∥1 by optimality of x∗ in P 1(A,Ax̂). We look at the term ∥x̂ + y∥1. We

196 CHAPTER 12. SPARSITY AND ℓ1 MINIMIZATION

have:

∥x̂+ y∥1 =
∑
j∈S
|x̂j + yj |+

∑
j∈S̄

|x̂j + yj | ≥
∑
j∈S

(|x̂j | − |yj |) +
∑
j∈S̄

(|yj | − |x̂j |) by triangle ineq.

= ∥x̂[S]∥1 − ∥y[S]∥1 + ∥y[S̄]∥1 − ∥x̂[S̄]∥1
= ∥x̂∥1 + ∥y[S̄]∥1 − 2∥x̂[S̄]∥1 − ∥y[S]∥1
= ∥x∥1 − 2∥x̂− x̄∥1 + ∥y[S̄]∥1 − ∥y[S]∥1, (∗)

since by definition of x̄ we have x̄[S̄] = 0 and ∥x̂ − x̄∥1 ≥ ∥x̂[S̄]∥1, implying (∗) ≤ ∥x̂ + y∥1 ≤ ∥x̂∥1.
Therefore,

∥x̂∥1 ≥ ∥x̂∥1 − 2∥x̂− x̄∥1 + ∥y[S̄]∥1 − ∥y[S]∥1
⇒ 2∥x̂− x̄∥1 ≥ ∥y[S̄]∥1 − ∥y[S]∥1

By NSPρs we have −∥y[S]∥1 ≥ −ρ∥y[S̄]∥1, so by the above we obtain 2∥x̂− x̄∥1 ≥ (1− ρ)∥y[S̄]∥1, whence
∥y[S̄]∥1 ≤ 2

1−ρ∥x̂− x̄∥1 (†). Now x∗ = x̂+ y implies

∥x∗ − x̂∥1 = ∥y∥1 = ∥y[S]∥1 + ∥y[S̄]∥1.

By NSPρs we have ∥y[S]∥1 ≤ ρ∥y[S̄]∥1, hence ∥x∗ − x̂∥1 ≤ (1 + ρ)∥y[S̄]∥1. Therefore, by (†), we have

∥x∗ − x̂∥1 ≤ 2
1 + ρ

1− ρ
∥x̂− x̄∥1.

Lastly, we have
∥x̂− x̄∥1 = ∥x̂− x̂[S]∥1 = ∥x̂[S̄]∥ ≤ |S̄|ϵ = (n− s)ϵ

as claimed. 2

12.6.4 Corollary
With the assumptions of Prop. 12.6.3, if |supp(x̂)| = s, then x∗ = x̂ = x̄.

Proof. This follows because ϵ can be taken to be zero, which implies ∥x∗ − x̂∥1 ≤ 2 1+ρ
1−ρ∥x̄ − x̂∥1 ≤ 0,

which in turn implies the result. 2

12.6.3 Restricted isometry property

We now examine Item 2 in Sect. 12.6.1. For an m×n matrix A, we define the restricted isometry property
(RIP) as follows:

RIPδs(A) ≡
[
∀x ∈ Rn (|supp(x)| = s → (1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1− δ)∥x∥22

]
. (12.8)

If the matrix A has the RIP, then the vector Ax has more or less the same ℓ2 norm as x, up to a factor
of δ.

The exact form of the proposition in Item 2 is as follows.

12.6.5 Proposition
Let A be an m × n matrix with m < n, s < n

2 be an integer, and δ ≥ 0. If RIPδ2s(A) holds, and
ρ =

√
2δ

1−δ < 1, then NSPρs(A) holds.

For the proof, see [86, Thm. 5.12]. We note that it suffices that δ < 1
1+

√
2
≈ 0.4142 in order for ρ < 1 to

hold in Prop. 12.6.5.

12.6. THEORETICAL RESULTS 197

12.6.3.1 Applicability to Eq. (12.1)

Recall that Eq. (12.1), i.e. P 0(A, b) ≡ min{∥x∥0 | Ax = b}, is an NP-hard problem that requires to find
the solution x to Ax = b with smallest support size.

We report a result which illustrates the effect of the RIP on the original MILP P 0 rather than the LP
relaxation P 1 [269, Thm. 23.6].

12.6.6 Theorem
Let x̂ ∈ Rn with |supp(x̂)| = s, let δ ∈ (0, 1), let A such that RIPδ2s(A) holds, and let x∗ be an optimum
of P 0(A,Ax̂). Then x∗ = x̂.

Proof. Suppose the theorem does not hold. Then y = x∗ − x̂ is a nonzero vector. By definition of x∗ we
have ∥x∗∥0 ≤ ∥x̂∥0 ≤ s, hence ∥y∥0 ≤ 2s. Since A has RIP, we obtain ∥Ay∥22 ∈ (1 ± δ)∥y∥22. However,
Ay = Ax∗ − Ax̂ = 0 while y ̸= 0, and δ ∈ (0, 1) implies that 1± δ > 0, hence 0 ∈ (α, β) where α, β > 0,
which is a contradiction. 2

This result is of limited applicability, since we do not know whether P 0(A, b) can be solved efficiently if
A has the RIP.

12.6.3.2 RIP and eigenvalues

In this section we give a sufficient eigenvalue condition for the RIP to hold.

Let A be an m × n matrix, let S ⊂ [n] with |S| = s < n, let AS be the m × s matrix consisting
of the columns of A indexed by S, and consider the s × s PSD matrix B(S) = A⊤

SAS . Let λL =
min|S|=s λmin(B(S)) and λU = min|S|=s λmax(B(S)).

12.6.7 Theorem
If, for all S ⊂ [n] with |S| = s, there is a δ ∈ (0, 1) such that

1− δ ≤ λL ≤ λU ≤ 1 + δ, (12.9)

then RIPδs(A) holds.

Proof. In this proof we consider x[S] as a vector in Rs, i.e. we remove the zero components in x[S̄].

Let S ⊂ [n] with |S| = s, and let x ∈ Rn with supp(x) = S. We define diagonal matrices ΛL =
diag(1λL) and ΛU = diag(1λU). By definition of λL, λU we have

⟨ΛLx[S], x[S]⟩ ≤ ⟨B(S)x[S], x[S]⟩ ≤ ⟨ΛUx[S], x[S]⟩
⇒ λL∥x[S]∥22 ≤ ⟨B(S)x[S], x[S]⟩ ≤ λU∥x[S]∥22.

We note that, since supp(x) = S, ∥x[S]∥22 = ∥x∥22. By Eq. (12.9) we have:

(1− δ)∥x∥22 ≤ λL∥x∥22 ≤ ⟨B(S)x[S], x[S]⟩ ≤ λU∥x∥22 ≤ (1 + δ)∥x∥22.

Now we note that

⟨B(S)x[S], x[S]⟩ = ⟨A⊤
SASx[S], x[S]⟩ = ⟨ASx[S], ASx[S]⟩ = ∥ASx[S]∥22.

Again since supp(x) = S we have ∥ASx[S]∥22 = ∥Ax∥22. Hence

(1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22

198 CHAPTER 12. SPARSITY AND ℓ1 MINIMIZATION

holds for any S ⊂ [n] with |S| = s and x having support S. Therefore RIPδs(A) holds, as claimed. 2

Hence, in order to construct a matrix A with the RIP, we can focus on matrices A such that B(S) =
A⊤
SAS has eigenvalues close to one for any S ⊂ [n].

12.6.4 Normally sampled matrices

We come to the last Item 3 of Sect. 12.6.1. We shall sketch the proof that a normally sampled matrix A
has the RIP with high probability.

We exploit the sufficient condition in Thm. 12.6.7: we show that normally sampled matrices A have
the conditions

∀i < j ≤ n A⊤
i Aj ≈ 0 (12.10)

∀i ≤ n A⊤
i Ai = ∥Ai∥22 ≈ 1, (12.11)

which means that A⊤A is approximately an identity matrix, which satisfies Eq. (12.9) (see Sect. 13.1.3).
More precisely, we argue that a sufficient condition to the orthonormality of the columns of A is that
each component of A is sampled independently from N(0, 1√

m
).

We now offer a proof sketch of Eq. (12.10)-(12.11). A random vector Ai ∈ Rm is isotropic iff cov(Ai) =
Im. We recall that cov(X) = E(XX⊤) for any matrix X, and remark that if Ai ∼ N(0, 1)m, then Ai
isotropic.

12.6.8 Lemma
An isotropic random vector Ai has the property that

∀x ∈ Rm E(⟨Ai, x⟩2) = ∥x∥22.

Proof. For two square symmetric matrices B,C we have B = C iff

∀x (x⊤Bx = x⊤Cx);

hence x⊤E(AiA⊤
i)x = x⊤Imx. Note that the LHS is E(⟨Ai, x⟩2) and the RHS is ∥x∥22. 2

12.6.9 Lemma
An isotropic random vector x in Rm is such that E(∥x∥22) = m.

Proof. We simply note that

E(∥x∥22) = E(x⊤x) = E(tr(x⊤x)) = E(tr(xx⊤)) = tr(E(xx⊤)) = tr(Im) = m,

which proves the lemma. 2

12.6.10 Lemma
Two independent isotropic random vectors Ai, Aj in Rm are such that E(⟨Ai, Aj⟩2) = m.

Proof. By definition of conditional expectation we have:

E(⟨Ai, Aj⟩2) = EAj
(EAi

(⟨Ai, Aj⟩2 | Aj)).

12.6. THEORETICAL RESULTS 199

By Lemma 12.6.8, the inner expectation is ∥Aj∥22. By Lemma 12.6.9, the outer expectation is m, as
claimed. 2

Moreover, by [297, Thm. 3.1.1], if Ai is sampled from N(0, 1)m, then ∥Ai∥2 ≈
√
m with high proba-

bility. We can now prove that independent random vectors are almost orthogonal. By the above results,
∥Ai∥2, ∥Aj∥2, ⟨Ai, Aj⟩ are all apporximately equal to

√
m. We now scale Ai to Āi = Ai/∥Ai∥2 and Aj

to Āj = Aj/∥Aj∥2, obtaining

⟨Āi, Āj⟩ =
1

m
⟨Ai, Aj⟩ =

√
m

m
=

1√
m
.

Thus, for m large, ⟨Āi, Āj⟩ tends to zero.

The reasoning so far explains why sampling A from N(0, 1√
m
) suffices to solve P 1(A, b) to find a

solution for P 0(A, b). While we made some parts of this argument precise, some pieces have been left
sketchy to avoid too many technical details. The precise statement of the theorem is as follows.

12.6.11 Theorem (Thm. 5.17 in [86])
Let A be sampled from N(0, 1)m×n and δ ∈ (0, 1). Then there exist constants c1, c2 depending only on δ
such that:

∀s < m
s lnn/s

c1
≤ m → Prob(RIPδs(A)) ≥ 1− e−c2m. (12.12)

We note several discrepancies of this precise result with respect to our imprecise argument.

• The sparsity integer parameter s should be smaller than m (rather than n, which was usually the
case in our treatment). This is not an issue, since m < n.

• The distribution whence we sample A is N(0, 1) rather than N(0, 1√
m
). This extra

√
m factor in A

comes from the well-known norm inequality ∥ · ∥2 ≤ ∥ · ∥1 ≤
√
m∥ · ∥2, which is necessary in order

to reason about the ℓ1 norm while using the ℓ2 norm.

• The informal terms “approximate”, “with high probability”, and the symbol “≈”, are interpreted
formally in Eq. (12.12), namely: the probability that our sampled matrix has the RIP exceeds the
value of a function which tends asymptotically to 1 exponentially fast. Such a statement is more
qualitative than quantitative because of the two (unknown) constants c1, c2. This is a common
feature of theoretical results holding with high probability.

We make more remarks to help with the application of these results in practice.

• We find that Prob(RIPδs(A)) = 0 for m too small for a fixed s.

• As m increases, Prob(RIPδs(A)) becomes nonzero.

• As m increases even more, Prob(RIPδs(A)) tends to 1 very fast.

• The three previous points are consistent with the phase transition phenomenon in Sect. 12.5.

• In practice, Thm. 12.6.11 allows the achievement of logarithmic compression of data for large n and
fixed s: a sparse data vector x is encoded into a vector Ax where A is m× n and m is logarithmic
in n. A more precise statement to this effect can be find in [226, Lem 5.5.2]:

A ∼ N(0, 1)mn ∧m ≥ 10s ln
n

s
⇒ RIP1/3

s (A) with high probability.

• This compression technique actually works better than the worst-case bounds ensured by the cor-
responding theory.

200 CHAPTER 12. SPARSITY AND ℓ1 MINIMIZATION

Chapter 13

Random projections in MP

Random projections (RPs) are another dimensionality reduction technique exploiting high-dimensional
geometry properties and, in particular, the concentration of measure phenomenon (Sect. 10.6.5.2). They
are more general than Barvinok’s naive algorithm (Sect. 10.6.5) in that they apply to sets of vectors
in some high-dimensional Euclidean space Rn (with n ≫ 1). These sets are usually finite and growing
polynomially with instance sizes [295], but they may also be infinite [308], in which case the technical
name used is subspace embeddings. In this chapter we introduce random projections and their application
to MP.

13.1 The Johnson-Lindenstrauss Lemma

The foremost result in RPs is the Johnson-Lindenstrauss Lemma (JLL) [151]. For a set of vectors X ⊂ Rn
with |X | = m, and an ε ∈ (0, 1) there is a k = O(1

ε2 lnm) and a mapping f : X → Rk such that:

∀x, y ∈ X (1− ε)∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ (1 + ε)∥x− y∥2. (13.1)

The proof of this result [151, Lemma 1] is probabilistic: it shows that an f satisfying Eq. (13.1) exists
with some nonzero probability.

Later and more modern proofs (e.g. [90]) clearly point out that f can be a linear operator represented
by a k × n matrix T , each component of which can be sampled from a subgaussian distribution. This
term refers to a r.v. V for which there are constants C, c s.t. for each t > 0 we have

P(|V| > t) ≤ C e−ct
2

.

In particular, the Gaussian distribution is also subgaussian. Then the probability that a randomly
sampled T satisfies Eq. (13.1) can be shown to exceed 1/m. The union bound then provides an estimate
on the number of samplings of T necessary to guarantee Eq. (13.1) with a desired probability.

Some remarks are in order.

1. In practice, Eq. (13.1) is applied to some given data as follows: given a set X of m vectors in Rn
and some error tolerance ε ∈ (0, 1), find an appropriate k = O(1

ε2 lnm), construct the k × n RP T
by sampling each of its components from N(0, 1√

k
), then define the set TX = {Tx | x ∈ X}. By the

JLL, TX is approximately congruent to X in the sense of Eq. (13.1); however, TX ⊂ Rk whereas
X ⊂ Rn, and, typically, k ≪ n.

2. The computation of an appropriate k would appear to require an estimation of the constant in the
expression O(1

ε2 lnm). Values computed theoretically are often so large as to make the technique

201

202 CHAPTER 13. RANDOM PROJECTIONS IN MP

useless in practice. As far as we know, this constant has only been computed empirically in some
cases [296], ending up with an estimation of the constant at 1.8.

3. The term 1√
k

is the standard deviation of the normal distribution from which the components of T
must be sampled. It corresponds to a scaling of the vectors in TX induced by the loss in dimensions
(see Prop. 13.1.4).

4. In the expression O(1
ε2 lnm), the logarithmic term is the one that counts for analysis purposes, but

in practice ε−2 can be large. Our advice is to take ε ∈ (0.1, 0.2) and then fine-tune ε according to
results.

5. Surprisingly, the target dimension k is independent of the original dimension n.

6. Even if the data in X is sparse, TX ends up being dense. Different classes of sparse RPs have been
investigated [2, 154] in order to tackle this issue. A simple algorithm [85, §5.1] consists in initializing
T as the k× n zero matrix, and then only fill components using samples from N(0, 1√

kp
) with some

given probability p. The value of p corresponds to the density of T . In general, and empirically, it
appears that the larger n and m are, the sparser T can be.

7. Obviously, a Euclidean space of dimension k can embed at most k orthogonal vectors. An easy,
but surprising corollary of the JLL is that as many as O(2k) approximately orthogonal vectors can
fit in Rk. This follows by [301, Prop. 1] applied to the standard basis S = {e1, . . . , en} of Rn: we
obtain ∀i < j ≤ n (−ε ≤ ⟨Tei, T ej⟩ − eiej ≤ ε), which implies |⟨Tei, T ej⟩| ≤ ε with TS ⊂ Rk and
k = O(lnn). Therefore TS is a set of O(2k) almost orthogonal vectors in Rk, as claimed.

8. Typical applications of RPs arise in clustering databases of large files (e.g. e-mails, images, songs,
videos), performing basic tasks in ML (e.g. k-means [54], k-nearest neighbors (k-NN) [148], robust
learning [23] and more [146]), and approximating large MP formulations (e.g. LP, QP, see Sect. 13.2).

9. The JLL seems to suggest that most of the information encoded by the congruence of a set of
vectors can be maintained up to an ε tolerance in much smaller dimensional spaces. This is not
true for sets of vectors in low dimensions. For example, with n ∈ {2, 3} a few attempts immediately
show that RPs yield sets of projected vectors which are necessarily incongruent with the original
vectors.

13.1.1 Union and intersection bounds

In this section prove one of the most fundamental results in probability theory. Scott Aaronson writes
“Despite its triviality, the union bound is probably the most useful fact in all of theoretical computer
science. I use it maybe 200 times in every paper I write.” [1, Ch. 7]

13.1.1 Lemma (Union bound)
Let t ∈ [0, 1] and consider events E1, . . . , Ek such that Prob(Ei) ≥ t for each i ≤ k. Then

Prob(∃i ≤ k Ei) ≤ kt

holds.

Proof. The claim follows by a straightforward induction applied to: (i) Prob(∃i ≤ k Ei) = Prob

(⋃
i≤k

Ei

)
;

(ii) Prob(E1 ∪ E2) = Prob(E1) + Prob(E2)− Prob(E1 ∩ E2). 2

The union bound is a trivial but very useful result, so it is worth giving it an official “lemma” status.

It is also worth stating a related result (which is in fact a corollary of the union bound) about
intersections. It is sometimes also called “union bound”, although, to distinguish it from Lemma 13.1.1,
we shall call it the “intersection bound”.

13.1. THE JOHNSON-LINDENSTRAUSS LEMMA 203

13.1.2 Lemma (Intersection bound)
Let t ∈ [0, 1] and consider events E1, . . . , Ek such that Prob(Ei) ≥ 1− t for each i ≤ k. Then

Prob(∀i ≤ k Ei) ≥ 1− kt

holds.

Proof. We observe that Prob(∀i ≤ k Ei) = 1− Prob(∃i ≤ k ¬Ei). Therefore,

Prob

(∧
i≤k

Ei

)
= 1− Prob

(∨
i≤k

(¬Ei)
)
≥ 1−

∑
i≤k

Prob(¬Ei) = 1−
∑
i≤k

(1− (1− t)) = 1− kt,

as claimed. 2

13.1.2 Proving the JLL

We prove the “squared version” of the JLL.

13.1.3 Theorem
For any ε ∈ (0, 1), any n ∈ N, any k ∈ N such that

k ≥ 4 lnn

ε2/2− ε3/3
, (13.2)

and any set X ⊂ Rm with |X | = n, there is a map f : Rm → Rk such that:

∀x, y ∈ X (1− ε)∥x− y∥22 ≤ ∥f(x)− f(y)∥22 ≤ (1 + ε)∥x− y∥22. (13.3)

We follow the treatment in [90]. Other proofs can be found in [151, 147, 11, 154, 210, 16, 295, 211, 155,
297].

First, we focus on a special subclass of maps f , namely we let T be a k×n RP sampled from N(0, 1√
k
).

Then we prove that this map preserves Euclidean norms on average.

13.1.4 Proposition
Let T be a k × n RP sampled from N(0, 1√

k
), and u ∈ Rn; then E(∥Tu∥22) = ∥u∥22.

Proof. We prove the claim for ∥u∥2 = 1; the result will follow by scaling. For each i ≤ k we define
vi =

∑
j≤n Tijuj . Then E(vi) = E

(∑
j≤m Tijuj

)
=
∑
j≤m E(Tij)uj = 0. Moreover,

Var(vi) =
∑
j≤m

Var(Tijuj) =
∑
j≤m

Var(Tij)u
2
j =

∑
j≤m

u2j
k

=
1

k
∥u∥2 =

1

k
.

Now, 1
k = Var(vi) = E(v2i − (E(vi))

2) = E(v2i − 0) = E(v2i). Hence

E(∥Tu∥2) = E(∥v∥2) = E
(∑
i≤k

v2i
)
=
∑
i≤k

E(v2i) =
∑
i≤k

1

k
= 1,

as claimed. 2

While Prop. 13.1.4 is not strictly essential to prove Thm. 13.1.3, we believe it clarifies the most basic
reason why RPs work as advertised.

204 CHAPTER 13. RANDOM PROJECTIONS IN MP

Having shown that lengths are preserved by T on average, we now prove that the errors decrease
rapidly with their size. Let X1, . . . , Xm be m independent normal r.v. distributed like N(0, 1). Let X be
the random vector (X1, . . . , Xm), and Y = X/∥X∥2. It is well known that Y is a point chosen uniformly at
random from the surface of the m-dimensional unit sphere Sm−1 [233]. The proof of this rests on the fact
that m independent normal r.v. define a multivariate normal distribution, having constant distribution
function value over concentric spheres [78, §24.2].

Let Z = (X1, . . . , Xk) and L = ∥Z∥22. Since ∥Y ∥2 = 1 by definition, µ = E(L) = E(∥Z∥22) = k
n .

13.1.5 Lemma
Let k < n and β > 0. If β < 1, then

Prob(L ≤ βk/n) ≤ βk/2
(
1 +

(1− β)k
n− k

)n−k
2 ≤ exp(k(1− β + lnβ)/2); (13.4)

if β > 1, then

Prob(L ≥ βk/n) ≤ βk/2
(
1 +

(1− β)k
n− k

)n−k
2 ≤ exp(k(1− β + lnβ)/2). (13.5)

Proof. It can be shown1 that, if V is a r.v. distributed as N(0, 1), then E(exp(sV 2)) = 1√
1−2s

, for s ≤ 1
2 .

Now:

Prob(L ≤ βk/n) = Prob(n(X2
1 + · · ·+X2

k) ≤ kβ(X2
1 + · · ·+X2

n))

= Prob(kβ(X2
1 + · · ·+X2

n)− n(X2
1 + · · ·+X2

k) ≥ 0)

= Prob(et(kβ(X
2
1+···+X2

n)−n(X
2
1+···+X2

k)) ≥ 1) for t > 0

≤ E(et(kβ(X
2
1+···+X2

n)−n(X
2
1+···+X2

k))) by Markov’s inequality

= E(etkβV
2

)n−kE(et(kβ−n)V
2

)k where V ∼ N(0, 1)

= (1− 2tkβ)
k−d
2 (1− 2t(kβ − d))− k

2 = g(t).

We note that the expression g(t) requires t ∈ T̄ =
(
0, 1

2kβ

)
. We minimize2 g(t) over T̄ , and find

t′ = 1−β
2β(d−kβ) ∈ T̄ , yielding

min
t∈T̄

g(t) =

(
d− k
d− kβ

) k−d
2
(
1

β

)− k
2

= βk/2
(
1 +

k(1− β)
d− k

) d−k
2

.

Finally, we note that βk/2 = e
k ln β

2 , and that, since ex = lim
p→∞

(1 + x/p)p and (1 + x/p)p is monotonically

increasing w.r.t. p, we have (
1 +

k(1− β)
d− k

) d−k
2

≤ e(1−β)k/2.

This establishes that Prob(L ≤ βk/d) ≤ ek(1−β+ln β)/2, as claimed. The case for β > 1 is similar3. 2

Proof of Thm. 13.1.3. We note that the theorem states that “for each n, there exists a k greater than
a certain linear function of lnn”. Obviously, if k ≥ d then the theorem is trivial, since it would consists
of a dimensionality increase (it would suffice it to consider a function f that appends sufficiently many
zeros to its vector argument in order to satisfy Eq. (13.3)). Hence, we assume k ≤ d. For x, y ∈ X we let

1Left as an exercise: you can for example read the section “Functions of random variables” in [304], then note that the
function ϕ(v) = exp(sv2) can be inverted, then use a symbolic integration package to compute the expectation.

2Again left as an exercise: again, you can use a symbolic algebra package to solve for the derivative equal to zero.
3Left as an exercise, too. Watch out for the different interval T̄ .

13.1. THE JOHNSON-LINDENSTRAUSS LEMMA 205

L = ∥Tx−Ty∥22. Following the proof of Prop. 13.1.4 we let µ = k
n∥x−y∥

2
2. By Lemma 13.1.5 (Eq. (13.4))

we obtain:

Prob(L ≤ (1− ε)µ) ≤ exp(k(1− (1− ε) + ln(1− ε))/2) by ln(1− x) ≤ −x− x2/2 for all x ∈ [0, 1)

≤ exp(k(ε− (ε+ ε2/2))/2) = exp(−kε2/4) by Eq. (13.2)
≤ exp(−2 lnn) = 1/n2.

By Lemma 13.1.5 (Eq. (13.5)) we obtain:

Prob(L ≥ (1 + ε)µ) ≤ exp(k(1− (1 + ε) + ln(1 + ε))/2) by ln(1− x) ≤ x− x2/2 + x3/3 for all x ≥ 0

≤ exp(k(−ε+ (ε− ε2/2 + ε3/3))/2) = exp(−k(ε2/2− ε3/3)/2) by Eq. (13.2)
≤ exp(−2 lnn) = 1/n2.

Thus, the probability that
∥Tx− Ty∥22
∥x− y∥22

̸∈ [1− ε, 1 + ε] (13.6)

is at most 2
n2 . Hence, by the union bound Lemma 13.1.1, the probability that there exists at least one

pair of vectors x, y ∈ X satisfying Eq. (13.6) is bounded above by
(
n
2

)
2
n2 = 1− 1

n . Therefore, T satisfies
Eq. (13.3) with probability at least 1

n . The result follows by the probabilistic method [18]. 2

13.1.6 Corollary
There is a randomized polynomial time algorithm for finding a T satisfying the hypotheses of Thm. 13.1.3
with probability 0.99.

Proof. The algorithm consists in independently sampling a RP T at most t times, and testing whether it
satisfies Eq. (13.3). The probability of failure of a single sample is, by the proof of Thm. (13.1.3), 1− 1

n .
The probability of failure of every sample is (1 − 1/n)t. We want to find t such that (1 − 1/n)t ≤ 0.01:
this implies t ≥ ln 0.01

ln (1−1/n) . 2

In practice, it suffices to take t ≈ 4.7n.

We note that Cor. 13.1.6 clarifies another fact, namely that the probability of failure can be made
arbitrarily small. We make this notion more precise as follows.

13.1.7 Corollary
Let c, C be sufficiently large constants, ε ∈ (0, 1), X ⊂ Rm with |X | = n, and T be a k ×m RP, where
k ≥ cε−2 lnn. Then

Prob

(
∀x, y ∈ X (1− ε)∥x− y∥22 ≤ ∥Tx− Ty∥22 ≤ (1 + ε)∥x− y∥22

)
≥ 1− 2e−C(ε2−ε3)k (13.7)

holds.

The “universal constant” C originates from estimates of the error between certain functions (notably the
exponential one) and their approximations using Taylor series expansions (see e.g. [211, Claim 2.3.2]).

For later reference, we state a different variant of Lemma 13.1.5.

13.1.8 Lemma
For any x ∈ Rn and ε ∈ (0, 1),

Prob((1− ε)∥x∥22 ≤ ∥Tx∥22 ≤ (1 + ε)∥x∥22) ≥ 1− 2e−Cε2k (13.8)

holds, where C is a universal constant.

206 CHAPTER 13. RANDOM PROJECTIONS IN MP

13.1.3 Approximating the identity

If T is a k × n RP where k = O(ε−2 lnn), both TT⊤ and T⊤T have some relation with the identity
matrices Ik and In. This is a lesser known phenomenon, so it is worth discussing it here in some detail.

We look at TT⊤ first. By [313, Cor. 7] for any ϵ ∈ (0, 12) we have

∥ 1
n
T T⊤ − Ik∥2 ≤ ε

with probability at least 1− δ as long as n ≥ (k+1) ln(2k/δ)
Cε2 , where C ≥ 1

4 is a constant.

In Table 13.1 we give values of ∥s TT⊤ − Id∥2 for s ∈ {1/n, 1/d, 1}, n ∈ {1000, 2000, . . . , 10000} and
d = ⌈ln(n)/ϵ2⌉ where ϵ = 0.15. It is clear that the error decreases as the size increases only in the case

n
s 1e3 2e3 3e3 4e3 5e3 e3 7e3 8e3 9e3 1e4

1/n 9.72 7.53 6.55 5.85 5.36 5.01 4.71 4.44 4.26 4.09
1/d 5e1 1e2 1.5e2 2e2 2.5e2 3e2 3.5e2 3.9e2 4.4e2 4.8e2

1 2e5 4e5 6e5 8e5 1e6 1.2e6 1.4e6 1.6e6 1.8e6 2e6

Table 13.1: Values of ∥sTT⊤ − Id∥ in function of s, n.

s = 1
n . This seems to indicate that the scaling is a key parameter in approximating the identity.

Let us now consider the product T⊤T . It turns out that, for each fixed vector x not depending on T ,
the matrix T⊤T behaves like the identity w.r.t. x.

13.1.9 Theorem
Given any fixed x ∈ Rn, ε ∈ (0, 1) and a RP T ∈ Rd×n, there is a universal constant C such that

−1ε ≤ T⊤Tx− x ≤ 1ε (13.9)

with probability at least 1− 4eCε
2d.

Proof. By definition, for each i ≤ n we have xi = ⟨ei, x⟩, where ei is the i-th unit coordinate vector. By
elementary linear algebra we have ⟨ei, T⊤Tx⟩ = ⟨Tei, Tx⟩. By [84, Lemma 3.1], for i ≤ n we have

⟨ei, x⟩ − ε∥x∥2 ≤ ⟨Tei, Tx⟩ ≤ ⟨ei, x⟩+ ε∥x∥

with high probability, which implies the result. 2 2

One might be tempted to infer from Thm. 13.1.9 that T⊤T “behaves like the identity matrix” (inde-
pendently of x). This is generally false: Thm. 13.1.9 only holds for a given (fixed) x.

In fact, since T is a k × n matrix with k < n, T⊤T is a PSD n× n matrix with rank k, hence n− k
of its eigenvalues are zero — and the nonzero eigenvalues need not have value one. On the other hand,
T⊤T looks very much like a slightly perturbed identity, on average, as shown in Table 13.2.

13.2 Random projections in mathematical programming

RPs have mostly been applied to probabilistic approximation algorithms. By randomly projecting their
(vector) input, one can execute algorithms with lower-dimensional vector more efficiently. The approxi-
mation guarantee is usually derived from the JLL or similar results.

13.2. RANDOM PROJECTIONS IN MATHEMATICAL PROGRAMMING 207

n diagonal off-diag
500 1.00085 0.00014

1000 1.00069 0.00008
1500 0.99991 -0.00006
2000 1.00194 0.00005
2500 0.99920 -0.00004
3000 0.99986 -0.00000
3500 1.00044 0.00000
4000 0.99693 0.00000

Table 13.2: Average values of diagonal and off-diagonal components of T⊤T in function of n, where T is
a k × n RP with k = O(ε−2 lnn) and ε = 0.15.

A line of research about applying RPs to MP formulations was started in [302, 301, 300, 84]. Whichever
algorithm one may choose in order to solve the MP, the RP properties guarantee an approximation on
optimality and/or feasibility. Thus, this approach leads to stronger/more robust results with respect to
applying RPs to algorithmic input.

Linear and integer feasibility problems (i.e. LP and MILP formulations without objective function)
are investigated in [302] from a purely theoretical point of view. The effect of RPs on LPs (with nonzero
objective) are investigated in [301], both theoretically and computationally. Specifically, the randomly
projected LP formulation is shown to have bounded feasibility error and an approximation guarantee on
optimality. The computational results suggest that the range of practical application of this technique
starts with relatively small LPs (thousands of variables/constraints). In both [302, 301] we start from a
(MI)LP in standard form

P ≡ min{c⊤x | Ax = b ∧ x ≥ 0 ∧ x ∈ X} (13.10)

(where X = Rn or Zn respectively), and obtain a randomly projected formulation under the RP T ∼
Nk×n(0, 1√

k
) with the form

TP ≡ min{c⊤x | TAx = Tb ∧ x ≥ 0 ∧ x ∈ X}, (13.11)

i.e. T reduces the number of constraints in P to O(lnn), which can therefore be solved more efficiently.

