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About the course
I Aimsof lectures: theory, algorithms, some code
won’t repeat much of MAP557

I AimsofTD:modelling abilities in practice
with AMPL and Python

I Warning:
some disconnection between lectures and TD is normal

some theoretical topics do not lend themselves to implementation

I Lectures/TD: fri afternoon
(exceptions on thursdays 200227, 200312)

I Exam: I prefer project (max 2 people) or oral exam
issue with timeslot: I am not free the weeks 200317-200331
days for exams: fri 200313, mon 200316, fri 200328
slot of 200312 will be used for revising

http://www.lix.polytechnique.fr/~liberti/
teaching/dix/inf580-20
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What isMathematical Optimization?

I Mathematics of solving optimization problems
I Formal language: Mathematical Programming (MP)
I Sentences: descriptions of optimization problems
I Interpreted by solution algorithms (“solvers”)
I As expressive as any imperative language
I Shifts focus from algorithmics tomodelling
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Why Large-scale?

I Any process can be optimized
I Social, technical and business processes are complex
I Computer power limits model precision
I Nowadays, need to solve very precise models
⇒ increase in model size

I ⇒ algorithmic complexity must grow slowly with size
I Focus on LP algs and heuristics
I Investigate LP relaxations & dimensionality
reductionmethods
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The syllabus
I Which optimization problems can be solved?
a tour of 20th century logic

I Complexity of optimization problems
basics of theoretical computer science

I Distance geometry
modern large-scale optimization and data science
techniques

I Random projections
new approaches to approximately solving large-scale
problems

I Sparsity and `1minimization
integrality out of continuity

I Further topics
as time allows
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MPFormulations
Given functions f, g1, . . . , gm : Qn → Q and Z ⊆ {1, . . . , n}

min f(x)
∀i ≤ m gi(x) ≤ 0
∀j ∈ Z xj ∈ Z

 [P ]

I More general than it looks:
I φ(x) = 0 ⇔ (φ(x) ≤ 0 ∧ −φ(x) ≤ 0)
I L ≤ x ≤ U ⇔ (L− x ≤ 0 ∧ x− U ≤ 0)

I f, gi represented by expression DAGs

Class of all formulations P :MP
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Semantics of MP formulations

I JP K = optimum (or optima) of P
I Given P ∈MP, there are three possibilities:

JP K exists, P is unbounded, P is infeasible
I P is feasible i� JP K exists or is unbounded

otherwise it is infeasible
I P has an optimum i� JP K exists

otherwise it is infeasible or unbounded
I Example:

min x1 + 2x2 − log(x1x2)
x1x

2
2 ≥ 1
x1 ∈ [0, 1]
x2 ∈ N
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Example

P ≡ min{x1 + 2x2 − log(x1x2) | x1x
2
2 ≥ 1∧ 0 ≤ x1 ≤ 1∧ x2 ∈ N}

JP K = (opt(P ), val(P )) opt(P ) = (1, 1) val(P ) = 3
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Are feasibility and optimality really
di�erent?

I Feasibility prob. g(x) ≤ 0:
can be written as MPmin{0 | g(x) ≤ 0}

I BoundedMPmin{f(x) | g(x) ≤ 0}:
bisection on f0 in f(x) ≤ f0 ∧ g(x) ≤ 0

I UnboundedMP: not equivalent to feasibility
in general, cannot prove unboundedness
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Bisection algorithm

I P ≡ min{f(x) | ∀i ∈ I gi(x) ≤ 0 ∧ x ∈ X}
I Assume global optimum of P is between given
lower/upper bounds

I Reformulate P to a parametrized feasibility problem
Q(f0) = {x ∈ X | f(x) ≤ f0 ∧ ∀i ∈ I gi(x) ≤ 0}
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Bisection algorithm

1: Input: lower & upper bound to f0

2: while lower and upper bounds di�er by> ε do
3: let f0 bemidway between bounds
4: if Q(f0) is feasible then
5: update upper bound to f0

6: else
7: update lower bound to f0

8: end if
9: end while
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Bisection algorithm for MP

1: Input: lower & upper bound to f0,
candidate global optimum x̂

2: while lower and upper bounds di�er by> ε do
3: let f0 bemidway between bounds
4: if Q(f0) is feasible then
5: �nd a feasible point x′

6: if x′ improves x̂ then
7: update x̂ to x′

8: update upper bound to f(x̂)
9: end if
10: else
11: update lower bound to f0

12: end if
13: end while

14 / 402



Bisection algorithm for MP (formal)

Given:
I global optimal value approximation tolerance ε > 0

I lower bound f , upper bound f̄
I an algorithmA which
�nds an element in a set or certi�es emptyness up to ε
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Bisection algorithm for MP (formal)

1: let (x̂, f̂) = (uninitialized, f̄)
2: while f̄ − f > ε do
3: let f0 = (f + f̄)/2
4: if Q(f0) 6= ∅ then
5: (x′, f ′) = A(Q)
6: if f ′ < f̂ then
7: update (x̂, f̂)← (x′, f ′)

8: update f̄ ← f̂
9: end if
10: else
11: update f ← f0

12: end if
13: end while
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Subsection 1

MP language
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Entities of a MP formulation

I Sets of indices
I Parameters
problem input, or instance

I Decision variables
will encode the solution after solver execution

I Objective function
I Constraints
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Example

Linear Program (LP) in standard form
I I = {1, . . . , n}: row indices
J = {1, . . . , n}: col. indices

I c ∈ Rn, b ∈ Rm,A anm× nmatrix
I x ∈ Rn

I minx c
>x

I Ax = b ∧ x ≥ 0
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MP language implementations

I Humansmodel with quanti�ers (∀,
∑
,. . . )

e.g. ∀i ∈ I
∑
j∈J

aijxj ≤ bi

I Solvers accept lists of explicit constraints
e.g. 4x1 + 1.5x2 + x6 ≤ 2

I Translation fromstructured to�at formulation
I MP language implementations
AMPL, GAMS, Matlab+YALMIP,
Python+PyOMO/cvx, Julia+JuMP, . . .
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AMPL

I AMPL= AMathematical Programming Language
I Syntax similar to human notation
I Implementation sometimes somewhat buggy
I Commercial & closed-source

I extremely rapid prototyping
I we get free licenses for this course
I free open-source AMPL sub-dialect in GLPK glpsol

I Can also use Python+PyOMO, or Julia+JuMP
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Subsection 2

Solvers
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Solvers

I Solver:
a solution algorithm for a whole subclass of MP

I Take formulation P as input
I Output JP K and possibly other information
I Trade-o� between generality and e�ciency
fast solvers for large MP subclasses: unlikely
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Some subclasses of MP

(i) Linear Programming (LP)
f, gi linear, Z = ∅

(ii) Mixed-Integer LP (MILP)
f, gi linear, Z 6= ∅

(iii) Nonlinear Programming (NLP)
some nonlinearity in f, gi, Z = ∅
f, gi convex: convex NLP (cNLP)

(iv) Mixed-Integer NLP (MINLP)
some nonlinearity in f, gi, Z 6= ∅
f, gi convex: convexMINLP (cMINLP)
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And their solvers

(i) Linear Programming (LP)
simplex algorithm, interior point method (IPM)
Implementations: CPLEX, GLPK, CLP

(ii) Mixed-Integer LP (MILP)
cutting plane alg., Branch-and-Bound (BB)
Implementations: CPLEX, GuRoBi

(iii) Nonlinear Programming (NLP)
IPM, gradient descent (cNLP), spatial BB (sBB)
Implementations: IPOPT (cNLP), Baron, Couenne

(iv) Mixed-Integer NLP (MINLP)
outer approximation (cMINLP), sBB
Implementations: Bonmin (cMINLP), Baron, Couenne
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Subsection 3

MP systematics
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Types of MP

Continuous variables:

I LP (linear functions)

I QP (quadratic obj. over a�ne sets)

I QCP (linear obj. over quadratically def’d sets)

I QCQP (quadr. obj. over quadr. sets)

I cNLP (convex sets, convex obj. fun.)

I SOCP (LP over 2nd ord. cone)

I SDP (LP over PSD cone)

I CPP (LP over copositive cone)

I NLP (nonlinear functions)
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Types of MP

Mixed-integer variables:

I IP (integer programming), MIP (mixed-integer programming)

I extensions:MILP, MIQ, MIQCP, MIQCQP, cMINLP, MINLP

I BLP (LP over {0, 1}n)
I BQP (QP over {0, 1}n)

Somemore “exotic” classes:

I MOP (multiple objective functions)

I BLevP (optimization constraints)

I SIP (semi-in�nite programming)
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Subsection 4

Some applications
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Some application �elds
I Production industry
planning, scheduling, allocation, . . .

I Transportation & logistics
facility location, routing, rostering, . . .

I Service industry
pricing, strategy, product placement, . . .

I Energy industry
power �ow optimization, monitoring smart grids,. . .

I Machine Learning & Arti�cial Intelligence
clustering, approximation error minimization

I Biochemistry &medicine
protein structure, blending, tomography, . . .

I Mathematics
Kissing number, packing of geometrical objects,. . .
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Easy example

Abank needs to investC gazillion dollars, and focuses
on two types of investments: one, imaginatively called
(a), guarantees a 15% return, while the other, riskier
and called, surprise surprise, (b), is set to a 25%. At
least one fourth of the budget C must be invested in
(a), and the quantity invested in (b) cannot be more
than double the quantity invested in (a). How do we
choose how much to invest in (a) and (b) so that rev-
enue is maximized?
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Easy example

I Parameters:
I budgetC
I return on investment on (a): 15%, on (b): 25%

I Decision variables:
I xa = budget invested in (a)
I xb = budget invested in (b)

I Objective function: 1.15xa + 1.25xb
I Constraints:

I xa + xb = C
I xa ≥ C/4
I xb ≤ 2xa
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Easy example: remarks
I Missing trivial constraints:
verify that xa = C + 1, xb = −1 satis�es constraints
forgot x ≥ 0

I No numbers in formulations:
replace numbers by parameter symbols

max
xa,xb≥0

caxa + cbxb

xa + xb = C
xa ≥ pC

dxa − xb ≥ 0


I Formulation generality:
extend to n investments:

max
x≥0

∑
j≤n

cjxj∑
j≤n

xj = C

x1 ≥ pC
dx1 − x2 ≥ 0
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Example: monitoring an electrical grid
An electricity distribution company wants to monitor certain
quantities at the lines of its grid by placingmeasuring devices at
the buses. There are three types of buses: consumer, generator,
and repeater. There are �ve types of devices:

I A: installed at any bus, andmonitors all incident lines
(cost: 0.9MEUR)

I B: installed at consumer and repeater buses, andmonitors
two incident lines (cost: 0.5MEUR)

I C: installed at generator buses only, andmonitors one
incident line (cost: 0.3MEUR)

I D: installed at repeater buses only, andmonitors one
incident line (cost: 0.2MEUR)

I E: installed at consumer buses only, andmonitors one
incident line (cost: 0.3MEUR).

Provide a least-cost installationplan for the devices at the buses,
so that all lines are monitored by at least one device.
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Example: the electrical grid

gen1

con1 con2

rep1

rep2

rep3

rep4gen2

con20rep5 rep6rep7

con3 con4

con5 con6 con7

con8 con9

con10 con11

con12con13 con14 con15 con16con17 con18con19

rep10

rep11

rep8rep9
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Example: formulation

I Index sets:
I V : set of buses v
I E: set of lines {u, v}
I A: set of directed lines (u, v)
I ∀u ∈ V letNu = buses adjacent to u
I D: set of device types
I DM : device types covering> 1 line
I D1 = D rDM

I Parameters:
I ∀v ∈ V bv = bus type
I ∀d ∈ D cd = device cost
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Example: formulation

I Decision variables
I ∀d ∈ D, v ∈ V xdv = 1
i� device type d installed at bus v

I ∀d ∈ D, (u, v) ∈ A yduv = 1
i� device type d installed at bus umeasures line {u, v}

I all variables are binary
I Objective function

min
x,y

∑
d∈D

cd
∑
v∈V

xdv
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Example: formulation

I Constraints
I device types:

∀v ∈ V bv = gen → xBv = 0

∀v ∈ V bv ∈ {con, rep} → xCv = 0

∀v ∈ V bv ∈ {gen, con} → xDv = 0

∀v ∈ V bv ∈ {gen, rep} → xEv = 0

I at most one device type at each bus

∀v ∈ V
∑
d∈D

xdv ≤ 1
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Example: formulation
I Constraints

I A: every line incident to installed device is monitored

∀u ∈ V, v ∈ Nu yAuv = xAu

I B: twomonitored lines incident to installed device

∀u ∈ V
∑
v∈Nu

yBuv = 2xBu

I C,D,E: onemonitored line incident to installed device

∀d ∈ D1, u ∈ V
∑
v∈Nu

yduv = xdu

I line is monitored

∀{u, v} ∈ E
∑
d∈D

yduv +
∑
e∈D

yevu ≥ 1
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Example: solution

gen1

devA

con1 con2

rep1

devD

rep2

devD

rep3

devD

rep4

devD

gen2

con20

devB

rep5

devA

rep6

devB

rep7

devA

con3

devE

con4

con5

devB

con6

devB

con7

con8 con9

devE

con10

devE

con11

con12con13 con14 con15

devE

con16con17 con18con19

rep10

devA

rep11

devA

rep8

devB

rep9

devD

all lines monitored, no redundancy, cost 9.2MEUR
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Can we solve MPs?

I “Solve MPs”: is there an algorithmD s.t.:

∀P ∈MP D(P ) =


infeasible P is infeasible
unbounded P is unbounded
JP K otherwise

I I.e. does there exist a single, all-powerful solver?
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Subsection 1

Formal systems
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Formal systems (FS)

I A formal system consists of:
I an alphabet
I a formal grammar
allowing the determination of formulæ and sentences

I a setA of axioms (given sentences)
I a setR of inference rules
allowing the derivation of new sentences from old
ones

I A theory T is the smallest set of sentences that is
obtained by recursively applyingR toA

[Smullyan, Th. of Formal Systems, 1961]
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Example: PA1
I Theory: 1st order provable sentences aboutN
I Alphabet: +,×,∧,∨,→,∀,∃,¬,=, S(·) and variable names
I Peano’s Axioms:

1. ∀x (0 6= S(x))

2. ∀x, y (S(x) = S(y)→ x = y)

3. ∀x (x+ 0 = x)

4. ∀x (x× 0 = 0)

5. ∀x, y (x+ S(y) = S(x+ y))

6. ∀x, y (x× S(y) = x× y + x)

7. axiom schema over all (k + 1)-ary φ: ∀y = (y1, . . . , yk)
(φ(0, y) ∧ ∀xφ(x, y)→ φ(S(x), y))→ ∀xφ(x, y)

I Inference: see
https://en.wikipedia.org/wiki/List_of_rules_of_inference
e.g.modus ponens (P ∧ (P → Q))→ Q

I Generates ring (N,+,×) and arithmetical proofs
e.g. ∃x ∈ Nn ∀i (pi(x) ≤ 0) (polynomial MINLP feasibility)
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Example: Reals

I Theory: 1st order provable sentences aboutR
I Alphabet: +,×,∧,∨,∀,∃,=, <,≤, 0, 1,variable names
I Axioms: �eld and order
I Inference: see

https://en.wikipedia.org/wiki/List_of_rules_of_inference

e.g.modus ponens (P ∧ (P → Q))→ Q

I Generates polynomial ringsR[X1, . . . , Xk] (for all k)
e.g. ∃x ∈ Rn ∀i (pi(x) ≤ 0) (polynomial NLP feasibility)
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Relevance of FSs toMP

Given a FSF :
I A decision problem is a set P of sentences
Decide if a given sentence f belongs to P

I Decidability in formal systems:
P ≡ provable sentences

I Proof of f : �nite sequence of sentences ending with f
sentences ∈ axioms ∨ derived from predecessors by inference rules

I PA1: decide if sentence f aboutN has a proof
PA1 contains ∃x ∈ Zn ∀i pi(x) ≤ 0 (poly p)

I Reals: decide if sentence f aboutR has a proof
Reals contains ∃x ∈ Rn ∀i pi(x) ≤ 0 (poly p)

I Formal study of MINLP/NLP feasibility
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Decidability, computability, solvability

I Decidability: applies to decision problems
I Computability: applies to function evaluation

I Is the functionmapping i to the i-th prime integer
computable?