The RP technique in [300, 84] is different, insofar as it targets the number of variables. In [84] we
consider a QP of the form:

Q ≡ max{x⊤Qx+ c⊤x | Ax ≤ b}, (13.12)

where Q is n×n, c ∈ Rn, A is m×n, and b ∈ Rm, x ∈ Rn. This is projected by a k×n RP T as follows:

TQ ≡ max{u⊤Q̄x+ c̄⊤u | Āu ≤ b}, (13.13)

where Q̄ = TQT⊤ is k×k, Ā = AT⊤ is m×k, c̄ = Tc is in Rk, and u ∈ Rk. In [300] we consider a QCQP
Q′ like Q but subject to a ball constraint ∥x∥2 ≤ 1. In the projected problem TQ′, this is replaced by
a ball constraint ∥u∥2 ≤ 1. Both [84, 300] are both theoretical and computational. In both cases, the
number of variables of the projected problem is O(lnn).

In applying RPs to MPs, one solves the smaller projected problems in order to obtain an answer
concerning the corresponding original problems. In most cases one has to devise a way to retrieve a
solution for the original problem using the solution of the projected problem. This may be easy or
difficult depending on the structure of the formulation and the nature of the RP.

In the rest of this section we shall take an informal approach to proofs, and give reference to the
precise versions published in papers. The issue is that many proofs are very technical, and the details
end up hiding the intuitive reason why certain statements hold. We shall remind the informal nature of
proofs by denoting them by the word “sketch”.

208 CHAPTER 13. RANDOM PROJECTIONS IN MP

13.2.1 Linear feasibility

We shall look at linear feasibility first. Given a matrix A, we denote by Aj the j-th column of A. We
consider the pure feasibility problem consisting in finding an x′ in the set

S = {x ∈ X | Ax = b}, (13.14)

or determining that S is empty, where A is an m × n matrix, b ∈ Rm, and X is any subset of Rn. We
mean to apply a RP k ×m matrix T to S so that we obtain:

TS = {x ∈ X | TAx = Tb}, (13.15)

where TS indicates that the set in the RHS of Eq. (13.15) is the result of applying T to S.

We first look at cases where X is finite [301, Thm. 2].

13.2.1 Theorem
Assume S ̸= ∅, and x′ ∈ S. Then there exists a constant C > 0 (independent of n, k) such that the
following three statements:

(a) if b =
∑
j≤n

x′jAj then Tb =
∑
j≤n

x′jTAj ;

(b) if b ̸=
∑
j≤n

x′jAj then Prob

(
Tb =

∑
j≤n

x′jTAj

)
≥ 1− 2 e−Ck;

(c) if |X| is finite and b ̸=
∑
j≤n

yjAj for all y ∈ X, then

Prob

(
∀y ∈ X Tb ̸=

∑
j≤n

yjTAj

)
≥ 1− 2|X| e−Ck; (13.16)

all hold.

Proof. (Sketch) Statement (a) holds by linearity of T . On the other hand, if x′ is not in S, then
∥Ax − b∥2 > 0. By the JLL, Euclidean distances are well projected by T with high probability, which
proves Statement (b). Statement (c) follows by the intersection bound Lemma 13.1.2 applied to the
|X| independent events that each y ∈ X is infeasible in Ax = b and hence, by Statement (b), also in
TAx = Tb with the given probability. 2

By Thm. 13.2.1, we conclude that TS ̸= ∅ if S ̸= ∅, and that TS = ∅ if S = ∅ if certain other
conditions hold. In general, Thm. 13.2.1 is not sufficient to grant an “if and only if” feasibility relationship
between S and TS for any X, which is what we would like.

13.2.2 Corollary
If |X| grows polynomially fast with the storage size of (A, b), then TS = ∅ if S = ∅ with high probability.

Proof. (Sketch) We observe that “with high probability” stands in this context for an event E(t) such
that Prob(E) ≥ 1 − αe−βt for some positive α, β. The corollary follows by remarking that, if |X| grows
polynomially with the instance size, then |X|e−Ck tends to zero as k tends to infinity, even as |X| also
grows polynomially with k. In particular, for any small probability p of failure, there is a possibly large
integer K > 0 such that |X|e−Ck ≤ p for all k > K, which implies that we can make the probability

13.2. RANDOM PROJECTIONS IN MATHEMATICAL PROGRAMMING 209

of success 1 − |X|e−Ck as large as we want. Here, by “failure” we mean the occurrence that TS ̸= ∅
whenever S = ∅. 2

By Cor. 13.2.2, it follows that for S such that |X| grows polynomially with the size of (A, b), we have
S = ∅ iff TS = ∅ with high probability, which implies that we can solve the smaller-sized projected
problem, decide whether TS is empty or not, and correspondingly infer the emptiness of S with high
probability, without having solved the larger-sized original problem. The issue is given by the requirement
that |X| should increase polynomially: this is not easy to prove a priori for some given S. Moreover, the
requirement is certainly not satisfied whenever X is infinite, which happens e.g. if X is the non-negative
orthant (the feasibility problem corresponding to LP).

In order to address LP feasibility, we recall that the ellipsoid method (Sect. 7.3) works by iteratively
separating an infeasible point from a polyhedron [127]. Specifically, we can re-state the separating hy-
perplane Prop. 6.2.5 in this setting as follows: if A1, . . . , An, b are unit column vectors in Rm such that
C = cone(A1, . . . , An) is a pointedcone and b ̸∈ C, then there is an ε > 0 and a vector c ∈ Rm such that
⟨c, b⟩ < −ε and ⟨c, Aj⟩ ≥ ε for each j ≤ n. We now prove that if T is a RP, then a similar statement
holds for {TAj | j ≤ n} and Tb with high probability [301, Thm. 3].

13.2.3 Theorem
Given (a) c, b, A1, . . . , An ∈ Rm of unit norm such that C = cone(A1, . . . , An) is pointed and b ̸∈ C; (b)
an ε > 0 such that ⟨c, b⟩ < −ε and c⊤, Aj ≥ ε for all j ≤ n; (c) a k×m RP matrix T such that Eq. (13.2)
holds,

Prob(Tb /∈ cone(TA1, . . . , TAn)) ≥ 1− 4(n+ 1)e−C(ε2−ε3)k, (13.17)

where C is a universal constant (i.e. not depending on the problem data).

Proof. Let A be the event that T approximately preserves ∥c−χ∥22 and ∥c+χ∥22 for all χ ∈ {b, A1, . . . , An}.
Since A consists of 2(n+ 1) events, by Cor. 13.1.7 and the intersection bound Lemma 13.1.2, we obtain

Prob(A) ≥ 1− 4(n+ 1)e−C(ε2−ε3)k.

Now consider χ = b. We have:

⟨Tc, T b⟩ =
1

4
(∥T (c+ b)∥2 − ∥T (c− b)∥2)

≤ 1

4
(∥c+ b∥2 − ∥c− b∥2) + ε

4
(∥c+ b∥2 + ∥c− b∥2) by the JLL

= ⟨c, b⟩+ ε < 0 by hypothesis.

Similarly, we obtain ⟨Tc, TAi⟩ ≥ ε, as claimed. 2

Thm. 13.2.3 allows us to claim that if S = ∅ then TS = ∅ with high probability even when X is the
nonnegative orthant.

13.2.2 Linear optimization

In Sect. 13.2.1 we have argued that separation is sufficient to establish linear feasibility, which is the
essential ingredient of the ellipsoid method. Thus, in a certain sense, we have already dealt with RPs
applied to LP. On the other hand, we would like to quantify the error that solving a projected LP yields
w.r.t. the original LP.

We recall the notation P for the original LP formulation and TP for the projected LP formulation,
introduced in Eq. (13.10)-(13.11).

210 CHAPTER 13. RANDOM PROJECTIONS IN MP

13.2.4 Theorem
Assume that feas(P) is non-empty and bounded, and that there is a θ > 0 such that all of the optima
x∗ of P satisfy

∑
j x

∗
j ≤ θ. Given ε ∈ (0, 1), a k ×m RP matrix T (where the constraint matrix of P is

m× n and k = O(ε−2 lnn)), we have

Prob

(
val(P)− 2(θ + 1)εη ≤ val(TP) ≤ val(P)

)
≥ 1− 4neC(ε

2−ε3)k, (13.18)

where η = O(∥y∗∥2), y is a dual optimal solution of P having minimum ℓ2 norm, and C is a universal
constant.

The full and detailed proof of Thm. 13.2.4 is given in [301, §4]. Here we give a very brief proof sketch.
Proof. (Sketch) The easy part is showing that val(TP) ≤ val(P): the constraints of P are Ax = b∧x ≥ 0;
those of TP are TAx = Tb ∧ x ≥ 0. By definition, this implies that each constraint of TP is a random
linear combination of constraints of P. Thus, every feasible solution of P is also feasible in TP. Moreover,
P and TP have the same objective functions, which makes TP a relaxation of P, which in turn proves
the claim. The difficult part, which consists in showing that val(P)− γ ≤ val(TP) for γ = 2(θ + 1)εη, is
only summarily sketched. We reformulate P to the following pure feasibility system:

cx ≤ val(P)− γ
Ax = b
x ≥ 0,

 (13.19)

and note that the reformulation is exact iff γ = 0; in particular, Eq. (13.19) is infeasible for γ > 0. By
Sect. 13.2.1, the projected linear feasibility system

cx ≤ val(TP)− γ
TAx = Tb

x ≥ 0

 (13.20)

is also infeasible with high probability for γ > 0. Therefore, cx < val(TP)−γ is infeasible for x ∈ feas(TP)
with high probability, implying that cx ≥ val(TP)− γ is feasible for x ∈ feas(TP) with high probability.
Thus val(P)− γ ≤ cx = val(TP), as claimed. 2

Unfortunately, the approximation guarantee afforded by Thm. 13.2.4 rests on the value of dual op-
timum y∗ of the original LP having the smallest ℓ2 norm. As such, it cannot be evaluated a priori on
general LPs before having actually solved the LP itself (which would make the projected LP moot). If
the LP structure provides a bound on the smallest ℓ2 norm of a dual optimum, then solving the projected
LP provides an additive approximation algorithm for the original LP.

13.2.3 Solution retrieval

Most often we are not only interested in val(P), but also need an optimal solution x∗ of an LP formulation
P. By the easy part of the proof of Thm. 13.2.4, TP is a relaxation of P. Since we usually want k < m
(otherwise the RP would not make the LP smaller), a solution x̄ of TP is going to be in feas(P) with
probability zero (this holds because rk(TA, Tb) = k < m = rk(A, b), assuming that the constraint matrix
(A, b) of P has full rank). Given a set of column indices J from a matrix M , we denote by MJ the
submatrix of M consisting of the columns indexed by J .

Let x̄ be an optimum of TP, corresponding to a set H of column indices of TA in a basis corresponding
to x̄ (see Defn. 7.1.1). Note that |H| = k, that that (TA)H x̄ = b, and that, by definition of basis we
know that (TA)H is nonsingular, so that we can write x̄ = (TA)−1

H b.

Since A and TA have the same column indices, we let AH be the m×k matrix formed by the columns
of A indexed by H. We would like to find x satisfying AHx

′ = b, but, unfortunately, AH is not even

13.2. RANDOM PROJECTIONS IN MATHEMATICAL PROGRAMMING 211

square, let alone invertible. We therefore resort to a heuristic method based on the pseudoinverse: we
form the system

A⊤
HAHx

′ = A⊤
Hb, (13.21)

obtained by pre-multiplying AHx′ = b by A⊤
H , and observe that the matrix A⊤

HA
⊤ is k×k and nonsingular

since AH has linearly independent columns by construction. Therefore Eq. (13.21) can be solved for x′
as follows:

x′ = (A⊤
HAH)−1A⊤

Hb. (13.22)

Now x′ is a vector in Rk. In order to construct a feasible solution x̃ for the original system Ax = b, we
make a heuristic choice, and arbitrarily decide to fill in with zeros all of the components corresponding
to indices not in H. Reindexing the columns of A so that H = {1, . . . , k}, we obtain x̃ = (x′,0), where
0 is a zero vector in Rn−k. By construction, we know that Ax̃ = b. On the other hand, our heuristic
choice means that some feasibility error with respect to feas(P) is likely to occur. By exclusion, we expect
x̃ ̸≥ 0.

It was empirically shown in [301] that min(0, x̃) → 0 as k → ∞, which is reassuring. On the whole,
however, a method for solving LPs which does not respect the nonnegativity constraints is perplexing and
unusual. Luckily, there are some applications which “forgive” such errors by design. When basis pursuit
LPs (see Eq. (12.4)) are used for encoding/decoding digital messages on noisy channels, any value of x̃
outside of [0, 1] is rounded to {0, 1} (since these are the only possible bit values): if x̃j < 0 then x̃j is set
to 0, and if x̃j > 1 then x̃j is set to 1; values in [0, 1] are rounded to the closest binary value.

13.2.4 Quadratic optimization

We recall the original QP formulation Q and its projected version TQ in Eq. (13.12)-(13.13). We note
that while our LP formulation P was in minimization form, Q and TQ are maximization problems.

13.2.4.1 Feasibility and retrieval

As for the linear case (Sect. 13.2.1-13.2.3, we must account for feasibility, error w.r.t. optimality, and
solution retrieval. In the QP case, however, the first and last issue are much simpler to deal with than in
the LP case.

13.2.5 Proposition
Let T be a k × n RP and u∗ be an optimal solution of TQ. Then x̃ = T⊤u∗ is in feas(Q).

Proof. We have
Ax̃ = A(T⊤u∗) = (AT⊤)u∗ = Āu∗ ≤ b

since u∗ ∈ feas(TQ) and Ā = AT⊤. 2

Note that Prop. 13.2.5 handles both feasibility and solution retrieval. For the latter, given an optimum
u∗ of TQ, a solution x̃ for Q is constructed by simply setting x̃ = T⊤u∗ (we shall see the approximation
error of x̃ later). For the former, the feasibility of x̃ is very easy to prove. It is also very easy to see that
TQ is a restriction of Q (or, equivalently, that Q is a relaxation of TQ).

13.2.6 Proposition
val(TQ) ≤ val(Q).

Proof. Let u∗ be an optimum of TQ, and x̃ = T⊤u∗. By Prop. 13.2.5, x̃ is feasible in Q. Now the
objective function value of Q at x̃, we have

x̃⊤Qx+ c⊤x = u∗⊤TQT⊤u∗ + c⊤T⊤u∗ = u∗⊤Q̄u∗ = c̄⊤u∗ = val(TP).

212 CHAPTER 13. RANDOM PROJECTIONS IN MP

Moreover, since x̃ is feasible in Q, val(Q) ≥ x̃⊤Qx+ c⊤x. Since Q and TQ are maximization problems,
the result follows. 2

13.2.4.2 Approximation error

By Prop. 13.2.6, the main issue in applying RPs to QP is to bound the approximation error. We make
the following assumptions:

1. all the rows of A are unit vectors;

2. Ax ≤ b is a full-dimensional (bounded) polytope P with non-empty interior;

3. there is a sphere circumscribing P and centered at the origin with given radius R;

4. there exists a sphere inscribed in P with known radius r.

We note that Assumption 1 is wlog: it suffices to rescale Ax ≤ b to the system ∀i ≤ m ⟨Ai/∥Ai∥2, x⟩ ≤
bi/∥Ai∥2, where Ai is the i-th row of A.

We introduce the following perturbed QP

Qε ≡ max{x⊤Qx+ c⊤x | Ax+Rε1 ≤ b}

and its projected version
TQε ≡ max{u⊤Q̄x+ c̄⊤u | Āu+ 1 ≤ b}, (13.23)

where 1 is the all-one vector in Rm.

The following approximation theorems are proved in [85]. The first theorem expresses the error of TQ
in terms of val(Q) being between val(TQ) and a perturbation plus an error depending on the objective
function data.

13.2.7 Theorem
There is a universal constant C > 1 such that:

Prob(val(TQ) ≤ val(Q) ≤ val(TQε)) ≥ 1−O(m)e−Cε2k, (13.24)

where η = 3R2ε∥Q∥F +Rε∥c∥2.

The second theorem shows that val(TQ) is “not too far” from val(TQε) (multiplicative approximation).

13.2.8 Theorem
There is a universal constant C > 1 such that, if ε ∈ (0, r/R), then

Prob(σ2val(TQε) ≤ val(TQ) ≤ val(TQε)) ≥ 1−O(m)e−Cε2k, (13.25)

where σ = 1− Rε
r(1−ε)2 > 0.

The third theorem shows that, if Q is convex, val(TQ) is “not too far” from val(TQε) (additive
approximation).

13.2.9 Theorem
There is a universal constant C > 1 such that, if Q is a cQP, we have:

Prob(val(TQε) ≤ val(TQ) ≤ val(TQε) + E) ≥ 1−O(m+ ρ)e−Cε2k, (13.26)

where ρ = rk(Q), E = η + ε∥x∗∥2∥y∗∥1, x∗ is a primal global optimum of Q having minimum ℓ2 norm,
and y∗ is a dual global optimum of TQ having minimum ℓ1 norm.

13.2. RANDOM PROJECTIONS IN MATHEMATICAL PROGRAMMING 213

We note that none of the above theorems gives a tight approximation error bound, unfortunately. More-
over, the bound for the convex case cannot be computed a priori because it is in terms of the solution of
Q.

In the following, we shall only give a sketch of the proof of Thm. 13.2.7. We first present three lemmata
about additive errors. We write x ∈ y ± α to mean x ∈ [y − α, y + α].

13.2.10 Lemma
For any x, y ∈ Rn there is a k × n RP T such that:

Prob(⟨Tx, Ty⟩ ∈ ⟨x, y⟩ ± ε∥x∥2∥y∥2) ≥ 1− 4e−Cε2k, (13.27)

where C is a universal constant.

Proof. Let C be the same universal constant as in Lemma 13.1.8. By Eq. (13.8), for any two vectors
u+ v and u− v, we have

|⟨Pu, Pv⟩ − ⟨u, v⟩| =
1

4

∣∣∥P (u+ v)∥2 − ∥P (u− v)∥2 − ∥u+ v∥2 + ∥u− v∥2
∣∣

≤ 1

4

∣∣∥P (u+ v)∥2 − ∥u+ v∥2
∣∣+ 1

4

∣∣∥P (u− v)∥2 − ∥u− v∥2∣∣
≤ ε

4
(∥u+ v∥2 + ∥u− v∥2) = ε

2
(∥u∥2 + ∥v∥2),

with probability at least 1 − 4e−Cε2k (the coefficient 4 is due to having invoked the event in Eq. (13.8)
twice, and the intersection bound Lemma 13.1.2). Applying the above derivation to u = x/∥x∥2 and
v = y/∥y∥2 yields the result. 2

13.2.11 Lemma
For any ε ∈ (0, 1), x ∈ Rn, m × n matrix A with unit row vectors, there is a k × n RP matrix T such
that:

Prob(AT⊤Tx ∈ Ax± ε∥x∥21) ≥ 1− 4me−Cε2k,

where C is a universal constant.

Proof. Let A1, . . . , Am be the unit row vectors of A. We have:

AT⊤Tx−Ax =

A⊤
1 T

⊤Tx−A⊤
1 x

. . .
A⊤
mT

⊤Tx−A⊤
mx

 =

 (TA1)
⊤
Tx−A1

⊤x
. . .

(TAm)
⊤
Tx−Am⊤x

 .

The result follows by repeatedly applying Lemma 13.2.10 and the intersection bound Lemma 13.1.2. 2

13.2.12 Lemma
For any ε ∈ (0, 1), x, y ∈ Rn, n × n symmetric matrix Q having rank ρ, there is a k × n RP matrix T
such that:

Prob(x⊤T⊤TQT⊤Ty ∈ x⊤Qy ± 3ε∥x∥2∥y∥2∥Q∥F) ≥ 1− 8ρe−Cε2k,

where C is a universal constant.

Proof. (Sketch) Let UΣV ⊤ be the Singular Value Decomposition (SVD) of Q

x⊤T⊤TQT⊤Ty =
(
U⊤x+ U⊤(T⊤T − In)x

)⊤
Σ
(
V ⊤y + V ⊤(T⊤T − In)y

)

214 CHAPTER 13. RANDOM PROJECTIONS IN MP

⇒ |x⊤T⊤TQT⊤Ty − x⊤Qy| ≤ |(U⊤x)⊤ ΣV ⊤(T⊤T − In)y|
+ |(U⊤(T⊤T − In)x)⊤ ΣV ⊤y|
+ |(U⊤(T⊤T − In)x)⊤ ΣV ⊤(T⊤T − In)y|. (∗)

Lemma 13.2.10 applied to ⟨(V Σ)i, y⟩, the intersection bound Lemma 13.1.2, and the symmetry of Σ

implies that, with probability 1− 8ρe−Cε2k, we have:

∀i ≤ n |(ΣV ⊤(T⊤T − In)y)i| ≤ εσi∥y∥ (13.28)
∀i ≤ n |((U⊤(T⊤T − In)x)⊤ Σ)i| ≤ εσi∥x∥ (13.29)

The Cauchy-Schwartz inequality applied to the RHS of (∗) yields bounds on the RHS terms in function
of their norms. Using Eq. (13.28)-(13.29), ∥U⊤x∥ ≤ ∥x∥, and ∥V ⊤y∥ ≤ ∥y∥ (since UU⊤ and V V ⊤ are
projection matrices), we have:

⟨U⊤x ,ΣV ⊤(T⊤T − In)y⟩ ≤ ε∥x∥ ∥y∥ ∥σ∥
⟨(U⊤(T⊤T − In)x)⊤ Σ , V ⊤y⟩ ≤ ε∥y∥ ∥x∥ ∥σ∥

⟨(U⊤(T⊤T − In)x)⊤ Σ , V ⊤(T⊤T − In)y⟩ ≤ ε2∥x∥ ∥y∥ ∥σ∥
⇒ |x⊤T⊤TQT⊤Ty − x⊤Qy| ≤ 3ε∥x∥ ∥y∥ ∥σ∥,

as claimed. 2

Proof of Thm. 13.2.7 (Sketch). Let x∗ be a global optimum of the original problem Q. Its feasibility
follows by Prop. 13.2.5. The bounds on the linear part of the optimal objective function value c̄⊤Tx∗
follow by Lemma 13.2.11. The bounds on the quadratic part (Tx∗)

⊤
Q̄Tx∗ follow by Lemma 13.2.12.

Combine the bounds so the slackest is accommodated. The probability follows by the intersection bound
Lemma 13.1.2. 2

13.2.4.3 Relations of QP results to LP

All of the results above, about applying RPs to QPs, hold whenever Q is the zero matrix, i.e. whenever
the original QP is in fact an LP.

The relationship between these results and those about directly applying RPs to LP (Sect. 13.2.1-
13.2.3) is as follows. Setting Q = 0 in Q yields an LP D = max{c⊤x | Ax ≤ b} with more constraints
than variables, which is essentially the LP dual of P (note that the symbol x in D is not the same as the
symbol x in P). The projected LP TD = max{c̄⊤u | Āu ≤ b} reduces the number of variables and keeps
the number of constraints the same. Naturally, the analysis carries over if we want to solve the dual of
D, i.e. an LP with the form of P.

In this sense, the results on QPs provide a different analysis for P than the one derived in Sect. 13.2.1-
13.2.3.

13.3 Minimum sum-of-squares clustering

In this section we discuss the application of RPs to some MP formulations of the MINLP class. Differently
from Sect. 13.2, we do not apply RPs to a MP subfamily (such as LP or QP) but to a specific application
related to clustering.

Given a set P of n entities and some pairwise similarity function P ×P → R, cluster analysis aims at
finding a set of k subsets C1, . . . , Ck ⊆ P such that each cluster contains as many similar entities, and as
few dissimilar entities, as possible. Cluster analysis — as a field — grew out of statistics in the course

13.3. MINIMUM SUM-OF-SQUARES CLUSTERING 215

of the second half of the 20th century, encouraged by the advances in computing power. But some early
forms of cluster analysis may also be attributed to earlier scientists (e.g. Aristotle, Buffon, Cuvier, Linné
[131]).

One of the most studied cluster analysis problems occurs over Euclidean spaces.

Minimum Sum-of-Squares Clustering (MSSC). Given an integer k > 0 and a set P ⊂ Rm
of n vectors, find a set C = {C1, . . . , Ck} of subsets of P such that the function

f(C) =
∑
j≤k

∑
p∈Cj

∥p− centroid(Cj)∥22 (13.30)

is minimum, where

centroid(Cj) =
1

|Cj |
∑
p∈Cj

p (13.31)

and p ∈ P .

The MSSC is the problem which k-means [202] aims at solving. The k-means algorithm is one of the
most famous algorithms in cluster analysis. It improves a given initial clustering C by means of the two
following operations:

1. compute centroids cj = centroid(Cj) for each j ≤ k;

2. for any pair of clusters Ch, Cj ∈ C and any point x ∈ Ch, if x is closest to cj than to ch, move x
from Ch to Cj .

These two operations are repeated until C no longer changes. Since the only decision operation (i.e. oper-
ation 2) carries out a change only if it decreases f(C), it follows that k-means is a local descent algorithm.
As stated, it offers no guarantee on the approximation of the objective function. It is interesting to note
that the MSSC problem can also be seen as a discrete analogue of the problem of partitioning a body
into smaller bodies having minimum sum of moments of inertia [278].

The MSSC can be formulated by means of two arrays of decision variables: xij ∈ {0, 1} = 1 if point
pi ∈ P (for i ≤ n) is assigned to cluster j ≤ k and zero otherwise, and yj ∈ Rm denoting centroid(Cj),
the centroid of cluster j. This immediately gives a formulation of Eq. (13.30) in terms of x, y:

f(x, y) =
∑
j≤k

∑
i≤n

xij=1

∥pi − yj∥22. (13.32)

The function f(x, y) cannot be employed “as is” as an objective function to be minimized, since the
decision variables x appear in a sum quantifier, which makes min f(x, y) an invalid sentence in the MP
language. We shall see in Sect. 13.3.1 that there is an easy reformulation of f(x, y) so that it becomes
valid.

The data science oriented survey [279] presents some interesting matrix formulations of the MSSC. In
particular, [279, Eq. (10)] shows that the MSSC is equivalent to finding the projection matrix x(x⊤x)−1x⊤

(where x ∈ {0, 1}n×k is the point-cluster assignment matrix, as in Eq. (13.32)) minimizing

f(x) = tr(P⊤(I − x(x⊤x)−1x⊤)P). (13.33)

216 CHAPTER 13. RANDOM PROJECTIONS IN MP

13.3.1 cMINLP formulation

In this section, we shall exhibit a cMINLP reformulation of the following (nonconvex) MINLP formulation
of the MSSC (with optional side constraints).

min
x,y,s,γ

∑
i≤n

∑
j≤k
∥pi − yj∥22 xij

∀j ≤ k 1
sj

∑
i≤n

pixij = yj

∀j ≤ k
∑
i≤n

xij = sj

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ Rm
G(x, y, γ) ≤ 0

x ∈ {0, 1}nk
s ∈ Nk.

(MSSC) (13.34)

The parameters of formulation Eq. (13.34) are the given set P = {p1, . . . , pn} of vectors in Rm, and the
number of clusters k. The decision variables are:

• for each i ≤ n and j ≤ k, the binary assignment variables xij , set to 1 iff vector i is assigned to
cluster j and to 0 otherwise;

• for each j ≤ k, the integer variables sj , equal to the cardinality of cluster j;

• for each j ≤ k, the vector yj ∈ Rm, containing the centroid of cluster j.

The sentence G(x, y, γ) ≤ 0 encodes some optional side constraints (possibly with additional decision
variables γ). Note that the side constraints and additional variables endow Eq. (13.34) with a considerable
generality. Insofar as we aim at obtaining a cMINLP reformulation, we require that the continuous
relaxation of the set {(x, y, γ) | G(x, y, γ) ≤ 0} should be convex. Since our reformulations are not going
to exploit the structure of these constraints, we no longer list them in the reformulations below.

We note that Eq. (13.34) imposes a restriction on the MSSC solution, namely that each cluster must
be non-empty, since the cardinality sj appears in a denominator. This restriction can be relaxed by
multiplying both sides of the equation constraint by sj .

Solving Eq. (13.34) directly is unadvisable for several reasons. It has a mixture of continuous, binary
and general integer variables; some decision variables appear in the denominator of a fraction; while
the objective function consists of sums of products of convex terms, the products makes it nonconvex.
We shall address all of these issues by using elementary reformulation steps, and construct a cMINLP
reformulation of the MSSC.

13.3.1.1 Removing centroid constraints

The first reformulation of MSSC consists in eliminating the centroid constraints. We shall see that this
is an exact reformulation (i.e. preserving global optima).

min
x,y

∑
i≤n

∑
j≤k
∥pi − yj∥22 xij

∀j ≤ k
∑
i≤n

xij ≥ 1

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ Rm
x ∈ {0, 1}nk.

(13.35)

13.3. MINIMUM SUM-OF-SQUARES CLUSTERING 217

13.3.1 Lemma
For any j ≤ k, v = centroid(Cj) iff

∑
p∈Cj

∥p− v∥22 is minimum over all v ∈ Rm.

Proof. By [17, p. 199]. 2 2

13.3.2 Proposition
C∗ is a global optimum of Eq. (13.35) iff it is also a global optimum of MSSC.

Proof. Note that any clustering C is completely defined by the binary assignment variables x, since once
the values of x are known, one can easily compute centroids y and their cardinalities s. Moreover, because
of the constraint

∑
i xij ≥ 1 in Eq. (13.35), no cluster in C∗ may be empty; and, since the term 1/sj in

MSSC forces sj ≥ 1 for all j ≤ k, the same must also hold for an optimum of MSSC. Let x∗ be the solution
for the binary variables x determined by C∗: since the objective functions of the two formulations (MSSC
and Eq. (13.35)) are identical, when x is fixed at x∗, their optimal values w.r.t. y must match, whence
x∗ yields the same optimal objective function values in both. If we denote f1(x) the objective function
of MSSC and f2(x) that of Eq. (13.35), we have

f1(x∗) = f2(x∗). (†)

We also observe that Eq. (13.35) was obtained by MSSC by removing the constraints 1
sj

∑
i pixij = yj

and
∑
i xij = sj , and adjoining the constraint

∑
i xij ≥ 1. But the latter is always satisfied in MSSC as

observed above, which implies that Eq. (13.35) is a relaxation of MSSC, i.e.

min
x
f1(x) ≥ min

x
f2(x). (‡)

(⇒) Eq. (†) implies minx f
1(x) ≤ minx f

2(x) since x∗ is a global optimum of Eq. (13.35). By Eq. (‡), we
have minx f

1(x) = minx f
2(x), showing that x∗ is a global optimum of MSSC.

(⇐) Let C∗ be a global optimum for MSSC corresponding to x∗ and suppose x∗ is not a global optimum
for Eq. (13.35). By Eq. (†)-(‡), x∗ is feasible in Eq. (13.35) and has the same objective function value, so
the only way it can fail to be a global optimum is that C∗ is not an optimal clustering for Eq. (13.35). So
let C′ be an optimal clustering for Eq. (13.35) with corresponding variables (x′, y′, s′): the only way it can
be better than C∗ is that it should be infeasible for MSSC. By Lemma 13.3.1, y′ defines the centroids of
the clusters of C′. Moreover, s′j =

∑
i x

′
ij ≥ 1 makes 1/s′j well defined. Hence (x′, y′, s′) must be feasible

in MSSC, against the assumption. 2 2

The advantage of Eq. (13.35) w.r.t. MSSC is that the former has fewer nonlinear terms as well as fewer
constraints.

13.3.1.2 Linearization of products

In this section we reformulate products of terms involving decision variables in an exact way. While this
is not generally possible, when at least one of the terms in the product takes a finite set of values and the
other can be constrained to lie in a set of variable ranges, it becomes possible [177, §3.3]. In the case of
the formulation in Eq. (13.35), we aim at linearizing all products αij(x, y) = ∥pi − yj∥22xij over all i ≤ n
and j ≤ k.

We first remark that, even though the centroid variables y are unconstrained in Eq. (13.35), no centroid
may ever lie outside the hyper-rectangle

[yL, yU] = [min
i≤n

pi,max
i≤n

pi], (13.36)

218 CHAPTER 13. RANDOM PROJECTIONS IN MP

where the min and max operators are applied componentwise to the vectors. This means that ∥pi− yj∥22
lies in [0, PU] for any i ≤ n, j ≤ k, where

PU = max
i<h≤n

∥pi − ph∥22. (13.37)

Next, we replace αij(x, y) by additional variables χij ∈ [0, PU] in the objective function, and adjoin the
defining constraints χij = α(x, y) for each i, j. Now we exploit the fact that xij ∈ {0, 1}, which yields
χij ∈ [0, PU] for all i, j. Again because the x variables are binary,

χij =

{
∥pi − yj∥22 if xij = 1
0 if xij = 0.

For each i ≤ n, j ≤ k, let D = {0, 1} × [yL, yU], and

Aij = {(χij , xij , yj) | χij = ∥pi − yj∥22xij ∧ (xij , yj) ∈ D}
Bij = {(χij , xij , yj) | 0 ≤ χij ≤ PUxij ∧ ∥pi − yj∥22 ≤ χij + PU (1− xij) ∧ (xij , yj) ∈ D}.

It is easy to verify by inspection that Aij ⊆ Bij by checking the two cases xij = 0 and xij = 1. Now let

B̄ij = argmin
χij

Bij .

We claim that Aij = B̄ij . Let β′ = (χ′
ij , x

′
ij , y

′
j) ∈ B̄ij , then χ′

ij must be minimal in Bij . If x′ij = 0

then χ′
ij = 0 which yields β′ ∈ Aij . If x′ij = 1 then χ′

ij = ∥pi − y′j∥22, which again implies that β′ ∈ Aij .
Therefore Aij ⊇ B̄ij . Conversely, if β′ ∈ Aij then β′ ∈ Bij as shown above. In order to obtain χ′

ij = 0 if
x′ij = 0 and χ′

ij = ∥pi − yj∥22 if x′ij = 1 then χ′
ij must be minimal in Bij , i.e. β′ ∈ B̄ij as claimed.

Thus, we can reformulate Eq. (13.35) as follows:

min
χ,x,y

∑
i≤n

∑
j≤k

χij

∀i ≤ n, j ≤ k χij ≤ PUxij
∀i ≤ n, j ≤ k ∥pi − yj∥22 ≤ χij + PU (1− xij)

∀j ≤ k
∑
i≤n

xij ≥ 1

∀i ≤ n
∑
j≤k

xij = 1

∀i ≤ n, j ≤ k χij ≥ 0
∀j ≤ k yj ∈ [yL, yU]

x ∈ {0, 1}nk.

(13.38)

By the above discussion, Eq. (13.38) is an exact reformulation of Eq. (13.35) and hence, by transitivity,
also of MSSC. The advantage of Eq. (13.38) w.r.t. Eq. (13.35) is that the former is a cMINLP instead of
a (nonconvex) MINLP.

13.3.2 Approximating reformulations

In this section we introduce two types of approximating reformulations: one based on replacing the ℓ2
norm with ℓ1 or ℓ∞ (the so-called “linearizable norms”), and the other obtained by applying a RP to the
point set P .

13.3.2.1 Linearizable norms

In this section we exploit the well-known inequalities

∥ζ∥2∞ ≤ ∥ζ∥22 ≤ ∥ζ∥21 (13.39)
1

m
∥ζ∥21 ≤ ∥ζ∥22 ≤ m∥ζ∥2∞ (13.40)

13.3. MINIMUM SUM-OF-SQUARES CLUSTERING 219

which hold for every ζ ∈ Rm. We replace the ℓ2 norm in MSSC with the ℓ1 and ℓ∞ norms, for which
we provide approximate MILP reformulations of Eq. (13.38). Since MILP solvers (such as e.g. [145])
are technologically more advanced than cMINLP solvers (such as e.g. [52]), we can hope to solve larger
instances of MSSC with the MILP formulations: these will derive bounds on the optimal objective values
by means of Eq. (13.39)-(13.40).

13.3.2.1.1 The ℓ∞ norm We are going to replace ∥pi − yj∥22 in MSSC by ∥pi − yj∥∞, and compute
PU with the ℓ∞ norm. The same reformulations follow through, and we get to a variant of Eq. (13.38)
where the (convex) nonlinear constraints are:

∥pi − yj∥∞ ≤ χij + PU (1− xij) (13.41)

for all i ≤ n, j ≤ k. This is equivalent to

max
ℓ≤m
|piℓ − yjℓ| ≤ χij + PU (1− xij)

which can be reformulated to

∀ℓ ≤ m |piℓ − yjℓ| ≤ χij + PU (1− xij),

whence

∀ℓ ≤ m piℓ − yjℓ ≤ χij + PU (1− xij)
∀ℓ ≤ m yjℓ − piℓ ≤ χij + PU (1− xij).

Note that the replacement of a square ℓ2 norm with a non-square ℓ∞ norm makes χij take a linear, rather
than squared, value at the optimum (as long as xij = 1). Thus the terms χij on the objective function
should be squared.

This yields the following approximating reformulation:

min
χ,x,y

∑
i≤n

∑
j≤k

χ2
ij

∀i ≤ n, j ≤ k χij ≤ PUxij
∀i ≤ n, j ≤ k, ℓ ≤ m piℓ − yjℓ ≤ χij + PU (1− xij)
∀i ≤ n, j ≤ k, ℓ ≤ m yjℓ − piℓ ≤ χij + PU (1− xij)

∀j ≤ k
∑
i≤n

xij ≥ 1

∀i ≤ n
∑
j≤k

xij = 1

∀i ≤ n, j ≤ k χij ≥ 0
∀j ≤ k yj ∈ [yL, yU]

x ∈ {0, 1}nk,

(13.42)

which is again a cMINLP, where the only nonlinearities are in the objective function (the constraints are
wholly linear).

Lastly, we propose to optimize the following linear objective function:

min
∑
i≤n

∑
j≤k

χij (13.43)

instead of the quadratic form in Eq. (13.42), so as to be able to use a MILP solver. We remark that this
last step is wholly heuristic. In the worst case, it may find clusterings which are arbitrarily different from
the optima of the MSSC problem.

220 CHAPTER 13. RANDOM PROJECTIONS IN MP

13.3.2.1.2 The ℓ1 norm Similarly to Sect. 13.3.2.1.1, we are going to replace ∥pi − yj∥22 in MSSC
by ∥pi − yj∥1 for each i ≤ n, j ≤ k, and compute PU with the ℓ1 norm. Again, we get to a variant of
Eq. (13.38) where the (convex) nonlinear constraints are:

∥pi − yj∥1 ≤ χij + PU (1− xij) (13.44)

for all i ≤ n, j ≤ k. This is equivalent to∑
ℓ≤m

|piℓ − yjℓ| ≤ χij + PU (1− xij)

which, by means of some additional variables η ∈ Rnkm can be reformulated to

∀ℓ ≤ m piℓ − yjℓ ≤ ηijℓ

∀ℓ ≤ m piℓ − yjℓ ≥ −ηijℓ∑
ℓ≤m

ηijℓ ≤ χij + PU (1− xij).

As in Sect. 13.3.2.1.1, the terms χij on the objective function should be squared.

This yields the following approximating reformulation:

min
χ,x,y

∑
i≤n

∑
j≤k

χ2
ij

∀i ≤ n, j ≤ k χij ≤ PUxij
∀i ≤ n, j ≤ k, ℓ ≤ m piℓ − yjℓ ≤ ηijℓ
∀i ≤ n, j ≤ k, ℓ ≤ m piℓ − yjℓ ≥ −ηijℓ

∀i ≤ n, j ≤ k
∑
ℓ≤m

ηijℓ ≤ χij + PU (1− xij)

∀j ≤ k
∑
i≤n

xij ≥ 1

∀i ≤ n
∑
j≤k

xij = 1

∀i ≤ n, j ≤ k χij ≥ 0
∀j ≤ k yj ∈ [yL, yU]

x ∈ {0, 1}nk.

(13.45)

We again obtain a cMINLP where the only nonlinearities are in the objective function. The same comment
about heuristically optimizing Eq. (13.43) with a MILP solver holds.

13.3.2.2 Approximation guarantees

13.3.3 Proposition
If χ∗, x∗, y∗ is a global optimum of Eq. (13.42) (resp. Eq. (13.45)), then the globally optimal objective
function value

∑
i,j(χ

∗
ij)

2 is equal to the globally minimal value of f(C) (see Eq. (13.30)) with the ℓ2
norm replaced by the ℓ∞ norm (resp. the ℓ1 norm).

Proof. If pi is not assigned to the cluster Cj in Eq. (13.30), then xij = 0 and χ∗
ij = 0 by the optimization

direction and Eq. (13.41) (resp. Eq. (13.44)). For the same reasons, if pi is assigned to Cj then xij = 1
and χ∗

ij = ∥pi − yj∥∞ (resp. χ∗
ij = ∥pi − yj∥1). 2 2

By Eq. (13.39)-(13.40) and Prop. 13.3.3, we have:

val(13.42) ≤ val(MSSC) ≤ val(13.45)
1

m
val(13.45) ≤ val(MSSC) ≤ m val(13.42), (13.46)

13.3. MINIMUM SUM-OF-SQUARES CLUSTERING 221

whence
max

(
val(13.42),

1

m
val(13.45)

)
≤ val(MSSC) ≤ min

(
val(13.45),m val(13.42)

)
(13.47)

and
1

m
val(MSSC) ≤ val(13.42) ≤ val(13.45) ≤ m val(MSSC). (13.48)

Eq. (13.47)-(13.48) will be useful mostly for cases where m is fixed and small (e.g. clustering in the plane).

13.3.3 Randomly projected formulations

In describing the application of RPs to the MSSC, we note that we do not use k, as usual, for the
projected dimension, since k is used in k-means to indicate the number of clusters of the MSSC. Instead,
we denote by d the projected dimension.

Assume m is large. We pre-multiply the vector set P (seen as an m×n matrix) by a d×m RP matrix
T = (Thℓ), where d = O(1

ϵ2 lnn) and ϵ > 0 appears in the approximation guarantee in Eq. (13.1). We
obtain the same formulations and reformulations as above, with pi replaces by Tpi, as well as yj replaced
by Tyj . While P is given, so TP can be computed, Tyj depends on a decision variable. More precisely,

∀j ≤ k Tyj =

∑
ℓ≤m

Thℓyjℓ | h ≤ d

⊤

.

We employ an additional variable matrix z ∈ Rkd, replace Tyj by zj , and relax the defining constraints
zj = Tyj , yielding projected versions of MSSC, Eq. (13.38), Eq. (13.42), Eq. (13.45) where pi − yj ∈ Rm
is replaced by Tpi−zj ∈ Rd. If m≫ 1 and d = O(lnn), these projected reformulations have considerably
fewer variables than their original counterparts.

In the rest of this section we only consider the MSSC formulation (i.e. Eq. (13.34)), since the others
follow by exact or approximate reformulation operations, whether we use P or TP as data. We denote
the randomly projected MSSC formulation by TMSSC.

13.3.3.1 Applicability of the JLL

An alternative to invoking [54] would be to simply rely on the approximation of Euclidean distances
given by the JLL [151], which would directly apply to Eq. (13.32). We pursue a different critique for this
alternative.

The symbols yj appearing in Eq. (13.32) are decision variables ranging in continuous space. As such,
they represent a potentially uncountable infinity of vectors. The JLL, however, only applies to finite
subsets of vectors.

Observe, however, that there are only as many centroids as there are possible different partitions of
n entities in k clusters — so the number of vectors assigned to the y variables may not be known in
advance, but it is not infinite. In the worst case, there are Bn partitions of n elements, where Bn is the
n-th Bell number [36]. It turns out that Bn grows like a product of two exponentials in n [199, §1.14,
Problem 9], and that lnBn behaves asymptotically like O(n lnn) (plus smaller terms) [97, p. 108]. Thus,
the JLL would yield d = O(lnBn/ε

2) = O(n lnn/ε2). This would only be useful in cases where n≪ m,
which are a minority.

We also note that the k-means algorithm is not expected to run into the worst case from complete
enumeration: since k-means is a heuristic, it is expected to reach termination reasonably quickly, after
having examined only a few indicator matrices. This also holds for heuristic utilizations of exact algo-
rithms, such as e.g. BB algorithms with a time or iteration limit. The JLL therefore provides a simple
and valid analysis for such cases, which are the cases we actually test in practice in this paper.

222 CHAPTER 13. RANDOM PROJECTIONS IN MP

13.3.3.2 The additive JLL for infinite sets

In this section we give a formulation-based analysis of the applicability of the JLL to the MSSC which is
independent of the algorithm used (a similar result was also proved in [54, Thm. 1], but the proofs therein
are kept very short, at the expense of clarity). In view of Sect. 13.3.3.1 we do not employ the JLL, but
a similar result that also applies to infinite sets, namely the additive JLL (see Thm. 13.3.4 below).

We first introduce two quantities, the sub-Gaussian norm of a sub-Gaussian r.v., and the Gaussian
width of a set. A r.v. X is sub-Gaussian iff there exists a constant K such that:

∀t ≥ 0 Prob(|X| ≥ t) ≤ 2e−(t/K)2 .

We denote the sub-Gaussian norm of X by

∥X∥ψ2
= inf{t > 0 | E(e(X/t)

2

) ≤ 2}.

Given a set S ⊆ Rm, the Gaussian width of S is

w(T) = E{sup
x∈S
⟨g, x⟩ | g ∼ N(0, Im)},

where the expectation is computed over all multivariate standard normal samples g.

13.3.4 Theorem
Let S ⊂ Rm, and consider a d×m matrix T ′ having independent isotropic sub-Gaussian random vectors
T ′
i for rows, K = max

h≤d
∥T ′

i∥ψ2
, and T = 1√

d
T ′. Then, with high probability, there exists a universal

constant κ such that:

∀x, y ∈ S ∥x− y∥2 − δ ≤ ∥Tx− Ty∥2 ≤ ∥x− y∥2 + δ, (13.49)

where δ = κK2w(S)√
d

.

Proof. See [297, Prop. 9.3.2]. 2

Our treatment follows the same logical order as the results in [261, 54]. Each of the results below
corresponds to a result in [261, 54]. We adapted the proofs to employ the additive RP T satisfying
Thm. 13.3.4 instead of the standard JLL. We first show that T preserves inner products approximately.

13.3.5 Corollary
For every x, y ∈ Rm, the following holds with high probability:

|⟨Tx, Ty⟩ − ⟨x, y⟩| ≤ δ

2
∥x∥2∥y∥2.

Proof. We observe that the parallelogram rule and Eq. (13.49) imply that, with high probability, for any
x, y ∈ Rm,

4⟨Tx, Ty⟩ = ∥Tx+ Ty∥22 − ∥Tx− Ty∥22
≥ ∥x+ y∥22 − δ − δ − ∥x− y∥22
= 4⟨x, y⟩ − 2δ.

Therefore, ⟨Tx, Ty⟩ − ⟨x, y⟩ ≥ − δ2 . Analogously, we obtain ⟨Tx, Ty⟩ − ⟨x, y⟩ ≤ δ
2 . Thus,

|⟨Tx, Ty⟩ − ⟨x, y⟩| ≤ δ

2
. (13.50)

Since T is linear, we have

⟨Tx, Ty⟩ = ∥x∥2∥y∥2⟨T (x/∥x∥2), T (y/∥y∥2)⟩. (13.51)

The result follows by replacement of Eq. (13.51) in Eq. (13.50). 2

13.3. MINIMUM SUM-OF-SQUARES CLUSTERING 223

13.3.6 Lemma
For every x, y ∈ Rm, the following hold:

(i) E(⟨Tx, Ty⟩) = ⟨x, y⟩;

(ii) Var(⟨Tx, Ty⟩) ≤ δ2+4δ
4 ∥x∥22∥y∥22.

Proof. We recall that T = 1√
d
T ′, thus

⟨Tx, Ty⟩ = 1

d
⟨T ′x, T ′y⟩. (13.52)

Moreover,
T ′x =

(
⟨T ′

1, x⟩, . . . , ⟨T ′
d, x⟩

)
T ′y =

(
⟨T ′

1, y⟩, . . . , ⟨T ′
d, y⟩

)
.

}
Thus, we can write

⟨T ′x, T ′y⟩ = ⟨T ′
1, x⟩⟨T ′

1, y⟩+ · · ·+ ⟨T ′
d, x⟩⟨T ′

d, y⟩. (13.53)

We first prove (i) for x = y. In this case Eq. (13.53) becomes

⟨T ′x, T ′x⟩ = ⟨T ′
1, x⟩2 + · · ·+ ⟨T ′

d, x⟩2.

Therefore,
E(⟨T ′x, T ′x⟩) = E(⟨T ′

1, x⟩2) + · · ·+ E(⟨T ′
d, x⟩2)

= ∥x∥22 + · · ·+ ∥x∥22
= d∥x∥22,

where we have used the isotropy (see Sect. 12.6.4) of the random vectors T ′
i . From Eq. (13.52) we obtain

E(⟨Tx, Tx⟩) = ⟨x, x⟩. (13.54)

In order to prove (i) for generic x, y ∈ Rm, it is enough to apply Eq. (13.54) to x−y and use the linearity
of expectation. For (ii), we first set X = ⟨Tx, Ty⟩ − E(⟨Tx, Ty⟩) = ⟨Tx, Ty⟩ − ⟨x, y⟩. The properties of
the variance and (i) give

E(X2) = Var(X) + E(X)2 = Var(⟨Tx, Ty⟩).

Moreover,
E(X2) = E(⟨Tx, Ty⟩2 + ⟨x, y⟩2 − 2⟨Tx, Ty⟩⟨x, y⟩)

= E(⟨Tx, Ty⟩2) + ⟨x, y⟩2 − 2⟨x, y⟩2
= E(⟨Tx, Ty⟩2)− ⟨x, y⟩2.

From Cor. 13.3.5 we have

⟨Tx, Ty⟩2 ≤ ⟨x, y⟩2 + δ

4
∥x∥22∥y∥22 + δ⟨x, y⟩∥x∥2∥y∥2. (13.55)

Exploiting Eq. (13.55) and ⟨x, y⟩ ≤ ∥x∥2∥y∥2 we obtain

Var(⟨Tx, Ty⟩) = E(X2) = E(⟨Tx, Ty⟩2)− ⟨x, y⟩2
≤ E(⟨x, y⟩2 + δ

4∥x∥
2
2∥y∥22 + δ⟨x, y⟩∥x∥2∥y∥2)− ⟨x, y⟩

= ⟨x, y⟩2 + δ
4∥x∥

2
2∥y∥22 + δ⟨x, y⟩∥x∥2∥y∥2 − ⟨x, y⟩

≤ δ2

4 ∥x∥
2
2∥y∥22 + δ∥x∥22∥y∥22

= δ2+4δ
4 ∥x∥22∥y∥22,

which concludes the proof. 2

Following [261], we can use Cor. 13.3.5 and Lemma 13.3.6 to prove that the RP T can be used to
approximate the product of two matrices.

224 CHAPTER 13. RANDOM PROJECTIONS IN MP

13.3.7 Lemma
Let A ∈ Rr×m and B ∈ Rm×s be two matrices. Then the following hold:

(a) ∥AB −AT⊤TB∥F ≤ δ
2∥A∥F ∥B∥F whp;

(b) E(AT⊤TB) = AB;

(c) E(∥AB −AT⊤TB∥2F) ≤ δ2+4δ
4 ∥A∥2F ∥B∥2F .

Proof. Set ai = Ai and bj = Bj . Then,

(AT⊤)i = Tai, (TB)j = TBj .

Let Yij = (AB)ij − (AT⊤TB)ij = ⟨ai, bj⟩ − ⟨Tai, T bj⟩, then from Cor. 13.3.5 we have that, whp,

|Yij | ≤
δ

2
∥ai∥2∥bj∥2.

Hence,

∥AB −AT⊤TB∥2F =
∑
i,j

Y 2
ij ≤

∑
ij

δ2

4
∥ai∥22∥bj∥22 =

δ2

4
∥A∥2F ∥B∥2F ,

which proves (a). Applying Lemma 13.3.6 on the random variable Yij we obtain E(Yij) = 0 for all i, j
and thus (b). Moreover, E(Y 2

ij) = Var(⟨Tai, T bj⟩) and, from Lemma 13.3.6 we obtain

E(∥AB −AT⊤TB∥2F) =
∑
i,j

E(Y 2
ij) ≤

δ2 + 4δ

4
∥A∥2F ∥B∥2F ,

which concludes the proof. 2

Moreover, the RP T almost preserves the Frobenius norm of any matrix, in the sense of the next
result.

13.3.8 Lemma
Let C ∈ Rm×n be a matrix and X = ∥TC∥2F . Then we have (i) E(X) = ∥C∥2F and (ii) Var(X) ≤ 2

d∥C∥
4
F .

Proof. We prove (i) first. We recall that T = 1√
d
T ′, where the rows of T ′ are isotropic sub-Gaussian

random vectors. Let Yi = ∥T ′
iC∥22, then

X =

d∑
i=1

1

d
Yi.

Using the isotropy of T ′
i , we obtain

E(Yi) = E(∥T ′
iC∥22) = E(

∑
j⟨T ′

i , C
j⟩2)

=
∑
j E(⟨T ′

i , C
j⟩2)

=
∑
j ∥Cj∥22

= ∥C∥2F .

Thus,

E(X) = E(
d∑
i=1

1

d
Yi) =

d∑
i=1

1

d
E(Yi) = ∥C∥2F .

As for (ii), from Lemma 13.3.6 and Var(X) = E(X2)− E(X)2 we have

E((⟨T ′
i , x⟩⟨T ′

i , y⟩)2) ≤ 3∥x∥22∥y∥22 ∀x, y ∈ Rm.

13.3. MINIMUM SUM-OF-SQUARES CLUSTERING 225

Thus,
E(Y 2

i) = E((
∑
j⟨T ′

i , C
j⟩2)2) =

∑
j,k E((⟨T ′

i , C
j⟩⟨T ′

i , C
k⟩)2)

≤ 3
∑
j,k ∥Cj∥22∥Ck∥22 = 3∥C∥4F

Thus Var(Yi) = E(Y 2
i)− E(Yi)

2 ≤ 2∥C∥4F and we obtain

Var(X) = Var(
d∑
i=1

1

d
Yi) =

d∑
i=1

1

d2
Var(Yi) ≤

2

d
∥C∥4F ,

which concludes the proof. 2

The next result corresponds to [261, Cor. 11], where T , however, is the RP in Thm. 13.3.4, which can
be applied to possibly infinite sets S ⊂ Rm.

13.3.9 Corollary
Let U ∈ Rm×k be a unitary matrix. Then, the following holds with high probability:

|1− σi(TU)| ≤ δ ∀i ≤ k. (13.56)

Proof. The singular values σi(TU) are the square roots of the eigenvalues λi of the matrix U⊤T⊤TU .
Let x be the unitary eigenvector corresponding to λi for a generic i ∈ {1, . . . , k}. Then,

∥TUx∥2 =
√
⟨TUx, TUx⟩ =

√
(TUx)

⊤
(TUx)

=
√
x⊤U⊤T⊤TUx =

√
x⊤λix

=
√
λi∥x∥2 =

√
λi.

Therefore, Eq. (13.56) is equivalent to
|1− ∥TUx∥2| ≤ δ. (13.57)

In order to prove Eq. (13.57), since ∥x∥2 = 1 and U is a unitary matrix, we have ∥Ux∥2 = 1. Thus, if
the set S in Thm. 13.3.4 contains the points

{Ux | x unitary eigenvector of U⊤T⊤TU},

we have, with high probability,

|1− ∥TUx∥2| = |∥Ux∥2 − ∥TUx∥2| ≤ δ,

which concludes the proof. 2

We can now prove results corresponding to [54, Lemmata 3-5] for the RP T satisfying Eq. (13.49).

13.3.10 Lemma
Let P ∈ Rm×n be the matrix representing the points we want to cluster and Pk = UkΣkVk

⊤ its SVD of
rank k. Then, whp,

∥(TUk)+ − (TUk)
⊤∥2 ≤

2− δ2

1− δ
.

Proof. Let Φ = TUk and Φ = UΦΣΦVΦ
⊤ be its SVD. If we consider the SVD of Φ+ and Φ⊤ and the fact

that the spectral norm of a matrix is invariant with respect to unitary matrices, we obtain

∥(TUk)+ − (TUk)
⊤∥2 = ∥VΦΣ−1

Φ UΦ
⊤ − VΦΣΦUΦ

⊤∥2
= ∥VΦ(Σ−1

Φ − ΣΦ)UΦ
⊤∥2

= ∥Σ−1
Φ − ΣΦ∥2.

226 CHAPTER 13. RANDOM PROJECTIONS IN MP

Now, let Ψ = Σ−1
Φ − ΣΦ, σi be the i-th singular value of Φ and τi the i-th entry of Ψ. Then, a simple

computation shows that

τi =
1− σiσk+1−i

σk+1−i
.

From Cor. 13.3.9 we know that 1− δ ≤ σi ≤ 1 + δ, for i = 1, . . . , k. Therefore,

τ1 =
1

σk+1−i
− σi ≤

1

1− δ
+ 1 + δ =

2− δ2

1− δ
.

Since Ψ is diagonal we have ∥ψ∥2 = maxi τi, which concludes the proof. 2

13.3.11 Lemma
Let C ∈ Rm×n, then, whp,

∥TC∥F ≤
√
1 + δ∥C∥F .

Proof. Let Z = ∥TC∥2F , from Lemma 13.3.8 we have E(Z) = ∥C∥2F and Var(Z) ≤ 2
d∥C∥

4
F . Applying the

Chebyshev inequality to the r.v. Z we obtain

Prob

(
(

)
|Z − E(Z)| ≥ δ∥C∥2F) ≤

Var(Z)

δ2∥C∥4F
≤ 2

dδ
.

Hence,

Prob

(
(

)
Z ≥ (1 + δ)∥C∥2F) ≤

2

dδ
⇔ Prob

(
(

)√
Z ≥

√
1 + δ∥C∥F) ≤

2

dδ
,

which concludes the proof. 2

13.3.12 Lemma
The following holds with high probability:

Pk = Uk(TUk)
+TP + E,

where E ∈ Rm×n satisfies ∥E∥F ≤ f1(δ)∥P − Pk∥, f1(δ) = δ
2 +
√
1 + δ 2−δ2

1−δ .

Proof. Define E = Pk − Uk(TUk)+TP . We want to prove that

∥E∥F ≤ f1(δ)∥P − Pk∥.

Let ρ = rk(()P), then we can write P = Pk + Pρ−k, where Pρ−k = P − Pk. Replacing P with Pk + Pρ−k
in the definition of E we have

E = Pk − Uk(TUk)+T (Pk + Pρ−k)
= (Pk − Uk(TUk)+TPk) + (Uk(TUk)

+TPρ−k).

If we consider the Frobenius norm and we use the triangular inequality we get

∥E∥F ≤ ∥Pk − Uk(TUk)+TPk∥F + ∥Uk(TUk)+TPρ−k∥F . (13.58)

In the first term appearing in the second member of Eq. (13.58) we can replace Pk = UkΣkVk
⊤ and

exploit the fact that (TUk)
+(TUk) = I, to obtain

∥Pk − Uk(TUk)+TPk∥F = ∥UkΣkVk⊤ − Uk(TUk)+TUkΣkVk⊤∥
= ∥UkΣkVk⊤ − UkΣkVk⊤∥ = 0.

It remains to bound the second term in the second member of Eq. (13.58). We add and subtract
Uk(TUk)

⊤
TPρ−k, we use the fact that the Frobenius norm is invariant with respect to unitary matrices,

13.3. MINIMUM SUM-OF-SQUARES CLUSTERING 227

as well as the strong sub-multiplicativity of every pair of matrices X,Y of appropriate dimensions, namely
that ∥XY ∥F ≤ ∥X∥F ∥Y ∥2. We then obtain

∥Uk(TUk)+TPρ−k − Uk(TUk)⊤TPρ−k + Uk(TUk)
⊤
TPρ−k∥F

≤ ∥Uk(TUk)⊤TPρ−k∥F + ∥Uk((TUk)+ − (TUk)
⊤
)TPρ−k∥F

≤ ∥(TUk)⊤TPρ−k∥F + ∥TPρ−k∥F ∥(TUk)+ − (TUk)
⊤∥2

= ∥Uk⊤T⊤TPρ−k∥F + ∥TPρ−k∥F ∥(TUk)+ − (TUk)
⊤∥2.

 (13.59)

We bound the last three terms in Eq. (13.59) separately.

1. For ∥Uk⊤T⊤TPρ−k∥F , we observe that

Uk
⊤Pρ−k = Uk

⊤Uρ−kΣρ−kVρ−k
⊤ = 0Σρ−kVρ−k

⊤ = 0,

since Uk and Uρ−k have orthogonal columns by definition. Therefore, we can apply Lemma 13.3.7
(a) and obtain, whp,

∥Uk⊤T⊤TPρ−k∥F = ∥Uk⊤Pρ−k − U⊤T⊤TPρ−k∥F ≤
δ

2
∥Uk⊤∥F ∥Pρ−k∥F =

δ

2
∥Pρ−k∥F .

2. In order to bound ∥TPρ−k∥F , it is enough to apply Lemma 13.3.11 with C = Pρ−k. This yields

∥TPρ−k∥F ≤
√
1 + δ∥Pρ−k∥F .

3. As concerns ∥(TUk)+− (TUk)
⊤∥2, we can apply Lemma 13.3.10 and obtain, with high probability,

∥(TUk)+ − (TUk)
⊤∥2 ≤

2− δ2

1− δ
.

Putting these bounds together we obtain:

∥E∥F ≤ ∥Uk⊤T⊤TPρ−k∥F + ∥TPρ−k∥F ∥(TUk)+ − (TUk)
⊤∥2

≤ δ
2∥Pρ−k∥F +

√
1 + δ 2−δ2

1−δ ∥Pρ−k∥F
=
(
δ
2 +
√
1 + δ 2−δ2

1−δ
)
∥Pρ−k∥F

=
(
δ
2 +
√
1 + δ 2−δ2

1−δ
)
∥P − Pk∥F ,

which concludes the proof. 2

13.3.13 Remark
Let Xopt = argmin

X∈X
∥P⊤ − XX⊤P⊤∥22, where X is the set of all cluster indicator matrices. Since

XoptXopt
⊤P⊤ is a matrix with rank at most k, the Eckart-Young Theorem implies

∥Pρ−k⊤∥2F = ∥P⊤ − P⊤
k ∥2F ≤ ∥P⊤ −XoptXopt

⊤P⊤∥2F .

We are finally ready to state and prove the equivalent of [54, Thm. 1] for the RP T satisfying
Eq. (13.49).

13.3.14 Theorem
Let P ∈ Rm×n be the matrix representing the points we want to cluster, k the number of clusters and
T ∈ Rd×m the RP satisfying Thm. 13.3.4. Assume that we have access to an algorithm which takes as
input P, k, T and returns a cluster indicator matrix Xγ which satisfies, with high probability

∥(TP)⊤ −XγXγ
⊤(TP)

⊤∥2F ≤ γ min
X∈X

∥(TP)⊤ −XX⊤(TP)
⊤∥2F ,

228 CHAPTER 13. RANDOM PROJECTIONS IN MP

where X is the set of all cluster indicator matrices and γ ≥ 1. Then, with high probability, we have

∥P⊤ −XγXγ
⊤P⊤∥2F ≤ f(δ, γ)∥P⊤ −XoptXopt

⊤P⊤∥2F , (13.60)

where Xopt = argmin
X∈X

∥P⊤ −XX⊤P⊤∥2F and

f(δ, γ) =

(
1 +

(2− δ2)(√γ + 1)
√
1 + δ

1− δ
+
δ

2

)2

.

Proof. In Eq. (13.60) we replace P = Pk + Pρ−k and we use the fact that Pk⊤ − XγXγ
⊤Pk

⊤ and
Pρ−k

⊤ −XγXγ
⊤Pρ−k

⊤ generate orthogonal subspaces to obtain

∥P⊤ −XγXγ
⊤P⊤∥2F

= ∥Pk⊤ −XγXγ
⊤Pk

⊤∥2F + ∥Pρ−k⊤ −XγXγ
⊤Pρ−k

⊤∥2F
= ∥(I −XγXγ

⊤)Pk
⊤∥2F + ∥(I −XγXγ

⊤)Pρ−k
⊤∥2F .