I Is the functionmapping Cantor’s CH to 1 if provable in
ZFC axiom system and to 0 otherwise computable?

I Solvability: applies to other problems
E.g. to optimization problems
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Completeness and decidability

I Complete FSF :
for any f ∈ F , either f or ¬f is provable

otherwiseF is incomplete
I Decidable FSF :
∃ algorithmD s.t.

∀f ∈ F
{
D(f) = 1 i� f is provable
D(f) = 0 i� f is not provable

otherwiseF is undecidable
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Example: PA1

I Gödel’s 1st incompleteness theorem:
PA1 is incomplete

I Turing’s theorem:
PA1 is undecidable

I ⇒ PA1 is incomplete and undecidable
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Subsection 2

Gödel
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Gödel’s 1st incompleteness theorem
I F : any FS extending PA1

I Thm. F complete i� inconsistent
I φ: sentence “φ not provable inF”
denotedF 6` φ; it can be constructed inF (hard part of thm.)

I `: “is provable” in PA1; `: in meta-language
I AssumeF is complete: eitherF`φ orF`¬φ
I IfF `φ thenF`(F 6` φ) i.e.F 6`φ, contradiction
I IfF`¬φ thenF`¬(F 6` φ) i.e.F`(F ` φ)
this impliesF`φ, i.e.F`(φ ∧ ¬φ),F inconsistent

I AssumeF is inconsistent: any sentence is provable,
i.e.F complete
details: P ∧ ¬P , hence P and¬P , in particular for anyQ we have P ∨Q,
whenceQ (since¬P and P ∨Q), implying P ∧ ¬P → Q

I If we want PA1 to be consistent, it must be incomplete
I Warning: F 6`φ ≡ ¬(F`φ) 6≡ F`¬φ
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Gödel’s encoding

I For ψ ∈ PA1, pψq ∈ N
integer which encodes the proof
let me sweep the details under the carpet

I p·q is an injective map
I Inverse: 〈pφq〉 = φ
φ is the sentence corresponding to Gödel’s number pφq

I Encode/decode inN any sentence of a formal system
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Gödel’s self-referential sentence φ
I For integers x, y ∃g ∈ N 〈g〉 ≡ proof(x, y) :
holds if 〈x〉 is a proof in PA1 for the sentence 〈y〉

I For integersm,n, p ∃g ∈ N 〈g〉 ≡ sost(m,n, p) =
encoding inN of the sentence obtained by replacing in 〈m〉 the
(typographical sign of the) free variable symbol 〈n〉 with the
integer p

I let y be the encoding of the (typographical sign of the)
variable symbol ‘y’ (remark: y = p‘y’q ∈ N)

I γ(y) ≡ ¬∃x ∈ N proof(x, sost(y, y, y)):
there is no proof in PA1 for the sentence obtained from
replacing, in the sentence 〈y〉, every free variable symbol ‘y’
with the integer y

I let q = pγ(y)q, replace y with q in γ(y), get φ ≡ γ(q)
so φ ≡ ¬∃x ∈ N proof(x, sost(q, y, q))
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Gödel’s self-referential sentence φ

φ ≡ ¬∃x ∈ N proof(x, sost(q, y, q))

I Let ψ ≡ sost(q, y, q)
ψ de�ned by replacing the free variable symbol ‘y’ in 〈q〉with q

I φ ≡ “there is no proof in PA1 for the sentence ψ”
I How did we obtain φ?

φ obtained by replacing the free variable y in γ(y)with q

i.e. φ ≡ γ(q)

I Recall: q = pγ(y)q, i.e. 〈q〉 ≡ γ(y)

I So ψ ≡ φ

I Hence φ states “φ is not provable in PA1”
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Subsection 3

Turing
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Turingmachines
I TuringMachine (TM): computation model

I in�nite tape with cells storing �nite alphabet letters
I head reads/writes/skips i-th cell, moves left/right
I states=program (e.g. if s write 0, move left, change to state t)
I initial tape content: input, �nal tape content: output
I �nal state⊥: termination (nontermination denoted∅)
I canmodel PA1

I ∃ universal TM (UTM) U s.t.
I given the “program” of a TM T and an input x
I U “simulates” T running on x

I ⇒The basis of themodern computer
I Halting Problem (HP): given TMM & input x, isM(x) = ⊥?

Does a given TM terminate on its input?

I Turing’s theorem: HP is undecidable
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Turing’s proof (informal)

I Suppose ∃TM “halt” s.t. ∀TM T
halt(T, x) = 1 if T (x) terminates, 0 othw

I De�ne TMG s.t.:
if halt(G, x) = 1 then loop forever else stop

I IfG does not stop on x thenG stops on x, contradiction
I IfG stops on x thenG does not stop on x, contradiction
I ⇒TM halt cannot exist
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Computable functions

I Consider TM T on input x yielding output y
I Functional view: T (x) = y

I If a TM T terminates on all input, T (·) is computable
a.k.a. “total computable”

I If a function is not computable, then it’s
uncomputable

I If T only terminates on some input, T (·) is partial
computable
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Turing’s proof (formal)

I Enumerate all TMs: (Mi | i ∈ N)

I Halting function halt(i, `) =

{
1 ifMi(`) = ⊥
0 ifMi(`) = ∅

I Show halt 6= F for any total computable F (i, `):
I letG(i) = 0 if F (i, i) = 0 or unde�ned (∅) othw
G is partial computable because F is computable

I letMj be the TM computingG
for any i,Mj(i) = ⊥ i�G(i) = 0 (sinceG(i) unde�ned othw)

I consider halt(j, j):
I halt(j, j) = 1→Mj(j) = ⊥ → G(j) = 0→ F (j, j) = 0
I halt(j, j) = 0→Mj(j) = ∅→ G(j) = ∅→F (j, j) 6= 0

I so halt(j, j) 6= F (j, j) for all j
I halt is uncomputable
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Turing and Gödel

I Consider a TM called “provable”
with input α ∈ PA1:
while(1) {i=0; if proof(i, pαq) return YES; else i=i+1}

I provable(α) = YES i� PA1 ` α
I termination of provable⇔ decidability in PA1
I Gödel’s φ is not provable⇒ PA1 is undecidable

PA1 incomplete and undecidable

61 / 402



Subsection 4

Tarski
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Example: Reals

I Tarski’s theorem: Reals is decidable
I Algorithm:
constructs solution sets (YES) or derives contradictions(NO)
⇒ provides proofs or contradictions for all sentences

I ⇒ Reals is complete and also decidable
since every complete theory is decidable (why?)
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Completeness⇒ decidability

I Given φ ∈ F
i = 0
while 1 do
if proof(i, pφq) then
return YES

else if proof(i, p¬φq) then
return NO

end if
i = i + 1

end while
I SinceF complete, alg. terminates on all φ
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Tarski’s theorem

I Algorithm based on quanti�er elimination
I Feasible sets of polynomial systems p(x) ≤ 0
have �nitely many connected components

I Each connected component recursively built of
cylinders over points or intervals
extremities: pts.,±∞, algebraic curves at previous recursion levels

I In some sense, generalization of Reals inR1
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Dense linear orders
Given a sentence φ inDLO (roughly likeReals limited toR1)

I Reduce to DNF w/clauses ∃xi qi(x) s.t. qi =
∧
qij

I Each qij has form s = t or s < t (s, t vars or consts)
I s, t both constants:
s < t, s = t veri�ed and replaced by 1 or 0

I s, t the same variable xi:
s < t replaced by 0, s = t replaced by 1

I if s is xi and t is not:
s = tmeans “replace xi by t” (eliminate xi)

I remaining case:
qi conjunction of s < xi and xi < t:
replace by s < t (eliminate xi)

I qi no longer depends on xi, rewrite ∃xi qi as qi
I Repeat over vars. xi, obtain real intervals or contradictions

Quanti�er elimination!
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Subsection 5

Completeness and incompleteness
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Decidability and completeness

I PA1 is incomplete and undecidable
I Reals is complete and decidable
I Are there FSF that are:

I incomplete and decidable?
I complete and undecidable?
case already discussed, answer is NO
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Incomplete and decidable (trivial)

I NoInference:
Any FS with<∞ axiom schemata and no inference rules

I Only possible proofs: sequences of axioms
I Only provable sentences: axioms
I For any other sentence f : no proof of f or ¬f
I Trivial decision algorithm:
given f , output YES if f is a �nite axiom sequence,
NO otherwise

I NoInference is incomplete and decidable
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Incomplete and decidable (nontrivial)
I ACF: Algebraically Closed Fields (e.g.C)
�eld axioms+ “every polynomial splits” schema

I Theorem: ACF is incomplete
I ACFp: ACF ∧ Cp ≡ [

∑
j≤p

1 = 0] (with p prime)

I Claim: ∀p (prime) Cp independent of ACF
I suppose proof of Cp or ¬Cp possible for p
I then either ACF ∧ Cp or ACF ∧ ¬Cp inconsistent
I but ∃ �eld of characteristic p
I ACF ∧ Cp and ACF ∧ ¬Cp consistent

I Theorem: ACF is decidable
Decision alg.D(ψ) for ACF:

I if ψ ≡ Cp or ¬Cp for some prime p, returnNO
I else run quanti�er elimination on ψ
but replace

∑
j≤p 1 by 0whenever possible

I ⇒ ACF is incomplete and decidable
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The twomeanings of completeness

I WARNING!!!
“complete” is used in two di�erent ways in logic
1. Gödel’s 1st incompleteness theorem
FSF complete if φ or ¬φ provable ∀φ

2. Gödel’s completeness theorem
I A: set of sentences inF
I M amodel ofF (domain of var symbols)
I If ∃M s.t.AM is true, thenA consistent
I IfA consistent, then ∃M s.t.AM is true
I Complete FS: ∀M (AM )⇒ F ` A
I Gödel’s completeness theorem:

1st order logic is complete

I Pay attention when reading literature/websites
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Subsection 6

MP solvability
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Polynomial equations in integers

I Consider the feasibility-only MP

min{0 | ∀i ≤ m gi(x) = 0 ∧ x ∈ Zn}

with gi(x) composed by arithmetical expressions (+,−,×,÷)
I Rewrite as aDiophantine equation (DE):

∃x ∈ Zn
∑
i≤m

(gi(x))2 = 0 (1)

I Can restrict toN wlog, i.e. Eq. (1) ∈ PA1
write xi = x+

i − x−i where x+
i , x

−
i ∈ Nn

I Formulæ of PA1 are generally undecidable
but is the subclass (1) of PA1 decidable or not?
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Hilbert’s 10th problem

I Hilbert:
Given a Diophantine equation with any number of unknowns and
with integer coe�cients: devise a process which could determine
by a �nite number of operationswhether the equation is solvable in
integers

I Davis & Putnam: conjecture DEs are undecidable
I consider setRE of recursively enumerable (r.e.) sets
I R ⊆ N is inRE if ∃TM listing all and only elements inR
I someRE sets are undecidable, e.g.R = {pφq | PA1 ` φ}
r.e.: list all proofs; undecidable: by Gödel’s thm

I for eachR ∈ RE show ∃ polynomial p(r, x) s.t.
r ∈ R↔ ∃x ∈ Nn p(r, x) = 0

I if can prove it, ∃ undecidable DEs
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Proof strategy

I Strategy: “model” recursive functions using
polynomial systems

I D&P+Robinson: universal quanti�ers removed, but
eqn system involves exponentials

I Matiyasevich: exploits exponential growth of Pell’s
equation solutions to remove exponentials

I ⇒DPRM theorem, implyingDE undecidable

Negative answer to Hilbert’s 10th problem
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Structure of the DPRM theorem
I Gödel’s proof of his 1st incompleteness thm.

r.e. sets≡DEs with<∞∃ and bounded ∀ quanti�ers
I Davis’ normal form

one bounded quanti�er su�ces: ∃x0∀a ≤ x0∃x p(a, x) = 0

I (2 bnd qnt≡ 1 bnd qnt on pairs) and induction

I Robinson’s idea
get rid of universal quanti�er by using exponent vars

I idea: [∃x0∀a ≤ x0∃x p(a, x) = 0] “→ ”

[
∃x

∏
a≤x0

p(a, x) = 0

]
I precise encoding needs variables in exponents

I Matyiasevic’s contribution
express c = ba using polynomials
I use Pell’s equation x2 − dy2 = 1

I solutions (xn, yn) satisfy xn + yn
√
d = (x1 + y1

√
d)n

I xn, yn grow exponentially with n
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MP is unsolvable

I Consider list of all TMs (Mi | i ∈ N)
ifMi(x) = ⊥ at t-th execution step, writeM t

i (x) = ⊥
I Yields all sets inRE = (Ri | i ∈ N) by dovetailing
at k-th round, perform k-th step ofMi(1), (k − 1)-st ofMi(2), . . . , 1-st ofMi(k)

⇒ ∀k ∈ N and ` ≤ k ifM `
i (k − `+ 1) = ⊥

letRi ← Ri ∪ {k − `+ 1}
Ri = {k − `+ 1 | ∃k ∈ N, ` ≤ k (M `

i (k − `+ 1) = ⊥)}
I DPRM theorem: ∀R ∈ RE,R represented by poly eqn
I LetRi ∈ RE s.t.Mi is a UTM
⇒ ∃Universal DE (UDE), say U(r, x) = 0

I min{0 | U(r, x) = 0 ∧ x ∈ Nn}:
undecidable (feasibility) MP

I min
x∈Nn

(U(r, x))2: unsolvable (optimization) MP
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Commonmisconception

“SinceN is contained inR, how is it possible that Reals is
decidable butDE (= Reals ∩ N) is not?”

After all, if a problem contains a hard subproblem, it’s hard
by inclusion, right?

I Can you expressDE p(x) = 0 ∧ x ∈ N in Reals?
I p(x) = 0 belongs to bothDE and Reals, OK
I “x ∈ N” in Reals?
⇐ �nd poly q(x) s.t. ∃x q(x) = 0 i� x ∈ Nn

I q(x) = x(x− 1) · · · (x− a) only good for {0, 1, . . . , a}
q(x) =

∏
i∈ω

(x− i) is∞ly long, invalid

I IMPOSSIBLE!
if it were possible,DEwould be decidable, contradiction
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MIQCP is undecidable

I [Jeroslow 1973]: MIQCP:

min c>x
∀i ≤ m x>Qix+ ai

>x+ bi ≥ 0
x ∈ Zn

 (†)

is undecidable
Proof:

I Let U(r, x) = 0 be an UDE
I P (r) ≡ min{u | (1−u)U(r, x) = 0∧u ∈ {0, 1}∧x ∈ Zn}

P (r) describes an undecidable problem
I Linearize every product xixj by yij and add yij = xixj

until only degree 1 and 2 left
I ObtainMIQCP (†)
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SomeMIQCQPs are decidable

I If eachQi is diagonal PSD, decidable [Witzgall 1963]

I If x are bounded in [xL, xU ] ∩ Zn, decidable
can express x ∈ {dxLe, dxLe+ 1, . . . , bxUc} by polynomial

∀i ≤ m
∏

xL
i ≤i≤xU

i

(x− i) = 0

turn into poly system inR (in Reals, decidable)
I ⇒ Bounded (vars) easier than unbounded (for Z)

I [MIQP decision vers.] is decidable
x>Qx+ c>x ≤ γ

Ax ≥ b
∀j ∈ Z xj ∈ Z

 (inNP [Del Pia et al. 2014])
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NLP is undecidable
We can’t represent unbounded subsets ofN by polynomials
But we can if we allow some transcendental functions

x ∈ Z ←→ sin(πx) = 0

I Constrained NLP is undecidable:

min{0 | U(a, x) = 0 ∧ ∀j ≤ n sin(πxj) = 0}

I Even with just one nonlinear constraint:

min{0, | (U(a, x))2 +
∑
j≤n

(sin(πxj))
2 = 0}

I Unconstrained NLP is undecidable:

min(U(a, x))2 +
∑
j≤n

(sin(πxj))
2

I Box-constrainedNLP is undecidable (boundedness doesn’t help):

min{(U(a, tanx1, . . . , tanxn))2+
∑
j≤n

(sin(π tanxj))
2 | −π

2
≤ x ≤ π

2
}
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Some NLPs are decidable
I All polynomial NLPs are decidable

by decidability of Reals

I Quadratic Programming (QP) is decidable overQ

min x>Qx + c>x
Ax ≥ b

}
(P )

I Bricks of the proof
I ifQ is PSD, JP K ∈ Q

1. remove inactive constr., active are eqn, use to replace vars
2. work out KKT conditions, they are linear in rational coe�cients
3. ⇒ solution is rational

I ∃ polytime IPM for solving P [Renegar&Shub 1992]
I unbounded case treated in [Vavasis 1990]

I ⇒ [QP decision version] is inNP
⇒QP is decidable overQ
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Rationals

I [Robinson 1949]:
RT (1st ord. theory overQ) is undecidable

I [Pheidas 2000]: existential theory ofQ (ERT) is open
can we decide wether p(x) = 0 has solutions inQ? Boh!