 (13.61)

We can bound the second term in the second member of Eq. (13.61) using the fact that I −XγXγ
⊤ is a

projection matrix and the Frobenius norm does not increase if we drop a projection matrix

∥(I −XγXγ
⊤)Pρ−k

⊤∥2F ≤ ∥Pρ−k
⊤∥2F ≤ ∥P⊤ −XoptXopt

⊤P⊤∥2F , (13.62)

where we used Remark 13.3.13 in the last inequality. We now bound the term ∥(I − XγXγ
⊤)Pk

⊤∥2F .
Using Lemma 13.3.12, the triangular inequality and the fact that I −XγXγ

⊤ is a projection matrix we
get

∥(I −XγXγ
⊤)Pk

⊤∥F ≤ ∥(I −XγXγ
⊤)(Uk(TUk)

+TP)
⊤∥F + ∥E⊤∥F

= ∥(I −XγXγ
⊤)(TP)

⊤
((TUk)

+)
⊤∥F + ∥E∥F ,

}
where the last member is obtained from the fact that the Frobenius norm is invariant with respect to
unitary matrices and that ∥A⊤∥F = ∥A∥F holds for every matrix A. Now we can apply strong sub-
multiplicativity:

∥(I −XγXγ
⊤)(TP)

⊤
((TUk)

+)
⊤∥F + ∥E∥F

≤ ∥(I −XγXγ
⊤)(TP)

⊤∥F ∥(TUk)+∥2 + ∥E∥F .

}
From the construction of Xγ we have that

∥(I −XγXγ
⊤)(TP)

⊤∥F ≤
√
γ∥(I −XoptXopt

⊤)(TP)
⊤∥F .

Thus, applying Lemma 13.3.10, Lemma 13.3.12 and Remark 13.3.13 we obtain

∥(I −XγXγ
⊤)(TP)

⊤∥F ∥(TUk)+∥2 + ∥E∥F
≤ √

γ∥(I −XoptXopt
⊤)(TP)

⊤∥F 2−δ2
1−δ

+
(
δ
2 +
√
1 + δ 2−δ2

1−δ
)
∥(I −XoptXopt

⊤)P⊤∥F .

 (13.63)

Now we observe that
∥(I −XoptXopt

⊤)(TP)
⊤∥F

= ∥
(
(I −XoptXopt

⊤)P⊤T⊤)⊤∥F
= ∥T

(
(I −XoptXopt

⊤)P⊤)⊤∥F .
Therefore, we can apply Lemma 13.3.11 with C =

(
(I −XoptXopt

⊤)P⊤)⊤ and obtain

∥(I −XoptXopt
⊤)(TP)

⊤∥F ≤
√
1 + δ∥(I −XoptXopt

⊤)P⊤∥F . (13.64)

Replacing Eq. (13.64) in Eq. (13.63) we get

∥(I −XγXγ
⊤)Pk

⊤∥F
≤ √

γ
√
1 + δ 2−δ2

1−δ ∥(I −XoptXopt
⊤)P⊤∥F

+
(
δ
2 +
√
1 + δ 2−δ2

1−δ
)
∥(I −XoptXopt

⊤)P⊤∥F
=

(√
1 + δ 2−δ2

1−δ
)(√

γ + 1
)
+ δ

2∥(I −XoptXopt
⊤)P⊤∥F .

 (13.65)

13.3. MINIMUM SUM-OF-SQUARES CLUSTERING 229

Finally, putting Eq. (13.62) and Eq. (13.65) together we obtain:

∥P⊤ −XγXγ
⊤P⊤∥2F

≤
(
1 +

(√
1 + δ 2−δ2

1−δ

)(√
γ + 1

)
+ δ

2

)2

∥P⊤ −XoptXopt
⊤P⊤∥2F ,

which concludes the proof. 2

230 CHAPTER 13. RANDOM PROJECTIONS IN MP

Chapter 14

The kissing number problem

The KNP was introduced in Sect. 2.2.7.10 (also see Appendix B).

Kissing Number Problem (KNP). Given two integers n,K, determine whether n unit
spheres can be arranged around a central unit sphere centered at the origin in RK , in such a
way that (a) all of the surrounding spheres intersect the central sphere in exactly one point,
and (b) all pairs of surrounding spheres intersect in at most one point.

The KNP, as given above, is expressed as a decision problem. The optimization version asks to maximize
the number of surrounding spheres in RK . The maximum number n of surrounding spheres is called the
kissing number in dimension K and denoted kn(K). Two kissing configurations in 2D and 3D are shown
in Fig. 14.1.

2 1 0 -1 -2210-1-2

-2

-1

0

1

2

Figure 14.1: Kissing configurations in 2D (left) and 3D (right).

14.1 Basic formulations

Fig. 14.2 (left) shows a geometrical intuition in the case K = 2. The corresponding MP formulation is a

231

232 CHAPTER 14. THE KISSING NUMBER PROBLEM

Figure 14.2: Center formulation (left) and point of contact formulation (right).

pure feasibility nonconvex QCP:

∀i ≤ n ∥xi∥22 = 4

∀i < j ≤ n ∥xi − xj∥22 ≥ 4,

where xi ∈ RK is a vector of decision variables describing the center of the i-th surrounding sphere, for
each i ≤ n.

In fact, it suffices to decide the contact points of each surrounding sphere rather than its center
(Fig. 14.2, right), which yields the formulation:

∀i ≤ n ∥xi∥22 = 1 (14.1)
∀i < j ≤ n ∥xi − xj∥22 ≥ 1, (14.2)

where xi now describes the point of contact rather than the center of the surrounding sphere.

The equivalence of these two formulations is given by the fact that each point of contact is midway
on the segment between the origin and the corresponding sphere center.

14.1.1 In practice

Pure feasibility formulations are usually difficult to solve in practice, since feasibility requires a YES/NO
binary answer. Most NLP solvers, on the other hand, have an easier time improving existing feasible
solutions than finding some. In particular, all algorithms for finding local optima of NLPs assume the
existence of a feasible starting point as input (the implementations of these algorithms usually allow
infeasible starting points). See Sect. 2.2.5 for more information.

A more solver-friendly variant of Eq. (14.1)-(14.2) is the following (nonconvex) QCP:

max
x,α

α

∀i ≤ n ||xi||2 = 1
∀i < j ≤ n ||xi − xj ||2 ≥ α
∀i ≤ n xi ∈ [−1, 1]K

α ≥ 0,

 (14.3)

where α is a scalar decision variable which relaxes feasibility. Note that α is maximized, so that, if the
optimum α∗ is at least 1, then the solution x∗ of Eq. (14.3) is also feasible in Eq. (14.1)-(14.2). Morover,
at global optimality, Eq. (14.3) identifies the positions of the surrounding balls with the pairwise largest
minimum separation.

14.2. SPHERICAL CODES 233

14.2 Spherical codes

The natural generalization of Eq. (14.1)-(14.2) is the concept of a spherical code.

14.2.1 Definition
A K-dimensional spherical z-code is a pair (z, C) where z ∈ [−1, 1] and C is a finite subset of the unit
sphere SK−1 in RK , such that, for each x ̸= y ∈ C we have ⟨x, y⟩ ≤ z.

A spherical code is the continuous equivalent of an error correcting (discrete) code. Each element x of
the z-code C is associated with a subset of the spherical surface which contains all other vectors u ∈ SK−1

having an angle θ with x such that cos θ > z. The relation with error correction is that every word of
the message is associated to a vector x ∈ C. After transmission, the recipient receives a vector u ∈ SK−1

which may not belong to C. On the other hand, it suffices to find the element of x ∈ C with smallest angle
θ with u: if its cosine exceeds z, then we assume that x is the word which was originally transmitted.

The computational difficulty linked to a K-dimensional z-spherical code C is its construction. It is not
easy to find n = |C| equally spaced vectors on the surface of SK−1. The MP formulation for constructing
C is as follows.

∀i ≤ n ∥xi∥22 = 1 (14.4)
∀i < j ≤ n ⟨xi, xj⟩ ≤ z. (14.5)

14.2.2 Proposition
Eq. (14.1)-(14.2) can be obtained from Eq. (14.4)-(14.5) by setting z = 1

2 .

Proof. Let x ̸= y ∈ C, and θ be the angle between x and y. We want cos θ ≤ z. We note that, since
∥x∥22 = ∥y∥22 = 1, cos θ ≤ z is equivalent to ∥x− y∥22 ≥ (1− cos θ)2 + sin2 θ (see Fig. 14.3). Hence,

y

x
1− cos θ

cos θ

θ

sin θ

Figure 14.3: The reason why ∥x− y∥22 = (1− cos θ)2 + sin2 θ.

∀i < j ≤ n ∥xi − xj∥22 = ∥xi∥22 + ∥xj∥22 − 2x⊤i xj = 1 + 1− 2x⊤i xj = 2(1− x⊤i xj)
≥ (1− cos θ)2 + (sin θ)2 = 1− 2 cos θ + cos2 θ + sin2 θ = 2(1− cos θ),

whence
∀i < j ≤ n x⊤i xj ≤ cos θ = z.

234 CHAPTER 14. THE KISSING NUMBER PROBLEM

The result follows since, when θ = π/3 (as in Eq. (14.1)-(14.2)), we have cos θ = 1
2 . 2

As in Sect. 14.1.1, we propose a reformulation of Eq. (14.4)-(14.5) for practical use:

min
x,z

z

∀i ≤ n ||xi||2 = 1
∀i < j ≤ n ⟨xi, xj⟩ ≤ z
∀i ≤ n xi ∈ [−1, 1]K

z ∈ [−1, 1].

 (14.6)

Note that, by having z as a variable instead of a constant, we compute the best spherical z-code for given
K,n.

14.3 MINLP formulation

The optimization problem related to the KNP, which aims at maximizing the number of surrounding
spheres, is the following Mixed-Integer QCP (MIQCP) [203].

• Parameters:

– K: space dimension;
– n̄: upper bound to kn(K).

• Variables:

– xi ∈ RK : center of i-th sphere
– αi = 1 iff i-th sphere is in configuration

• Formulation:
max

n̄∑
i=1

αi

∀i ≤ n̄ ||xi||2 = αi
∀i < j ≤ n̄ ||xi − xj ||2 ≥ αiαj (⋆)
∀i ≤ n̄ xi ∈ [−1, 1]K
∀i ≤ n̄ αi ∈ {0, 1}.

(14.7)

Note that the meaning of the α variable differs from Eq. (14.3). Here, αi signals the presence of the i-th
surrounding ball if αi = 1, or its absence if αi = 0. The globally optimal objective function value of
Eq. (14.7) is exactly kn(K), as long as n̄ is a valid upper bound.

We remark that the binary variable product αiαj in the distance constraints (⋆) of Eq. (14.7) can be
linearized exactly using Fortet’s inequalities (see Rem. 2.2.8).

14.4 Polar coordinates

Many problems on a sphere benefit from a transformation to polar coordinates, which consists in mapping
the point of contact xi = (xi1, . . . , xiK) of the i-th surrounding sphere to the unit length vector making
angles (ϑi1, . . . , ϑi,K−1) with the coordinate hyperplanes. The (pure feasibility) formulation we obtain is:

∀i < j ≤ n ∥xi − xj∥22 ≥ 1 (14.8)

∀k ≤ K sinϑi,k−1

K−1∏
h=k

cosϑih = xik. (14.9)

14.5. LOWER BOUNDS 235

We note that Eq. (14.8) establishes the minimum distance between contact points, and Eq. (14.9) is the
change of variables [280, 161]. We also note that we need only decide sinϑ and cosϑ rather than θ. This
yields the simpler formulation:

∀i < j ≤ n ∥xi − xj∥22 ≥ 1 (14.10)

∀k ≤ K sik

K−1∏
h=k

cih = xik (14.11)

∀i ≤ n, k ≤ K s2ik + c2ik = 1 (14.12)

We can replace Eq. (14.11) into Eq. (14.10), which yields a rather formidable PP formulation of degree
2K. Another possible reformulation consists in taking logarithms on both sides of Eq. (14.11): it removes
the products at the cost of introducing a transcendental function.

14.5 Lower bounds

The formulations presented in the previous sections of this chapter are empirically very hard to solve, in
particular to global optimality. They suffer from a range of numerical problems, among which formulation
symmetry [172, §6].

The following facts were established using a variety of solution algorithms and solvers [179, 161, 172].

• Eq. (14.7) certifies that kn(2) = 6 and kn(3) = 12 whenever n̄ = kn(K), but fails to provide the same
certifications if n̄ = kn(K) + 1. Moreover, even with n̄ = kn(K), it fails to certify that kn(4) = 24.

• Eq. (14.3) certifies kn(2) = 6, kn(3) = 24, but generally fails to find lower bounds greater than 38
for kn(5), for which a lower bound kn(5) ≥ 40 is known.1 We remark that K = 5 is the smallest
open case of the KNP.

• The formulations in Sect. 14.4 are numerically even more challenging.

The only practical usefulness of the formulations presented so far appears to be that they allow the
identification of lower bounds to kn(K) with corresponding sphere configurations. We recall that the
KNP is a maximization problem, so lower bounds are obtained by evaluating the objective function value
of feasible solutions.

14.6 Upper bounds

Upper bounds on a maximization problem are more difficult to obtain than lower bounds. In this section
we examine some of the existing methods.

1I was once able to find the known lattice solution x̂ with kn(5) = 40 by feeding x̂ to a local NLP solver: the solution
was not improved, but was deemed feasible. Any slight perturbation of x̂ yielded an infeasible point. This suggests that
the basin of attraction of x̂ is tiny.

236 CHAPTER 14. THE KISSING NUMBER PROBLEM

14.6.1 The useless SDP

A well-known strategy to obtain bounds on QCPs and MIQCPs in the optimization direction is to
formulate and solve SDP relaxations. The SDP relaxation of Eq. (14.3) is as follows [173]:

max
X∈[−1,1]n2 ,α≥0

α

∀i ≤ n Xii = 1
∀i < j ≤ n Xii +Xjj − 2Xij ≥ α

X ⪰ 0.

 (14.13)

A “uselessness theorem” was proved in [167] for Eq. (14.13). One aspect of its uselessness in providing
upper bounds is that it is independent of K: its bound therefore only depends on n, which means we
cannot expect the bound to change as K changes. The uselessness theorem states that, for all n ≥ 2, the
optimal objective function value of Eq. (14.13) is 2n/(n− 1). In other words, this bound tends to 2 from
above as n → ∞. Since α = 2 is a (slack) upper bound for any instance (K,n) of the KNP, this SDP
relaxation is actually practically useless.

14.6.2 The shadow bound

This bound was the reason why, in 1694, D. Gregory challenged Newton’s intuition that kn(3) = 12 (see
Appendix B). Consider the central sphere C at the origin with radius 1, another sphere D centered at
the origin with radius 3, and a surrounding sphere S adjacent to C. Imagine a spherical light-emitting
device at the origin, suppose that the surface of C is transparent, and that the surfaces of D and S are
opaque. Then S projects a shadow on the inner surface of D (see Fig. 14.4). The area of this shadow

Figure 14.4: The idea behind the shadow bound (from [281]).

is around 7.6, while the total area of the surface of D is 113.1. Therefore there cannot be more than
113.1
7.6 = 14.9 balls surrounding C.

14.6.1 Exercise
Compute the areas of D and of the shadow of S.

14.6. UPPER BOUNDS 237

14.6.3 The Delsarte bound

Consider the points of contact x1, . . . , xn of the surrounding spheres on the surface of the central ball
with unit radius. We let C = {x1, . . . , xn} and call this set spherical code; remark that all code vectors
are unit vectors. We look at the function σt mapping the scalar t to the number of pairs of points xi, xj
having angular separation t, scaled by n; i.e.:

∀t ∈ [−1, 1] σt =
1

n

∣∣{(i, j) | i, j ≤ n ∧ xi · xj = t}
∣∣.

In order to enforce the minimum inter-spherical Euclidean distance required by the KNP, we let σt = 0
for all t ∈ (12 , 1), which imposes an angle of at least π

3 rad = arccos 1
2 between each pair of distinct vectors

xi, xj in the code. Because of their unit length, this is the same as requiring that xi ·xj ≤ 1
2 for all i ̸= j.

Moreover, because |C| is finite, only finitely many σt are nonzero (those corresponding to an angle arising
from two vectors in C), which justifies our use of sums instead of integrals. From this discussion, we can
state the following facts about the quantities σt:∑

t∈[−1,1]

σt =
1

n
|all index pairs| = n

σ1 =
1

n
n = 1

∀t ∈ (1/2, 1) σt = 0

∀t ∈ [−1, 1] σt ≥ 0

|{σt > 0 | t ∈ [−1, 1]}| < ∞.

Because we want to maximize n, these facts allow us to write the (semi-infinite) LP
max
σ

∑
t∈[−1,1]

σt

σ1 = 1
∀t ∈ (12 , 1) σt = 0
∀t ∈ [−1, 1] σt ≥ 0,

(14.14)

the optimal value of which is an upper bound on kn(K). We can eliminate the fixed variables to obtain: 1 + max
σ

∑
t∈[−1, 12]

σt

∀t ∈ [−1, 1] σt ≥ 0,
(14.15)

14.6.3.1 Valid cuts and Gegenbauer polynomials

Unfortunately, it is obvious that Eq. (14.15) is unbounded. In order to find further valid inequalities for
Eq. (14.15), we look for a family F of functions ϕ : [−1, 1]→ R such that, for each ϕ ∈ F , the inequality∑

t∈[−1,1]

ϕ(t)σt ≥ 0 (14.16)

holds. One can then append Eq. (14.16) (for various ϕ ∈ F) to Eq. (14.15) as valid cuts in order to
bound its optimal value from above. The best known and most often used family F is the orthogonal
set G of Gegenbauer polynomials (introduced below), for which Eq. (14.16) is known to hold [98]. Since
we replaced fixed variables to the corresponding values in Eq. (14.15), we reformulate Eq. (14.16) to:∑

t∈[−1, 12]

ϕ(t)σt + ϕ(1) ≥ 0 ⇒
∑

t∈[−1, 12]

ϕ(t)σt ≥ −ϕ(1). (14.17)

238 CHAPTER 14. THE KISSING NUMBER PROBLEM

As long as we add a finite number of cuts from Eq. (14.17) to Eq. (14.15), the LP will have a finite
number of constraints. On the other hand, Eq. (14.15) is still not easy to solve because it has infinitely
many variables (one for every t ∈ [−1, 1/2]). We remark that the inequality sense in Eq. (14.16) was
chosen in view of ϕ(t) ranging over Gegenbauer polynomials.

Another issue with Eq. (14.15) is that it is independent of K, whereas we want to find bounds for
kn(K). We can encodeK in the choice of the functions ϕ ∈ F to be used in Eq. (14.17): more precisely, we
take F = G , the family of Gegenbauer polynomials. These are univariate polynomials GKm(t) depending
on two parameters h,K: h encodes the degree and K is the dimension of the host space. It turns out
that GKh (t) = P

(K−2)/2,(K−2)/2
h (t), a Jacobi polynomial2 (see Fig. 14.5). Jacobi polynomials are denoted

-1.0 -0.5 0.5 1.0

-0.4

-0.2

0.2

0.4

Figure 14.5: Gegenbauer polynomials.

by Pα,βh , and defined as follows:

Pα,βh =
1

2h

h∑
i=0

(
h+ α

i

)(
h+ β

h− 1

)
(t+ 1)i(t− 1)h−i.

We let GK be the subset Gegenbauer polynomials of dimension K.

14.6.3.2 Primal and dual

We fix some H = {1, . . . , H̄} to index a finite sequence of polynomials in GK ordered by increasing degree
h ∈ H (we do not consider the degree zero term GK0 (t) since it is a positive constant; as such, it would
yield a redundant cut). We reformulate Eq. (14.15) by adding valid cuts Eq. (14.17):

1 + max
∑

t∈[−1, 12]

σt

∀h ∈ H
∑

t∈[−1, 12]

GKh (t)σt ≥ −GKh (1)

∀t ∈ [−1, 12] σt ≥ 0.

 (14.18)

For each ≥ constraint of the maximization problem Eq. (14.18) we introduce a dual variable dh ≤ 0 (for
h ∈ H). For each variable σt ≥ 0 (for t ∈ [−1, 12]) we introduce a dual constraint with ≥ sense. The dual
turns out to be:

1 + min
∑
h∈H

(−GKh (1))dh

∀t ∈ [−1, 12]
∑
h∈H

GKh (t)dh ≥ 1

∀h ∈ H dh ≤ 0.

 (14.19)

2We remark that some of the literature uses Jacobi parameters (K − 1)/2 or (K − 3)/2.

14.6. UPPER BOUNDS 239

Now we define a new variable vector c = −d and rewrite Eq. (14.19) as:

1 + min
∑
h∈H

GKh (1)ch

∀t ∈ [−1, 12]
∑
h∈H

GKh (t)ch ≤ −1

∀h ∈ H ch ≥ 0.

 (14.20)

14.6.3.3 Delsarte’s theorem

The fundamental theorem of Delsarte’s LP applied to spherical codes is the following:

14.6.2 Theorem
Let c0 > 0 and F : [−1, 1]→ R such that:

(i) ∃J ⊆ N ∪ {0} and c ∈ R|J|
+ ≥ 0 s.t. F (t) =

∑
h∈J

chG
K
h (t)

(ii) ∀t ∈ [−1, z] F (t) ≤ 0

Then kn(K) ≤ F (1)
c0

.

Thm. 14.6.2 was originally proved in [98, Thm. 4.3], but no LP was formulated in that paper. To the
best of our knowledge, an LP (with uncountably many variables, but only finitely many of which can be
nonzero) was first formulated in [237] (reprinted in [73, Ch. 13]). While the proof given in [98] depends
on the properties of Gegenbauer polynomials, [237] simply states that Thm. 14.6.2 can be proved using
Eq. (14.20).

We can derive Eq. (14.20) from Thm. 14.6.2: in order to achieve the best upper bound for kn(K), we
look for the smallest possible value of F (1)/c0 by minimizing F (1) and fixing c0 = 1. Setting H = J∖{0},
this yields:

min F (1) = 1 +
∑
h∈H

chG
K
h (1)

∀t ∈ [−1, 12] 1 +
∑
h∈H

GKh (t)ch ≤ 0 (14.21.1)

∀h ∈ H ch ≥ 0,

 (14.21)

which is exactly Eq. (14.20).

14.6.3.4 Pfender’s theorem

A variant of Thm. 14.6.2 was proved by Pfender in [245]:

14.6.3 Theorem
Let c0 > 0 and f : [−1, 1]→ R such that:

(i)
∑
i,j≤n

f(xi · xj) ≥ 0

(ii) ∀t ∈ [−1, z] f(t) + c0 ≤ 0

(iii) f(1) + c0 ≤ 1.

Then kn(K) ≤ 1
c0

.

240 CHAPTER 14. THE KISSING NUMBER PROBLEM

Pfender’s motivation for proposing this variant is the brevity of the proof, which justifies our repeating
it here. Proof. ([245]). Let g(t) = f(t) + c0, then:

n2c0 ≤ n2c0 +
∑
i,j≤n

f(xi · xj) =
∑
i,j≤n

g(xi · xj) ≤
∑
i≤n

g(xi · xi) = ng(1) ≤ n,

whence n ≤ 1/c0. 2

While Pfender’s theorem (Thm. 14.6.3) and Delsarte’s theorem (Thm. 14.6.2) certainly look related,
there are two prominent syntactical differences: Pfender adds a constraint on the function at 1, namely
f(1)+c0 ≤ 1, and Pfender’s bound is 1/c0. A possible interpretation to reconcile the two theorems is that
F (t) = f(t)+ c0 for each t ∈ [−1, 1], where F is the function Delsarte’s theorem. Under this assumption,
constraints (ii) in both theorems become the same.

We recall that the bound in Delsarte’s theorem is F (1)/c0. Using the additional constraint we see
that:

kn(K) ≤ F (1)

c0
=
f(1) + c0

c0
≤ 1

c0

by (iii) in Thm. 14.6.3, whence Delsarte’s bound is at least as tight as Pfender’s, and possibly tighter.
On the other hand, constraint (i) in Delsarte’s theorem, which states that F (t) =

∑
h chG

K
h (t) for

all t ∈ [−1, 1], is equivalent to
∫
[−1,1]

F (t)dt ≥ 0 [237, 245, 266]. In our interpretation, this yields∫
[−1,1]

(f(t) + c0)dt ≥ 0. But constraint (i) in Pfender’s theorem, equivalent to
∫
[−1,1]

f(t)dt ≥ 0, is at
least as strict, and possibly stricter. In summary, Pfender’s theorem makes stronger requirements than
Delsarte’s and delivers a weaker result. The computational bound values provided by the derived LP is
the same as the LP from Delsarte’s theorem.3

As in the case of Delsarte’s theorem (see Eq. (14.21)), we can also derive an LP from Pfender’s
theorem: we maximize c0 subject to (i)-(iii). We “model” (i), as in Delsarte’s case, by taking f(t) to be
a nonnegatively weighted sum of Gegenbauer polynomials (starting with degree 1). This yields:

max
c≥0

c0

∀t ∈ [−1, 12] c0 +
∑
h∈H

chG
K
h (t) ≤ 0 (14.22.1)

c0 +
∑
h∈H

chG
K
h (1) ≤ 1. (14.22.2)

(14.22)

14.6.4 Implementable LPs

The standard approach [237, 21, 26] to deal with the semi-infinite LPs in Eq. (14.20) and (14.22) is to
only keep finitely many constraints out of the infinite families listed in the formulations, for example by
considering a discretization of [−1, 12]. We write both (14.21.1) and (14.22.1) as follows:

∀t ∈ T c0 +
∑
h∈H

chG
K
h (t) ≤ 0, (14.23)

where c0 is fixed to 1 in (14.21.1), and T ⊂ [−1, 12] with |T | finite. T usually consists of finitely many
equally spaced values between −1 and 1

2 [237, 21].

An appropriate choice of T can be made with the help of [73, Ch. 13, §2], a result which is also
formally summarized in [21, Lemma 1]. We give it in algorithmic form below.

1. Compute an optimal solution c∗ to the finite LP (either Delsarte’s or Pfender’s) obtained by re-
placing [−1, 12] by the finite set T .

3This sentence refers to yet unpublished computational experiments by the author.

14.6. UPPER BOUNDS 241

2. Find the global maximum t∗ of the polynomial

F ∗(t) = c∗0 + f∗(t) = c∗0 +
∑
h∈H

c∗hG
K
h (t)

with respect to t ∈ [−1, 12], as follows:

(a) compute the set S of all solutions of the polynomial equation dF (t)
dt = 0,

(b) let t∗ = arg max{F (t) | t ∈ S} and ψ = F (t∗).

3. If ψ ≤ 0 then c∗ is feasible w.r.t. all of the infinitely many constraints in the LP: the bound is given
by

kn(K) ≤
{
⌊f∗(1) + 1⌋ with Delsarte’s LP
⌊ 1
c∗0
⌋ with Pfender’s LP.

4. Ff 0 < ψ < c∗0 then a bound can be obtained as:

kn(K) ≤

{
⌊ f

∗(1)+1−ψ
1−ψ ⌋ with Delsarte’s LP

⌊ 1−ψ
c∗0−ψ

⌋ with Pfender’s LP.

5. If ψ ≥ c∗ then no bound can be inferred: the cardinality of T should be increased, and the LP
solved again.

14.6.4 Lemma
The bound formula in Step 4 of the above procedure holds.

Proof. Since ψ is the maximum value of F ∗(t) for t ∈ [−1, 12], and ψ > 0, then F ∗(t)−ψ = c∗0−ψ−f∗(t) ≤
0 for all t ∈ [−1, 12]. Since F ∗(t) obeys the conditions of Delsarte’s theorem, F ∗(t) − ψ does too: in
particular, condition (i) follows by setting c0 = c∗0 − ψ and condition (ii) holds because ψ is a positive
constant. Hence the corresponding bound is F∗(1)−ψ

c∗0−ψ
. We now recall that c∗0 = 1 in Delsarte’s LP, and

derive f∗(1)+1−ψ
1−ψ . For Pfender’s LP, we recall that F ∗(1) = 1, and derive 1−ψ

c∗0−ψ
, as claimed. 2

14.6.4.1 The choice of H

We recall that H is the index set of the finite subfamily H of functions from F used to quantify over
the sums occurring in Delsarte’s LP.

Adding functions to F has been the preferred method for improving the Delsarte bound so far. In
[235], some functions are allowed to violate constraint (14.22.2) in Eq. (14.22) over finitely many values
of t, which correspond to cases tackled separately and combinatorially. In [245], a new class of functions
satisfying Eq. (14.16) and (14.22.2) has been introduced. Other bound improvements were obtained by
considering an extension of the function σt to vector triplets instead of pairs, which yields a SDP [26].
Solving these SDPs poses some technical issues with precision, which were addressed in [225]. Extending
this idea further (to vector quadruplets) was carried out in [117] but only for binary codes rather than
spherical codes.

To the best of our knowledge, however, no-one discusses the problem of appropriately choosing H
in view of computational efficiency, precision, bound quality and bound validity. In [73, Ch. 13], the
authors simply state that they choose Gegenbauer polynomials up to degree 30 (but also point out that
they only needed polynomials of degree up to 14; for K = 4 they limited the degree to 9). A somewhat
more detailed treatment (but still insufficient to derive an algorithm to decide H) is given in [237].

242 CHAPTER 14. THE KISSING NUMBER PROBLEM

If F = GK is the family of Gegenbauer polynomials GKh (t), H is the set where the parameter h
ranges. Large values of m yield polynomials of high degree, which may in turn yield large floating point
errors when evaluated. This is therefore a source of imprecision which might, in the worst case, invalidate
the bound.

Chapter 15

ACOPF

243

244 CHAPTER 15. ACOPF

Chapter 16

PMU placement

245

246 CHAPTER 16. PMU PLACEMENT

Appendix A

Fighting over Gödel

In assembling the historic results in DG that seemed most remarkable to me, I stumbled upon a very
short paper of Kurt Gödel about the fact that if you can find four points in 3D that match the six edge
lengths of a tetrahedron, then you can also find four points on a sphere. The result is nontrivial because
in 3D the edges are straight segments, whereas on the sphere the edges are curved.

I found it surprising that Kurt Gödel worked in DG, since he is known as a logician, more precisely
the logician who shattered Hilbert’s dream of a formalist mathematics, by means of his incompleteness
theorems.

After more investigations, it turned out that Gödel wrote exactly two papers on DG. These were not
actually papers, but rather short texts found in the comptes rendus of Menger’s Mathematical Collo-
quium. Karl Menger was part of the Vienna Circle. When things got rough, and its founder Moritz
Schlick was shot dead by his former student Johann Nelböck, Karl distanced himself from the Circle. He

247

248 APPENDIX A. FIGHTING OVER GÖDEL

started a regular mathematical seminar at the University of Vienna, featuring some of the most famous
mathematicians and logicians of his time (e.g. John von Neumann, Alfred Tarski, Norbert Wiener, Karol
Borsuk, Karl Popper). The local mathematicians and students, including Menger and Gödel, featured
as a semi-permanent audience, and also frequently gave presentations themselves. This is where Gödel
presented his two results in DG; his short papers appear in the proceedings, published by Springer-Verlag
in 1998 [220].

While leafing through the proceedings book, I stumbled upon Franz Alt’s Afterword (Franz Alt was
one of the last survivors of Menger’s seminar when Springer published the proceedings). He relates:

What appears to have been Kurt Gödel’s first oral presentation of a proof of his incompleteness
theorem, was given at the 24th Colloquium in less than an hour, reported in proceedings [220]
so concisely that it takes up little more than a page. [. . .] There was the unforgettable quiet
after Gödel’s presentation, ended by what must be the understatement of the century: “That
is very interesting. You should publish that.” Then a question: “You use Peano’s system of
axioms. Will it work for other systems?” Gödel, after a few seconds of thought: “Yes, any
system broad enough to define the field of the integers.”

Among those present at Gödel’s presentation of the incompleteness theorem, there was a certain Olga
Taussky (later Taussky-Todd): a mathematician who, according to Wikipedia, fixed all (but one) of the
(many) errors in Hilbert’s papers. After Gödel’s reply to the question, she interjected,

Olga Taussky (half-smiling): “The integers do not constitute a field!”

This comment, taken at face value, is completely inappropriate. While it is true that the integers do
not constitute a field, this is knowledge that every undergraduate student in mathematics possesses, and
such a mistake is clearly a slip of the tongue on Gd̈el’s part. I find it hard to believe that anyone would
make such a remark after any mathematical seminar, let alone Gd̈el’s announcement of his incompleteness
theorem (Gödel was by then already famous because of his earlier completeness theorem). So why did
Olga, a gifted mathematician herself, made it? Why did she challenge Gödel, and why was she “half-
smiling” as she did so?