I [Matyiasevich 1993]:
I equivalence betweenDEH and ERT
I DEH = [DE restricted to homogeneous polynomials]
I but we don’t knowwhetherDEH is decidable

Note that Diophantus solved DE in positive rationals
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Worst-case algorithmic complexity
I Computational complexity theory:
worst-case time/space taken by an algorithm to complete

I Given an algorithmA
I e.g. to determine whether a graphG = (V,E) is
connected or not

I input: G; size of input: ν = |V |+ |E|
I How does cpu(A) vary with ν?

I cpu(A) = O(log ν): sublinear
I cpu(A) = O(logk ν) for �xed k: polylogarithmic
I cpu(A) = O(ν): linear
I cpu(A) = O(ν2): quadratic
I cpu(A) = O(νk) for �xed k: polytime
I cpu(A) = O(2ν): exponential

I polytime↔ e�cient
I exponential↔ ine�cient
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The “O(·)” calculus

∀f, g : N→ N f <O g ↔ ∃n ∈ N ∀ν > n (f(ν) < g(ν))

∀g : N→ N O(g) = {f : N→ N | ∃C ∈ N (f <O C g)}

∀f, g : N→ N O(f) < O(g) ↔ f ∈ O(g) ∧ g 6∈ O(f)
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Are polytime algorithms “e�cient”?

I Why are polynomials special?
I Many di�erent variants of TuringMachines (TM)
more tapes, more heads, . . .

I Polytime is invariant to all de�nitions of TM
e.g. TMwith∞ly many tapes: simulate with a single tape running
along diagonals, similarly to dovetailing

I In practice,O(ν)-O(ν3) is an acceptable range
coveringmost practically useful e�cient algorithms

I Many exponential algorithms are also usable in
practice for limited sizes

I Sublinear algorithms aren’t allowed to read their
whole input!
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Instances and problems

I An input to an algorithmA: instance
I Collection of all inputs forA: problem
consistent with “set of sentences” from decidability

I Remarks
I There are problems which no algorithm can solve
I A problem can be solved by di�erent algorithms

I Given prob. P �nd complexity of best alg. solving P

min
<O
{cpu(A) | A solves P}

I We (generally) don’t know how to search over all algs for P
sometimes we can �nd lower bounds for complexity (usually hard)
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Complexity classes: P,NP

I Focus on decision problems
I If ∃ polytime algorithm for P , then P ∈ P

I If there is a polytime checkable certi�cate for all YES
instances of P , then P ∈ NP
e.g. problem �nding a path with fewer thanK edges in a graph:
path itself is a certi�cate: it can be checked whether it has fewer
thanK edges in time proportional toK , which is obviously
smaller than the size of the graph

I No-one knows whetherP = NP (we think not)

I NP includes problems for which we don’t think a
polytime algorithm exists
e.g. k-clique, subset-sum, knapsack, hamiltonian
cycle, sat, . . .
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Equivalent de�nition ofNP
I NP: problems solved by nondeterministic polytime TM

I (⇒) Assume ∃ polysized certi�cate for every YES instance.
Nondeterministic polytime algorithm: concurrently
explore all possible polysized certi�cates, call veri�cation
oracle for each, determine YES/NO.

I (⇐) Run nondeterministic polytime algorithm: trace will
look like a tree (branchings at tests, loops unrolled) with
polytime depth. If YES there will be a terminating
polysized sequence of steps from start to termination,
serving as a polysized certi�cate
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Subsection 1

Some combinatorial problems inNP

91 / 402



k-clique
I Instance: (G = (V,E), k)
I Problem: determine whetherG has a clique of size k

I 1-clique? YES (every graph with≥ 1 vertices is YES)
I 2-clique? YES (every non-empty graph is YES)
I 3-clique? YES (triangle {1, 2, 4} is a certi�cate)
certi�cate can be checked inO(k2) < O(n2) (k �xed)

I > 4-clique? NO
no polytime certi�cate unlessP = NP

92 / 402



MP formulations for clique
Variables? Objective? Constraints?

I Decision variables: ∀j ∈ V xj =

{
1 j ∈ k-clique
0 otherwise

I no objective (pure feasibility MP)
I Constraints: “xi = xj = 1 i� {i, j} ∈ E”

∀i 6= j ∈ V xixj =

{
1 {i, j} ∈ E
0 otherwise

I Issue: nonlinear term in equality constr⇒ nonconvex
I Prop.: C clique inG⇔C stable in Ḡ
I Use constraints for k-stable in Ḡ instead:
“if {i, j} ∈ E(Ḡ), then xi = 1 or xj = 1 or neither but not both”

∀i 6= j ∈ V with {i, j} 6∈ E xi + xj ≤ 1

I Any other constraint?
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MP formulations for clique

I Pure feasibility problem: ∑
i∈V

xi = k

∀{i, j} 6∈ E xi + xj ≤ 1
x ∈ {0, 1}n



I Max Clique:

max
∑
i∈V

xi

∀{i, j} 6∈ E xi + xj ≤ 1
x ∈ {0, 1}n
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AMPL code forMax Clique

File clique.mod

# clique.mod
param n integer, > 0;
set V := 1..n;
set E within {V,V};
var x{V} binary;
maximize clique_card: sum{j in V} x[j];
subject to notstable{i in V, j in V : i<j and (i,j) not in E}:

x[i] + x[j] <= 1;

File clique.dat

# clique.dat
param n := 5;
set E := (1,2) (1,4) (2,4) (2,5) (3,5);
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AMPL code forMax Clique
File clique.run:

# clique.run
model clique.mod;
data clique.dat;
option solver cplex;
solve;
printf "C =";
for {j in V : x[j] > 0} {

printf " %d", j;
}
printf "\n";

Run with “ampl clique.run” on command line

CPLEX 12.8.0.0: optimal integer solution; objective 3
0 MIP simplex iterations
0 branch-and-bound nodes
C = 1 2 4
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subset-sum

I Instance: list a = (a1, . . . , an) ∈ Nn and b ∈ N
I Problem: is there J ⊆ {1, . . . , n} such that

∑
j∈J

aj = b?

I a = (1, 1, 1, 4, 5), b = 3: YES with J = {1, 2, 3}
all b ∈ {0, . . . , 12} yieldYES instances

I a = (3, 6, 9, 12), b = 20: NO
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MP formulations for subset-sum

Variables? Objective? Constraints?

I Pure feasibility problem:∑
j≤n

ajxj = b

x ∈ {0, 1}n

}
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AMPL code for subset-sum
File subsetsum.mod
# subsetsum.mod
param n integer, > 0;
set N := 1..n;
param a{N} integer, >= 0;
param b integer, >= 0;
var x{N} binary;
subject to subsetsum: sum{j in N} a[j]*x[j] = b;

File subsetsum.dat
# subsetsum.dat
param n := 5;
param a :=
1 1
2 1
3 1
4 4
5 5
;
param b := 3;

Code your own subsetsum.run!
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knapsack
I Instance: c, w ∈ Nn,K ∈ N
I Problem: �nd J ⊆ {1, . . . , n} s.t. c(J) ≤ K andw(J) is
maximum

I n = 3, c = (5, 6, 7),w = (3, 4, 5),K = 11

I c(J) ≤ 11 feasible for J in∅, {j}, {1, 2}
I w(∅) = 0, w({1, 2}) = 3 + 4 = 7, w({j}) ≤ 5 for j ≤ 3
⇒ Jmax = {1, 2}

I K = 4: trivial solution (J = ∅)

I natively expressed as an optimization problem
I notation: c(J) =

∑
j∈J

cj (similarly forw(J))
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MP formulation for knapsack

Variables? Objective? Constraints?

max
∑
j≤n

wjxj∑
j≤n

cjxj ≤ K

x ∈ {0, 1}n
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AMPL code for knapsack
File knapsack.mod
# knapsack.mod
param n integer, > 0;
set N := 1..n;
param c{N} integer;
param w{N} integer;
param K integer, >= 0;
var x{N} binary;
maximize value: sum{j in N} w[j]*x[j];
subject to knapsack: sum{j in N} c[j]*x[j] <= K;

File knapsack.dat
# knapsack.dat
param n := 3;
param : c w :=
1 5 3
2 6 4
3 7 5 ;
param K := 11;

Code your own knapsack.run!
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Hamiltonian Cycle

I Instance: G = (V,E)

I Problem: doesG have aHamiltonian cycle?
cycle covering every v ∈ V exactly once

NO YES (cert. 1→ 2→ 5→ 3→ 4→ 1)
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MP formulation forHamiltonian Cycle

Variables? Objective? Constraints?

∀i ∈ V
∑
j∈V
{i,j}∈E

xij = 1 (2)

∀j ∈ V
∑
i∈V
{i,j}∈E

xij = 1 (3)

∀∅ ( S ( V
∑

i∈S,j 6∈S
{i,j}∈E

xij ≥ 1 (4)

WARNING: Eq. (4) is a second order statement!
quanti�ed over sets
yields exponentially large set of constraints
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AMPL code forHamiltonian Cycle
File hamiltonian.mod

# hamiltonian.mod
param n integer, > 0;
set V default 1..n, ordered;
set E within {V,V};
set A := E union {i in V, j in V : (j,i) in E};
# index set for nontrivial subsets of V
set PV := 1..2**n-2;
# nontrivial subsets of V
set S{k in PV} := {i in V: (k div 2**(ord(i)-1)) mod 2 = 1};

var x{A} binary;
subject to successor{i in V} :

sum{j in V : (i,j) in A} x[i,j] = 1;
subject to predecessor{j in V} :

sum{i in V : (i,j) in A} x[i,j] = 1;

# breaking non-hamiltonian cycles
subject to breakcycles{k in PV}:

sum{i in S[k], j in V diff S[k]: (i,j) in A} x[i,j] >= 1;

Code your own .dat and .run �les!
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Satisfiability (sat)

I Instance: boolean logic sentence f in CNF∧
i≤m

∨
j∈Ci

`j

where `j ∈ {xj, x̄j} for j ≤ n

I Problem: is there φ : x→ {0, 1}n s.t. φ(f) = 1?

I f ≡ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2)
x1 = x2 = 1, x3 = 0 is aYES certi�cate

I f ≡ (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2)

φ x = (1, 1) x = (0, 0) x = (1, 0) x = (0, 1)
false C2 C1 C3 C4
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MP formulation for sat
Variables? Objective? Constraints?

Algorithm ρ̂ to generate MP from
∧
i≤m

∨
j∈Ci

`j :

I Literals `j ∈ {xj, x̄j}: decision variables in {0, 1}

ρ̂(`j) 7−→
{

xj if `j ≡ xj
1− xj if `j ≡ x̄j

I Clauses Γi ≡
∨
j∈Ci `j : constraints

ρ̂(Γi) 7−→
∑
j∈Ci

ρ̂(`j) ≥ 1

I Conjunction: feasibility-only ILP

ρ̂
(∧

i

Γi
)
7−→ ∀i ≤ m ρ̂(Γi)

107 / 402



MP formulation for sat
Variables? Objective? Constraints?
Algorithm ρ̂ to generate MP from

∧
i≤m

∨
j∈Ci

`j :

I Literals `j ∈ {xj, x̄j}: decision variables in {0, 1}

ρ̂(`j) 7−→
{

xj if `j ≡ xj
1− xj if `j ≡ x̄j

I Clauses Γi ≡
∨
j∈Ci `j : constraints

ρ̂(Γi) 7−→
∑
j∈Ci

ρ̂(`j) ≥ 1

I Conjunction: feasibility-only ILP

ρ̂
(∧

i

Γi
)
7−→ ∀i ≤ m ρ̂(Γi)

107 / 402



MP formulation for sat
Variables? Objective? Constraints?
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∧
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∨
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MP formulation for sat

I Prop.: sat instance q is YES i� ILP instance ρ̂(q) is YES

I Proof: Let L = (`′1, . . . , `
′
n) be a solution of sat. Then

x∗ = (x∗1, . . . , x
∗
n) where x∗j = 1 i� `′j = true and x∗j = 0

i� `′j = false is a feasible solution of ILP (satis�es
each clause constraint by de�nition of ρ̂).

Conversely: if x solves ILP, then form solution L of
sat bymapping x∗j = 1 to true and x∗j = 0 to false,
result follows again by defn of ρ̂.
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AMPL code for sat?

Without a numeric encoding of sat instances, we can
only write AMPL code for single instances
i.e. “we are the machines executing ρ̂”

Example: �le sat.run (�at formulation) for instance
(x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2)

# sat.run
var x{1..3} binary;
subject to con1: x[1] + (1-x[2]) + x[3] >= 1;
subject to con2: (1-x[1])+ x[2] >= 1;
option solver cplex;
solve;
display x, solve_result;
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Subsection 2

NP-hardness
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NP-Hardness
I Do hard problems exist? Depends onP 6= NP

I Next best thing: de�ne hardest problem inNP

I Prob. P is NP-hard if ∀Q ∈ NP ∃ polytime alg. ρQ:
q ∈ Q 7→ ρQ(q) ∈ P with q YES i� ρQ(q) YES

ρQ is called a polynomial reduction fromQ to P

I Why is such a P hardest forNP?
1. run best alg. forP on ρQ(q), get answerα ∈ {YES,NO}
2. return α as answer for q
3. soQ is no harder than P
4. ifQ were harder than P ,Q would be “easier than
itself”, a contradiction

I If P is inNP and isNP-hard, it is calledNP-complete

I Reduction: “model”Q using “language” of P
I Every problem inNP reduces to sat [Cook 1971]
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Cook’s theorem

Boolean decision variables store TM dynamics
De�nition of TM dynamics in CNF

Description of a dynamical system using a declarative program-
ming language (sat) — what MP is all about!
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TheMP version of Cook’s theorem

Thm.
Any problem inNP can be polynomially reduced to aMILP
Proof
(Sketch) Model the dynamics of a nondeterministic poly-
time TM using binary variables and constraints involving
sums and products; and then linearize the products of bi-
nary variables by means of Fortet’s inequalities
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Cook’s theorem: sets and params

I Reduce nondeterministic polytime TMM to MILP
I Tuple (Q,Σ, s, F, δ):
states, alphabet, initial, �nal, transition

I Transition relation δ: (QrF ×Σ)× (Q×Σ×{−1, 1})
δ: state `, symbol j 7→ state `′, symbol j′, direction d

I M polytime: terminates in p(n)
n size of input, p(·) polynomial

I Index sets:
statesQ, charactersΣ, tape cells I , stepsK
|K| = O(p(n)), |I| = 2|K|

I Parameters:
initial tape string τi = symbol j ∈ Σ in cell i
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Cook’s theorem: decision vars

I ∀i ∈ I, j ∈ Σ, k ∈ K
tijk = 1 i� tape cell i contains symbol j at step k

I ∀i ∈ I, k ∈ K
hik = 1 i� head is at tape cell i at step k

I ∀` ∈ Q, k ∈ K
q`k = 1 i�M is in state ` at step k
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Cook’s theorem: constraints (informal)

1. Initialization:

1.1 initial string τ on tape at step k = 0
1.2 M in initial state s at step k = 0
1.3 head initial position on cell i = 0 at k = 0

2. Execution:

2.1 ∀i, k: cell i has exactly one symbol j at step k
2.2 ∀i, k: if cell i changes symbol between step k and

k + 1, headmust be on cell i at step k
2.3 ∀k:M is in exactly one state
2.4 ∀k, i, j: cell i and symbol j in state k lead to possible

cells, symbol and states given by δ

3. Termination:

3.1 M reaches termination at some step k ≤ p(n)
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Cook’s theorem: constraints

1. Initialization:

1.1 ∀i ti,τi,0 = 1
1.2 qs,0 = 1
1.3 h0,0 = 1

2. Execution:

2.1 ∀i, k
∑

j tijk = 1
2.2 ∀i, j 6= j′, k < p(n) tijk ti,j′,k+1 = hik
2.3 ∀k

∑
i hik = 1

2.4 ∀i, `, j, k
|δ(`, j)|hik q`k tijk =

∑
((`,j),(`′,j′,d))∈δ

hi+d,k+1 q`′,k+1 ti+d,j′,k+1

3. Termination:

3.1
∑

f∈F,k
qfk = 1
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Cook’s theorem: conclusion

I MP in previous slide MINLP not MILP
I Fortet’s inequalities for products of binary vars:
For x, y ∈ {0, 1} and z ∈ [0, 1]
z = xy ⇔ z ≤ x ∧ z ≤ y ∧ z ≥ x+ y − 1

I MILP is feasibility only
I MILP has polynomial size
I ⇒MILP isNP-hard
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Reduction graph
After Cook’s theorem
To proveNP-hardness of a new problem P , pick a knownNP-hard
problemQ that “looks similar enough” to P and �nd a polynomial
reduction ρQ fromQ to P [Karp 1972]
Why itworks: suppose P easier thanQ, solveQ by calling Alg

P
◦ ρQ,

concludeQ as easy as P , contradiction sinceQ hardest inNP
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Example of polynomial reduction
I stable: givenG = (V,E) and k ∈ N, does it contain a stable
set of size k?

I We know k-clique isNP-complete, reduce from it
I Given instance (G, k) of clique consider the complement
graph (computable in polytime)

Ḡ = (V, Ē = {{i, j} | i, j ∈ V ∧ {i, j} 6∈ E})

I Prop.: G has a clique of size k i� Ḡ has a stable set of size k
I ρ(G) = Ḡ is a polynomial reduction from clique to

stable
I ⇒ stable isNP-hard
I stable is also inNP
U ⊆ V is a stable set i�E(G[U ]) = ∅ (polytime veri�cation)

I ⇒ stable isNP-complete
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Subsection 3

Complexity of solvingMP formulations
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LP is inP

I Khachian’s algorithm (Ellipsoid method)
I Karmarkar’s algorithm
I IPMwith crossover
IPM: penalize x ≥ 0 by−β log(x), polysized sequence of subproblems

crossover: polytime number of simplex pivots get to opt

I No known pivot rule makes simplex alg. polytime!
greedy pivot has exponential complexity on Klee-Minty cube
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(Recall) MILP isNP-hard
I sat NP-hard by Cook’s theorem, reduce from sat∧

i≤m

∨
j∈Ci

`j

where `j is either xj or x̄j ≡ ¬xj
I Polynomial reduction ρ̂

sat xj x̄j ∨ ∧
MILP xj 1− xj + ≥ 1

I E.g. ρ̂maps (x1 ∨ x2) ∧ (x̄2 ∨ x3) to

min{0 | x1 + x2 ≥ 1 ∧ x3 − x2 ≥ 0 ∧ x ∈ {0, 1}3}

I sat is YES i� MILP is feasible
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Complexity of Quadratic Programming (QP)

min x>Qx + c>x
Ax ≥ b

}
I Quadratic obj, linear constrs, continuous vars
I Many applications (e.g. portfolio selection)
I IfQ has at least one negative eigenvalue,NP-hard
I Decision problem: “is themin. obj. fun. value≤ 0?”
I IfQ PSD then objective is convex, problem is inP
KKT conditions become linear system, data inQ⇒ soln inQ
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QP isNP-hard
I By reduction from sat, let σ be an instance of sat
I ρ̂(σ, x) ≥ 1: linear constraints of (sat→ MILP) reduction

I Consider QP subclass

min f(x) =
∑
j≤n

xj(1− xj)

ρ̂(σ, x) ≥ 1
0 ≤ x ≤ 1

 (†)

I Claim: σ is YES i� val(†)≡ opt. obj. fun. val. of (†) = 0

I Proof:
I assume σ YES with soln. x∗, then x∗ ∈ {0, 1}n, hence
f(x∗) = 0, since f(x) ≥ 0 for all x, val(†) = 0

I assume σ NO, suppose val(†) = 0, then (†) feasible
with soln. x′, since f(x′) = 0 then x′ ∈ {0, 1}, feasible
in sat hence σ is YES, contradiction
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Box-constrained QP isNP-hard

min
x∈[xL,xU ]

x>Qx + c>x
}

I Add surplus vars v to sat→MILP constraints:
ρ̂(σ, x)− 1− v = 0

(denote by ∀i ≤ m (a>i x− bi − vi = 0))
I Consider special QP subclass

min
∑
j≤n

xj(1− xj) +
∑
i≤m

(a>i x− bi − vi)2

0 ≤ x ≤ 1, v ≥ 0

}

I Issue: v not bounded above
I Reduce from 3sat, get≤ 3 literals per clause
⇒ can consider 0 ≤ v ≤ 2
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cQKP isNP-hard
I continuous Quadratic Knapsack Problem (cQKP)

min f(x) = x>Qx + c>x∑
j≤n

ajxj = γ

x ∈ [0, 1]n,


I Reduction from subset-sum

given list a ∈ Qn and γ, is there J ⊆ {1, . . . , n} s.t.
∑
j∈J

aj = γ?

reduce to special QP subclass with f(x) =
∑
j xj(1− xj)

I σ is a YES instance of subset-sum
I let x∗j = 1 i� j ∈ J , x∗j = 0 otherwise
I feasible by construction
I f is non-negative on [0, 1]n and f(x∗) = 0: optimum

I σ is aNO instance of subset-sum
I suppose opt(cQKP) = x∗ with f(x∗) = 0

I then x∗ ∈ {0, 1}n because f(x∗) = 0

I feasibility of x∗⇒ J = supp(x∗) solves σ, contradiction⇒ f(x∗) > 0
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QP on a simplex isNP-hard
min f(x) = x>Qx + c>x∑

j≤n
xj = 1

∀j ≤ n xj ≥ 0


I Reducemax clique to QP subclass f(x) = −

∑
{i,j}∈E

xixj

Motzkin-Straus formulation (MSF):

max{
∑
{i,j}∈E

xixj |
∑
j∈V

xj = 1 ∧ x ≥ 0}

I Theorem [Motzkin& Straus 1964]
LetC be themaximum clique of the instanceG = (V,E) ofmax clique

∃x∗ ∈ opt (MSF) with f∗ = f(x∗) = 1
2 −

1
2ω(G)

∀j ∈ V x∗j =

{ 1
ω(G) if j ∈ C
0 otherwise

I ω(G): size of max clique inG
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Proof of theMotzkin-Straus theorem
x∗ = opt( max∑

j xj=1

x≥0

∑
ij∈E

xixj) s.t. |C = {j ∈ V | x∗j > 0}| smallest (‡)

1. C is a clique
I Suppose 1, 2 ∈ C but {1, 2} 6∈ E, then x∗1, x∗2 > 0, can perturb by
ε ∈ [−x∗1, x∗2], get xε = (x∗1 + ε, x∗2 − ε, . . .), feasible w.r.t. simplex
and bound constraints

I {1, 2} 6∈ E ⇒ x1x2 does not appear in f(x)⇒ f(xε) depends at
worst linearly on ε; by optimality of x∗, f achieves max for ε = 0,
in interior of its range⇒ f(ε) constant

I setting ε = −x∗1 or= x∗2 yields global optima withmore zero
components than x∗, against assumption (‡), hence
{1, 2} ∈ E[C], by relabelingC is a clique
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Proof of theMotzkin-Straus theorem
x∗ = opt( max∑

j xj=1

x≥0

∑
ij∈E

xixj) s.t. |C = {j ∈ V | x∗j > 0}| smallest (‡)

2. |C| = ω(G)
I square simplex constraint

∑
j xj = 1, get

ψ(x) ≡
∑
j∈V

x2j + 2
∑

i<j∈V
xixj = 1

I by construction x∗j = 0 for j 6∈ C⇒

ψ(x∗) =
∑
j∈C

(x∗j )2 + 2
∑

i<j∈C
x∗jx
∗
j =

∑
j∈C

(x∗j )2 + 2f(x∗) = 1

I ψ(x) = 1 for all feasible x, so f(x) achieves maximumwhen
∑
j∈C(x∗j )2 is

minimum, i.e. x∗j = 1
|C| for all j ∈ C

I again by simplex constraint

2f(x∗) = 1−
∑
j∈C

(x∗j )2 = 1− |C|
1

|C|2
≤ 1−

1

ω(G)

so f(x∗) attains max 1
2
− 1

2ω(G)
when |C| = ω(G)⇒ ∀j ∈ C xj = 1

ω(G)
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Copositive programming
I StQP:minx>Qx :

∑
j xj = 1 ∧ x ≥ 0

NP-hard byMotzkin-Straus

I Linearize:X = xx>

replace xixj byXij and add constraintsXij = xixj

I De�neA •B = tr(A>B) =
∑

i,j AijBij

write StQP (linearized) objective asminQ •X
I LetC = {X | X = xx> ∧ x ≥ 0}, C̄ = conv(C)

I
∑

j xj = 1⇔ (
∑

j xj)
2 = 12 ⇔ 1 •X = 1

I StQP≡minQ •X : 1 •X = 1 ∧X ∈ C̄
linear obj.⇒ optima attained at extrema of feas. set
⇒ can replaceC by its convex hull C̄
C̄ is a completely positive cone

I Dual≡max y : Q− y1 ∈ C̄∗ = {A | ∀x ≥ 0 (x>Ax ≥ 0)}
C̄∗ is a copositive cone

I ⇒ Pair of NP-hard cNLPs!
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Two exercises

I Prove that quartic polynomial optimization is
NP-hard; reduce from one of the combinatorial
problems given during the course, andmake sure
that at least onemonomial of degree four appears
with non-zero coe�cient in theMP formulation.

I As above, but for cubic polynomial optimization.
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Portfolio optimization

You, a private investment banker, are seeing a customer.
She tells you “I have 3,450,000$ I don’t need in the next three
years. Invest them in low-risk assets so I get at least 2.5% re-
turn per year.”

Model the problem of determining the required portfolio.
Missing data are part of the fun (and of real life).

[Hint: what are the decision variables, objective, constraints? What data are missing?]
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A gem in Distance Geometry

I Heron’s theorem

I Heron lived
around year 0

I Hang out at
Alexandria’s library

a

c

b

A =
√
s(s− a)(s− b)(s− c)

I A = area of triangle
I s = 1

2
(a+ b+ c)

Useful to measure areas of agricultural land
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Heron’s theorem: Proof [M. Edwards, high school student, 2007]
A. 2α+ 2β + 2γ = 2π ⇒ α+ β + γ = π

r + ix = ueiα

r + iy = veiβ

r + iz = weiγ

⇒ (r+ ix)(r+ iy)(r+ iz) = (uvw)ei(α+β+γ) =

uvw eiπ = −uvw ∈ R

⇒ Im((r + ix)(r + iy)(r + iz)) = 0

⇒ r2(x+ y+ z) = xyz ⇒ r =
√

xyz
x+y+z

B. s = 1
2 (a+ b+ c) = x+ y + z

s− a = x+ y + z − y − z = x

s− b = x+ y + z − x− z = y

s− c = x+ y + z − x− y = z

A =
1

2
(ra+ rb+ rc) = r

a+ b+ c

2
= rs =

√
s(s− a)(s− b)(s− c)
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Subsection 1

The universal isometric embedding
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Representingmetric spaces inRn

I Givenmetric space (X, d) with dist. matrixD = (dij),
embedX in a Euclidean space with same dist. matrix

I Consider i-th row δi = (di1, . . . , din) ofD

I Embed i ∈ X by vector δi ∈ Rn

I De�ne f(X) = {δ1, . . . , δn}, f(d(i, j)) = ‖f(i)− f(j)‖∞

I Thm.: (f(X), `∞) is a metric space with distance
matrixD

I Practical issue: embedding is high-dimensional (Rn)

[Kuratowski 1935]
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Proof
I Consider i, j ∈ X with distance d(i, j) = dij
I Then

f(d(i, j)) = ‖δi−δj‖∞ = max
k≤n
|dik−djk|≤ max

k≤n
|dij| = dij

ineq.≤ above from triangular inequalities in metric space:

dik ≤ dij + djk ∧ djk ≤ dij + dik

⇒ dik − djk ≤ dij ∧ djk − dik ≤ dij
⇒ |dik − djk| ≤ dij

If valid ∀i, j then valid formax

I max |dik − djk| over k ≤ n is achieved when k = i or
k = j

k ∈ {i, j} ⇒ f(d(i, j)) = dij
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UIE from incomplete metrics

I If your metric space is missing some distances
I Get incomplete distancematrixD
I Cannot de�ne vectors δi in UIE
I Note:D de�nes a graph

1

4

2

3
D =


0 1

√
2 1

1 0 1 ?√
2 1 0 1

1 ? 1 0


I Complete this graph with shortest paths: d24 = 2
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Floyd-Warshall algorithm 1/2

I Given n× n partial matrixD computes
all shortest path lengths

I For each triplet u, v, z of vertices in the graph, test:
when going u→ v, is it convenient to pass through z?

I If so, then change the path length
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Floyd-Warshall algorithm 2/2
# initialization
for u ≤ n, v ≤ n do
if dij =? then
duv ←∞

end if
end for
# main loop
for z ≤ n do
for u ≤ n do
for v ≤ n do
if duv > duz + dzv then
duv ← duz + dzv

end if
end for

end for
end for

142 / 402



Subsection 2

Dimension reduction
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Schoenberg’s theorem
I [I. Schoenberg,Remarks to Maurice Fréchet’s article “Sur
la dé�nition axiomatique d’une classe d’espaces distanciés
vectoriellement applicable sur l’espace de Hilbert”,
Ann. Math., 1935]

I Question: Given n× n symmetric matrixD, what are
necessary and su�cient conditions s.t.D is a EDM1

corresponding to n points x1, . . . , xn ∈ RK withK
minimum?

I Main theorem:
Thm.
D = (dij) is an EDM i� 1

2(d2
1i + d2

1j − d2
ij | 2 ≤ i, j ≤ n) is

PSD of rankK

I Gave rise to one of themost important results in data
science: ClassicMultidimensional Scaling

1Euclidean Distance Matrix
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Gram in function of EDM

I x = (x1, . . . , xn) ⊆ RK , written as n×K matrix
I matrixG = xx> = (xi · xj) is theGrammatrix of x
Lemma:G � 0 and eachM � 0 is a Grammatrix of some x

I A variant of Schoenberg’s theorem
Relation between EDMs and Grammatrices:

G = −1

2
JD2J (§)

I whereD2 = (d2
ij) and

J = In − 1
n
11> =


1− 1

n
− 1
n
· · · − 1

n

− 1
n

1− 1
n
· · · − 1

n
...