The final part of the exchange is related by Franz Alt in a way which is consistent with the theory that
Olga must have had some further reason for making the remark, other than the detection of an error.

Gd̈el, who knew this as well as anyone, and had only spoken carelessly: “Well, the. . . the. . . the
domain of integrity of the integers.” And final relaxing laughter.

249

I was dumbfounded for a while, until I bought a second-hand copy of a book by Pierre Cassou-Noguès,
Les démons de Gödel, published by 2007 by Éditions du Seuil. In §I.5, he writes (my translation):

“Gödel loved women, and made no secret of it”, said Olga Taussky, who studied at the Uni-
versity of Vienna at the same time as Gödel. She recounts some episodes, almost pranks,
from those years. Gödel has some admirers: young women who complain about his prima
donna attitudes, his late rising habits, his spoiled child behaviour. Gödel also has his tricks,
e.g. giving appointments to one of his fans in a university room where he knows he’ll find
another girl he is trying to seduce.

Now the “half-smile” and the public challenge about the “field of integers” are consistent with a broader
picture. The main question is to establish whether Olga is a fan being challenged, or one of Gödel’s object
of desire, or simply an impartial observer stating a fact.

But first, Olga’s comment above sounds preposterous if we take into account what is commonly known
about Gödel’s life. This is a man who became increasingly dependent on his wife Adele, until he let himself
die of hunger when she had to leave home for a long stay in hospital. We know of no infidelity during
their marriage, and we also know of no interest of Gödel’s in everyday life matters, his attention being
fully devoted to logic and philosophy.

The truth may not be quite as simple. Gödel himself, in a note from his nachlass (the archive of
his handwritten papers and notes), states that he sees his life until 1943 as partitioned in three broad
periods: 1920-1927, 1928-1936, and 1937-1943. He writes that he did not give enough attention to women
in the first and third period, but gave too much of it in the second period. The seminar related by Franz
Alt is dated Jan. 22, 1931: right in the middle of Gödel’s “too much attention to women” period. So
perhaps we simply have the wrong idea of Gödel’s relationship with women.

Now, back to the main question. From her half-smiling challenge and her remark about Gödel’s tricks
with women, I would say Olga was intrigued by Gödel. If this is true, then she cannot have been an
impartial observer. Furthermore, the two girls in Olga’s tale play a distinctly different role: one is scorned
(because she is an admirer and Gödel uses her to attempt to make some other girl jealous), while the
other is desired. In my experience, I have rarely seen people recount the “scorned roles” they were forced
to play before those they liked or loved. If I am to attribute to Olga one of the two roles in her tale, I
would definitely choose the object of desire.

250 APPENDIX A. FIGHTING OVER GÖDEL

This leaves two questions open: who was the “scorned woman”, and was Olga really an object of
Gödel’s desire? After all, if her tale involves herself, she is heavily biased. She might have wished to be
an object of Gödel’s desire with all her heart, but this does not mean she actually was. Olga might have
thought that Gödel brought “an admirer” to a room where she was working, whereas Gödel simply walked
in with a woman he was talking to, for whatever reason. This might have even happened several times,
but how many empty rooms can the University of Vienna have, to make such an event so unlikely as to
consider it purposeful? There may have been a few rooms dedicated to doctoral students or postdoctoral
assistants, as is customary even now. Maybe Olga only remarked when Gödel entered these rooms with
a girl, possibly because there were few girls in the mathematics department, or possibly because she was
taken with Gödel.

Can this girl, the fan, the admirer, the “scorned role”, be Adele, who then became his wife?

Gödel met Adele in 1927, but married her in 1938. They had a difficult start, since she was a waitress
and a dancer, and he knew his parents would be opposed to their union. In Jan. 1931, Adele might
well be a girl classified by Olga as “one of Gödel’s fans” — the girl to whom he gave appointments in
rooms where the true object of his desire was present. I do not remember reading that Gödel gave Adele
appointments at the university. I remember reading that he often went to see her at the restaurant she
worked for.

I do not even know whether, in those times, it was accepted practice for anyone to simply walk into a
university department unchallenged. As far as I know, universities were pretty open places as regards the
teaching halls and the courtyards, but departments were often behind closed doors. Even if not locked,
I would find it unlikely that a complete outsider, such as Adele, would dare walk into a department
unaccompanied. Of course it is possible that Gödel brought her in. But then why meet her at the
University? If we take Gödel’s statement about his excessive interest in women at face value, it might
have been more conducive for him to seek a more romantic place than the Ph.D. office in order to spend
some time with his girlfriend.

Moreover, Olga says “admirers”, not “a single admirer”. Adele may be part of this set (the complaints
about Gödel’s spoiled child habits can certainly be attributed to her), but can she really have made Olga
jealous? A waitress and a dancer? So different from herself (and Gödel)? Wouldn’t it be more likely
that Olga should be jealous of an intellectual peer? Or at least someone within the department? I do
not think Adele is the most likely candidate for the “scorned role” in Olga’s tale.

Imagine a more normal setting, where the most likely cause for entering a room in one’s department
is work. Gödel was not well known for working with other people, but Menger’s Colloquium proceedings
[220] show that Gödel often participated to discussions after seminars. Let us suppose that a few times
he sat down with a colleague and discussed a problem. Who, amongst his colleagues, qualifies for this
role? Since we are looking for a girl, the choice is very limited. As far as I can see, only two women
gave talks at Menger’s Colloquium: Olga Taussky, and Laura Klanfer. If we exclude the former, we must
consider the latter.

And again we can find some interesting evidence in [220]. Something which might also explain the keen
interest of Gödel in DG. Laura Klanfer intervened in the Colloquium twice: “On d-cyclic quadruplets”
(Dec. 2, 1931) and “Metric characterization of the sphere” (June 28, 1932). Rather interestingly, Gödel
also gave talks on the same dates. In the first seminar, Laura posed an open question: can any tetrahedron
in space be embedded isometrically on the sphere? In the seminar on Feb. 18, 1932, Gödel provided an
answer to Laura’s question [220, p. 198]. His answer is an elegant and nontrivial fixed point construction,
which I subsequently extended to an arbitrary number of dimensions [191].

So the fact that Gödel sat down in the Ph.D. room with Laura to discuss her open question, appears
as perfectly normal, and possibly absolutely innocent. Notwithstanding, it is possible that Olga witnessed
the exchange and became jealous. After all, Olga worked in topological algebra, and there is no trace in
the Colloquium proceedings that Gödel ever took an interest in her work.

Laura clearly played a minor part in the Colloquium, whereas Olga was much more present. I do not

251

know what became of Laura, whereas the contributions of Olga Taussky to mathematics are considerable.
While there is no certainty in my inferences, it stands to reason that Olga should have been rather pissed
off at Gödel’s interest (even if purely intellectual) into someone whom Olga might have considered beneath
her level.

252 APPENDIX A. FIGHTING OVER GÖDEL

Appendix B

Apocryphal history of the kissing
number problem

“Kissing” is billiard jargon. British players would say two adjacent billiard balls on the table “kiss”.

The term found its way into mathematics thanks to Isaac Newton (whom everyone knows) and David
Gregory (a professor of Mathematics at Edinburgh — without having ever obtained a degree — and then
Savilian Professor of Astronomy at Oxford thanks to Newton’s influence). In the 1690s, scared of the
social unrest in Scotland, Gregory left and visited Newton in Cambridge.

According to unsubstantiated rumours and well-established British protocol, the brit and the scot
went down the pub for a few pints of ale and a game of pool. There, among kissing balls and fumes of
alcohol, they got into a brawl about the number of balls that could kiss a central ball on the billiard
table. Still sober enough, they counted them, and came to agree on the number six.

As the number of pints increased, the two started blabbering about gravity-defying floating balls
passionately kissing in three dimensions, and disagreed: Newton, embracing the voice of Kepler, said no
more than twelve balls could be arranged around a central one. Gregory, who had to gain his master’s
approval by attempting to be brilliant and surprising, said that perhaps thirteen could fit?

George Szpiro [281] recounts a different story in plus.maths.org/content/newton-and-kissing-problem
(some nonsense about astronomy and planets), but since neither he nor I were present at the quabble,
his word on the matter is just as good as mine.

253

plus.maths.org/content/newton-and-kissing-problem

254 APPENDIX B. APOCRYPHAL HISTORY OF THE KISSING NUMBER PROBLEM

Bibliography

[1] S. Aaronson. Quantum computing since Democritus. Cambridge Univesity Press, Cambridge, UK,
2013.

[2] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins.
Journal of Computer and System Sciences, 66:671–687, 2003.

[3] N. Adhya, M. Tawarmalani, and N.V. Sahinidis. A Lagrangian approach to the pooling problem.
Industrial and Engineering Chemistry Research, 38:1956–1972, 1999.

[4] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. A global optimization method, αBB, for
general twice-differentiable constrained NLPs: II. Implementation and computational results. Com-
puters & Chemical Engineering, 22(9):1159–1179, 1998.

[5] C.S. Adjiman. Global Optimization Techniques for Process Systems Engineering. PhD thesis,
Princeton University, June 1998.

[6] C.S. Adjiman, I.P. Androulakis, C.D. Maranas, and C.A. Floudas. A global optimization method,
αBB, for process design. Computers & Chemical Engineering, 20:S419–S424, 1996.

[7] A. Ahmadi, R. Jungers, P. Parrilo, and M. Roozbehani. Joint spectral radius and path-complete
graph Lyapunov functions. SIAM Journal on Control and Optimization, 52(1):687–717, 2014.

[8] A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization: More tractable alternatives to
sum of squares and semidefinite optimization. SIAM Journal on Applied Algebra and Geometry,
3(2):193–230, 2019.

[9] A. Ahmadi, A. Olshevsky, P. Parrilo, and J. Tsitsiklis. NP-hardness of deciding convexity of quartic
polynomials and related problems. Mathematical Programming, 137:453–476, 2013.

[10] M. Aigner. Turán’s graph theorem. American Mathematical Monthly, 102(9):808–816, 1995.

[11] N. Ailon and B. Chazelle. Approximate nearest neighbors and fast Johnson-Lindenstrauss lemma.
In Proceedings of the Symposium on the Theory Of Computing, volume ’06 of STOC, Seattle, 2006.
ACM.

[12] F.A. Al-Khayyal and H.D. Sherali. On finitely terminating branch-and-bound algorithms for some
global optimization problems. SIAM Journal of Optimization, 10(4):1049–1057, 2000.

[13] A. Alexandrov. Convex Polyhedra. Springer, Berlin, 2005 (translated from Russian ed. 1950).

[14] A. Alfakih, A. Khandani, and H. Wolkowicz. Solving Euclidean distance matrix completion prob-
lems via semidefinite programming. Computational Optimization and Applications, 12:13–30, 1999.

[15] G. Allen. Sparse higher-order principal components analysis. In N. Lawrence and M. Girolami, edi-
tors, Proceedings of the International Conference on Artificial Intelligence and Statistics, volume 22
of Proceedings of Machine Learning Research, pages 27–36, La Palma, 2012. PMLR.

255

256 BIBLIOGRAPHY

[16] Z. Allen-Zhu, R. Gelashvili, S. Micali, and N. Shavit. Sparse sign-consistent Johnson-Lindenstrauss
matrices: Compression with neuroscience-based constraints. Proceedings of the National Academy
of Sciences, 111(47):16872–16876, 2014.

[17] D. Aloise, P. Hansen, and L. Liberti. An improved column generation algorithm for minimum
sum-of-squares clustering. Mathematical Programming A, 131:195–220, 2012.

[18] N. Alon and J. Spencer. The probabilistic method. Wiley, Hoboken, NJ, 2008.

[19] D. Amelunxen, M. Lotz, M. McCoy, and J. Tropp. Living on the edge: phase transitions in convex
programs with random data. Information and Inference: A Journal of the IMA, 3:224–294, 2014.

[20] I. P. Androulakis, C. D. Maranas, and C. A. Floudas. αBB: A global optimization method for
general constrained nonconvex problems. Journal of Global Optimization, 7(4):337–363, December
1995.

[21] K. Anstreicher. The thirteen spheres: a new proof. Discrete and Computational Geometry, 31:613–
625, 2004.

[22] T. Apostol. Mathematical Analysis. Addison-Wesley, Reading, MA, 1961.

[23] R. Arriaga and S. Vempala. An algorithmic theory of learning: Robust concepts and random
projection. Machine Learning, 63:161–182, 2006.

[24] L. Asimow and B. Roth. The rigidity of graphs. Transactions of the AMS, 245:279–289, 1978.

[25] C. Audet, J. Brimberg, P. Hansen, S. Le Digabel, and N. Mladenović. Pooling problem: Alternate
formulations and solution methods. Management Science, 50(6):761–776, 2004.

[26] C. Bachoc and F. Vallentin. New upper bounds for kissing numbers from semidefinite programming.
Journal of the AMS, 21:909–924, 2008.

[27] J. Bachrach and C. Taylor. Localization in sensor networks. In I. Stojmenović, editor, Handbook
of Sensor Networks, pages 3627–3643. Wiley, 2005.

[28] M. Bardet, J.-Ch. Faugère, and B. Salvy. On the complexity of Gröbner basis computation of
semi-regular overdetermined algebraic equations. In Proceedings of International Conference on
Polynomial System Solving, 2004.

[29] G. Barker and D. Carlson. Cones of diagonally dominant matrices. Pacific Journal of Mathematics,
57(1):15–32, 1975.

[30] A. Barvinok. Problems of distance geometry and convex properties of quadratic maps. Discrete
and Computational Geometry, 13:189–202, 1995.

[31] A. Barvinok. Measure concentration in optimization. Mathematical Programming, 79:33–53, 1997.

[32] A. Barvinok. A Course in Convexity. Number 54 in Graduate Studies in Mathematics. AMS,
Providence, RI, 2002.

[33] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry. Springer, New York,
2006.

[34] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming: Theory and Algorithms.
Wiley, Chichester, second edition, 1993.

[35] N. Beeker, S. Gaubert, C. Glusa, and L. Liberti. Is the distance geometry problem in NP? In
Mucherino et al. [232], pages 85–94.

[36] E. Bell. The iterated exponential integers. Annals of Mathematics, 39:539–557, 1938.

BIBLIOGRAPHY 257

[37] P. Belotti, S. Cafieri, J. Lee, L. Liberti, and A. Miller. On the composition of convex envelopes for
quadrilinear terms. In A. Chinculuun and et al., editors, Optimization, Simulation and Control,
volume 76 of SOIA, pages 1–16. Springer, Berlin, 2013.

[38] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening
techniques for non-convex MINLP. Optimization Methods and Software, 24(4):597–634, 2009.

[39] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University Press,
Princeton, NJ, 2009.

[40] Y. Bengio. Deep learning for AI, 2017. Presentation at the MIP 2017 workshop.

[41] K. Bennett and O. Mangasarian. Bilinear separation of two sets in n-space. Computational Opti-
mization and Applications, 2(3):207–227, 1993.

[42] E. Berlekamp, J. Conway, and R. Guy. Winning ways for your mathematical plays, vol. 2. Academic
Press, 1982.

[43] D. Bertsekas. Convex optimization theory. Athena Scientific, Nashua, 2009.

[44] D. Bienstock and A. Michalka. Polynomial solvability of variants of the trust-region subproblem.
In Proceedings of the 25th annual ACM Symposium on Discrete Algorithms, volume 25 of SODA,
pages 380–390, Philadelphia, 2014. ACM.

[45] J. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, New York, 2011.

[46] P. Biswas, T. Lian, T. Wang, and Y. Ye. Semidefinite programming based algorithms for sensor
network localization. ACM Transactions in Sensor Networks, 2:188–220, 2006.

[47] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers:
NP-completeness, recursive functions, and universal machines. Bulletin of the AMS, 21(1):1–46,
1989.

[48] L. Blumenthal. Theory and Applications of Distance Geometry. Oxford University Press, Oxford,
1953.

[49] I. Bomze. Evolution towards the maximum clique. Journal of Global Optimization, 10:143–164,
1997.

[50] I. Bomze. Copositive optimization — Recent developments and applications. European Journal of
Operational Research, 216:509–520, 2012.

[51] I. Bomze, M. Dür, E. De Klerk, C. Roos, A. Quist, and T. Terlaky. On copositive programming
and standard quadratic optimization problems. Journal of Global Optimization, 18:301–320, 2000.

[52] P. Bonami and J. Lee. BONMIN User’s Manual. Technical report, IBM Corporation, June 2007.

[53] I. Borg and P. Groenen. Modern Multidimensional Scaling. Springer, New York, second edition,
2010.

[54] C. Boutsidis, A. Zouzias, and P. Drineas. Random projections for k-means clustering. In Advances
in Neural Information Processing Systems, NIPS, pages 298–306, La Jolla, 2010. NIPS Foundation.

[55] S. Boyd and L. Vandenberghe. Convex Optimization. CUP, Cambridge, 2004.

[56] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wagner. On
modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2):172–188,
2008.

[57] J. Brimberg, P. Hansen, and N. Mladenoviç. Convergence of variable neighbourhood search. Tech-
nical report, GERAD, 2008.

258 BIBLIOGRAPHY

[58] A. Brook, D. Kendrick, and A. Meeraus. GAMS, a user’s guide. ACM SIGNUM Newsletter,
23(3-4):10–11, 1988.

[59] B. Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements
of the residue class ring of a zero-dimensional polynomial ideal. Journal of Symbolic Computation,
41:475–511, 2006.

[60] S. Cafieri, J. Lee, and L. Liberti. On convex relaxations of quadrilinear terms. Journal of Global
Optimization, 47:661–685, 2010.

[61] E. Candès. The mathematics of sparsity. In S.Y. Jang, Y.R. Kim, D.-W. Lee, and I. Yie, editors,
Proceedings of the International Congress of Mathematicians, volume I. Kyung Moon SA, Seoul,
2014.

[62] E. Candès and T. Tao. Reflections on compressed sensing. IEEE Information Theory Society
Newsletter, 58(4):14–17, 2008.

[63] A. Cassioli, B. Bordeaux, G. Bouvier, A. Mucherino, R. Alves, L. Liberti, M. Nilges, C. Lavor,
and T. Malliavin. An algorithm to enumerate all possible protein conformations verifying a set of
distance constraints. BMC Bioinformatics, 16:23–38, 2015.

[64] A.-L. Cauchy. Sur les polygones et les polyèdres. Journal de l’École Polytechnique, 16(9):87–99,
1813.

[65] A. Cayley. A theorem in the geometry of position. Cambridge Mathematical Journal, II:267–271,
1841.

[66] Y.-J. Chang and B. Wah. Polynomial Programming using Gröbner bases. Technical report, Uni-
versity of Illinois at Urbana-Champaign, 1994.

[67] V. Chvátal. Linear Programming. Freeman & C., New York, 1983.

[68] D. Cifuentes and P. Parrilo. Exploiting chordal structure in polynomial ideas: a Gröbner basis
approach. SIAM Journal of Discrete Mathematics, 30(3):1534–1570, 2016.

[69] A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor, Logic,
Methodology and Philosophy of Science, pages 24–30. North-Holland, Amsterdam, 1965.

[70] COIN-OR. Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT, 2006.

[71] G. Collins. Quantifier elimination for real closed fields. ACM SIGSAM Bulletin, 8(3):80–90, 1974.

[72] R. Connelly. A counterexample to the rigidity conjecture for polyhedra. Publications Mathématiques
de l’IHES, 47:333–338, 1978.

[73] J. Conway and N. Sloane, editors. Sphere Packings, Lattices and Groups. Springer, Berlin, 1993.

[74] S. Cook. The complexity of theorem-proving procedures. In Proceedings of the Symposium on the
Theory of Computing, STOC, pages 151–158, New York, 1971. ACM.

[75] G. Cornuéjols and M. Dawande. A class of hard small 0-1 programs. In R. Bixby, E. Boyd, and
R. Ríos-Mercado, editors, Integer Programming and Combinatorial Optimization, volume 1412 of
LNCS, pages 284–293, Berlin, 1998. Springer.

[76] G. Cornuéjols, L. Liberti, and G. Nannicini. Improved strategies for branching on general disjunc-
tions. Mathematical Programming A, 130:225–247, 2011.

[77] T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, Boca Raton, 2001.

[78] H. Cramer. Mathematical Methods of Statistics. Princeton University Press, Princeton, NJ, 1946.

BIBLIOGRAPHY 259

[79] A.E. Csallner, T. Csendes, and M.C. Markót. Multisection in interval branch-and-bound methods
for global optimization i. theoretical results. Journal of Global Optimization, 16:371–392, 2000.

[80] A.E. Csallner, T. Csendes, and M.C. Markót. Multisection in interval branch-and-bound methods
for global optimization II. Numerical tests. Journal of Global Optimization, 16:219–228, 2000.

[81] M. Cucuringu, Y. Lipman, and A. Singer. Sensor network localization by eigenvector synchroniza-
tion over the Euclidean group. ACM Transactions on Sensor Networks, 8:1–42, 2012.

[82] M. Cucuringu, A. Singer, and D. Cowburn. Eigenvector synchronization, graph ridigity and the
molecule problem. Information and Inference: a journal of the IMA, 1:21–67, 2012.

[83] J. Currie and D. Wilson. OPTI: Lowering the Barrier Between Open Source Optimizers and the
Industrial MATLAB User. In N. Sahinidis and J. Pinto, editors, Foundations of Computer-Aided
Process Operations, Savannah, Georgia, USA, 8–11 January 2012.

[84] C. D’Ambrosio, L. Liberti, P.-L. Poirion, and K. Vu. Random projections for quadratic program-
ming. Technical Report 2019-7-7322, Optimization Online, 2019.

[85] C. D’Ambrosio, L. Liberti, P.-L. Poirion, and K. Vu. Random projections for quadratic programs.
Mathematical Programming B, 183:619–647, 2020.

[86] S. Damelin and W. Miller. The mathematics of signal processing. CUP, Cambridge, 2012.

[87] G. Dantzig. Reminiscences about the origins of linear programming. In A. Bachem, M. Grötschel,
and B. Korte, editors, Mathematical Programming: the state of the art. Springer, Berlin, 1983.

[88] G. Dantzig. The Diet Problem. Interfaces, 20(4):43–47, 1990.

[89] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ,
1963.

[90] S. Dasgupta and A. Gupta. An elementary proof of a theorem by Johnson and Lindenstrauss.
Random Structures and Algorithms, 22:60–65, 2002.

[91] A. D’Aspremont, F. Bach, and L. El Ghaoui. Approximation bounds for sparse principal component
analysis. Mathematical Programming B, 148:89–110, 2014.

[92] M. Davenport, M. Duarte, Y. Eldar, and G. Kutyniok. Introduction to compressed sensing. In
Y. Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Applications, page 1–64. CUP,
Cambridge, 2012.

[93] T. Davidović, L. Liberti, N. Maculan, and N. Mladenović. Towards the optimal solution of the
multiprocessor scheduling problem with communication delays. In MISTA Proceedings, 2007.

[94] M. Davis. Arithmetical problems and recursively enumerable predicates. Journal of Symbolic Logic,
18(1), 1953.

[95] M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential Diophantine equa-
tions. Annals of Mathematics, 74(3):425–436, 1961.

[96] R. Davis, C. Ernst, and D. Wu. Protein structure determination via an efficient geometric build-up
algorithm. BMC Structural Biology, 10(Suppl 1):S7, 2010.

[97] N. de Bruijn. Asymptotic methods in analysis. Dover, New York, 1981.

[98] P. Delsarte, J.M. Goethals, and J.J. Seidel. Spherical codes and designs. Geometriæ Dedicata,
6:363–388, 1977.

[99] P. Demartines and J. Hérault. Curvilinear component analysis: A self-organizing neural network
for nonlinear mapping of data sets. IEEE Transactions on Neural Networks, 8(1):148–154, 1997.

260 BIBLIOGRAPHY

[100] S. Dey, R. Mazumder, M. Molinaro, and G. Wang. Sparse principal component analysis and its
ℓ1-relaxation. Technical Report 1712.00800v1, arXiv, 2017.

[101] G. Dias and L. Liberti. Diagonally dominant programming in distance geometry. In R. Cerulli,
S. Fujishige, and R. Mahjoub, editors, International Symposium in Combinatorial Optimization,
volume 9849 of LNCS, pages 225–236, New York, 2016. Springer.

[102] Y. Ding, N. Krislock, J. Qian, and H. Wolkowicz. Sensor network localization, Euclidean distance
matrix completions, and graph realization. Optimization and Engineering, 11:45–66, 2010.

[103] M. Dür. Copositive programming — A survey. In M. Diehl and et al., editors, Recent advances in
Optimization and its Applications in Engineering. Springer, Heidelberg, 2010.

[104] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.

[105] T.G.W. Epperly. Global Optimization of Nonconvex Nonlinear Programs using Parallel Branch and
Bound. PhD thesis, University of Winsconsin – Madison, 1995.

[106] T.G.W. Epperly and E.N. Pistikopoulos. A reduced space branch and bound algorithm for global
optimization. Journal of Global Optimization, 11:287:311, 1997.

[107] T. Eren, D. Goldenberg, W. Whiteley, Y. Yang, A. Morse, B. Anderson, and P. Belhumeur. Rigidity,
computation, and randomization in network localization. IEEE, pages 2673–2684, 2004.

[108] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiæ Scientiarum
Imperialis Petropolitanæ, 8:128–140, 1736.

[109] L. Euler. Continuatio fragmentorum ex adversariis mathematicis depromptorum: II Geometria,
97. In P. Fuss and N. Fuss, editors, Opera postuma mathematica et physica anno 1844 detecta,
volume I, pages 494–496. Eggers & C., Petropolis, 1862.

[110] A.V. Fiacco and G.P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization
Techniques. Wiley, New York, 1968.

[111] M. Fischetti. Lezioni di Ricerca Operativa (in Italian). Edizioni Libreria Progetto, Padova, 1999.

[112] R. Fletcher. Practical Methods of Optimization. Wiley, Chichester, second edition, 1991.

[113] R. Fortet. Applications de l’algèbre de Boole en recherche opérationelle. Revue Française de
Recherche Opérationelle, 4:17–26, 1960.

[114] L.R. Foulds, D. Haughland, and K. Jornsten. A bilinear approach to the pooling problem. Opti-
mization, 24:165–180, 1992.

[115] R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

[116] M. Garey and D. Johnson. Computers and Intractability: a Guide to the Theory of NP-
Completeness. Freeman and Company, New York, 1979.

[117] D.C. Gijswijt, H.D. Mittelmann, and A. Schrijver. Semidefinite code bounds based on quadruple
distances. IEEE Transactions on Information Theory, 58(5):2697–2705, 2012.

[118] P. Gill, W. Murray, A. Saunders, J. Tomlin, and M. Wright. On projected Newton barrier meth-
ods for linear programming and an equivalence to Karmarkar’s projective method. Mathematical
Programming, 36:183–209, 1986.

[119] P.E. Gill. User’s Guide for SNOPT 5.3. Systems Optimization Laboratory, Department of EESOR,
Stanford University, California, February 1999.

[120] P.E. Gill. User’s guide for SNOPT version 7.2. Systems Optimization Laboratory, Stanford Uni-
versity, California, 2006.

BIBLIOGRAPHY 261

[121] H. Gluck. Almost all simply connected closed surfaces are rigid. In A. Dold and B. Eckmann,
editors, Geometric Topology, volume 438 of Lecture Notes in Mathematics, pages 225–239, Berlin,
1975. Springer.

[122] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme,
I. Monatshefte für Mathematik und Physik, 38:173–198, 1930.

[123] A. Goldberg and R. Tarjan. A new approach to the maximum flow problem. Journal of the ACM,
35:921–940, 1988.

[124] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,
1989.

[125] D. Gonçalves, A. Mucherino, C. Lavor, and L. Liberti. Recent advances on the interval distance
geometry problem. Journal of Global Optimization, 69:525–545, 2017.

[126] J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. AMS, 1993.

[127] M. Grötschel, L. Lovasz, and A. Schrijver. The ellipsoid method and its consequences in combina-
torial optimization. Combinatorica, 1(2):169–197, 1981.

[128] C. Guéret, C. Prins, and M. Sevaux. Applications of optimization with Xpress-MP. Dash Opti-
mization, Bilsworth, 2000.

[129] K. Hägglöf, P.O. Lindberg, and L. Svensson. Computing global minima to polynomial optimization
problems using Gröbner bases. Journal of Global Optimization, 7(2):115:125, 1995.

[130] M. Hall. Combinatorial Theory. Wiley, New York, 2nd edition, 1986.

[131] P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. Mathematical Pro-
gramming, 79:191–215, 1997.

[132] W. Hart, C. Laird, J.-P. Watson, and D. Woodruff. Pyomo — Optimization modelling in Python.
Springer, New York, 2012.

[133] T. Havel and K. Wüthrich. An evaluation of the combined use of nuclear magnetic resonance and
distance geometry for the determination of protein conformations in solution. Journal of Molecular
Biology, 182(2):281–294, 1985.

[134] C.A. Haverly. Studies of the behaviour of recursion for the pooling problem. ACM SIGMAP
Bulletin, 25:19–28, 1978.

[135] R. Helgason, J. Kennington, and H. Lall. A polynomially bounded algorithm for a singly constrained
quadratic program. Mathematical Programming, 18:338–343, 1980.

[136] L. Henkin, P. Suppes, and A. Tarski, editors. The axiomatic method with special reference to
geometry and physics. North-Holland, Amsterdam, 1959.

[137] Heron. Metrica, volume I. Alexandria, ∼50AD.

[138] H. Hijazi and L. Liberti. Constraint qualification failure in action. Operations Research Letters,
44:503–506, 2016.

[139] D. Hilbert. Grundlagen der Geometrie. Teubner, Leipzig, 1903.

[140] Roland Hildebrand. The extreme rays of the 5×5 copositive cone. Linear Algebra and its Applica-
tions, 437:1538–1547, 2012.

[141] D. Hochbaum. Complexity and algorithms for nonlinear optimization problems. 4OR, 3(3):171–216,
2005.

262 BIBLIOGRAPHY

[142] K. Holmström and M. Edvall. The tomlab optimization environment. In J. Kallrath, editor,
Modeling Languages in Mathematical Optimization, pages 369–376. Springer, Boston, 2004.

[143] H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
Educational Psychology, 24(6):417–441, 1933.

[144] IBM. ILOG CPLEX 12.6 User’s Manual. IBM, 2014.

[145] IBM. ILOG CPLEX 12.8 User’s Manual. IBM, 2017.

[146] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In Foundations of
Computer Science, volume 42 of FOCS, pages 10–33, Washington, DC, 2001. IEEE.

[147] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimen-
sionality. In Proceedings of the Symposium on the Theory Of Computing, volume 30 of STOC, pages
604–613, New York, 1998. ACM.

[148] P. Indyk and A. Naor. Nearest neighbor preserving embeddings. ACM Transactions on Algorithms,
3(3):Art. 31, 2007.

[149] B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Interior-point methodology for linear programming:
duality, sensitivity analysis and computational aspects. Technical Report 28, TU Delft, 1993.

[150] R. Jeroslow. There cannot be any algorithm for integer programming with quadratic constraints.
Operations Research, 21(1):221–224, 1973.

[151] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In
G. Hedlund, editor, Conference in Modern Analysis and Probability, volume 26 of Contemporary
Mathematics, pages 189–206, Providence, RI, 1984. AMS.

[152] I. Jolliffe. Principal Component Analysis. Springer, Berlin, 2nd edition, 2010.

[153] J. Jones. Universal diophantine equation. Journal of Symbolic Logic, 47(3):549–571, 1982.

[154] D. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. Journal of the ACM, 61(1):4,
2014.

[155] I. Kantor, J. Matoušek, and R. Šámal. Mathematics++: Selected topics beyond the basic courses.
Number 75 in Student Mathematical Library. AMS, Providence, RI, 2015.

[156] R. Karp. Reducibility among combinatorial problems. In R. Miller and W. Thatcher, editors,
Complexity of Computer Computations, volume 5 of IBM Research Symposia, pages 85–104, New
York, 1972. Plenum.

[157] P. Kesavan and P.I. Barton. Generalized branch-and-cut framework for mixed-integer nonlinear
optimization problems. Computers & Chemical Engineering, 24:1361–1366, 2000.

[158] R. Koenker. Quantile regression. CUP, Cambridge, 2005.