... . . . ...
− 1
n

− 1
n
· · · 1− 1

n


145 / 402



Multidimensional scaling (MDS)

I Often get approximate EDMs D̃ from raw data
(dissimilarities, discrepancies, di�erences)

I G̃ = −1
2
JD̃2J is an approximate Grammatrix

I Approximate Gram⇒ spectral decomposition P Λ̃P> has Λ̃ 6≥ 0

I Let Λ closest PSD diagonal matrix to Λ̃:
zero the negative components of Λ̃

I x = P
√

Λ is an “approximate realization” of D̃
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Classic MDS: Main result

1. Prove lemma: matrix is Gram i� it is PSD
2. Prove Schoenberg’s theorem: G = −1

2
JD2J
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Proof of lemma
I Gram⊆ PSD

I x is an n×K real matrix
I G = xx> its Grammatrix
I For each y ∈ Rn we have

yGy> = y(xx>)y> = (yx)(x>y>) = (yx)(yx)
>

= ‖yx‖22 ≥ 0

I ⇒ G � 0

I PSD⊆Gram
I LetG � 0 be n× n
I Spectral decomposition: G = PΛP>

(P orthogonal,Λ ≥ 0 diagonal)

I Λ ≥ 0⇒
√

Λ exists
I G = PΛP> = (P

√
Λ)(
√

Λ
>
P>) = (P

√
Λ)(P

√
Λ)
>

I Let x = P
√

Λ, thenG is the Grammatrix of x
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Schoenberg’s theorem proof (1/2)
I Assume zero centroidWLOG (can translate x as needed)
I Expand: d2ij = ‖xi − xj‖22 = (xi − xj)(xi − xj) = xixi + xjxj − 2xixj (∗)
I Aim at “inverting” (∗) to express xixj in function of d2ij

I Sum (∗) over i:
∑
i d

2
ij =

∑
i xixi + nxjxj − 2xj���:

0 by zero centroid∑
i xi

I Similarly for j and divide by n, get:

1

n

∑
i≤n

d2ij =
1

n

∑
i≤n

xixi + xjxj (†)

1

n

∑
j≤n

d2ij = xixi +
1

n

∑
j≤n

xjxj (‡)

I Sum (†) over j, get:

1

n

∑
i,j

d2ij = n
1

n

∑
i

xixi +
∑
j

xjxj = 2
∑
i

xixi

I Divide by n, get:
1

n2

∑
i,j

d2ij =
2

n

∑
i

xixi (∗∗)
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Schoenberg’s theorem proof (2/2)
I Rearrange (∗), (†), (‡) as follows:

2xixj = xixi + xjxj − d2ij (5)

xixi =
1

n

∑
j

d2ij −
1

n

∑
j

xjxj (6)

xjxj =
1

n

∑
i

d2ij −
1

n

∑
i

xixi (7)

I Replace LHS of Eq. (6)-(7) in RHS of Eq. (5), get

2xixj =
1

n

∑
k

d2ik +
1

n

∑
k

d2kj − d
2
ij −

2

n

∑
k

xkxk

I By (∗∗) replace 2
n

∑
i
xixi with 1

n2

∑
i,j
d2ij , get

2xixj =
1

n

∑
k

(d2ik + d2kj)− d
2
ij −

1

n2

∑
h,k

d2hk (§)

which expresses xixj in function ofD
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Principal Component Analysis (PCA)

I Given an approximate distancematrixD
I �nd x = MDS(D)

I However, you want x = P
√

Λ inK dimensions
but rank(Λ) > K

I Only keepK largest components of Λ
zero the rest

I Get realization in desired space
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Example 1/3
Mathematical genealogy skeleton
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Example 2/3
A partial view

Euler Thibaut Pfa� Lagrange Laplace Möbius Gudermann Dirksen Gauss
Kästner 10 1 1 9 8 2 2 2 2
Euler 11 9 1 3 10 12 12 8
Thibaut 2 10 10 3 1 1 3
Pfa� 8 8 1 3 3 1

Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Möbius 4 4 2

Gudermann 2 4
Dirksen 4

D =



0 10 1 1 9 8 2 2 2 2
10 0 11 9 1 3 10 12 12 8
1 11 0 2 10 10 3 1 1 3
1 9 2 0 8 8 1 3 3 1
9 1 10 8 0 2 9 11 11 7
8 3 10 8 2 0 9 11 11 7
2 10 3 1 9 9 0 4 4 2
2 12 1 3 11 11 4 0 2 4
2 12 1 3 11 11 4 2 0 4
2 8 3 1 7 7 2 4 4 0
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Example 3/3

In 2D In 3D
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Subsection 3

Distance geometry problem
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The Distance Geometry Problem (DGP)

GivenK ∈ N andG = (V,E, d)with d : E → R+,
�nd x : V → RK s.t.

∀{i, j} ∈ E ‖xi − xj‖2
2 = d2

ij

Given a weighted graph , draw it so edges are drawn as

segments with lengths= weights
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Some applications

I clock synchronization (K = 1)
I sensor network localization (K = 2)
I molecular structure from distance data (K = 3)
I autonomous underwater vehicles (K = 3)
I distancematrix completion (whateverK)
I �nding graph embeddings
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Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial
measurements of their time di�erences

I K = 1

I V : timestamps
I {u, v} ∈ E if known time di�erence between u, v
I d: values of the time di�erences

Used in time synchronization of distributed networks
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Clock synchronization
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Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to
locate a set of geographically distributed objects using
measurements of the distances between some object pairs

I K = 2

I V : (mobile) sensors
I {u, v} ∈ E i� distance between u, v is measured
I d: distance values

Used whenever GPS not viable (e.g. underwater)
duv ∝∼ battery consumption in P2P communication betw. u, v
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Sensor network localization
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Molecular structure from distance data
From [Liberti et al., SIAMRev., 2014]

I K = 3

I V : atoms
I {u, v} ∈ E i� distance between u, v is known
I d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances/ 5.5measured approximately by NMR
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Graph embeddings

I Relational knowledge best represented by graphs
I We have fast algorithms for clustering vectors
I Task: represent a graph inRn

I “Graph embeddings” and “distance geometry”:
almost synonyms

I Used in Natural Language Processing (NLP)
obtain “word vectors” & “concept vectors”

I Project: create a graph-of-words from a sentence,
enrich it with semantic distances, then useMP
formulations for DG to embed the graph in a
low-dimensional space
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Complexity

I DGP1 with d : E → Q+ is inNP
I if instance YES ∃ realization x ∈ Rn×1

I if some component xi 6∈ Q translate x so xi ∈ Q
I consider some other xj
I let ` = |sh. path p : i→ j| =

∑
{u,v}∈p

duv ∈ Q

I then xj = xi ± `→ xj ∈ Q
I ⇒ veri�cation of

∀{i, j} ∈ E |xi − xj | = dij

in polytime
I DGPK may not be inNP forK > 1
don’t know how to check ‖xi − xj‖2 = dij in polytime for
x 6∈ QnK
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Hardness
Partition isNP-hard
Given a = (a1, . . . , an) ∈ Nn, ∃ I ⊆ {1, . . . , n} s.t.

∑
i∈I

ai =
∑
i 6∈I

ai ?

I Reduce Partition to DGP1

I a −→ cycleC
V (C) = {1, . . . , n},E(C) = {{1, 2}, . . . , {n, 1}}

I For i < n let di,i+1 = ai
dn,n+1 = dn1 = an

I E.g. for a = (1, 4, 1, 3, 3), get cycle graph:
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Partition is YES⇒DGP1 is YES

I Given: I ⊂ {1, . . . , n} s.t.
∑
i∈I
ai =

∑
i 6∈I
ai

I Construct: realization x ofC inR
1. x1 = 0 // start

2. induction step: suppose xi known
if i ∈ I
let xi+1 = xi + di,i+1 // go right

else
let xi+1 = xi − di,i+1 // go left

I Correctnessproof: by the same induction
but careful when i = n: have to show xn+1 = x1
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Partition is YES⇒DGP1 is YES

(1) =
∑
i∈I

(xi+1 − xi) =
∑
i∈I

di,i+1 =

=
∑
i∈I

ai =
∑
i 6∈I

ai =

=
∑
i 6∈I

di,i+1 =
∑
i 6∈I

(xi − xi+1) = (2)

(1) = (2)⇒
∑
i∈I

(xi+1 − xi) =
∑
i 6∈I

(xi − xi+1)⇒
∑
i≤n

(xi+1 − xi) = 0

⇒ (xn+1 − xn) + (xn − xn−1) + · · ·+ (x3 − x2) + (x2 − x1) = 0

⇒ xn+1 = x1
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Partition is NO⇒DGP1 is NO
I By contradiction: suppose DGP1 is YES, x realization ofC
I F = {{u, v} ∈ E(C) | xu ≤ xv},
E(C) r F = {{u, v} ∈ E(C) | xu > xv}

I Trace x1, . . . , xn: follow edges in F (→) and inE(C) r F (←)

∑
{u,v}∈F

(xv − xu) =
∑

{u,v}6∈F
(xu − xv)

∑
{u,v}∈F

|xu − xv| =
∑

{u,v}6∈F
|xu − xv|

∑
{u,v}∈F

duv =
∑

{u,v}6∈F
duv

I Let J = {i < n | {i, i+ 1} ∈ F} ∪ {n | {n, 1} ∈ F}

⇒
∑
i∈J

ai =
∑
i 6∈J

ai

I So J solves Partition instance, contradiction
I ⇒DGP isNP-hard, DGP1 isNP-complete
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Number of solutions

I (G,K): DGP instance

I X̃ ⊆ RKn: set of solutions

I Congruence: composition of translations, rotations, re�ections

I C = set of congruences inRK

I x ∼ ymeans ∃ρ ∈ C (y = ρx):
distances inxarepreserved in y through ρ

I ⇒ if |X̃| > 0, |X̃| = 2ℵ0
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Number of solutions modulo congruences

I Congruence is an equivalence relation∼ on X̃
(re�exive, symmetric, transitive)

I Partitions X̃ into equivalence classes

I X = X̃/∼: sets of representatives of equivalence classes

I Focuson |X| rather than |X̃|
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Rigidity, �exibility and |X|

I infeasible⇔ |X| = 0

I rigid graph⇔ |X| < ℵ0

I globally rigid graph⇔ |X| = 1

I �exible graph⇔ |X| = 2ℵ0

I |X| = ℵ0: impossible byMilnor’s theorem
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Milnor’s theorem implies |X| 6= ℵ0

I System S of polynomial equations of degree 2

∀i ≤ m pi(x1, . . . , xnK) = 0

I LetX be the set of x ∈ RnK satisfying S

I Numberof connectedcomponents ofX isO(3nK)
[Milnor 1964]

I Assume |X| is countable; thenG cannot be �exible
⇒ each incongruent rlz is in a separate component
⇒ byMilnor’s theorem, there’s �nitely many of them
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Examples
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Subsection 4

Distance geometry inMP
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DGP formulations andmethods

I System of equations
I Unconstrained global optimization (GO)
I Constrained global optimization
I SDP relaxations and their properties
I Diagonal dominance
I Concentration of measure in SDP
I Isomap for DGP
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System of quadratic equations

∀{u, v} ∈ E ‖xu − xv‖2 = d2
uv (8)

Computationally: useless
reformulate using slacks:

min
x,s

{ ∑
{u,v}∈E

s2
uv

∣∣ ∀{u, v} ∈ E ‖xu−xv‖2 = d2
uv+suv

}
(9)
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Unconstrained Global Optimization

min
x

∑
{u,v}∈E

(‖xu − xv‖2 − d2
uv)

2 (10)

Globally optimal obj. fun. value of (10) is 0 i� x solves (8)

Computational experiments in [Liberti et al., 2006]:
I GO solvers from≈15 years ago
I randomly generated protein data: ≤ 50 atoms

I cubic crystallographic grids: ≤ 64 atoms
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Constrained global optimization

I minx
∑

{u,v}∈E
|‖xu − xv‖2 − d2

uv| exactly reformulates (8)

I Relax objective f to concave part, remove constant term,
rewritemin−f asmax f

I Reformulate convex part of obj. fun. to convex constraints

I Exact reformulation

maxx
∑

{u,v}∈E
‖xu − xv‖2

∀{u, v} ∈ E ‖xu − xv‖2 ≤ d2
uv

}
(11)

Theorem (Activity)
At a glob. opt. x∗ of a YES instance, all constraints of (11) are active
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Linearization

⇒ ∀{i, j} ∈ E ‖xi‖2
2 + ‖xj‖2

2 − 2xi · xj = d2
ij

⇒
{
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

X = x x>
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Relaxation

X = x x>

⇒ X − x x> = 0

(relax) ⇒ X − x x> � 0

Schur(X, x) =

(
IK x>

x X

)
� 0

If x does not appear elsewhere⇒ get rid of it (e.g. choose x = 0):

replace Schur(X, x) � 0 byX � 0
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SDP relaxation

minF •X
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

X � 0

How do we choose F ?

F •X = tr(F>X)
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Some possible objective functions

I For protein conformation:

min
∑
{i,j}∈E

(Xii +Xjj − 2Xij)

with= changed to≥ in constraints (ormax and≤)

“push-and-pull” the realization

I [Ye, 2003], application to wireless sensors localization

min tr(X)

tr(X) = tr(P−1ΛP ) = tr(P−1PΛ) = tr(Λ) =
∑

i λi
⇒ hope to minimize rank

I How about “just random”?
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How do you choose?
for want of some better criterion. . .

TEST!

I Download protein �les from Protein Data Bank (PDB)
they contain atom realizations

I Mimick a Nuclear Magnetic Resonance experiment
Keep only pairwise distances< 5.5

I Try and reconstruct the protein shape from those
weighted graphs

I Quality evaluation of results:

I LDE(x) = max
{i,j}∈E

| ‖xi − xj‖ − dij |

I MDE(x) = 1
|E|

∑
{i,j}∈E

| ‖xi − xj‖ − dij |
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Empirical choice

I Ye very fast but often imprecise

I Random good but nondeterministic

I Push-and-Pull: can relaxXii +Xjj − 2Xij = d2
ij to

Xii +Xjj − 2Xij ≥ d2
ij

easier to satisfy feasibility, useful later on

I Heuristic: add+ηtr(X) to objective, with η � 1
might help minimize solution rank

I min
∑

{i,j}∈E
(Xii +Xjj − 2Xij) + ηtr(X)
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E�ciency vs. mathematical rigor
I Today we wish to solve problems with very large sizes

I We needmethods that work computationally

I But we’d also like methods that are mathematically sound
exactness, guaranteed approximation ratios, etc

I Unfortunately, there is no correlation beteween the e�ciency
of a methodology and the ease of proving approximation
guarantees

I In industry: we care FIRST about the empirical e�ciency, and
NEXT about the proofs

I In academia: often the opposite, but mostly both

I In practice, we use inductive/abductive inference in order to
guide us in looking for an e�cient algorithm
sometimes these inferences can lead to approximation proofs in
probability

185 / 402



Retrieving realizations inRK

I SDP relaxation yields n× n PSDmatrixX∗

I We need n×K realizationmatrix x∗

I Recall PSD⇔Gram
I Apply PCA toX∗, keepK largest comps, get x′

I This yields solutions with errors

I Use x′ as starting pt for local NLP solver
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When SDP solvers hit their size limit

I SDPsolver: technological bottleneck
I Can we use an LP solver instead?
I Diagonally Dominant (DD) matrices are PSD
I Not vice versa: inner approximate PSD cone Y � 0

I Idea by A.A. Ahmadi [Ahmadi &Hall 2015]
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Diagonally dominant matrices

n× n symmetric matrixX is DD if

∀i ≤ n Xii ≥
∑
j 6=i

|Xij|.

E.g.