[159] B. Korte and J. Vygen. Combinatorial Optimization, Theory and Algorithms. Springer, Berlin,
2000.

[160] V. Kovačević-Vujčić, M. Čangalović, M. Ašić, L. Ivanović, and M. Dražić. Tabu search methodology
in global optimization. Computers and Mathematics with Applications, 37:125–133, 1999.

[161] S. Kucherenko, P. Belotti, L. Liberti, and N. Maculan. New formulations for the kissing number
problem. Discrete Applied Mathematics, 155(14):1837–1841, 2007.

[162] J.-B. Lasserre. An introduction to polynomial and semi-algebraic optimization. CUP, Cambridge,
2015.

BIBLIOGRAPHY 263

[163] M. Laurent. Matrix completion problems. In C. Floudas and P. Pardalos, editors, Encyclopedia of
Optimization, pages 1967–1975. Springer, New York, second edition, 2009.

[164] C. Lavor, L. Liberti, and N. Maculan. Computational experience with the molecular distance
geometry problem. In J. Pintér, editor, Global Optimization: Scientific and Engineering Case
Studies, pages 213–225. Springer, Berlin, 2006.

[165] C. Lavor, L. Liberti, and A. Mucherino. The interval Branch-and-Prune algorithm for the discretiz-
able molecular distance geometry problem with inexact distances. Journal of Global Optimization,
56:855–871, 2013.

[166] C. Lavor, A. Mucherino, L. Liberti, and N. Maculan. On the computation of protein backbones by
using artificial backbones of hydrogens. Journal of Global Optimization, 50:329–344, 2011.

[167] J. Lee and L. Liberti. On an SDP relaxation for kissing number. Optimization Letters, 14:417–422,
2020.

[168] J. Leech. The problem of the thirteen spheres. Mathematical Gazette, 40:22–23, 1956.

[169] L. Liberti. Reformulation and Convex Relaxation Techniques for Global Optimization. PhD thesis,
Imperial College London, UK, March 2004.

[170] L. Liberti. Reformulations in mathematical programming: Definitions and systematics. RAIRO-
RO, 43(1):55–86, 2009.

[171] L. Liberti. Reformulations in mathematical programming: Automatic symmetry detection and
exploitation. Mathematical Programming A, 131:273–304, 2012.

[172] L. Liberti. Symmetry in mathematical programming. In J. Lee and S. Leyffer, editors, Mixed
Integer Nonlinear Programming, volume 154 of IMA, pages 263–286. Springer, New York, 2012.

[173] L. Liberti. Mathematical programming bounds for kissing numbers. In A. Sforza and C. Sterle, ed-
itors, Optimization and Decision Science: Methodologies and Applications (AIRO-ODS17), volume
217 of Proceedings in Mathematics and Statistics, pages 213–222, New York, 2017. Springer.

[174] L. Liberti. Undecidability and hardness in mixed-integer nonlinear programming. RAIRO-
Operations Research, 53:81–109, 2019.

[175] L. Liberti. A new distance geometry method for constructing word and sentence vectors. In
Companion Proceedings of the Web Conference (DL4G Workshop), volume 20 of WWW, New York,
2020. ACM.

[176] L. Liberti. Distance geometry and data science. TOP, 28:271–339, 220.

[177] L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical programming: A com-
putational approach. In A. Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht, editors,
Foundations of Computational Intelligence Vol. 3, number 203 in Studies in Computational Intel-
ligence, pages 153–234. Springer, Berlin, 2009.

[178] L. Liberti and M. Dražic. Variable neighbourhood search for the global optimization of constrained
NLPs. In Proceedings of GO Workshop, Almeria, Spain, 2005.

[179] L. Liberti and S. Kucherenko. Comparison of deterministic and stochastic approaches to global
optimization. International Transactions in Operational Research, 12:263–285, 2005.

[180] L. Liberti and C. Lavor. On a relationship between graph realizability and distance matrix com-
pletion. In A. Migdalas, A. Sifaleras, C. Georgiadis, J. Papathanaiou, and E. Stiakakis, editors,
Optimization theory, decision making, and operational research applications, volume 31 of Proceed-
ings in Mathematics & Statistics, pages 39–48, Berlin, 2013. Springer.

264 BIBLIOGRAPHY

[181] L. Liberti and C. Lavor. Six mathematical gems in the history of distance geometry. International
Transactions in Operational Research, 23:897–920, 2016.

[182] L. Liberti and C. Lavor. Euclidean Distance Geometry: An Introduction. Springer, New York,
2017.

[183] L. Liberti, C. Lavor, J. Alencar, and G. Abud. Counting the number of solutions of kDMDGP
instances. In F. Nielsen and F. Barbaresco, editors, Geometric Science of Information, volume
8085 of LNCS, pages 224–230, New York, 2013. Springer.

[184] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean distance geometry and applications.
SIAM Review, 56(1):3–69, 2014.

[185] L. Liberti, C. Lavor, A. Mucherino, and N. Maculan. Molecular distance geometry methods: from
continuous to discrete. International Transactions in Operational Research, 18:33–51, 2010.

[186] L. Liberti, N. Maculan, and S. Kucherenko. The kissing number problem: a new result from global
optimization. In L. Liberti and F. Maffioli, editors, CTW04 Workshop on Graphs and Combinatorial
Optimization, volume 17 of Electronic Notes in Discrete Mathematics, pages 203–207, Amsterdam,
2004. Elsevier.

[187] L. Liberti and F. Marinelli. Mathematical programming: Turing completeness and applications to
software analysis. Journal of Combinatorial Optimization, 28(1):82–104, 2014.

[188] L. Liberti, N. Mladenović, and G. Nannicini. A recipe for finding good solutions to MINLPs.
Mathematical Programming Computation, 3:349–390, 2011.

[189] L. Liberti and C. Pantelides. Convex envelopes of monomials of odd degree. Journal of Global
Optimization, 25:157–168, 2003.

[190] L. Liberti and C. Pantelides. An exact reformulation algorithm for large nonconvex NLPs involving
bilinear terms. Journal of Global Optimization, 36:161–189, 2006.

[191] L. Liberti, G. Swirszcz, and C. Lavor. Distance geometry on the sphere. In J. Akiyama and et al.,
editors, JCDCG2, volume 9943 of LNCS, pages 204–215, New York, 2016. Springer.

[192] L. Liberti and K. Vu. Barvinok’s naive algorithm in distance geometry. Operations Research Letters,
46:476–481, 2018.

[193] C. Ling, J. Nie, L. Qi, and Y. Ye. Biquadratic optimization over unit spheres and semidefinite
programming relaxations. SIAM Journal on Optimization, 20(3):1286–1310, 2009.

[194] M. Locatelli. Simulated annealing algorithms for global optimization. In Pardalos and Romeijn
[242], pages 179–229.

[195] M. Locatelli and U. Raber. On convergence of the simplicial branch-and-bound algorithm based
on ω-subdivisions. Journal of Optimization Theory and Applications, 107(1):69–79, October 2000.

[196] M. Locatelli and F. Schoen. Random linkage: a family of acceptance/rejection algorithms for global
optimization. Mathematical Programming, 85(2):379–396, 1999.

[197] J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of
the International Symposium of Computer-Aided Control Systems Design, volume 1 of CACSD,
Piscataway, 2004. IEEE.

[198] R. Lougee-Heimer. The common optimization interface for operations research: Promoting open-
source software in the operations research community. IBM Journal of Research and Development,
47(1):57–66, 2003.

[199] L. Lovasz. Combinatorial problems and exercises. North-Holland, Amsterdam, 1993.

BIBLIOGRAPHY 265

[200] S. Lucidi and M. Piccioni. Random tunneling by means of acceptance-rejection sampling for global
optimization. Journal of Optimization Theory and Applications, 62(2):255–277, 1989.

[201] R. Lyndon. Notes on logic. Number 6 in Mathematical Studies. Van Nostrand, New York, 1966.

[202] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Proc. 5th
Berkeley symposium on mathematical statistics and probability, volume 1, pages 281–297. University
of California Press, 1967.

[203] N. Maculan, P. Michelon, and J. MacGregor Smith. Bounds on the kissing numbers in Rn: Mathe-
matical programming formulations. Technical report, University of Massachusetts, Amherst, USA,
1996.

[204] A. Majumdar, A. Ahmadi, and R. Tedrake. Control and verification of high-dimensional systems
with dsos and sdsos programming. In Conference on Decision and Control, volume 53, pages
394–401, Piscataway, 2014. IEEE.

[205] A. Makhorin. GNU Linear Programming Kit. Free Software Foundation,
http://www.gnu.org/software/glpk/, 2003.

[206] C. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT Press,
Cambridge, MA, 1999.

[207] The MathWorks, Inc., Natick, MA. MATLAB R2014a, 2014.

[208] The MathWorks, Inc., Natick, MA. MATLAB R2017a, 2017.

[209] Y. Matiyasevich. Enumerable sets are diophantine. Soviet Mathematics: Doklady, 11:354–357,
1970.

[210] J. Matoušek. On variants of the Johnson-Lindenstrauss lemma. Random Structures and Algorithms,
33:142–156, 2008.

[211] J. Matoušek. Lecture notes on metric embeddings. Technical report, ETH Zürich, 2013.

[212] T. Matsui. NP-hardness of linear multiplicative programming and related problems. Journal of
Global Optimization, 9:113–119, 1996.

[213] J. Maxwell. On reciprocal figures and diagrams of forces. Philosophical Magazine, 27(182):250–261,
1864.

[214] G.P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I —
Convex underestimating problems. Mathematical Programming, 10:146–175, 1976.

[215] N. Megiddo. On the complexity of polyhedral separability. Discrete and Computational Geometry,
3:325–337, 1988.

[216] K. Mehlhorn and P. Sanders. Algorithms and Data Structures. Springer, Berlin, 2008.

[217] L. Mencarelli, Y. Sahraoui, and L. Liberti. A multiplicative weights update algorithm for MINLP.
EURO Journal on Computational Optimization, 5:31–86, 2017.

[218] K. Menger. Untersuchungen über allgemeine Metrik. Mathematische Annalen, 100:75–163, 1928.

[219] K. Menger. New foundation of Euclidean geometry. American Journal of Mathematics, 53(4):721–
745, 1931.

[220] K. Menger, editor. Ergebnisse eines Mathematischen Kolloquiums. Springer, Wien, 1998.

[221] J. Milnor. On the Betti numbers of real varieties. Proceedings of the AMS, 15:275–280, 1964.

266 BIBLIOGRAPHY

[222] J. Milnor. Topology from the differentiable viewpoint. University Press of Virginia, Charlottesville,
1969.

[223] M. Minsky. Size and structure of universal turing machines using tag systems. In Recursive Function
Theory, volume 5 of Symposia in Pure Mathematics, pages 229–238. AMS, Providence, RI, 1962.

[224] R. Misener and C. Floudas. Global optimization of large-scale generalized pooling problems:
quadratically constrained MINLP models. Industrial Engineering and Chemical Research, 49:5424–
5438, 2010.

[225] H. Mittelmann and F. Vallentin. High-accuracy semidefinite programming bounds for kissing num-
bers. Experimental Mathematics, 19(2):175–179, 2010.

[226] A. Moitra. Algorithmic aspects of Machine Learning. CUP, Cambridge, 2018.

[227] R. Montague. Universal grammar. Theoria, 36(3):373–398, 1970.

[228] R. Montague. Formal Philosophy. Yale University Press, London, 1974.

[229] R.E. Moore, R.B. Kearfott, and M.J. Cloud. Introduction to Interval Analysis. SIAM, Philadelphia,
2009.

[230] J. Moré and Z. Wu. Distance geometry optimization for protein structures. Journal of Global
Optimization, 15:219–234, 1999.

[231] T. Motzkin and E. Straus. Maxima for graphs and a new proof of a theorem of Turán. Canadian
Journal of Mathematics, 17:533–540, 1965.

[232] A. Mucherino, C. Lavor, L. Liberti, and N. Maculan, editors. Distance Geometry: Theory, Methods,
and Applications. Springer, New York, 2013.

[233] M. Muller. A note on a method for generating points uniformly on n-dimensional spheres. Com-
munications of the ACM, 2(4):19–20, 1959.

[234] K. Murty and S. Kabadi. Some NP-complete problems in quadratic and nonlinear programming.
Mathematical Programming, 39:117–129, 1987.

[235] O. Musin. The kissing number in four dimensions. Annals of Mathematics, 168:1–32, 2008.

[236] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, New York,
1988.

[237] A. Odlyzko and N. Sloane. New bounds on the number of unit spheres that can touch a unit sphere
in n dimensions. Journal of Combinatorial Theory A, 26:210–214, 1979.

[238] M. Padberg. Classical cuts for mixed-integer programming and branch-and-cut. Annals of Opera-
tions Research, 139:321–352, 2005.

[239] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Dover,
New York, 1998.

[240] P. Pardalos and S. Vavasis. Quadratic Programming with one negative eigenvalue is NP-hard.
Journal of Global Optimization, 1:15–22, 1991.

[241] P. Pardalos and S. Vavasis. Open questions in complexity theory for numerical optimization.
Mathematical Programming, 57:337–339, 1992.

[242] P.M. Pardalos and H.E. Romeijn, editors. Handbook of Global Optimization, volume 2. Kluwer
Academic Publishers, Dordrecht, 2002.

[243] P.M. Pardalos and G. Schnitger. Checking local optimality in constrained quadratic programming
is NP-hard. Operations Research Letters, 7(1):33–35, February 1988.

BIBLIOGRAPHY 267

[244] A. Pfeffer. Practical Probabilistic Programming. Manning Publications, Shelter Island, NY, 2016.

[245] F. Pfender. Improved delsarte bounds for spherical codes in small dimensions. Journal of Combi-
natorial Theory A, 114(6):1133–1147, 2007.

[246] N.-T. Pham. Quantile regression in large energy datasets. Master’s thesis, LIX, Ecole Poltyechnique,
2018.

[247] F. Potra and S. Wright. Interior-point methods. Journal of Computational and Applied Mathemat-
ics, 124:281–302, 2000.

[248] C. Pugh. Real Mathematical Analysis. Springer, Berlin, 2002.

[249] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2015.

[250] D. Ratz and T. Csendes. On the selection of subdivision directions in interval branch-and-bound
methods for global optimization. Journal of Global Optimization, 7:183–207, 1995.

[251] R. Reams, G. Chatham, W. Glunt, D. McDonald, and T. Hayden. Determining protein structure
using the distance geometry program APA. Computers and Chemistry, 23:153–163, 1999.

[252] J. Renegar and M. Shub. Unified complexity analysis for Newton LP methods. Mathematical
Programming, 53:1–16, 1992.

[253] Y. Roghozin. Small universal Turing machines. Theoretical Computer Science, 168:215–240, 1996.

[254] N. Rojas and F. Thomas. Application of distance geometry to tracing coupler curves of pin-jointed
linkages. Journal of Mechanisms and Robotics, 5(2):021001, 2013.

[255] H.S. Ryoo and N.V. Sahinidis. Global optimization of nonconvex NLPs and MINLPs with appli-
cations in process design. Computers & Chemical Engineering, 19(5):551–566, 1995.

[256] M. Saerens, F. Fouss, L. Yen, and P. Dupont. The principal components analysis of a graph, and its
relationships to spectral clustering. In J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi,
editors, Proceedings of the European Conference in Machine Learning (ECML), volume 3201 of
LNAI, pages 371–383, Berlin, 2004. Springer.

[257] G. Sagnol. PICOS: A Python Interface for Conic Optimization Solvers. Zuse Institut Berlin, 2016.

[258] S. Sahni. Computationally related problems. SIAM Journal on Computing, 3(4):262–279, 1974.

[259] E. Salgado, A. Scozzari, F. Tardella, and L. Liberti. Alternating current optimal power flow with
generator selection. In J. Lee, G. Rinaldi, and R. Mahjoub, editors, Combinatorial Optimization
(Proceedings of ISCO 2018), volume 10856 of LNCS, pages 364–375, 2018.

[260] A. Báez Sánchez and C. Lavor. On the estimation of unknown distances for a class of Euclidean
distance matrix completion problems with interval data. Linear Algebra and its Applications,
592:287–305, 2020.

[261] T. Sarlós. Improved approximation algorithms for large matrices via random projections. In
Proceedings of the Annual IEEE Symposium on Foundations of Computer Science, volume 47 of
FOCS, pages 143–152, Washington, 2006. IEEE.

[262] J. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. Proceedings of 17th
Allerton Conference in Communications, Control and Computing, pages 480–489, 1979.

[263] T. Schlick. Molecular modelling and simulation: an interdisciplinary guide. Springer, New York,
2002.

[264] F. Schoen. Two-phase methods for global optimization. In Pardalos and Romeijn [242], pages
151–177.

268 BIBLIOGRAPHY

[265] I. Schoenberg. Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe
d’espaces distanciés vectoriellement applicable sur l’espace de Hilbert". Annals of Mathematics,
36(3):724–732, 1935.

[266] I. Schoenberg. Positive definite functions on spheres. Duke Mathematical Journal, 9(1):96–108,
1942.

[267] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, 1986.

[268] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin, 2003.

[269] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning. CUP, New York, 2014.

[270] C. Shannon. A universal Turing machine with two internal states. In C. Shannon and J. McCarthy,
editors, Automata Studies, volume 34 of Annals of Mathematics Studies, pages 157–165, Princeton,
NJ, 1956. Princeton University Press.

[271] J.P. Shectman and N.V. Sahinidis. A finite algorithm for global minimization of separable concave
programs. Journal of Global Optimization, 12:1–36, 1998.

[272] H. Sherali and W. Adams. A hierarchy of relaxations and convex hull characterizations for mixed-
integer zero-one programming problems. Discrete Applied Mathematics, 52:83–106, 1994.

[273] H. Sherali and P. Driscoll. Evolution and state-of-the-art in integer programming. Journal of
Computational and Applied Mathematics, 124:319–340, 2000.

[274] A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied and
Computational Harmonic Analysis, 30:20–36, 2011.

[275] E. Smith. On the Optimal Design of Continuous Processes. PhD thesis, Imperial College of Science,
Technology and Medicine, University of London, October 1996.

[276] E. Smith and C. Pantelides. A symbolic reformulation/spatial branch-and-bound algorithm for the
global optimisation of nonconvex MINLPs. Computers & Chemical Engineering, 23:457–478, 1999.

[277] J.-L. Starck, M. Elad, and D. Donoho. Image decomposition via the combination of sparse repre-
sentations and a variational approach. IEEE Transactions on Image Processing, 14(10):1570–1582,
2005.

[278] H. Steinhaus. Sur la division des corps matériels en parties. Bulletin de l’Académie Polonaise des
Sciences Cl. III, 4(12):801–804, 1956.

[279] D. Steinley. K-means clustering: A half-century synthesis. British Journal of Mathematical and
Statistical Psychology, 59:1–34, 2006.

[280] P. Szabłowski. Uniform distributions on spheres in finite dimensional lα and their generalizations.
Journal of Multivariate Analysis, 64:103–117, 1998.

[281] G. Szpiro. Newton and the kissing problem. Plus magazine (online), 23, January 2003.

[282] H.A. Taha. Operations Research: An Introduction. MacMillan, New York, 1992.

[283] A. Tarski. A decision method for elementary algebra and geometry. Technical Report R-109, Rand
Corporation, 1951.

[284] M. Tawarmalani and N.V. Sahinidis. Global optimization of mixed integer nonlinear programs: A
theoretical and computational study. Mathematical Programming, 99:563–591, 2004.

[285] M. Tawarmalani and N.V. Sahinidis. Convexification and global optimization of the pooling prob-
lem. Mathematical Programming, (submitted).

BIBLIOGRAPHY 269

[286] J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290:2319–2322, 2000.

[287] A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society, 42(1):230–265, 1937.

[288] H. Tuy. Convex Analysis and Global Optimization. Kluwer Academic Publishers, Dordrecht, 1998.

[289] F. Vanderbeck. Branching in branch-and-price: a generic scheme. Mathematical Programming A,
130:249–294, 2011.

[290] P. Varignon. Nouvelle Mécanique. Claude Jombert, Paris, 1725.

[291] S. Vavasis. Quadratic programming is in NP. Information Processing Letters, 36:73–77, 1990.

[292] S. Vavasis. Complexity issues in global optimization: A survey. In R. Horst and P.M. Pardalos,
editors, Handbook of Global Optimization, volume 1, pages 27–41. Kluwer Academic Publishers,
Dordrecht, 1995.

[293] S. Vavasis and R. Zippel. Proving polynomial-time for sphere-constrained quadratic programming.
Technical Report 90-1182, Dept. of Comp. Sci., Cornell University, 1990.

[294] S.A. Vavasis. Nonlinear Optimization: Complexity Issues. Oxford University Press, Oxford, 1991.

[295] S. Vempala. The Random Projection Method. Number 65 in DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science. AMS, Providence, RI, 2004.

[296] S. Venkatasubramanian and Q. Wang. The Johnson-Lindenstrauss transform: An empirical study.
In Algorithm Engineering and Experiments, volume 13 of ALENEX, pages 164–173, Providence,
RI, 2011. SIAM.

[297] R. Vershynin. High-dimensional probability. CUP, Cambridge, 2018.

[298] R. Vidal, Y. Ma, and S. Sastry. Generalized Principal Component Analysis. Springer, New York,
2016.

[299] V. Visweswaran and C. A. Floudas. New formulations and branching strategies for the GOP
algorithm. In I.E. Grossmann, editor, Global Optimization in Engineering Design. Kluwer Academic
Publishers, Dordrecht, 1996.

[300] K. Vu, P.-L. Poirion, C. D’Ambrosio, and L. Liberti. Random projections for quadratic programs
over a Euclidean ball. In A. Lodi and et al., editors, Integer Programming and Combinatorial
Optimization (IPCO), volume 11480 of LNCS, pages 442–452, New York, 2019. Springer.

[301] K. Vu, P.-L. Poirion, and L. Liberti. Random projections for linear programming. Mathematics of
Operations Research, 43(4):1051–1071, 2018.

[302] K. Vu, P.-L. Poirion, and L. Liberti. Gaussian random projections for Euclidean membership
problems. Discrete Applied Mathematics, 253:93–102, 2019.

[303] Wikipedia. Principal component analysis, 2019. [Online; accessed 190726].

[304] Wikipedia. Random variable, 2020. [Online; accessed 201023].

[305] H.P. Williams. Model Building in Mathematical Programming. Wiley, Chichester, 4th edition, 1999.

[306] C. Witzgall. An all-integer programming algorithm with parabolic constraints. Journal of the
Society of Industrial and Applied Mathematics, 11:855–870, 1963.

[307] L.A. Wolsey. Integer Programming. Wiley, New York, 1998.

270 BIBLIOGRAPHY

[308] D. Woodruff. Sketching as a tool for linear algebra. Foundations and Trends in Theoretical Computer
Science, 10(1-2):1–157, 2014.

[309] D. Wu, Z. Wu, and Y. Yuan. Rigid versus unique determination of protein structures with geometric
buildup. Optimization Letters, 2(3):319–331, 2008.

[310] K. Wüthrich. Protein structure determination in solution by nuclear magnetic resonance spec-
troscopy. Science, 243:45–50, 1989.

[311] Y. Yemini. The positioning problem — a draft of an intermediate summary. In Proceedings of
the Conference on Distributed Sensor Networks, pages 137–145, Pittsburgh, 1978. Carnegie-Mellon
University.

[312] K. Yu, Z. Lu, and J. Stander. Quantile regression: applications and current research areas. The
Statistician, 52(3):331–350, 2003.

[313] L. Zhang, M. Mahdavi, R. Jin, T. Yang, and S. Zhu. Recovering the optimal solution by dual
random projection. In S. Shalev-Shwartz and I. Steinwart, editors, Conference on Learning Theory
(COLT), volume 30 of Proceedings of Machine Learning Research, pages 135–157. ⟨jmlr.org⟩, 2013.

[314] W. Zhu. Unsolvability of some optimization problems. Applied Mathematics and Computation,
174:921–926, 2006.

jmlr.org

Index

P, 77, 79
2-Linear Separability, 80
clique, 83
set partition, 80
NP-complete, 78–80

strongly, 74
NP-hard, 74, 77, 79

strongly, 74, 75, 83
weakly, 74

NP-hardness
reduction, 82
weak, 76

2D, 231
2LS, 80
3D, 231
3sat, 81
3sat, 76

Aaronson, S., 202
abscissa, 27
absolute

value, 107
acceleration

device, 133, 135
accuracy, 135
active, 76
acute, 93
adjacency

structure, 151
adjoint, 107
affine

hull, 88
independence, 117

algebra
linear, 206
symbolic, 204

algebraic, 60, 61, 82
form, 133

algebraically closed field, 64
algorithm, 33, 40, 69, 123, 129, 172

accelerated, 135
approximation, 206, 210
B&S, 135
BB, 139, 221
calling, 130
checking, 84
complex, 130
correct, 109
cutting

plane, 119
cycle, 103
deterministic

GO, 130
Dijkstra, 74

efficient, 84
ellipsoid, 106, 109
enumeration, 67
exact, 221
execution, 106
Floyd-Warshall, 157
generic, 108
GO, 131
heuristic, 129
independence of, 222
Karmarkar, 110, 111
local, 84
optimization, 129
polytime, 70, 76
probabilistic, 176, 177, 206
pseudopolynomial, 74, 76
recognition, 30, 33
sBB, 139, 145
stochastic, 130
symbolic, 142
Tarski, 63, 67
terminate, 140
terminates, 104, 105, 109, 138
termination, 69, 103
Witzgall, 67

algorithmic
framework, 14
performance, 134

algorithmics, 34
alphabet, 29, 59, 69, 71

size, 69
ambiguity, 19
amount

total, 19
AMPL, 40, 49–51

dat
syntax, 53

executable, 49
format, 53
GUI, 49
imperative, 50
namespace, 53
snippet, 55

analysis
algorithmic, 177
convex, 87
formulation-based, 222
polyhedral, 117
polytime, 84
symbolic, 140
worst-case, 115

angle, 233, 234, 237
largest, 93
non-obtuse, 174

271

272 INDEX

obtuse, 93
ANN, 151
application

field, 11
approach

algorithmic, 129
escaping, 132

approximation, 108, 172, 176
additive, 212
bfs, 108
error, 177

bound, 212
good, 150, 193, 195
guarantee, 206, 207, 210, 215, 220, 221
linear, 111
multiplicative, 212
outer, 174
poor, 131
precision, 108
quadratic, 129, 130
rounding, 108
theorem, 212

arc, 41
antiparallel, 118
capacity, 118

architecture, 154
area, 27

triangle, 154
arithmetic

index, 22
arithmetical expression, 30
arity, 30, 142

ero, 31
positive, 30
zero, 32

array, 31
ascending chain, 62
assigment, 13
assignment, 20, 23, 25, 33, 34, 42

binary, 216
constraint, 21, 24
optimal, 20
problem, 20
variable, 217

associativity, 142
asymptotically, 221
atom, 28, 151
attraction

basin, 235
average, 177, 204
axiomatization, 152
axis, 27

B&C, 126, 133
B&S, 133, 139

convergence, 135
fathoming, 136

back-substitution, 61, 62
ball, 47, 88, 95

ℓ1, 191
central, 237
surrounding, 232, 234

barrier
self-concordant, 84
solver, 106

barrier method, 184
Barvinok, 177

naive algorithm, 176, 201
barycenter, 28
base

circular, 27
basic, 105

column, 100, 104, 119
feasible

solution, 100
solution

primal, 105
variabkle, 115
variable, 100, 104

index, 104
basis, 100, 102–104, 106, 107, 115, 120, 210

current, 105, 119, 120
enter, 121
enters, 103
exists, 104
exit, 121
leaves, 103
new, 103
optimal, 105
orthogonal, 174
standard, 175, 191

basis pursuit, 191, 211
battery, 149, 150

power, 150
battery consumption, 150
Bayesian, 131
BB, 38, 62, 115, 125, 131, 133

implementation, 125, 135
spatial, 139
subproblem, 126
terminates, 125

Bell number, 221
best solution, 137
bfs, 100–103, 105, 107, 108, 115

approximation, 108
current, 102, 104
multiple, 100, 101
optimal, 108, 112
starting, 103, 105

big M, 44
bijection, 100
bilinear, 143
bilinear programming, 80
binary, 232

operator, 142
value, 211

binary optimum, 81
binary string, 70
bioinformatics, 154
biquadratic

form, 83
biquadratic form, 83
bisection

search, 108, 110, 129
termination, 108

bit, 73, 74
storage, 110
value, 211

black-box optimization, 77
blending, 13, 17

INDEX 273

problem, 46
block

structure, 185
block-structured

formulation, 185
BLP, 42
body, 215
BonMin, 49
boolean, 74
bound, 18, 125, 128, 140, 178, 214, 219, 226, 227,

236, 241
achievable, 96
below, 107
computational, 240
continuous, 128
Delsarte, 240, 241
error, 177
formula, 241
from above, 237
improvement, 241
intersection, 209
Lagrangean, 128
lower, 96, 105, 125, 127, 135, 136, 138, 140,

141, 145, 235
best, 97
guaranteed, 61, 142
initial, 140
lowest, 125
maximum, 96
smallest, 141
valid, 136

Pfender, 240
probabilistic, 176
product, 124
quality, 241
sequence, 135
shadow, 236
slack, 236
tight, 175, 213
tightening, 140, 141
tighter, 141
union, 177, 201, 202
upper, 107, 123, 125, 126, 135, 136, 140, 141,

145, 234, 235, 237, 239
best, 135

validity, 241
variable, 28

bounded, 44, 87, 92, 101, 102, 123, 168
above, 107, 108
below, 97
instance, 107

boundedness, 66, 107
certification, 35

box constraints, 76
BPP, 80
brackets, 30
branch, 70, 125, 126, 145

rule, 134
tree, 70

Branch-and-Bound, 38, 115
Branch-and-Cut, 126
Branch-and-Price, 126
Branch-and-Select, 133
branched, 125
branching, 137, 138, 145

point, 146
rule, 140
strategy, 145
variable, 125, 146

additional, 145
original, 145

Buchberger’s algorithm, 61
budget, 15
bug, 15, 19

canonical
form, 119

capacity, 13, 23, 26
carbon, 151
cardinality, 45, 106, 118, 216, 217, 241

maximum, 78, 79
Cauchy-Schwartz

inequality, 214
cell, 72
center, 27
centre, 109
centroid, 159, 215–217, 221
certificate, 70, 82, 167

compact, 84
polynomial, 76, 81

channel, 189, 190
noisy, 211

character, 29
characterization

unique, 112
well-defined, 113

chordal network, 62
Church’s thesis, 59
Church, A., 59
Chvátal

cut, 119
first-order, 118
second-level, 119

circle
equal, 27
packing, 14, 55

classification, 35
clause, 63, 74, 76
clique, 118

maximal, 79
maximum, 78

clique, 70, 79
clique number, 78
clock, 149, 150
clock synchronization, 149
closed, 92, 101, 102
closure, 118, 119, 124

affine, 88
conic, 88
linear, 87
RLT, 124

clusre
convex, 88

cluster, 45, 132, 214–217, 220, 221, 225, 227
analysis, 214
cardinality, 216
indicator, 227
non-empty, 216
number, 216
pair, 215