1 0.1 −0.2 0 0.04 0

0.1 1 −0.05 0.1 0 0
−0.2 −0.05 1 0.1 0.01 0

0 0.1 0.1 1 0.2 0.3
0.04 0 0.01 0.2 1 −0.3

0 0 0 0.3 −0.3 1
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Gershgorin’s circle theorem
I LetA be symmetric n× n
I ∀i ≤ n letRi =

∑
j 6=i
|Aij| and Ii = [Aii −Ri, Aii +Ri]

I Then ∀λ eigenvalue ofA ∃i ≤ n s.t. λ ∈ Ii
Proof

I Let λ be an eigenvalue ofA with eigenvector x

I Normalize x s.t. ∃i ≤ n xi = 1 and ∀j 6= i |xj | ≤ 1
let i = argmaxj |xj |, divide x by sgn(xi)|xi|

I Ax = λx⇒
∑
j 6=i

Aijxj +Aiixi =
∑
j 6=i

Aijxj +Aii = λxi = λ

I Hence
∑
j 6=i

Aijxj = λ−Aii

I Triangle inequality and |xj | ≤ 1 for all j 6= i⇒
|λ−Aii| = |

∑
j 6=i

Aijxj | ≤
∑
j 6=i
|Aij | |xj | ≤

∑
j 6=i
|Aij | = Ri

hence λ ∈ Ii
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DD⇒ PSD

I AssumeA is DD, λ an eigenvalue ofA
I ⇒ ∀i ≤ n Aii ≥

∑
j 6=i |Aij| = Ri

I ⇒ ∀i ≤ n Aii −Ri ≥ 0

I By Gershgorin’s circle theorem λ ≥ 0

I ⇒ A is PSD
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DDLinearization

∀i ≤ n Xii ≥
∑
j 6=i

|Xij| (∗)

I linearize | · | by additional matrix var T
⇒write |X| as T

I ⇒ (∗) becomes
Xii ≥

∑
j 6=i

Tij

I add “sandwich” constraints−T ≤ X ≤ T
I Can easily prove (∗) in caseX ≥ 0 orX ≤ 0:

Xii ≥
∑
j 6=i

Tij ≥
∑
j 6=i

Xij

Xii ≥
∑
j 6=i

Tij ≥
∑
j 6=i

−Xij
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DDProgramming (DDP)

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

X is DD

}

⇒


∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

∀i ≤ n
∑
j≤n
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T
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The issue with inner approximations

DDP could be infeasible!
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Exploit push-and-pull

I Enlarge the feasible region
I From

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

I Use “push” objectivemin
∑
ij∈E

Xii +Xjj − 2Xij

I Relax to

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2
ij
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Hope to achieve LP feasibility
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DDP formulation for the DGP

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2
ij

∀i ≤ n
∑
j≤n
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T
T ≥ 0


Solve, then retrieve solution inRK with PCA
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Subsection 5

DGP cones
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Cones
I SetC is a cone if:

∀A,B ∈ C, α, β ≥ 0 αA+ βB ∈ C
I IfC is a cone, the dual cone is

C∗ = {y | ∀x ∈ C 〈x, y〉 ≥ 0}

vectors making acute angles with all elements ofC
I IfC ⊂ Sn (set n× n symmetric matrices)

C∗ = {Y | ∀X ∈ C (Y •X ≥ 0)}

I A n× nmatrix coneC is �nitely generated byX ⊂ Rn if

X = {x1, . . . , xp}∧ ∀X ∈ C ∃δ ∈ Rp
+X =

∑
`≤p

δ` x`x`
>

I Set PSD (resp.DD) is a cone of PSD (resp. DD) matrices: prove it
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Representations ofDD
I ConsiderEii, E+

ij , E
−
ij in Sn

De�ne E0 = {Eii | i ≤ n}, E1 = {E±ij | i < j}, E = E0 ∪ E1
I Eii = diag(0, . . . , 0, 1i, 0, . . . , 0)

I E+
ij has minor

(
1ii 1ij
1ji 1jj

)
, 0 elsewhere

I E−ij has minor
(

1ii −1ij
−1ji 1jj

)
, 0 elsewhere

I Thm. DD = cone generated by E [Barker & Carlson 1975]

Pf. Rays in E are extreme, all DDmatrices generated by E
I Cor. DD �nitely gen. by
XDD = {ei | i ≤ n} ∪ {(ei ± ej) | i < j ≤ n}
Pf. VerifyEii = eie

>
i ,E

±
ij = (ei ± ej)(ei ± ej)>, where ei is

the i-th std basis element of Rn
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Finitely generated dual cone representation
Thm. IfC �nitely gen. byX , then

C∗ = {Y ∈ Sn | ∀x ∈ X (Y • xx> ≥ 0)}
recallC∗ , {Y ∈ Sn | ∀X ∈ C Y •X ≥ 0}

I (⊇) Let Y s.t. ∀x ∈ X (Y • xx> ≥ 0)
I ∀X ∈ C ,X =

∑
x∈X

δxxx
> (by �n. gen.)

I hence Y •X =
∑

x δxY • xx> ≥ 0 (by defn. of Y )
I whence Y ∈ C∗ (by defn. ofC∗)

I (⊆) Suppose Z ∈ C∗ r {Y | ∀x ∈ X (Y • xx> ≥ 0)}
I then ∃X ′ ⊂ X s.t. ∀x ∈ X ′ (Z • xx> < 0)
I consider any Y =

∑
x∈X ′

δxxx
> ∈ C with δ ≥ 0

I then Z • Y =
∑
x∈X ′

δxZ • xx> < 0 so Z 6∈ C∗

I contradiction⇒C∗ = {Y | ∀x ∈ X (Y • xx> ≥ 0)}
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Dual cone constraints

I Remark:X • vv> = v>Xv

I Use �nitely generated dual cone theorem
I Decision variable matrixX
I Constraints:

∀v ∈ X v>Xv ≥ 0

I Cor. DD∗ ⊃ PSD
Pf.X ∈ PSD i� ∀v ∈ Rn vXv ≥ 0, so certainly valid ∀v ∈ X

I If |X | polysized, get compact formulation
otherwise use column generation

I |XDD| = |E| = O(n2)
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Dual cone DDP formulation for DGP

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

∀v ∈ XDD v>Xv ≥ 0


I v>Xv ≥ 0 for v ∈ XDD equivalent to:

∀i ≤ n Xii ≥ 0

∀{i, j} 6∈ E Xii +Xjj − 2Xij ≥ 0

∀i < j Xii +Xjj + 2Xij ≥ 0

Note we went back to equality “pull” constraints (why?)

Quanti�er∀{i, j} 6∈ E should be∀i < j but we already have those constraints∀{i, j} ∈ E
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Properties

I SDP relaxation of original problem

I DualDDP relaxation of SDP
hence also of original problem

I Yields extremely tight obj fun bounds w.r.t. SDP

I Solutions may have large negative rank
in some applications, retrieving feasible solutions may be di�cult
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Subsection 6

Barvinok’s Naive Algorithm
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Concentration of measure

From [Barvinok, 1997]
The value of a “well behaved” function at a
random point of a “big” probability spaceX is
“very close” to the mean value of the function.

and
In a sense, measure concentration can be
considered as an extension of the law of large
numbers.
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Concentration of measure

Given Lipschitz function f : X → R s.t.

∀x, y ∈ X |f(x)− f(y)| ≤ L‖x− y‖2

for some L ≥ 0, there is concentration of measure if ∃
constants c, C s.t.

∀ε > 0 Px(|f(x)− E(f)| > ε) ≤ c e−Cε
2/L2

where E(·) is w.r.t. given Borel measure µ overX

≡ “discrepancy frommean is unlikely”
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Barvinok’s theorem

Consider:

I for each k ≤ m, manifoldsXk = {x ∈ Rn | x>Qkx = ak}
wherem ≤ poly(n)

I feasibility problem F ≡
[⋂

k≤m Xk
?

6= ∅
]

I SDP relaxation ∀k ≤ m (Qk •X = ak) ∧X � 0 with soln. X̄

I Algorithm: T ← factor(X̄); y ∼ Nn(0, 1); x′ ← Ty

Then:

I ∃c > 0, n0 ∈ N such that ∀n ≥ n0

Prob
(
∀k ≤ m dist(x′,Xk) ≤ c

√
‖X̄‖2 lnn

)
≥ 0.9.

207 / 402



Algorithmic application

I x′ is “close” to eachXk: try local descent from x′

I ⇒ Feasible QP solution from an SDP relaxation
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Elements of Barvinok’s formula

Prob
(
∀k ≤ m dist(x′,Xk) ≤ c

√
‖X̄‖2 lnn

)
≥ 0.9.

I
√
‖X̄‖2 arises from T (a factor of X̄)

I
√

lnn arises from concentration of measure
I 0.9 follows by adjusting parameter values in “union bound”
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Application to the DGP

I ∀{i, j} ∈ E Xij = {x | ‖xi − xj‖2
2 = d2

ij}

I DGP can be written as
⋂

{i,j}∈E
Xij

?

6= ∅

I SDP relaxationXii +Xjj − 2Xij = d2
ij ∧X � 0 with

soln. X̄

I Di�erence with Barvinok: x ∈ RKn, rk(X̄) ≤ K

I IDEA: sample y ∼ N nK(0, 1√
K

)

I Thm. Barvinok’s theoremworks in rankK
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Proof structure
I Show that, on average, ∀k ≤ m tr((Ty)

>
Qk(Ty)) = QK • X̄ = ak

I compute multivariate integrals
I bilinear terms disappear because y normally distributed
I decomposemultivariate int. to a sum of univariate int.

I Exploit concentration of measure to show errors happen rarely
I a couple of technical lemmata yielding bounds
I ⇒ boundGaussianmeasure µ of ε-neighbourhoods of

A−i = {y ∈ Rn×K | Qi(Ty) ≤ Qi • X̄}
A+
i = {y ∈ Rn×K | Qi(Ty) ≥ Qi • X̄}
Ai = {y ∈ Rn×K | Qi(Ty) = Qi • X̄}.

I use “union bound” for measure ofA−i (ε) ∩A+
i (ε)

I showA−i (ε) ∩A+
i (ε) = Ai(ε)

I use “union bound” tomeasure intersections ofAi(ε)
I appropriate values for some parameters⇒ result

211 / 402



The heuristic

1. Solve SDP relaxation of DGP, get soln. X̄
use DDP+LP if SDP+IPM too slow

2. a. T = factor(X̄)
b. y ∼ N nK(0, 1√

K
)

c. x′ = Ty

3. Use x′ as starting point for a local NLP solver on
formulation

min
x

∑
{i,j}∈E

(
‖xi − xj‖2 − d2

ij

)2

and return improved solution x

212 / 402



Subsection 7

Isomap for the DGP
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Isomap for DG
1. LetD′ be the (square) weighted adjacencymatrix ofG

2. CompleteD′ to approximateEDM D̃

3. Perform PCA on D̃ givenK dimensions

(a) Let B̃ = −(1/2)JD̃J , where J = I − (1/n)11>

(b) Find eigenval/vectsΛ, P so B̃ = P>ΛP

(c) Keep≤ K largest nonneg. eigenv. ofΛ to get Λ̃

(d) Let x̃ = P>
√

Λ̃

Vary Step 2 to generate Isomap heuristics
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Why it works

I G represented by weighted partial adj. matrixD′

I don’t know full EDM, approximate to D̃
I ⇒ get B̃, not generally Gram
I ≤ K largest nonnegative eigenvalues
⇒ “closest PSDmatrix”B′ to B̃ having rank≤ K

I Factor it to get x̃ ∈ RKn
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Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm onG
(classic Isomap)

B. Find a spanning tree (SPT) ofG and compute a random
realization in x̄ ∈ RK , use its sqEDM

C. Solve a push-and-pull SDP/DDP/DualDDP to �nd a realization
x̄ ∈ Rn, use its sqEDM

Post-processing: Use x̃ as starting point for local NLP solver
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Subsection 8

Summary
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Matrix reformulations

I Quadratic nonconvex too di�cult?
I Solve SDP relaxation
I SDP relaxation too large?
I Solve DDP approximation
I Get n× nmatrix solution, needK × n!
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Solution rank reductionmethods

I Multidimensional Scaling (MDS)
I Principal Component Analysis (PCA)
I Barvinok’s naive algorithm (BNA)
I Isomap

All provide good starting points for local NLP descent

Can also use them for general dimensionality reduction
n vectors inRn −→ n vectors inRK
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The gist of random projections

I LetA be am× n data matrix (columns inRm,m� 1)
I T short & fat, normally sampled componentwise

(
· · · · · ·· · · · · ·· · · · · ·

)
︸ ︷︷ ︸

T

( ... ... ...
...
...
...

)
︸ ︷︷ ︸

A

=
(
...
...
...
)

︸ ︷︷ ︸
TA

I Then ∀i < j ‖Ai − Aj‖2 ≈ ‖TAi − TAj‖2 “wahp”
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wahp
“wahp”= “with arbitrarily high probability”
the probability ofEk (depending on some parameter k)
approaches 1 “exponentially fast” as k increases

P(Ek) ≈ 1−O(e−k)
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Johnson-Lindenstrauss Lemma (JLL)

Thm.
GivenA ⊆ Rm with |A| = n and ε > 0 there is k ∼ O( 1

ε2
lnn)

and a k ×mmatrix T s.t.

∀x, y ∈ A (1− ε)‖x− y‖ ≤ ‖Tx− Ty‖ ≤ (1 + ε)‖x− y‖

If k×mmatrixT is sampled componentwise fromN(0, 1√
k
), then

P(A and TA approximately congruent) ≥ 1
n

(nontrivial) — result follows by probabilistic method

Note that 1/
√
k is the standard deviation, not the variance
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In practice

I P(A and TA approximately congruent) ≥ 1
n

I re-sampling su�ciently many times gives wahp
I Empirically, sample T few times (once will do)

ET (‖Tx− Ty‖) = ‖x− y‖
probability of error decreases wahp

Surprising fact:
k is independent of the original number of dimensionsm
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Clustering Google images

[L. & Lavor, 2017]
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Clustering without random projections

VHimg = Map[Flatten[ImageData[#]] &, Himg];

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
Out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

Too slow!
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Clustering with random projections

Get["Projection.m"];
VKimg = JohnsonLindenstrauss[VHimg, 0.1];
VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]
Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

From 0.405s CPU time to 0.00232s
Same clustering
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Projecting formulations

I Given:
I F (p, x): MP formulation with params p& vars x
I sol(F ): solution of F
I C : formulation class (e.g. LP, NLP, MILP, MINLP)
I R rnd proj operator ifR,F commute:

RF (p, x) , F R(p, x)

I “Thm.”: ∀F ∈ C sol(F ) ≈ sol(RF ) wahp
I Low distortion result holds for a formulation

I Today we see this for C = LP
I Can also be applied to QP, SDP
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Subsection 1

Random projection theory

229 / 402



The shape of a set of points
I Losedimensionsbutnot toomuchaccuracy
GivenA1, . . . , An ∈ Rm �nd k � m andA′1, . . . , A′n ∈ Rk s.t.

A andA′ “have almost the same shape”

I What is the shape of a set of points?

A’

A

congruence⇔ same shape: ‖Ai −Aj‖ = ‖A′i −A′j‖

I Approximate congruence≡ small distortion:
A,A′ have almost the same shape if
∀i < j ≤ n (1− ε)‖Ai −Aj‖ ≤ ‖A′i −A′j‖ ≤ (1 + ε)‖Ai −Aj‖
for some small ε > 0

Assume norms are all Euclidean
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Losing dimensions= “projection”

In the plane, hopeless

In 3D: no better
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Recall the JLL

Thm.
GivenA ⊆ Rm with |A| = n and ε > 0 there is k ∼ O( 1

ε2
lnn)

and a k ×mmatrix T s.t.

∀x, y ∈ A (1− ε)‖x− y‖ ≤ ‖Tx− Ty‖ ≤ (1 + ε)‖x− y‖
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Sketch of a JLL proof by pictures
Thm.
Let T be a k × m random projector

sampled from N(0, 1√
k

), and u ∈ Rm

s.t. ‖u‖ = 1. Then E(‖Tu‖2) = ‖u‖2
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Rnd proj preserve norms on avg
Thm.
LetT beak×m rectangularmatrixwith eachcomponent sampled from
N(0, 1√

k
), and u ∈ Rm s.t. ‖u‖ = 1. Then E(‖Tu‖2) = 1

Proof
I ∀i ≤ k let vi =

∑
j≤n

Tijuj

I E(vi) = E

( ∑
j≤m

Tijuj

)
=
∑
j≤m

E(Tij)uj = 0

I Var(vi) =
∑
j≤m

Var(Tijuj) =
∑
j≤m

Var(Tij)u
2
j =

∑
j≤m

u2
j

k = 1
k‖u‖

2 = 1
k

I 1
k = Var(vi) = E(v2

i − (E(vi))
2) = E(v2

i − 0) = E(v2
i )

I E(‖Tu‖2) = E(‖v‖2) = E

(∑
i≤k

v2
i

)
=
∑
i≤k

E(v2
i ) =

∑
i≤k

1
k = 1

Can we argue that the variance decreases wahp?
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Surface area of a slice of hypersphere

S̄m(r) =
2πm/2rm−1

Γ(m/2)
Sm , S̄m(1)

Lateral surfaceof in�nitesimallyhighhypercylinder

dS̄m(t) = Sm−1(1− t2)
m−2

2 dt
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Area of polar caps

Apc = 2

∫ 1

t

dS̄m(s) = 2Sm−1

∫ 1

t

(1− s2)
m−2

2 ds

1 + x ≤ ex for all x and
1∫
t

f(s)ds ≤
∞∫
t

f(s)ds for f ≥ 0

⇒ Apc ≤ 2Sm−1

∫ ∞
t

e−
m−2

2 s2ds =
2Sm−1√
m− 2

√
π

2
erfc

(√
m− 2t√

2

)
≈ O(e−t

2

)

I Polar caps area
decreaseswahpas
m→∞

I Concentrationof
measure
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An intuitive explanation
I Polar caps area µ(Amt ) = µ({u ∈ Sm−1 | |um| ≥ t})
decreases wahp

I Can we infer the same for
µ(Bmt ) = µ({u ∈ Sm−1 |

∣∣‖Tu‖2 − 1
∣∣ ≥ t})?