274 INDEX

point
nearby, 132

clustering, 45, 132, 133, 202, 215, 217, 219
initial, 215
optimal, 217
plane, 221

cMINLP, 37, 62, 216, 218–220
reformulation, 216
solver, 219

CNF, 74, 76
cNLP, 37, 38, 62, 83, 84, 97, 129, 171

linear part, 38
co-domain, 60
co-NP-hard, 81
code, 34, 237

binary, 241
error correcting, 233
spherical, 233, 234, 237, 239, 241

coding
practice, 15

coefficient, 101, 102
nonzero, 116

COIN-OR, 33
collinear, 92, 93
column, 100, 102–104, 116, 120, 182

basic, 100, 109, 119
current, 119
empty, 184
entering, 122
equal, 184
generation, 106, 126, 175
index, 178, 210
nonbasic, 100, 104
orthogonal, 227
partition, 100, 103
set, 103
stacking, 178
vector, 178
zero, 184

combination
affine, 88
conic, 88, 92
convex, 88, 101

strict, 88, 100
linear, 87, 90, 102, 182

random, 210
combinatorics, 115
command-line

workflow, 49
communication

line, 189, 190
commutativity, 171
complement, 67
complementarity

condition, 112
complementary

slackness, 94
strictly, 112

complete, 64
completeness, 64
completeness theorem

Gödel, 64
completion

time, 20
complex, 67

number, 155
complexity, 172

computational, 69, 131
description, 84
exponential, 62, 133
polynomial, 106, 111, 118
polytime, 111
worst-case, 69

complexity class, 60
component, 16, 28, 52, 82, 104, 107, 119, 193

connected, 168
diagonal, 207
fractionary, 125
integer, 115, 116
irrational, 167
nonzero, 78, 101
principal, 162
rational, 107, 167
solution, 53
unreliable, 131
zero, 78, 190

componentwise, 218
compressed sensing, 190
computability, 59
computable, 60
computation

irrational, 110
practical, 115

computation model, 59, 60, 74
TM, 61

computational
complexity, 69

computational complexity, 38, 77, 81
computational geometry, 80
computationally

expensive, 145
computationl model, 66
computing model, 59
concave, 21, 145

objective, 171
concentration of measure, 177
concurrent, 70
condition, 24

boolean, 20
boundary, 24
complementarity, 112
first-order, 82
KKT, 82, 112, 129
necessary, 89, 90
non-negativity, 83
optimality, 102, 118
second-order, 82
sufficiency, 95
sufficient, 89, 116
termination, 113, 128

cone, 88, 171, 174
border, 84
boundary, 84
convex, 84
copositive, 84
DD

dual, 174
descent, 191
dual, 84, 174
finitely generated, 174

INDEX 275

matrix, 84, 175
membership, 31
pointed, 209
PSD, 84, 171, 172

configuration, 234
kissing, 231
sphere, 235

congruence, 167, 168
invariant, 28

congruent
approximately, 201

conic
combination, 88
techniques, 149

conic solver, 38
conjunction, 31, 63, 76

literal, 63
conjunctive normal form, 74
connected, 157

strongly, 73
connected component, 63
connected components, 67
console, 50
constant, 37, 43, 78, 176, 177, 201, 208, 222, 234

function, 204
large, 123
numerical, 15
positive, 238
real, 63
universal, 206, 209, 210, 212, 213, 222

constraint, 21, 25, 31, 35, 43, 50, 51, 53, 75, 79,
95, 106, 110, 112, 115, 118, 120, 123, 124,
169, 214, 240

≥, 238
active, 76, 94
adjoin, 110, 118, 120, 123
aggregation, 96
allocation, 25
assignment, 21
ball, 207
bilinear, 123
boolean, 21
bound, 143
box, 76
capacity, 23
centroid, 216
coefficient, 105
complicating, 127
conditional, 44
convex, 77, 142, 171, 219, 220
defining, 142–144, 171, 218, 221
demand, 26
disjunctive, 122
distance, 234
dual, 96, 238
equality, 36, 51, 91, 95, 114, 144
equation, 120, 216
factor, 124
factorable, 141
finite, 238
finitely

many, 240
functional, 31, 43
generated, 124
gradient, 91

implicit, 31, 32, 43
implied, 33
index, 109
inequality, 36, 80, 91, 94, 95, 119
integrality, 21, 23, 31–33, 37, 44, 115
LHS, 141
linear, 87, 117, 141, 173, 219
linearized, 129, 131
list, 16
matrix, 100, 115, 117, 210
MILP, 72
non-negativity, 41, 46, 78, 80
nonconvex, 170
nonlinear, 141
nonnegativity, 23, 211
norm, 77
number, 101, 110
original, 144
orthant, 111
precedence, 43
primal, 96
problematic, 33
qualification, 97, 131
range, 18, 31, 41
redundant, 33
reformulation, 81
removal, 217
RHS, 110
SDP, 32
set, 83
side, 169, 185, 216
simplex, 78, 83
single-row, 16
string, 32
structure, 216
technical, 15, 16
trivial, 15

forgotten, 19
unmentioned, 21
valid, 121
violated, 109
violation, 241
weighted sum, 97

constraints, 171
constriant

adjoin, 125
infinitely many, 241

continuous
relaxation

solution, 120
continuous knapsack, 77
contradiction, 63, 108, 165
convergence, 131, 132, 135

finite, 135
convergent, 134
convex, 37, 83, 87, 88, 92, 103, 142, 145, 212, 213

analysis, 87
combination, 84, 117
cone, 171
constraints, 171
function, 88, 136
hull, 83, 88, 117, 118, 124, 127, 128
quadratic

approximation, 130
relaxation, 140

276 INDEX

set, 88, 171
smallest, 144

set intersection, 87
strictly, 195
term, 216

convex analysis, 88
convex cone, 84
convexification, 142, 144
convexity, 89, 92, 101

strict, 83
strong, 83
variant, 95

coordinate, 27
change, 90
Euclidean, 47
polar, 234

copositive
programming, 84

copositive matrix, 83
copositivity, 81, 84
correctness, 111
correlation

zero, 161
cosine, 233
cost, 18, 26, 47

communication, 42
competitive, 97
computational, 106, 141
decreasing

direction, 102
least, 41
minimization, 46
net, 46
reduced, 103, 106, 121

negative, 103
nonnegative, 105

set-up, 13, 26
transportation, 47
unit, 23
vector, 51, 100

Couenne, 49
countable, 168
countably infinite, 36
countably many, 36
couple, 45
cover, 134
covering, 13, 26
CPLEX, 33, 49
CPU

time, 139
limit, 131, 132

cQKP, 77
cQP, 76, 79, 212
crash, 131
critical point

constrained, 90
crossover, 184
curve

piecewise linear, 80
cut, 118, 120, 122, 238

Chvátal, 119
disjunctive, 122
family, 118
generation, 119
Gomory, 119–122

hierarchy, 118, 124
new, 120
nontrivial, 118
redundant, 238
RLT, 124
valid, 106, 115, 118, 120, 123, 237, 238

cutting
plane, 106, 117, 126

algorithm, 119
cycle, 165, 168

disjoint, 118
simple, 165

cylinder, 27, 63
cylindrical decomposition, 63

DAG, 30
expression, 30

Dantzig, 99
data, 50, 201

dense, 38
incomplete, 154
irrelevant, 19
knowledge

prior, 185
noisy, 154, 169
numerical, 50
packet, 150
pattern, 189
sparse, 38
structure, 106
wrong, 169

data matrix, 162
data science, 177, 215
data structure, 31
database, 183, 202

field
unfilled, 184

table, 184
DD, 172

matrix, 172
DDP, 173

dual, 175
formulation, 174
primal, 175

DE, 64, 66
exponential, 65
quadratic, 66
system, 64
universal, 66

decidability, 64
efficient, 83

decidable, 60, 74
incomplete, 64

decision, 60
algorithm, 64
problem, 166
procedure, 63
variable, 18, 21

vector, 129
decision problem, 59, 69, 77
decision variable, 31, 32

assignment, 42
declaration

instruction, 52
declarative, 34

INDEX 277

decoding, 211
decomposable

nearly, 127
decomposition

spectral, 158, 160, 161, 171, 176, 178
definition

formal, 34
degeneracy, 101, 184
degenerate, 101, 102

vertex, 101
degree, 83, 238, 241

increasing, 238
maximum, 124
odd, 83

Delsarte, 240
Delsarte’s LP, 239
demand, 13, 24–26, 41, 46

satisfaction, 22–24, 26
denominator, 107, 108, 115, 216
dense, 38, 202

LP, 183, 189
density, 183, 192

Gaussian, 177
large, 184

derivative
directional, 90
partial, 90
second, 82
zero, 204

descent
direction, 91, 114
local, 215

description, 117
compact, 84

determinant, 107, 115, 116
deterministic, 139

algorithm, 130
device, 150

mobile, 150
DG, 149

sphere, 153
DGP, 150, 156, 157, 163, 164, 166, 171, 174, 176,

178
instance, 165–167
number of solutions, 167
solution, 168
solution methods, 169

diagonal, 67, 77, 116, 226
diagonalization, 62
diet problem, 40
diffeomorphism, 90
differentiable, 95

continuously, 90
digit, 61
digraph, 41, 42

infinite, 73
reduction, 73
strongly connected, 73

Dijkstra’s algorithm, 74
dimension, 28, 155, 234, 238

loss, 202
projected, 221
search

space, 131
small, 84

target, 202
dimensionality

increase, 204
reduction, 161, 162, 176, 178, 201

diophantine equation, 64
directed acyclic graph, 30
direction, 165

cooordinate, 145
descent, 94, 111
feasible, 94
improving, 104
optimization, 35, 236

unbounded, 35
vector, 129

discrepancy, 177
discretization, 185, 240
disjoint

pairwise, 134
disjunction, 31, 76, 122
disjunctive

normal
form, 63

distance, 93, 135, 150, 151
approximation, 221
Euclidean, 28, 178
euclidean, 156
geometry

molecular, 14
inter-atomic, 151
interval, 169
matrix, 155–157

partial, 156
maximum, 176
minimum, 92, 235, 237
missing, 150
noisy, 169
pairwise, 28
unit, 27

distance geometry, 149
distinguished

point, 135
distribution, 182

function, 182
Gaussian, 201
normal, 193, 202

multivariate, 176, 204
subgaussian, 201
uniform, 101

division, 73
DNF, 63
domain, 44, 60, 88

discrete, 128
dominance

diagonal, 172
dual, 84, 97, 112, 127, 214, 238

basis, 106
constraint, 96
DDP, 175
feasible, 112, 113
LP, 214
objective, 96
optimum, 210
problem, 96
simplex, 119

iteration, 120

278 INDEX

method, 105, 106
variable, 96

dual cone, 84
duality, 87

gap, 113
strong, 84, 96, 97
theorem, 97
theory, 96
weak, 96

dynamic programming, 74
dynamics, 66, 71

Eckart-Young
theorem, 227

Ecole Polytechnique, 152
EDE, 65
edge, 34, 39, 78, 102, 104, 118, 167

induced, 34
missing, 156
set, 178
weight, 156, 157

rational, 167
weight function, 165

edge-weighted, 118
EDM, 153, 156, 158

approximate, 158, 178
partial, 161, 162

EDMCP, 156, 157, 178
efficient, 34

practically, 99
eigenvalue, 160, 171, 172, 225

negative, 79, 174
nonzero, 206
zero, 206

eigenvector, 160, 171, 172
matrix, 171
unitary, 225

element, 221
elementary step, 40
ellipsoid, 109, 162

algorithm, 106, 109
centre, 109
enclosing, 161
method, 118, 209
minimum

volume, 109
ellipsoid method, 74
embedding, 155

subspace, 201
empty, 107, 109

list, 140
encoding, 211

binary, 74
Thom, 61
unary, 74

endpoint, 137
entity, 214

declaration, 52
symbolic, 50

entry
invalid, 184

enumeration, 67
complete, 221

ϵ-optimality, 135
ϵ-optimum, 135

equality, 43, 169
sign, 103

equation, 31, 41, 90, 96, 119, 133
linear, 76, 87
polynomial, 130, 241
quadratic, 168, 176
system, 117

error, 204, 209, 212
additive, 213
approximation, 211
correction, 233
feasibility, 211
floating point, 242
largest, 146
rate, 190
square, 170

escaping, 131, 138
approach, 132

Euclidean
norm, 203
space, 153

Euclidean distance
matrix, 153

Euclidean Location, 47
Euclidean space, 80
Euler, 152

conjecture, 154
evaluation, 30, 89
exact, 134
expectation

linearity, 223
exponential, 221

bound, 69
doubly, 63
number, 118
worst-case, 99

exponential complexity, 62
exponential-time, 69
exponentially, 117
exponentiation, 65
expression

arithmetical, 30, 32, 36
DAG, 30
factorable, 141
mathematical, 142
nonlinear, 17
tree, 30

expressions
mathematical, 140

extension, 139
extreme

point, 173
extreme ray, 174

face, 88
full-dimensional, 112
optimal, 113

facet, 88, 117, 118
defining, 117

factor, 176
factorable, 141
failure

proof, 131
family

continuous, 111

INDEX 279

Farkas’ lemma, 92, 94
faster

asymptotically, 73
fathomed, 135
FBBT, 140, 141
feas(P), 35
feasibility, 77, 105, 107, 114, 140, 170, 208, 211,

214, 232
certification, 35
dual, 105
error

bounded, 207
integer, 207
linear, 207–209
primal, 105
pure, 171, 232, 234
system, 210
verification, 131

feasibility system, 65
feasibility-only, 32
feasible, 32, 33, 98, 105, 108, 109, 113, 129, 131,

144, 217, 235
basic, 100
basis

initial, 119
descent, 91
direction, 91, 114
instance, 107
point, 89
polyhedron, 118
precisely, 172
primal, 105
region, 87, 95, 97, 111, 117, 118, 126

mixed-integer, 117
set, 35, 107, 124
solution, 35, 111, 176, 235
value, 32
vector, 100

feasible region
nonconvex, 46

file, 50
large, 202
run, 49, 50

filter, 134–136
limit, 134

finite, 168
finite set

decidable, 67
finitely many, 36
fixed, 221
flat

formulation, 16
flattened, 16
floating point, 29, 35, 36, 60, 62

error, 35
number, 130

flow, 23, 41
network, 106, 118

Floyd-Warshall
algorithm, 157

food, 97
force

balanced, 154
form

factorized, 105

functional, 43
normal

disjunctive, 63
standard, 118, 142

formal system, 64
complete, 64
incomplete, 64

formula
satisfiable, 77

formulation, 15, 16, 19, 20, 26, 32, 34, 50, 52,
90, 95, 96, 101, 110, 117–120, 124, 127,
133, 136, 138, 142, 143, 169, 217

block-structured, 185
correct, 20
difficult, 20
dual, 96, 128
equivalence, 232
flat, 16, 17, 39, 46
flatten, 53
generality, 16
ill-posed, 131
LP, 41, 117, 175, 183
matrix, 215
MILP, 115, 118
minimization, 96
mixed-integer, 124
Motzkin-Strau, 78
Motzkin-Straus, 81, 83
MP, 31–35, 37, 50, 51, 107
NLP, 111, 129, 138

convex, 140
original, 125, 130, 140, 142–145
parameter, 17, 20, 216
primal, 96
push-and-pull, 171
QP, 79
restricted, 140
SDP, 171
simpler, 235
structure, 127, 207
structured, 16–19, 39
symmetry, 235
unconstrained, 28, 169
wrong, 19

Fréchet, 153
fraction, 17–19, 65, 77, 190, 216
fractional, 119, 143
framework

bar-and-joint, 167
frequency, 151
full-dimensional, 112
function, 21, 60, 215, 241

barrier, 84
bounding, 176
call, 55
callable, 34
class, 95
closed form, 30
computable, 60
concave, 21
constant, 172
convex, 88, 99
distribution

cumulative, 182
evaluation, 73

280 INDEX

exponential, 67
extension, 241
family, 237
linear, 31, 33, 136
Lipschitz, 177
nonlinear, 31, 67
penalty, 84
periodic, 67
piecewise

linear, 21
real, 36
separable, 78
transcendental, 235
unconstrained, 90
univariate, 143
vector, 89

Gödel, 65
Kurt, 153

Game of Life, 59
GAMS, 40, 49
gap, 44

duality, 113
Gaussian elimination, 61, 62
general-purpose

algorithm, 130
geodesic

distances, 153
geometric

requirement, 186
geometry, 115

combinatorial, 27
high-dimensional, 177, 201

Gershgorin
circle theorem, 172

global, 95, 103, 136
minimum, 87
optimality, 38, 133

guarantee, 132
phase, 130

global optimality, 38
global optimization, 35, 46
global optimum, 61, 76–78
global positioning system, 154
GLPK, 33, 49
GO, 46, 60, 68, 129, 130, 133

algorithm, 130
Gomory

cut, 119
valid, 119

GO
algorithm, 130

GPP, 45
GPS, 154
Gröbner basis, 61
gradient

constraint, 91
Gram

matrix, 153
Gram matrix, 158
grammar

formal, 33
graph, 29, 34, 39, 70, 78, 79, 151, 156, 157

bipartite, 41
complete, 150, 156

realizable, 168
completion, 167
connected, 178
cycle, 165, 168
directed, 41
flexible, 167
incomplete, 156
neighbourhood, 43
notation, 43
protein, 168
realization, 158
rigid, 167
rigidity, 154
undirected, 45, 156
weighted, 41, 74, 150, 151

graph partitioning, 45
Gregory, D., 236
growth

polynomial, 208
guarantee

theoretical, 130

half-line, 129
half-space, 88

closed, 87, 88
halting problem, 64
Hamiltonian

cycle
optimal, 118

hardness, 166
hardware, 34
Haverly, 45
head

read/write, 72
tape, 71

Heron
theorem, 154

Hessian, 82, 130
constant, 82, 83
form, 83
of the Lagrangian, 82

heuristic, 55, 125, 156, 157, 211, 219, 221
IPM-based, 84

hierarchy
cut, 124

Hilbert, 152
Hilbert’s 10th problem, 65
homogeneity, 92
homogeneous, 110
HPP, 45, 46
hull

affine, 88
conic, 88
convex, 88, 117
linear, 87

hydrogen, 151
hyper-rectangle, 76, 123, 139, 217

embedded, 138
smallest, 123

hyper-rectangles, 140
hyperplane, 87, 90, 100, 109, 115

constraint, 101
coordinate, 234
generic, 117
intersection, 101

INDEX 281

normal, 90
separating, 93, 94, 97, 118

hypothesis, 116

I/O, 34
ideal, 61
identity, 116, 206

matrix, 116, 206
perturbed, 206

iDGP, 169
iff, 35, 36
imperative, 33
implementation, 99, 106, 128, 135

B&S, 135
incomplete, 64
incompleteness, 64
inconsistent, 64
increasing

monotonically, 204
incumbent, 125, 132, 134, 135

current, 119, 135
fractional

solution, 118
independence

affine, 117
linear, 117

independent, 64
index, 23, 100, 102, 193

column, 54, 119
lowest, 103
row, 119, 120
set, 17, 20, 51, 53
tuple, 32

index set, 22
induction, 165
inequalities

linear, 107
inequality, 112, 117, 119, 123, 124, 134, 144, 169,

218, 237
Chebyshev, 226
Fortet, 234
linear, 87, 144

strict, 106, 109
lower-dimensional, 123
non-strict, 31
nonlinear, 124
quadratic, 170
relaxation, 174
sense, 238
triangular, 92, 226, 228
valid, 106, 117, 123, 237

infeasibility, 99, 110
infeasible, 35, 105, 108, 124, 131, 134, 140, 210

primal, 105
infimum, 92
infinite, 119, 201

countable, 168
countably, 67
time, 130
uncountably, 221

infinitely, 117
initial

vector, 128
initialization, 140
input, 31, 232

array, 74
discrete, 151
integer, 115
rational, 115
storage, 74

input/output, 34
instability

numerical, 105
instance, 16, 33, 35, 39, 46, 50, 61, 65, 69, 110,

116
bounded, 107
description, 36
feasible, 107
graph, 168
large-scale, 127
MILP, 145
NO, 70, 75, 81, 165
Partition, 165
size, 69, 102, 107, 110, 177, 201
sizer, 107
small-sized, 133
YES, 70, 75, 81, 165, 166

instruction, 49, 50, 71
declarative, 50
imperative, 50
sequence, 70

integer, 70, 108, 119, 231
component, 115
consecutive, 52
feasible

set, 118
programming, 115

non-negative, 165
integer programming, 44
integral, 119, 122, 237
integrality, 24, 26, 27, 31, 77, 80

constraint, 115
property, 128
solution, 75

integrality constraint, 64
integration

symbolic, 204
interface, 40
interior

non-empty, 97, 212
point

method, 111
interior point method, 76
interpretation, 31
interpreter, 33, 34, 49
intersection, 115, 125, 126
interval, 18, 204

arithmetic, 123, 141
time, 189

intractable, 69
invariant, 19, 27, 28, 36, 90, 226
inverse function

theorem, 90
invertible, 211
investment, 13, 15
IPM, 76, 84, 106, 111, 113, 114, 172, 184

analysis, 112
solver, 184

IPOPT, 49, 169
IQP, 67

282 INDEX

irrational, 60, 77
irrelevance, 19
Isomap, 178
isometric

embedding, 155, 156
isometry

restricted, 196
isotropy, 223, 224
iteration, 111, 121, 128, 129, 135, 136, 140

current, 105
dual

simplex, 120
first, 111, 136
limit, 221
major, 132
minor, 132
next, 103
second, 137
subsequent, 138
typical, 125

Jacobian, 90, 131
JLL, 201, 206, 221, 222

additive, 222
corollary, 202
squared, 203

job, 20
last, 20
order, 20

Johnson-Lindenstrauss
lemma, 201

k-means, 202, 215, 221
k-NN, 202
Karush-Kuhn Tucker system, 62
Khachiyan, 106
kissing number, 47, 231

maximum, 47
KKT, 62, 76, 82

complementarity, 112
condition, 95, 112, 130
conditions, 94
point, 94, 95, 130
theorem, 94

Klanfer
Laura, 153

knapsack
continuous quadratic, 77

KNP, 47, 231, 234–237
center, 232
open case, 235
point of contact, 232

Kolloquium
Menger, 153

label, 143
Lagrange

multiplier, 96, 127
Lagrangean

relaxation, 115
Lagrangian, 90, 95, 112

dual, 96
function, 82, 96

language, 11
arithmetical expression, 32

basic, 29
composite, 29
decision variable, 31
declarative, 34, 50, 71
expression, 31
formal, 15, 17, 29
imperative, 33, 34, 50, 55
interpreter, 33
modelling, 40
MP, 31
natural, 15, 17, 19, 29
objective function, 32
parameter, 31
programming, 33

large
arbitrarily, 135

large instance, 39
lcm, 61, 65
leading term, 61
leaf, 70
learning

deep, 151
machine, 151

least common multple, 61
leaves, 142
lemma

Farkas, 94
length, 204

unit, 237
LHS, 37, 119
LI, 107

infeasible, 108
instance, 108, 109
oracle, 108

lifting, 123, 124, 129
nonlinear, 124
process, 124

limit
filter, 134
point, 113

line, 88, 129, 185
search, 114, 129

linear, 43, 44, 78, 83, 222
algebra, 116
combination, 87, 90, 182
constraint, 87, 123
dependence, 103
forma, 99
fractional, 143
function, 124
hull, 87
independence, 90, 94, 100, 109, 117
inequalities, 107
operator, 201
part, 144
piecewise, 21, 128
system, 115, 184
term, 35

linear order
dense, 63

linear programming, 99
linear time, 84
linearity, 111
linearization, 44, 124, 142, 144, 171, 173

exact, 234

INDEX 283

process, 142
variable, 124

linearized
nonlinear

term, 142
link, 23

capacity, 24
linkage, 133
Linux, 49
Lipschitz

function, 177
list, 53, 125, 137, 140, 141

empty, 137
region, 140
remove, 140
tabu, 132

literal, 31, 63, 76
local

minimum, 87, 131
optimum, 89

escape, 132
phase, 130, 132, 135
search, 139

local minimum, 81
local optimum, 82
local solution, 135
log-barrier

function, 106
logarithm, 235
logic, 153
loop, 33, 34, 50, 132

unfolding, 70
LOP, 107, 108

instance, 107
solution, 107

lower
bound, 137, 138

LP, 37, 40, 51, 53, 59, 60, 62, 74, 99, 101, 103,
106, 107, 110–113, 115, 117, 183, 202,
207, 209–211, 214, 238–241

algorithm, 99
auxiliary, 105
canonical form, 99
degenerate, 184
Delsarte, 239, 241
dense, 183, 189
dual, 97, 118
feasibility, 173
formulation, 107, 126, 210
input, 184
instance, 110
large-scale, 106
original, 210
Pfender, 241
polytime

algorithm, 106
projected, 209, 214
relaxation, 61, 197
semi-infinite, 237, 240
solution, 106, 115
standard form, 96, 100, 104, 111, 115, 183
theory, 88
trivial, 100

LSI, 106, 107
instance, 109

polytime, 109

machine, 20
identical, 20
slowest, 20

Machine Learning, 38
MacOSX, 49
major

iteration, 132
makespan, 42, 43
mapping, 155
mathematical

programming, 11, 14
Mathematical Programming, 29
MATLAB, 49
Matlab, 40
matrix, 31, 51, 52, 73, 83, 94, 110, 116, 127, 161,

206, 208, 210, 224, 225, 227
adjacency, 156–158
assignment, 215
completion, 156
cone, 84
constant, 158
constraint, 100, 143, 183

TUM, 117
copositive, 83, 84
copositivity, 81
data, 162, 182
DD, 172
decision variable, 32
diagonal, 158, 171, 197
distance

invariant, 167
partial, 157, 167

eigenvalue
diagonal, 178

encoding, 189
Euclidean, 156
extremal, 84
form, 103
Gram, 158, 160, 171

approximate, 158, 178
identity, 183, 206

TUM, 116
indicator, 227
initialization, 54
integral, 115, 116
inverse, 104
nonsingular, 100, 119
normally sampled, 198
notation, 51
pair, 227
partial, 156
partially defined, 157
product, 171, 223
projection, 214, 215, 228
property, 194
PSD, 32, 83, 158, 160, 171, 174–176
random, 189
rank one, 84
rational, 106, 107
real, 171, 176
RP, 221
sparse, 54
square, 100, 104

284 INDEX

nonsingular, 115
symmetric, 82

square diagonal, 77
square symmetric, 32, 83
symmetric, 156, 158, 161, 171, 176, 213
TUM, 116
unitary, 225, 226, 228
upper bound, 41
variable, 221
zero, 214

max clique, 78
maxima, 87
maximization, 21, 35, 39, 99, 211

inner, 43
maximum, 78, 90

global, 48, 241
pointwise, 136

maximum flow, 41, 45
mcm, 115
MCP, 156
MDPR

theorem, 65
MDS, 153, 157, 158, 178

algorithm, 161
classic, 157

mean, 182
measure

concentration, 177, 201
space, 177

median, 177, 182
medium-sized

instance, 131
membership, 31, 122
Menger

Karl, 153
Kolloquium, 153

message, 233
decoding, 189
digital, 211

method
iterative, 125
subgradient, 128

metric, 156, 167
shortest-path, 157, 158, 161, 178
space, 153, 178

finite, 155
MICQP, 234
midpoint, 93
MILP, 37, 60, 62, 67, 71, 74, 115, 117–119, 123,

125, 191, 197, 207
constraint, 74, 75
feasibility-only, 72
formulation, 127
instance, 117
reformulation, 117
restricted, 123
size, 38
solution

method, 117
solver, 219, 220

minimal, 218
minimization, 21, 35, 95, 96, 99, 170, 211

direction, 125
minimum, 79, 89, 90, 92, 99, 101, 105, 111, 118,

136, 195

constrained, 90, 94
cut, 118
distance, 93
global, 87, 99, 101, 140
local, 87, 92, 95, 99, 103, 138, 139

current, 138
objective

value, 90
sparse, 193
unique, 194, 195
vertex, 99

minimum k-cut, 45
minimum cut, 45
MINLP, 37, 44, 59, 60, 62, 66, 67, 74, 130, 138,

214, 216, 218
complexity, 69
decision version, 73
feasibility, 64
hardness, 69
unbounded, 74
undecidability, 66
undecidable, 65
undecidable problem, 68

minor
iteration, 132

Minsky, 59
MIQCP, 236
ML, 38, 151, 202

unsupervised, 45
MLSL, 131, 132
model

linear, 185
modelling, 17, 34
modelling language, 40
molecule, 151
moment

inertia, 215
monomial order, 61
monotonic, 129
Motzkin-Straus formulation, 78, 83
MP, 29, 31, 71, 95, 149, 169, 185, 190, 201, 202,

231
complexity, 84
formulation, 47, 49, 207, 214, 233
instance, 35
language, 215
reformulation, 37
semantics, 33
taxonomy, 37
theory, 33

MP, 36
MSPCD, 42
MSSC, 215–222

optima, 219
projected, 221
solution, 216

multi-level
single

linkage, 131
multi-objective, 32
multi-period

production, 13
multicommodity

flow, 106
Multidimensional Scaling, 153

INDEX 285

multidimensional scaling, 157
multiple

minimum
common, 115

multiplier, 96, 102
Lagrange, 90, 94, 96, 127, 130
vector, 128

multistart, 132
algorithm, 131

multivariate, 28, 222
function, 129

natural, 67
natural language

description, 15
near-zero, 193
negation, 31
negative, 81, 103, 104
neighbour, 167
neighbourhood, 33, 90, 132, 139, 167

incoming, 43
size, 139
structure, 138

net, 134, 135
refinement, 134
sequence, 134

network, 41, 150
flow, 106, 117
neural, 151
topology, 46
wireless, 149, 150

network flow, 41
Newton, 236

descent, 114
method, 113, 130
step, 114

Newton’s method, 84, 137
one dimension, 136

NLP, 37, 46, 62, 74, 75, 78, 89, 95, 129–131, 136,
140, 176

continuous, 46
convex, 37
nonconvex, 38, 46, 129, 138, 139, 169
solver, 169, 232, 235

local, 138
undecidable, 68

NMR, 151, 154
Nobel Prize, 154
node, 30, 125

contraction, 30
current, 142
incoming, 41
leaf, 30
outgoing, 41
root, 141

non-differentiable, 128
non-empty, 92, 101
non-negative, 83, 121
non-overlapping, 27
non-positive, 81
nonbasic, 100, 105, 109

column, 100
index, 120
variable, 100, 104, 115, 119

nonconvex, 37, 45, 46, 144, 216

function, 171
objective, 171
set, 83, 171

nonconvexity, 84
nondeterministic, 70
nonempty, 109
nonlinarity, 143
nonlinear, 37, 43, 144

operator, 142
part, 144
programming, 129
term, 35

nonlinear equation
system, 68

nonlinearity, 20, 219, 220
nonnegative, 15

constraint, 52
nonnegativity, 24, 26
nonsingular, 90, 100, 103, 210, 211
nonzero, 54, 102, 192, 193, 237
norm, 77, 155, 156, 214, 220

ℓ2, 167
Frobenius, 224, 226, 228
linearizable, 218
minimum, 210, 212
smallest, 210

bound, 210
spectral, 225
square, 219
sub-Gaussian, 222
unit, 209

normal, 90
NP, 70, 71, 74, 166
NP-complete, 71
NP-complete, 71
NP-complete, 166
NP-hard, 71, 115, 117, 118
NP-hard, 157, 163, 166, 190, 197

weakly, 164
NP-hardness, 73
NPO, 73
NSP, 193, 195

definition, 194
variant, 195

Nuclear Magnetic Resonance, 154
nuclear magnetic resonance, 151
null

space, 113
null space, 111
number

algebraic, 167
finite, 87
kissing, 231
maximum, 231
pseudo-random, 130
rational, 108

numerator, 107
nutrient, 97

OBBT, 140, 141
procedure, 141

objective, 46, 50, 110, 169–171, 210, 215
approximation, 108
coefficient, 103
concave, 171

286 INDEX

convex, 95, 170
decrease, 103, 104
direction, 26, 36, 91, 95, 107, 169
dual, 96
function, 18, 21, 35, 43, 53, 101, 104, 105,

107, 111, 127, 129, 136, 143, 212, 215,
216, 218–220

decrease, 105
optimal, 105
unbounded, 104
value, 125, 136, 140

Hessian, 130
linear, 219
linearity, 111
minimality, 26
minimum, 101
nonconvex, 171
optimal, 96

zero, 110
primal, 96
push-and-pull, 174
reduction, 111
squared, 220
tangent, 136
value, 96, 99, 103, 108, 133, 134, 211, 214,

217, 235, 236
best, 140
better, 126
current, 105
lower, 104
lower bounding, 135
optimal, 135

objective function, 31, 32
direction, 87
globally optimal, 35
min max, 43
positive, 81
value, 35

objective function value, 82
objjective

value, 234
obstacle, 117
operation

algebraic, 104
operator

k-ary, 142
binary, 30, 146
implicit, 30
linear, 201
minimum, 15
nonlinear, 142
precedence, 30
primitive, 30
scope, 30
unary, 30, 146

OPTI toolbox, 40
optima, 87, 110, 117

global, 125
local, 171

optimal, 117, 122
bfs, 112
face, 113
global, 234
globally, 125, 190
Hamiltonian

cycle, 118
locally, 140
objective, 107

value, 110, 127
partition, 112, 113
set, 35, 36
solution, 112, 210
value

known, 110
optimality, 31, 102, 105, 107

certification, 35
condition, 104
error, 211
first-order, 62
global, 38, 130, 232, 235
local, 82, 129, 130, 135