This idea cannot bemade into a proof in a simple way

Simplest available proof based on a di�erent principle [Dasgupta &Gupta 2003]
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Intermezzo: The union bound
I EventsE1, . . . , Ek such thatP(Ei) ≥ 1− t for each i ≤ k

I What isP(allEi)?

I P(allEi) = 1−P(at least one ¬Ei)⇒

P
(∧
i≤k

Ei
)

= 1−P
(∨
i≤k

(¬Ei)
)
≥

≥ 1−
k∑
i=1

P(¬Ei) = 1−
k∑
i=1

(1− (1− t)) = 1− kt

I SoP(allEi) ≥ 1− kt
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A syntactical explanation for k ≈ ε−2 lnn

I B = set of unit vectors; by “intuitive explanation”
⇒ ∀u ∈ B ∃C > 0 s.t.P(1− t ≤ ‖Tu‖ ≤ 1 + t) ≥ 1− e−Ct2

I By union bound:
⇒ P(∀u ∈ B 1− t ≤ ‖Tu‖ ≤ 1 + t) ≥ 1− |B|e−Ct2

I Prob. ∈ [0, 1]⇒ require 1− |B|e−νt2 > 0:
⇒ |B|e−νt2 < 1

I Arbitrarily let t = ε
√
k:

⇒ |B|e−Cε2k < 1

I ⇒ k > Cε−2 ln(|B|)
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Apply to vector di�erences
I LetA ⊂ Rm, |A| = n

I ∀x, y ∈ A we have

‖Tx−Ty‖2 = ‖T (x−y)‖2 = ‖x−y‖2
∥∥T x− y
‖x− y‖

∥∥2
= ‖x−y‖2‖Tu‖2

I E(‖Tu‖2) = ‖u‖ = 1⇒ E(‖Tx− Ty‖2) = ‖x− y‖2

I LetB = { x−y
‖x−y‖ | x, y ∈ A}

|B| = O(n2)⇒ k = Cε−2 ln(n) for some constantC

I By concentration of measure on Bm, ∃ε ∈ (0, 1) s.t.

(1− ε)‖x− y‖2 ≤ ‖Tx− Ty‖2 ≤ (1 + ε)‖x− y‖2 (∗)

holds with positive probability

I Probabilisticmethod: ∃T such that (∗) holds
This is the statement of the Johnson-Lindenstrauss Lemma
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Randomized algorithm

I Distortion has low probability [Gupta 02]:

∀x, y ∈ A P(‖Tx− Ty‖ ≤ (1− ε)‖x− y‖) ≤ 1

n2

∀x, y ∈ A P(‖Tx− Ty‖ ≥ (1 + ε)‖x− y‖) ≤ 1

n2

I Probability ∃ pair x, y ∈ A distorting Euclidean distance:
union bound over

(
n
2

)
pairs

P(¬(A and TA have almost the same shape)) ≤
(n

2

) 2

n2
= 1− 1

n

P(A and TA have almost the same shape) ≥ 1

n

JLL follows by probabilistic method
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Subsection 2

Projecting feasibility
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Easy cases
Thm.
T : Rm → Rk a JLL random projection, b, A1, . . . , An ∈ Rm a RLMX

instance. For any given vector x ∈ X , we have:

(i) If b =
n∑
i=1

xiAi then Tb =
n∑
i=1

xiTAi

by linearity of T

(ii) If b 6=
n∑
i=1

xiAi thenP
(
Tb 6=

n∑
i=1

xiTAi

)
≥ 1− 2e−Ck

by JLL applied to ‖b−
∑
i xiAi‖

(iii) If b 6=
n∑
i=1

yiAi for all y ∈ X ⊆ Rn, where |X| is �nite, then

P
(
∀y ∈ X Tb 6=

∑n
i=1 yiTAi

)
≥ 1− 2|X|e−Ck

for some constant C > 0 (independent of n, k)
by union bound

[Vu et al., Discr. Appl. Math. 2019]
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Separating hyperplanes

When |X| is large, project separating hyperplanes instead

I ConvexC ⊆ Rm,x 6∈ C: then∃hyperplane c separatingx,C
I In particular, true ifC = cone(A1, . . . , An) forA ⊆ Rm

I Can showx ∈ C ⇔ Tx ∈ TC withhighprobability
I As above, if x ∈ C then Tx ∈ TC by linearity of T
Di�cult part is proving the converse

I Can also project point-to-cone distances
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Projection of separating hyperplanes
Thm.
Given c, b, A1, . . . , An ∈ Rm of unit norm s.t. b /∈ cone{A1, . . . , An} pointed, ε > 0,
c ∈ Rm s.t. c>b < −ε, c>Ai ≥ ε (i ≤ n), and T a random projector:

P
[
Tb /∈ cone{TA1, . . . , TAn}

]
≥ 1− 4(n+ 1)e−C(ε

2−ε3)k

for some constant C.
Proof
Let A be the event that T approximately preserves ‖c − χ‖2 and ‖c + χ‖2 for all χ ∈
{b, A1, . . . , An}. SinceA consists of 2(n+ 1) events, by the JLL (“squared variant”) and
the union bound, we get

P(A ) ≥ 1− 4(n+ 1)e−C(ε
2−ε3)k

Now consider χ = b

〈Tc, T b〉 =
1

4
(‖T (c+ b)‖2 − ‖T (c− b)‖2)

by JLL ≤
1

4
(‖c+ b‖2 − ‖c− b‖2) +

ε

4
(‖c+ b‖2 + ‖c− b‖2)

= c>b+ ε < 0

and similarly 〈Tc, TAi〉 ≥ 0

[Vu et al., Math. OR, 2018]
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The feasibility projection theorem

Thm.
Given δ > 0, ∃ su�ciently largem ≤ n such that:

for any LFP inputA, bwhereA ism× n
we can sample a random k×mmatrixT with k � m and

P(orig. LFP feasible⇐⇒ proj. LFP feasible) ≥ 1− δ
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Subsection 3

Projecting optimality
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Notation

I P ≡ min{cx | Ax = b ∧ x ≥ 0} (original problem)

I TP ≡ min{cx | TAx = Tb ∧ x ≥ 0} (projected problem)

I v(P ) = optimal objective function value of P

I v(TP ) = optimal objective function value of TP
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The optimality projection theorem

I Assume feas(P ) is bounded
I Assume all optima of P satisfy

∑
j xj ≤ θ for some

given θ > 0
(prevents unboundedness)

Thm.
Given γ > 0,

v(P )− γ ≤ v(TP ) ≤ v(P ) (∗)

holds with arbitrarily high probability (w.a.h.p.)

more precisely, (∗) holds with prob. 1− 4ne−C(ε
2−ε3)k where

ε = γ/(2(θ + 1)η) and η = O(‖y‖2) where y is a dual optimal
solution of P havingminimum norm
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The easy part

Show v(TP ) ≤ v(P ):
I Constraints of P : Ax = b ∧ x ≥ 0

I Constraints of TP : TAx = Tb ∧ x ≥ 0

I ⇒ constraints of TP are lin. comb. of constraints ofP

I ⇒ any solution of P is feasible in TP
(btw, the converse holds almost never)

I P and TP have the same objective function

I ⇒ TP is a relaxation of P ⇒ v(TP ) ≤ v(P )
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The hard part (sketch)
I Eq. (12) equivalent to P for γ = 0

cx ≤ v(P )− γ
Ax = b
x ≥ 0

 (12)

Note: for γ > 0, Eq. (12) is infeasible

I By feasibility projection theorem,

cx ≤ v(P )− γ
TAx = Tb

x ≥ 0


is infeasible w.a.h.p. for γ > 0

I Restate: cx < v(P )− γ ∧ TAx = Tb ∧ x ≥ 0 infeasible w.a.h.p.
I ⇒ cx ≥ v(P )− γ holds w.a.h.p. for x ∈ feas(TP )

I ⇒ v(P )− γ ≤ v(TP )

251 / 402



Subsection 4

Solution retrieval
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Projected solutions are infeasible in P

I Ax = b ⇒ TAx = Tb by linearity

I However,
Thm.
For x ≥ 0 s.t. TAx = Tb,Ax = bwith probability zero

if not, an x belonging to (n− k)-dim. subspace would belong to an
(n−m)-dim. subspace (with k � m) with positive probability

I Can’t get solution for original LFP using projected
LFP!
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Solution retrieval by duality

I Primal min{c>x | Ax = b ∧ x ≥ 0} ⇒
dual max{b>y | A>y ≤ c}

I Let x′ = sol(TP ) and y′ = sol(dual(TP ))

I ⇒ (TA)>y′ = (A>T>)y′ = A>(T>y′) ≤ c

I ⇒ T>y′ is a solution of dual(P )

I ⇒ we can compute an optimal basis J for P

I SolveAJxJ = b, get xJ , obtain a solution x∗ of P

I Won’t work in practice: errors in computing J
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Solution retrieval by pseudoinverse

I H : optimal basis of TP
we can trust that — given by solver

I |H| = k ⇒ AH ism× k (tall and slim)
I Pseudoinverse: solve k × k systemA>HAHxH = A>Hb
⇒ xH = (A>HAH)−1A>Hb

I let x = (xH , 0)

I Can prove small feasibility error wahp
I ISSUE: may be slightly infeasible
empirically: x 6≥ 0 but x− = min(0, x)→ 0 as k →∞
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Subsection 5

Application to quantile regression
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Conditional random variables

I random variableB conditional onA1, . . . , Ap

I assumeB depends linearly on {Aj | j ≤ p}

I want to �nd x1, . . . , xn ∈ R s.t.

B =
∑
j≤p

xjAj

I use samples b, a1, . . . , ap ∈ Rm to �nd estimates

I ai = row, aj = column
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Sample statistics
I expectation:

µ̂ = argmin
µ∈R

∑
i≤m

(bi − µ)2

I conditional expectation (linear regression):

ν̂ = argmin
ν∈Rp

∑
i≤m

(bi − νai)2

I sample median:

ξ̂ = argmin
ξ∈R

∑
i≤m

|bi − ξ|

= argmin
ξ∈R

∑
i≤m

(
1

2
max(bi − ξ, 0)− 1

2
min(bi − ξ, 0)

)

I conditional sample median: similarly
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Quantile regression

I sample τ-quantile:

ξ̂ = argmin
ξ∈R

∑
i≤m

(τ max(bi − ξ, 0)− (1− τ)min(bi − ξ, 0))

I conditional sample τ-quantile (quantile regression):

β̂ = argmin
β∈Rp

∑
i≤m

(
τ max(bi − βai, 0)− (1− τ)min(bi − βai, 0)

)
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Linear Programming formulation

LetA = (aj | j ≤ n); then

β̂ = argmin τu+ + (1− τ)u−

A(β+ − β−) + u+ − u− = b
β, u ≥ 0



I parameters: A ism× p, b ∈ Rm, τ ∈ R
I decision variables: β+, β− ∈ Rp, u+, u− ∈ Rm

I LP constraint matrix ism× (2p+ 2m)
density: p/(p+m)— can be high
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Large datasets
I Russia Longitudinal Monitoring Survey hh1995f

I m = 3783, p = 855

I A = hf1995f, b = log avg(A)

I 18.5% dense
I poorly scaled data, CPLEX yields infeasible (!!!) after around 70s CPU
I quantreg in R fails

I 14596 RGB photos onmyHD, scaled to 90× 90 pixels

I m = 14596, p = 24300

I each row ofA is an image vector, b =
∑
A

I 62.4% dense
I CPLEX killed by OS after≈30min (presumably for lack of RAM) on 16GB
I could not load dataset in R

I Results⇒ LP too large, projected LP can be solved
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Electricity prices
I Every hour over 365 days in 2015 (8760 rows)
I From 22 countries (columns) from the European zone

orig proj
1 5.82e-01 5.69e-01
2 9.46e-02 0
3 0 0
4 1.06-01 1.18e-01
5 2.73e-04 6.92e-05
6 -4.81e-06 -2.07e-05
7 1.32e-01 1.36e-01
8 0 0
9 0 0
10 0 0
11 -3.46e-08 -2.45e-05
12 0 0
13 5.66e-02 5.49e-02
14 -2.50e-04 2.91e-03
15 2.86e-02 2.81e-02
16 0 0
17 0 0
18 0 9.35e-02
19 0 0
20 2.23e-09 0
21 0 -7.99e-06

I Permutation (18,2) (21,20) applied to proj
gives same nonzero pattern and reduces
`2 error from 0.13 to 0.01

I For every proj solution I found I could
always �nd a permutation with this
property!!

I . . .On closer inspection, many columns
reported equal data

I Small numerical error
I Approximate solutions respect Nonzero
pattern

I LP too small for approximation to have
an impact on CPU time
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Subsection 1

Motivation
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Coding problem for costly channels

I Need to send a long sparse vector y ∈ Rn with n� 1
on a costly channel

1. Sample full rankm×n encodingmatrixAwithm ≤ n
both parties knowA

2. Encode b = Ay ∈ Rm

3. Send b

I Decode by �nding sparsest x s.t.Ax = b
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Coding problem for noisy channels
I Need to send a “word”w ∈ Rd on a noisy channel

I Encoding n× dmatrixQ, with n > d, send z = Qw ∈ Rn
both parties knowQ

I (Low) prob. e of error: e n comp. of z sent wrong
they can be totally o�

I Receive (wrong) vector z̄ = z + xwhere x is sparse

I Can we recover z?
I Choosem× nmatrixA s.t.m = n− d andAQ = 0

I Let b = Az̄ = A(z + x) = A(Qw + x) = AQw +Ax = Ax

I Suppose we can �nd sparsest x′ s.t.Ax′ = b

I ⇒ we can recover z′ = z̄ − x′

I Recoverw′ = (Q>Q)−1Q>z′ (pseudoinverse)
What is the likelihood of getting small ‖w − w′‖?
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Subsection 2

Basis pursuit
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Sparsest solution of a linear system
I Problem P 0(A, b) ≡ min{‖x‖0 | Ax = b} isNP-hard

Reduction fromExact Cover by 3-Sets [Garey&Johnson 1979, A6[MP5]]

I Relax to P 1(A, b) ≡ min{‖x‖1 | Ax = b}
I Reformulate to LP:

min
∑
j≤n

sj

∀j ≤ n −sj ≤ xj ≤ sj
Ax = b

 (†)

I Empirical observation: can often �nd optimum
Too often for this to be a coincidence

I Theoretical justi�cation by Candès, Tao, Donoho
“Mathematics of sparsity”, “Compressed sensing”,
“Compressive sampling”

I We always assume b 6= 0
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Graphical intuition 1

I Wouldn’t work with `2, `∞ norms
Ax = b �at at poles— “zero probability of sparse solution”

Warning: this is not a proof, and there are cases not explained by this drawing [Candès 2014]
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Graphical intuition 2

I x̂ such thatAx̂ = b approximates x in `p norms
I p = 1 only convex case zeroing some components

From [Davenport et al., 2012]; again, this is not a proof!
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Phase transition in sparse recovery
Consider P 1(A, b) whereA ism× n

Probability that solution x∗ of randomly generated P has sparsity s
undergoes a phase transition

[Tropp et al., Information and Inference, 2014]
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Subsection 3

Theoretical results
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Main theorem and proof structure

I Thm. If:

I x̂ ∈ Rn has t nonzeros and n− t near-zeros or zeros
I x̄ closest approx of x̂ with exactly t nonzeros
I A ∼ N(0, 1)mn withm < n but “not too small”
I b̂ = Ax̂ and x∗ is the unique t-sparse min of P 1(A, b̂)

then x∗ is a “good approximation” of x̄ (?)