QP, 81
properties, 110
verification, 131

optimization, 31
combinatorial, 108
conic, 40
direction, 47, 90, 118, 220, 236
global, 46
linear, 171
local, 129, 131
problem, 11, 29
procedure, 21

optimization direction, 32
optimization problem, 59
optimum, 33, 35, 104, 107, 136, 183, 210, 211, 219

dual, 210, 212
global, 33, 35, 39, 61, 76, 78, 82, 84, 88,

125, 130, 131, 137, 138, 140, 170, 214,
216, 217

putative, 131, 139
region, 137

improved, 132
improving, 132
local, 79, 81, 82, 84, 88, 89, 95, 103, 129,

130, 132, 137, 232
current, 132

MSSC, 217
primal, 212
true, 135

oracle, 108, 118
algorithm, 107
LI, 108

order
index, 42
linear, 20
partial, 42
precedence, 42
total, 67

origin, 27, 28, 100, 185, 212, 232, 236
original

formulation, 127
LP, 105

orthant, 84, 111
non-negative, 84, 209
nonnegative, 209

orthogonal, 113
orthogonality, 172
outer

approximation, 174

INDEX 287

output, 31, 33
format, 55

overestimator
concave, 142

P
P, 117

P, 69
packing, 27

circle, 27
pair, 233, 241

number, 237
unordered, 28, 34, 45

pairwise distance, 150
parabolic, 67
parallelogram

rule, 222
parameter, 16, 20, 31, 36, 47, 50, 51, 53, 72, 111,

113, 176, 238
configurable, 139
continuous, 36
formulation, 51
initialization, 52
input, 33, 43
integer, 52
scalar, 39
symbol, 16, 31, 33, 52
value, 53
vector, 18

parameters, 183
parent

subproblem, 125
parser, 33, 142
part, 110

linear, 144
nonlinear, 144

Partition
instance, 165

Partition, 166
partition, 45, 103, 116, 124, 125, 221

finite, 134
optimal, 112, 113
unique, 113

Partition, 163
path, 102, 111

central, 111, 112
default, 53
exponentially many, 106
primal-dual, 113
shortest, 42, 106

PCA, 161, 178
peer-to-peer, 149, 150
penalty

log-barrier, 111
performance

computational, 129
perturbation, 212, 235
Pfender, 240
PFP, 62, 67
phase

difference, 150
global, 131, 132, 139

deterministic, 133
stochastic, 131, 132

local, 131, 132, 134, 138, 145

transition, 192
PICOS, 40
piecewise

convex, 145
piecewise linear

curve, 80
pipe

filter, 49
pivot, 119, 122

element, 121
plane, 185

cutting, 117
point, 88, 108, 112, 215, 225, 227, 231, 237

branching, 137
contact, 232, 234, 235, 237
critical, 90
current, 130
distinct, 88, 117
distinguished, 134, 135
dual

feasible, 112
extreme, 173
feasible, 89, 102, 132, 235
infeasible, 129, 232
initial, 113
random, 139, 177
returned, 131
saddle, 21
sample, 139
starting, 129, 232
symmetric, 88

point-cluster
assignment, 215

pointed
cone, 209

polyhedra, 123
rigidity, 154
union, 123

polyhedron, 87, 99–102, 105, 112
bounded, 102
closed, 109
feasible, 100, 101
open, 109
standardized, 117
unbounded, 102
vertex, 99, 102, 115, 116

polynomial, 69, 110, 176, 241
calls, 107
complexity, 106
convexity, 83
degree, 81
equation, 65
fourth degree, 169
function, 69
Gegenbauer, 237–241
integral, 65
Jacobi, 238
minimal, 61
multivariate, 28, 61, 67
quartic, 28
sequence, 238
space, 167
system, 61, 63, 64
undecidable, 65
univariate, 238

288 INDEX

polynomial division, 61
polynomial feasibility, 62
polynomial programming, 62
polynomial reduction, 71
polynomial time, 33, 157
polynomial-time, 69
polynomials

Gegenbauer, 238
polytime, 69, 70, 75, 77, 83, 84, 106, 115, 166,

172
analysis, 84
feasibility, 73
LP

algorithm, 106
strongly, 74, 78, 118
weakly, 74, 76, 118

polytope, 87, 102, 123, 191
full-dimensional, 212

pooling problem, 45
position, 151

initiale, 72
irrational, 167
unique, 166
vector, 28

positive, 104, 113
strictly, 93, 109

positive semidefinite, 32, 76
post-processing, 184
power, 143
PP, 62, 74

formulation, 235
integer, 68

pre-processing, 133, 184, 189
precise

computation, 131
numerically, 135

precision, 129
prediction

from data, 185
premultiplication, 105
price, 97

retail, 17
pricing

problem, 106
primal

constraint, 96
DDP, 175
feasible, 106, 113, 121
infeasible, 105, 120
objective, 96
problem, 96
simplex, 105
variable, 96

primal-dual
central

path, 113
optimal

solution, 113
pair, 112

prime, 73
principal component, 161
principal components, 162
priority

queue, 125
probabilistic

proof, 201
probability, 176, 192, 206

1, 130–132
conditional, 182
high, 177, 189, 191, 198, 199, 206, 209, 222
one, 178
system, 210
zero, 101, 210

problem, 29, 69, 116
assignment, 20
decision, 29, 59, 60, 69, 73, 82, 107, 231
diet, 97
dual, 96
feasibility, 208, 209
fundamental, 20
hardest, 71
linear

optimization, 107
maximization, 97, 235, 238
MP, 32
nontrivial, 33
optimization, 29, 31, 32, 39, 59, 73, 107, 234
original, 96, 207
pair, 96
pricing, 106
primal, 96
projected, 207, 209
recognition, 29
saddle, 96
search, 59
unconstrained, 114

procedure, 99
efficient, 106

process
output, 34
terminate, 130

processor, 20, 42
product, 20, 72

binary, 234
binary variables, 43
Cartesian, 29
inner, 222
operator, 142
removal, 235
sum, 216
variable, 217

production, 22
level, 23

profit, 18
program variable, 33
programming

computer, 15
nonlinear, 129
quadratic

sequential, 129
project, 111
projected, 211, 212
projection, 124, 173

random, 201
projective

transformation, 111
proof

by simulation, 69
informal, 207

property

INDEX 289

integrality, 128
protein, 151, 154, 172

backbone, 168
graph, 174

protocol, 150
provability, 64
provable, 64
pruned, 125
pruning, 138, 140
PSD, 32, 76, 83, 109, 114, 158, 173, 206

approximation, 130
cone, 84, 171

PSD cone, 84
pseudo-convex, 83
pseudo-random

generator, 130
pseudocode, 34
pseudoconvex, 95
pseudoinverse, 211
pseudopolynomial, 73

reduction, 74
push-and-pull, 175
push-relabel

algorithm, 118
PyOMO, 40
Python, 40, 55

QCP, 169, 170, 232, 236
non-convex, 232

QCQP, 170, 171, 207
QDE, 66
QKP

convex, 78
QP, 75, 76, 78–83, 130, 182, 202, 207, 211, 212,

214
NP-complete, 76
box-constrained, 76, 82
constrained, 82
convex, 76, 78
formulation, 79, 82
nonconvex, 79
perturbed, 212

QP1NE, 79, 80
QPLOC, 81
QR, 181, 183, 185, 189

computation, 185
LP

2D, 185
problem, 183

quadrant, 91
quadratic

DE, 66
equations, 176
form, 67, 75, 81, 83, 219
integer programming, 67
knapsack, 77
objective, 45
programming, 75
structure, 38

quadratic part
bound, 214

quantifier, 16, 39, 40, 43, 46
decision variable, 44
elimination, 63
existential, 65

sum, 215
universal, 65

bounded, 65
quantifier elimination, 63
quantile, 181, 182, 185

regression, 181
quantile regression, 38
quartic, 28

unconstrained, 170
quasi-convex, 83
quasiconvex, 95
queue

priority, 125

r.v., 182, 185
sub-Gaussian, 222

radius, 47, 212, 236
largest, 161
unit, 237

random, 52
choice, 130
projection, 201, 206
seed, 130
uniform, 204

random variable, 182
range, 18, 78, 83, 113, 125, 145

endpoint, 136
length, 138
midpoint, 146
partitioning, 145
smallest, 140
variable, 136, 140, 141

range constraint, 31
rank, 172, 176, 190, 213, 225

full, 184, 189, 210
one, 79

rational, 36, 60, 61, 73, 76
polynomial, 63

rational input, 59
ray

extreme, 84, 102, 174
real, 60, 62, 63, 67, 160

number, 130
real RAM model, 60
realization, 150, 167, 171

approximate, 157, 158, 161, 169, 172
exact, 161, 178
matrix, 176, 178
transcendental, 167
valid, 165, 167

recipient, 233
recognition algorithm, 30
rectangle, 27

boundary, 27
recursion, 34, 142

level, 63
recursive, 60
recursively enumerable, 60, 65, 67
reduced

cost, 104
negative, 104
nonnegative, 104, 105

reduction, 73, 76, 78, 80, 83, 107, 110
NP-hardness, 82
polynomial, 71, 109

290 INDEX

pseudopolynomial, 74
strongly polytime, 74

redundant, 33
refinement, 134
reflection, 27
reformulation, 21, 37, 170, 215, 216, 221, 234,

235
approximate, 218–221
exact, 43–45, 72, 169, 170, 210, 216, 218, 221
MILP, 219
projected, 221
standard form, 142, 143
symbolic, 142

reformulation-linearization
technique, 124

region, 118, 135–138, 140, 141
check, 140
choice, 140, 141
current, 135, 140, 142, 144, 145
discarding, 137
distinguished, 135
feasible, 35, 97, 102, 118, 125

relaxed, 118
original, 137
pruning, 138
qualified, 134
rejected, 135
remove, 140
selected, 140
selection, 141
unexamined, 137

register machine
universal, 66

regression, 182
linear, 181, 182
median, 181
quantile, 181

relation, 30, 60
asymmetric, 73
decidable, 60

relational operator, 32
relational sign, 32
relaxation, 38, 95, 125, 140, 210, 211

continuous, 44, 115, 118, 119, 124–126, 128,
216

convex, 140–142, 144–146
Lagrangean, 115, 126–128
SDP, 171

reliability
algorithmic, 131

representation, 60
binary, 107
compact, 82

resource
allocation, 25

restriction, 211
retrieval

solution, 210
revenue, 15, 18
revised

simplex
method, 105

RHS, 21, 119, 141
vector, 51

rigidity, 167

graph, 154
RIP, 193, 196–198
RLT

closure, 124
cut, 124
hierarchy, 124

robotics, 154
robustness, 38, 169
Roghozin, 59
root, 61, 130
rostering, 13
rotation, 27, 167

invariant, 28
rounded, 211
rounding, 211
routing, 23
row, 116, 119, 127, 182, 212, 222, 224

additional, 120
bottom, 120
concatenation, 178
empty, 184
exiting, 122
first, 120
generation, 118
last, 119
permute, 116
tableau, 121

optimal, 120
RP, 201–203, 206, 207, 209–214, 218, 221, 223–

225, 227
additive, 222

saddle, 96
point, 90

saddle problem, 43
sales, 22
sample, 185

normal, 222
sampling, 131, 132, 138

approach, 132
point, 139

sat, 71, 75, 76
sat, 31
satellite

link, 189
satisfiability, 71
sBB, 38, 60, 136, 139, 140

algorithm, 138, 140, 145
branching, 140
check

region, 140
choice

region, 140
initialization, 140
lower

bound, 140
node

root, 141
pruning, 140
upper

bound, 140
scalar, 52, 90, 100, 102, 184, 232, 237

non-negative, 46
real, 46

scalarization, 172

INDEX 291

scaling, 194, 203, 206
schedule, 42
scheduling, 20, 25, 42
Schoenberg, 158

Isaac, 153
SDP, 32, 157, 171, 173, 241

push-and-pull, 175
relaxation, 171, 172, 176, 236
solver, 171

SDP solver, 38
search

bisection, 108, 129
direction

vector, 129
finite, 99
local, 139
space, 125
variable neighbourhood, 132

search direction, 31
search problem, 59
segment, 87, 93, 129, 232
selection

exact, 136
rule, 134, 140

exact, 135
self-concordant barrier, 84
self-dual, 84
semantics, 31

English, 31
format, 33
MP, 33
MP language, 33

semi-algebraic set, 63
semidefinite programming, 32
semiperimeter, 154
sense, 238
sensitivity, 105
senstivity

analysis, 104
sentence, 31, 71, 216

invalid, 215
logical, 63

separable, 78
separating

cutting
plane, 119

hyperplane, 93, 97, 118
separation, 118, 209

angular, 237
minimum, 232
polynomial, 118
problem, 118

sequence, 32, 129, 141, 142, 165
conditional, 107
exponentially long, 38
finite, 118, 238
nested

infinite, 136
step, 70

sequencing, 42
server, 150
set, 97, 111, 122, 124, 138, 144, 215, 216

content, 53
convex, 87, 88, 97, 99, 216
decidable, 60

description, 124
distinguished, 134
family, 134
feasible, 35, 109, 124, 125, 174

relaxed, 118
finite, 87, 240
index, 18, 20, 50, 52, 53, 124, 241
infinite, 33, 222, 225
initialization, 52
instance, 33
label, 43
linear, 124
mixed-integer, 124
name, 43
nonconvex, 171
optimal, 35
orthogonal, 237
periodic, 25
polyhedral, 117
qualified, 134, 135
recursive, 60
sampling, 131
stable, 34

set cover, 41
shadow, 236
Shannon, 59
shortest

path
problem, 106

shortest path, 74
length, 157

side
length, 138, 154

sign
opposite, 37

signal, 189
processing, 190

signal processing, 38
similarity

function, 214
simplex, 111

algorithm, 104, 105, 119, 120
centre, 111
dual

iteration, 120
method, 99, 112, 117

dual, 105
revised, 105
two-phase, 105

tableau, 106, 119, 120
translated, 81

simplex method, 59, 62, 184
simulated annealing, 132
simulation, 59
single-objective, 32
size, 117, 127, 204

input, 71
instance, 107
maximum, 107
solution, 38
storage, 73, 208

slack, 170
slack variable, 35
Slater constraint qualification, 97
small-sized

292 INDEX

instance, 131
smartphone, 150
solution, 31, 35, 65, 102, 108, 109, 111, 113, 117,

126–128, 130, 136, 140, 145, 241
algorithm, 235
approximate, 169, 176
basic

feasible, 100
best, 138
corresponding, 140
current, 103, 106, 118, 130
distinct, 101
feasible, 38, 73, 81, 96, 103, 109, 110, 118,

125, 171, 176, 210, 232, 235
flat, 53
fractional, 81
fractionary, 125
global, 130
integer, 64, 117

feasible, 117
integral, 125, 126
lattice, 235
local, 84, 135
lower

bounding, 125
lower bounding, 135
matrix, 172
method, 129
nonzero, 194
not integral, 121
optimal, 33, 111, 112, 119, 121, 122, 130, 211,

240
dual, 210

retrieval, 207, 210, 211
sparse

unique, 192
sparsest, 190

unique, 189, 191
unique

optimal, 100
upper

bounding, 146
vector, 82

solution algorithm, 31
solver, 16, 33, 34, 40, 53, 169, 172, 235

commercial, 33
conic, 38
efficient, 33
free, 33
global, 38
input, 36
local, 38, 169, 170, 176
LP, 38, 49
MILP, 38, 49
MP, 38
NLP, 38
off-the-shelf, 33
open-source, 33
robust, 38
robust/efficient, 39
SDP, 38, 171
state-of-the-art, 38
status, 53

sonar, 151
source, 23

space
continuous, 221
Euclidean, 28, 155, 177, 185, 201, 202, 215
higher-dimensional, 123, 124, 129, 143
measure, 177
metric, 178
projected, 111
search, 125, 130, 136, 140

span, 87
sparse, 38, 178, 202
sparsity, 195
spectral decomposition, 161
sphere, 47

center, 232, 234
central, 231, 236
circumscribed

smallest, 111
circumscribing, 212
concentric, 204
inscribed, 212

largest, 111
problem, 234
surrounding, 231, 234, 236, 237
unit, 176, 204, 231, 233

spherical code, 233
SQP, 129

algorithm, 131
square, 65, 77, 79, 100, 211

sum, 28
square root, 225
stable set, 34, 39
standard

basis, 202
deviation, 202
form, 119, 144

standard form, 142
standard quadratic programming, 83
starting

point, 131, 132, 138
starting point, 38, 169, 176, 232
state, 71

initial, 71
termination, 71, 72

statement
logical, 34

statics, 154
statistics, 214
step, 113, 119

evaluation, 135
length, 128, 129
size, 111

steplength, 104
stochastic, 131

algorithm, 130
stop, 108, 113
storage, 33, 47, 73, 105, 107

balance, 23
empty, 23

StQP, 83
strategy

branching, 125
strict, 87, 88
string, 29

constraint, 32
decision variable, 32

INDEX 293

initial, 71
objective, 32
parameter, 32

strongly polytime, 74
structured

format, 53
formulation, 16

sub-Gaussian, 224
sub-multiplicativity

strong, 227, 228
subarine, 151
subexpression, 142

complicated, 142
subfamily, 134

finite, 241
subgradient, 128

method, 128
vector, 128

subgraph
enumeration, 34

submatrix, 104, 210
invertible, 115, 116
square, 116

smallest, 116
subnode, 142
suboptimal, 113
subproblem, 107, 113, 125, 126, 131

current, 125
parent, 125
unsolved, 125

subregion, 136, 140, 145
infeasible, 140

subsequence
convergent, 92
initial, 70

subset, 87, 165, 215
disjoint, 45
finite, 221, 233
instances, 166
largest, 34
minimality, 26
proper, 194

subset-sum, 75–77, 81
subspace, 191

affine, 185
embeddings, 201
linear, 185
non-crossing, 186
orthogonal, 228
parallel, 186
position

relative, 185
subtree, 142
sum, 237, 241
sum-of-squares, 215
support size

almost, 195
smallest, 197

surface, 204, 233, 236, 237
closed polyhedral, 154
spherical, 233

surplus, 170
SVD, 213, 225
swap, 184
symbol, 31, 72, 214

symmetry, 101, 184, 214, 235
syntax, 33, 40

AMPL, 50
system, 105, 108, 211

linear, 115, 185, 189–191
rescaling, 212
underdetermined, 190

tableau, 121, 122
current, 119, 120
modified, 121
optimal, 120
sequence, 119
simplex, 120

tabu
list, 132

tabu search, 132
tangent, 136
tape, 71

half-infinite, 69
multiple, 69
number, 69

target, 23
task, 20, 42

index, 42
order, 42
starting time, 42

tautology, 63
tensor, 54

form, 18
term

bilinear, 46
linear, 144
nonlinear, 33, 146, 217

termination, 134
artificial, 131
condition, 113, 131, 132, 139
failure, 60
state, 72

test, 33, 34, 50
test branch, 70
text

file, 49
theorem

alternatives, 92
convex analysis, 88
duality, 96

weak, 96
Farkas, 94
inverse function, 90
KKT, 94
Lagrange multiplier, 90
strong duality, 97
weak duality, 98
Weierstraß, 92

theory, 63, 64, 66, 67
DE undecidability, 67
decidable, 62

threshold, 76, 150, 151
time

completion, 20
maximum, 20

current, 130
difference, 150
index, 22

294 INDEX

infinite, 131
infinity, 132
instant, 151
polynomial, 150

timestamp, 149
timetable, 25
TM, 59, 66, 70

nondeterministic, 70, 71
polytime, 71
variant, 69

tolerance, 113, 130, 136, 139
convergence, 140

TOMLAB, 40
trace, 70, 171

polynomially long, 84
tractable, 69

case, 80
trade-off, 59
transcendental, 60
transformation

polytime, 166
projective, 111
symbolic, 37

transition
function, 71, 72

transitivity, 218
translation, 27, 167

module, 40
translator, 39, 40

Matlab, 40
transmission, 233
transportation, 13, 26, 117

problem, 26
transportation problem, 41
travelling

salesman, 118
tree, 126

directed, 30, 133
expression, 30, 142
parsing, 30
root, 133
search, 125
structure, 125

triangle, 93
triangle inequality, 173
trilateration, 154
triplet, 143, 151, 157
TRS, 77
trust region, 77

radius, 77
TSP, 118
TUM, 116

identity, 116
matrix, 116
property, 116

tunneling, 132
tuple, 32, 71
Turing, 59

machine, 59, 172
universal, 59

Turing machine, 59
universal, 34

Turing-complete, 34, 59
Turing-equivalent, 59
turning

point, 145
two-phase

simplex
method, 105

UDE, 66
complexity measure, 66
degree, 66

UIE, 155–157
unbounded, 35, 83, 96, 102, 107, 108, 237

direction, 102
problem, 104

unboundedness, 67, 81, 99, 107, 110
unconstrained

problem, 114
uncountably many, 36
undecidable, 64, 65, 74

problem, 65
underdetermined

system, 190
underestimating

solution, 137
underestimation, 140

convex, 138
underestimator

convex, 136, 142
tighter, 136

uniform
distribution, 101

unimodular, 115, 117
unimodularity, 116

total, 115
union, 124

bound, 177, 201, 202
unit, 17
univariate

concave, 144
convex, 144
function, 129

universal
isometric

embedding, 155
Turing machine, 59

University of Vienna, 152
Unix, 49
unquantified, 63
unreliability

inherent, 131
update, 105, 111, 113, 132
updated

current
point, 111

upper
bound, 137

UTM, 34, 66

val(P), 35
valid, 123

cut, 106, 118, 126
globally, 125
hyperplane, 118
inequality, 106, 123

valid cut, 33
validation

input, 52

INDEX 295

value, 50
absolute, 170
current, 104
degenerate, 103
equally spaced, 240
extremal, 141
finitely many, 241
maximum, 21, 241
minimum, 106

primal, 105
negative, 82, 121
optimal, 237

globally, 35
rational, 167
set, 217
singular, 225
smallest, 239
threshold, 178
zero, 195

variable, 22, 25, 28, 50, 51, 63, 100, 103–106, 109,
121, 124, 141, 142, 214, 216

additional, 21, 124, 142, 143, 145, 171, 216,
218, 221

assignment, 216
basic, 100, 102–104, 115
binary, 20, 21, 26, 72, 74, 122–124, 217, 218
bound, 143
branching, 125, 138, 145, 146
centroid, 217
change, 235
continuous, 31, 66, 74
decision, 17, 18, 20, 31, 72, 80, 82, 95, 143,

169, 182, 183, 185, 215, 216, 221, 232
matrix, 173

dual, 96, 105, 112, 114, 238
eliminated, 63
fixed, 237
free, 63
index, 17, 119, 124, 143
infinite, 238
integer, 65, 69, 125, 127, 216

branching, 139
many, 138
new, 120
nonbasic, 100, 104, 107, 115

current, 103, 120
nonnegative, 104
nonzero, 239
number, 101, 110, 141
operand, 146
original, 143, 145, 171
path, 106
penalty, 170
primal, 96
product, 20, 123, 234
program, 33, 51
random, 182, 204
range, 140, 145, 146, 217
ranges, 145
restriction, 15
scalar, 16, 129
scale, 110
slack, 35, 76, 110, 112, 119, 120
symbol, 33, 52
system, 53

unbounded, 67
uncountably many, 239
value, 105

variable neighbourhood
search, 132

variance, 161, 223
variation, 105
variety, 168
vector, 28, 31, 52, 53, 73, 94, 127, 176, 193, 201,

213, 215, 216, 233
all-one, 212
closest, 193
code, 237
coordinate, 206
cost, 100
density, 189
direction, 129
distinct, 237
feasible, 35, 100, 117
fixed, 206
function, 89
input, 151
integer, 115, 117
isotropic, 198, 224
lower-dimensional, 206
orthogonal, 155

approximately, 202
output, 151
parameter, 32
position, 28
projected, 202
quadruplet, 241
random, 198, 204, 222–224
randomized, 176
rational, 106, 107
representation, 151
restriction, 193
row, 96, 105, 161, 162, 213
sampled, 176
scaling, 202
search

direction, 130
set, 28, 221
sparse, 189
subset, 221
support, 151
triplet, 241
unique, 100
unit, 212, 213, 234, 237
variable, 16, 122, 239
zero, 116, 211

vertex, 34, 39, 88, 100, 101, 105, 117, 165, 167
adjacent, 39, 99, 103, 104
degenerate, 101, 103
extreme, 191
feasible, 101

polyhedron, 99
fractional, 119
number, 102
optimal, 102
polyhedron, 99
set, 178
single, 100, 101

vertices
exponentially many, 102

296 INDEX

Vienna Circle, 153
visualization, 50, 185
VNS, 132, 138

algorithm, 138
volume, 109

smaller, 110
Von Neumann, 99

w.r.t., 33
Wüthrich, 154
walk, 165
wave

digitized, 189
weakly polytime, 74
weight, 118

unit, 167
well-defined, 142
width

Gaussian, 222
WIFI, 150
Windows, 49
wireless network, 154
wlog, 35
word, 233
worst case, 38

XPress-MP, 33

YALMIP, 40
YES

instance, 165

zero, 193, 204
degree, 238
exaclty, 195
rounding, 195

	I Setting the scene
	Introduction
	Some easy examples
	Real vs. didactical problems
	Solutions of the easy problems
	Investments
	Missing trivial constraints
	No numbers in formulations
	Formulation generality
	Technical constraints

	Blending
	Decision variables
	Parameters
	Objective function
	Constraints
	Ambiguities in the text description
	Unused textual elements

	Assignment
	Decision variables
	Objective function
	Constraints

	Demands
	Multi-period production
	Capacities
	Demands, again
	Rostering
	Covering, set-up costs and transportation
	Circle packing
	Molecular distance geometry

	The language of optimization
	MP as a language
	The arithmetic expression language
	Semantics

	MP entities
	Parameters
	Decision variables
	Objective functions
	Functional constraints
	Implicit constraints

	The MP formulation language
	Solvers as interpreters
	Imperative and declarative languages

	Definition of MP and basic notions
	Certifying feasibility and boundedness
	Cardinality of the MP class
	Reformulations
	Minimization and maximization
	Equation and inequality constraints
	Right-hand side constants
	Symbolic transformations
	Linearization

	Coarse taxonomy
	Solvers state-of-the-art
	Flat versus structured formulations
	Modelling languages

	Some examples
	Diet problem
	Transportation problem
	Network flow
	Set covering problem
	Multiprocessor scheduling with communication delays
	The infamous ``big M''

	Graph partitioning
	Haverly's Pooling Problem
	Pooling and Blending Problems
	Euclidean Location Problems
	Kissing Number Problem

	The AMPL language
	The workflow
	Input files
	Basic syntax
	LP example
	The .mod file
	The .dat file
	The .run file

	The imperative sublanguage

	II Computability and complexity
	Computability
	A short summary
	Models of computation
	Decidability

	Solution representability
	The real RAM model
	Approximation of the optimal objective function value
	Approximation of the optimal solution
	Representability of algebraic numbers
	Solving polynomial systems of equations
	Optimization using Gröbner bases

	Computability in MP
	Polynomial feasibility in continuous variables
	Quantifier elimination
	Cylindrical decomposition

	Polynomial feasibility in integer variables
	Undecidability versus incompleteness
	Hilbert's 10th problem

	Universality
	What is the cause of MINLP undecidability?
	Undecidability in MP

	Complexity
	Some introductory remarks
	Problem classes
	The class P
	The class NP

	Reductions
	The hardest problem in the class
	The reduction digraph
	Decision vs. optimization
	When the input is numeric

	Complexity of solving general MINLP
	Quadratic programming
	NP-hardness
	Strong NP-hardness

	NP-completeness
	Box constraints
	Trust region subproblems
	Continuous Quadratic Knapsack
	Convex QKP

	The Motzkin-Straus formulation
	QP on a simplex

	QP with one negative eigenvalue
	Bilinear programming
	Products of two linear forms

	Establishing local minimality

	General Nonlinear Programming
	Verifying convexity
	The copositive cone

	III Mathematical Programming
	Convex analysis
	Convex analysis
	Conditions for local optimality
	Equality constraints
	Inequality constraints
	General NLPs

	Duality
	The Lagrangian function
	The dual of an LP
	Alternative derivation of LP duality
	Economic interpretation of LP duality

	Strong duality

	Linear Programming
	The Simplex method
	Geometry of Linear Programming
	Moving from vertex to vertex
	Decrease direction
	Bland's rule
	Simplex method in matrix form
	Sensitivity analysis
	Simplex variants
	Revised Simplex method
	Two-phase Simplex method
	Dual Simplex method

	Column generation

	Polytime algorithms for LP
	The ellipsoid algorithm
	Equivalence of LP and LSI
	Reducing LOP to LI
	Addressing feasibility
	Instance size
	Bounds on bfs components
	Addressing unboundedness
	Approximating the optimal bfs
	Approximation precision
	Approximation rounding

	Reducing LI to LSI

	Solving LSIs in polytime

	Karmarkar's algorithm
	Interior point methods
	Primal-Dual feasible points
	Optimal partitions
	A simple IPM for LP
	The Newton step

	Mixed-Integer Linear Programming
	Total unimodularity
	Cutting planes
	Separation Theory
	Chvátal Cut Hierarchy
	Gomory Cuts
	Cutting plane algorithm

	Disjunctive cuts
	Lifting
	RLT cuts

	Branch-and-Bound
	Example
	Branch-and-Cut
	Branch-and-Price

	Lagrangean relaxation

	Nonlinear Programming
	Sequential quadratic programming
	The structure of GO algorithms
	Deterministic vs. stochastic
	Algorithmic reliability
	Stochastic global phase
	Sampling approaches
	Escaping approaches
	Mixing sampling and escaping
	Clustering starting points

	Deterministic global phase
	Fathoming

	Example of solution by B&S

	Variable Neighbourhood Search
	Spatial Branch-and-Bound
	Bounds tightening
	Optimization-based bounds tightening
	Feasibility-based bounds tightening

	Choice of region
	Convex relaxation
	Reformulation to standard form
	Convexification

	Local solution of the original problem
	Branching on additional variables
	Branching on original variables

	Branching

	IV Advanced Topics
	Distance Geometry
	Some applications of DG
	Clock synchronization
	Sensor network localization
	Molecular structure from distance data
	Autonomous underwater vehicles
	Finding graph embeddings for deep learning

	A short summary of DG history
	A proof of Heron's theorem

	The universal isometric embedding
	Matrix completion problems
	Floyd-Warshall algorithm
	Multidimensional scaling
	Principal component analysis

	Complexity
	Reduction proof
	Membership in NP

	Number of solutions
	Formulation-based solution methods
	Unconstrained quartic formulation
	Constrained quadratic formulations
	Semidefinite programming
	Diagonally dominant programming
	Barvinok's naive algorithm
	Quadratic Programming feasibility
	Concentration of measure
	Analysis of Barvinok's algorithm
	Applicability to the DGP

	Isomap

	Quantile regression
	Quantiles
	Regression
	LP formulation
	Density

	Solution properties
	Prediction and visualization
	Constrained QR

	Sparsity and 1 minimization
	Motivation
	Coding problem for costly channels
	Coding problems for noisy channels

	Sparsest solution of a linear system
	MILP formulation and LP relaxation
	Intuitive explanations
	The phase transition
	Theoretical results
	Main theorem
	The null space property
	A realistic variant of the NSP

	Restricted isometry property
	Applicability to Eq. (12.1)
	RIP and eigenvalues

	Normally sampled matrices

	Random projections in MP
	The Johnson-Lindenstrauss Lemma
	Union and intersection bounds
	Proving the JLL
	Approximating the identity

	Random projections in mathematical programming
	Linear feasibility
	Linear optimization
	Solution retrieval
	Quadratic optimization
	Feasibility and retrieval
	Approximation error
	Relations of QP results to LP

	Minimum sum-of-squares clustering
	cMINLP formulation
	Removing centroid constraints
	Linearization of products

	Approximating reformulations
	Linearizable norms
	The norm
	The 1 norm

	Approximation guarantees

	Randomly projected formulations
	Applicability of the JLL
	The additive JLL for infinite sets

	The kissing number problem
	Basic formulations
	In practice

	Spherical codes
	MINLP formulation
	Polar coordinates
	Lower bounds
	Upper bounds
	The useless SDP
	The shadow bound
	The Delsarte bound
	Valid cuts and Gegenbauer polynomials
	Primal and dual
	Delsarte's theorem
	Pfender's theorem

	Implementable LPs
	The choice of H

	ACOPF
	PMU placement
	Fighting over Gödel
	Apocryphal history of the kissing number problem