I Prop. IfA has the null space property (NSP), (?) follows

I Prop. IfA has restricted isometry property (RIP), NSP follows

I Prop. IfA ∼ N(0, 1)mn, thenA has RIP
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Some notation

I ConsiderAx = b whereA ism× n withm < n
⇒ if feasible it has uncountably many solutions

I Let x ∈ Rn s.t.Ax = b,NA = null(A),N0
A = NA r {0}

⇒ ∀y ∈ NA we haveA(x+ y) = Ax+ Ay = Ax+ 0 = b

I For z ∈ Rn and S ⊆ [n] = {1, . . . , n} let S̄ = N r S
de�ne z[S] = ((zj iff j ∈ S) xor 0 | j ≤ n)
restriction of z to S

I Note that ∀z ∈ Rn we have z = z[S] + z[S̄]
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Null space property

I Defn. NSPs(A)≡
∀S ⊆ [n]

(
|S| = s → ∀y ∈ N0

A ‖y[S]‖1 < ‖y[S̄]‖1
)

A has the null space property of order s

I Choose solution x∗ ofAx = b withmin `1 norm
Let S = supp(x∗) and suppose |S| ≤ s

I NSPProp. ∀x∗ ∈ Rn with |supp(x∗)| ≤ s and b = Ax∗

x∗ uniquemin of P 1(A, b) i� NSPs(A)
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Strength of NSPt as t grows

NSP Prop. states |supp(x∗)| ≤ s butNSPs(A) assumes |S| = s: why?

Lemma
∀A ∈ Rm×n, t < s ≤ n NSPs(A)⇒ NSPt(A)

Proof
NSPs(A) ≡ ∀S ⊆ [n] (|S| = s→ ∀y ∈ N0

A ‖y[S]‖1 < ‖y[S̄]‖1), hence:
given T,U ⊆ [n] with T,U nontrivial disjoint, |T | = t and |T ∪ U | = s,
– ∀y ∈ N0

A ‖y[T ∪ U ]‖1 < ‖y[T ∪ U ]‖1 = ‖y[[n] r (T ∪ U)]‖1 ⇒
– ∀y ∈ N0

A ‖y[T ]‖1 + ‖y[U ]‖1 < ‖y‖1 − ‖y[T ]‖1 − ‖y[U ]‖1 ⇒
– ∀y ∈ N0

A ‖y[T ]‖1 < ‖y[T̄ ]‖1 − 2‖y[U ]‖1
– whence ∀T ⊆ [n] (|T | = t → ∀y ∈ N0

A ‖y[T ]‖1 < ‖y[T̄ ]‖1)

since ‖y[U ]‖1 > 0, and soNSPt(A)
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Proof of the NSP proposition (⇒)
∀x (x uniqmin of P 1(A,Ax) and |supp(x)| = s)⇒ NSPs(A)

I Let y ∈ N0
A and S ⊆ [n] with |S| = s

assume wlogAy[S] 6= 0

I Note |supp(y[S])| = s since |S| = s
hence y[S] unique min of P 1(A,Ay[S]) by hypothesis

I y = y[S] + y[S̄] ∈ N0
A⇒ 0 = Ay = Ay[S] + Ay[S̄]

⇒A (−y[S̄]) = Ay[S] 6= 0

I y[S] 6= −y[S̄] othw by y = y[S] + y[S̄] both would be scalings
of y and hence both inN0

A, which cannot happen asAy[S] 6= 0

I ‖y[S]‖1 uniqmin and−y[S̄] feas in P 1(A,Ay[S])⇒
‖− y[S̄]‖1 = ‖y[S̄]‖1 > ‖y[S]‖1
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Proof of the NSP proposition (⇐)
NSPs(A)⇒ ∀x∗ (x∗ uniqmin P 1(A,Ax∗) ∧ |supp(x∗)| = s)

I Let x∗ ∈ Rn, b = Ax∗, S = supp(x∗) and |S| = s

I Let x̄ soln. ofAx = b, then x̄ = x∗ − y with y ∈ N0
A

‖x∗‖1 = ‖(x∗ − x̄[S]) + x̄[S]‖1 ≤ [by triangle inequality]

≤ ‖x∗ − x̄[S]‖1 + ‖x̄[S]‖1 = [since S = supp(x∗)]

= ‖x∗[S]− x̄[S]‖1 + ‖x̄[S]‖1 = [since x∗ − x̄ = y]

= ‖y[S]‖1 + ‖x̄[S]‖1 < [byNSPs(A)]

< ‖y[S̄]‖1 + ‖x̄[S]‖1 = [since x∗[S̄] = 0 ∧ y = x∗ − x̄]

= ‖ − x̄[S̄]‖1 + ‖x̄[S]‖1 = [since ‖ − z‖1 = ‖z‖1 ∧ z[S] + z[S̄] = z]

= ‖x̄‖1

Hence x∗ with supp card s uniquemin ofP 1(A, b) as claimed
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A variant of the null space property
I Motivation: “almost sparse solutions”
given x̂ with |supp(x̂)| ≥ s and b = Ax̂, assume
∃ε > 0 s.t. x̄ = max(0, |x̂| − 1ε) has |supp(x̄)| = s
i.e. x̂ “almost” has support size t

I Find closest approx x∗ of x̂ with |supp(x∗)| = s

I Adapt null space property: NSPρs(A)⇔
∃ρ ∈ (0, 1) ∀S ⊆ [n] (|S| = s→ ∀y ∈ N0

A ‖y[S]‖1 ≤ ρ‖y[S̄]‖1)

I Prop. NSPρs(A)⇒ if x∗min of P 1(A,Ax̂) then

‖x∗ − x̂‖1 ≤ 21+ρ
1−ρ‖x̄− x̂‖1 ≤ (n− s)ε

i.e. x∗ is a good approximation of x̄
Pf. see Thm. 5.8 in [Damelin &Miller 2012]

I Moreover, if |supp(x̂)| = s then x∗ = x̂ = x̄
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Proof of the NSPρs proposition
I x∗ feasible inAx = Ax̂ so ∃!y ∈ NA (x∗ = x̂+ y)

I ⇒ ‖x∗‖1 = ‖x̂+ y‖1 ≤ ‖x̂‖1 since x∗min of P 1(A,Ax̂)

I ‖x̂+ y‖1 =
∑
j∈S |x̂j + yj |+

∑
j∈S̄ |x̂j + yj |

≥
∑
j∈S(|x̂j | − |yj |) +

∑
j∈S̄(|yj | − |x̂j |) by triangle ineq

I = ‖x̂[S]‖1 − ‖y[S]‖1 + ‖y[S̄]‖1 − ‖x̂[S̄]‖1
= ‖x̂‖1 + ‖y[S̄]‖1 − 2‖x̂[S̄]‖1 − ‖y[S]‖1
= ‖x‖1 − 2‖x̂− x̄‖1 + ‖y[S̄]‖1 − ‖y[S]‖1 (∗)

I Hence (∗) ≤ ‖x̂+ y‖1 ≤ ‖x̂‖1, whence
‖x̂‖1 ≥ ‖x̂‖1 − 2‖x̂− x̄‖1 + ‖y[S̄]‖1 − ‖y[S]‖1
⇒ 2‖x̂− x̄‖1 ≥ ‖y[S̄]‖1 − ‖y[S]‖1

I ByNSPρs ,−‖y[S]‖1 ≥ ρ‖y[S̄]‖1, hence
2‖x̂− x̄‖1 ≥ (1− ρ)‖y[S̄]‖1 whence ‖y[S̄]‖1 ≤ 2

1−ρ‖x̂− x̄‖1 (†)
I x∗ = x̂+ y ⇒ ‖x∗ − x̂‖1 = ‖y‖1 = ‖y[S]‖1 + ‖y[S̄]‖1
byNSPρs ‖y[S]‖1 ≤ ρ‖y[S̄]‖1 hence ‖x∗ − x̂‖1 ≤ (1 + ρ)‖y[S̄]‖1
by (†) ‖x∗ − x̄‖1 ≤ 2 1+ρ

1−ρ‖x̂− x̄‖1
I Further, ‖x̂− x̄‖1 = ‖x̂−max(0, |x̂| − 1ε)‖1 = ‖x̂− x̂[S]‖1 =
‖x̂[S̄]‖ ≤ |S̄|ε = (n− s)ε 280 / 402



Restricted isometry property

I RIPδs(A) ⇔ ∀x ∈ Rn s.t. |supp(x)| = s we have

(1− δ) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ) ‖x‖2
2

I Prop. RIPδ2s(A) ∧ ρ =
√

2δ
1−δ < 1 ⇒ NSPρs(A)

Pf. see Thm. 5.12 in [Damelin &Miller 2012]

I It su�ces that δ < 1
1+
√

2
≈ 0.4142
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RIP and P 0(A, b)

I Recall P 0(A, b) ≡ min{‖x‖0 | Ax = b} isNP-hard
�nd solution toAx = b with smallest support size

I Thm. Let x̂ ∈ Rn with |supp(x̂)| = s, δ < 1,A s.t. RIPδ2s(A),
x∗ = argP 0(A,Ax̂); then x∗ = x̂

Pf. Suppose false, let y = x∗ − x̂ 6= 0; by defn of x∗ we have
‖x∗‖0 ≤ ‖x̂‖0 ≤ s, hence ‖y‖0 ≤ 2s; sinceA has RIP get
‖Ay‖22 ∈ (1± δ)‖y‖22, butAy = Ax∗ −Ax̂= 0while y 6= 0, and
δ ∈ (0, 1)→ 1± δ > 0, hence 0 ∈ (α, β) where α, β > 0,
contradiction
Thm. 23.6 [Shwartz & Ben-David, 2014]

I Result of limited scope, since P 0(A, b) gives sparsest
solution toAx = b for whateverA
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RIP and eigenvalues
I Recall RIPδs(A): ∀x with S = supp(x) and |S| = s

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2

I LetAI = (Ai | i ∈ I), whereAi is the i-th col. ofA

I ‖Ax‖22 = 〈Ax,Ax〉 = 〈ASx[S], ASx[S]〉 = 〈A>SASx[S], x[S]〉

I SinceAS ism× s,B(S) = A>SAS is s× s and PSD

I ⇒ 0 ≤ λmin(B(S))‖x‖22 ≤ 〈B(S)x, x〉 ≤ λmax(B(S))‖x‖22
easy to see withB(S) replaced by diagonal PB(S)P>

I Let λL = min
|S|=s

λmin(B(S)), λU = max
|S|=s

λmax(B(S))

I ⇒ ∃δ > 0 s.t. 1− δ ≤ λL ≤ λU ≤ 1 + δ
i.e. all eigenvalues ofB(S) close to 1 for all S ⊂ [n]with |S| = s
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Construction ofA s.t. RIPδs(A)

I Need λ ≈ 1 for each eigenvalue λ ofB(S)

I ⇒Need ∀S ⊆ N |S| = s → A>SAS ≈ Is

I ⇒Need

∀i < j ≤ n A>i Aj ≈ 0

∀i ≤ n A>i Ai = ‖Ai‖2
2 ≈ 1

I Su�cient condition: A sampled from N
(
0, 1√

m

)mn
I Di�erence with JLL
RIP holds for uncountably many vectors x with |supp(x)| = s
JLL holds for given sets of �nitely many vectors with any support
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Isotropic vectors
1. Defn. Rnd vectAi ∈ Rm is isotropic i� cov(Ai) = Im
remark: (a) cov(X) = E(XX>); (b) ifAi ∼ N(0, 1)m thenAi isotropic

2. An isotropic rnd vectAi is s.t. ∀x ∈ Rm E(〈Ai, x〉2) = ‖x‖22
For two sq. symm.matricesB,C we haveB = C i� ∀x (x>Bx = x>Cx); hence
x>E(AiA

>
i )x = x>Imx; LHS is E(〈Ai, x〉2), RHS is ‖x‖22

3. An isotropic rnd vect x inRm is s.t. E(‖x‖22) = m
E(‖x‖22) = E(x>x) = E(tr(x>x)) = E(tr(xx>)) = tr(E(xx>)) = tr(Im) = m

4. Indep isotr rnd vectAi, Aj inRm have E(〈Ai, Aj〉2) = m
By conditional expectation E(〈Ai, Aj〉2) = EAj

(EAi
(〈Ai, Aj〉2 | Aj)); by Item

2 inner expectation is ‖Aj‖22, by Item 3 outer ism

5. IfAi ∼ N(0, 1)m, ‖Ai‖2 ∼
√
m wahp

by Thm. 3.1.1 in [Vershynin, 2018]

6. Independent rnd vectors are almost orthogonal
Results above⇒‖Ai‖2, ‖Aj‖2, 〈Ai, Aj〉 ∼

√
m, normalizeAi, Aj to Āi, Āj to

get 〈Āi, Āj〉 ∼ 1/
√
m⇒ form large 〈Āi, Āj〉 ≈ 0
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Construction ofA s.t. RIPδs(A)
I Thm. ForA ∼ N(0, 1)m×n and δ ∈ (0, 1) ∃c1, c2 > 0
depending on δ s.t.

∀s < m

(
s ln(n/s)

c1

≤ m→ Prob(RIPδs(A)) ≥ 1− ec2m
)

Pf. see Thm. 5.17 in [Damelin &Miller, 2012]

Remark: extra
√
m factor inA comes from ‖ · ‖2 ≤ ‖ · ‖1 ≤

√
m‖ · ‖2

I In practice:

I Prob(RIPδs(A)) = 0 form too small w.r.t. s �xed
I asm increases Prob(RIPδs(A)) > 0
I asm increases evenmore Prob(RIPδs(A))→ 1 wahp
I achieve logarithmic compression for large n and �xed s
I A ∼ N(0, 1)mn ∧m ≥ 10s ln n

s
⇒ RIP

1/3
s (A) wahp, Lem. 5.5.2 [Moitra 2018]

I works better than worst case bounds ensured by theory
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Subsection 4

Application to noisy channel encoding
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Noisy channel encoding procedure
Algorithm:
1. message: character string s
2. w = string2bitlist(s) ∈ {0, 1}d

3. send z = Qw, receive z̄ = z + x̂, let b = Az̄
∆ = density of x̂, Q is n× d full rank with n > d

4. x∗ = argP 1(A, b)

5. z∗ = z̄ − x∗

6. w∗ = cap(round( (Q>Q)−1Q>z∗), [0, 1])

7. s∗ = bitlist2string(w∗)

8. evaluate serr = ‖s− s∗‖
Parameter choice [Matousek]:

I noise∆ = 0.08

I redundancy n = Rd, whereR = 4
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Finding orthogonalA,Q

I [Matousek, Gärtner 2007]:
I sampleA componentwise fromN(0, 1)
I then “�ndQ s.t.QA = 0”
I Gaussian elim. on underdet. systemAQ = 0

I Faster:
I sample n× nmatrixM from uniform distr
full rank with probability 1

I �nd eigenvector matrix ofM>M (orthonormal basis)
random rotation of standard basis (used in original JLL proof)

I Concatenate d eigenvectors to makeQ
Concatenatem = n− d eigenvectors to makeA
AQ = 0 by construction!
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Subsection 5

Improvements
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LP size reduction

I Motivation

I Reduce CPU time spent on LP
I R = 4 redundancy for∆ = 0.08 noise seems excessive

I Size of basis pursuit LP

I Ax = b is anm× n system wherem = n− d
I If n� d,m “relatively close” to n
I Recall random projections for LP: use them!
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Computational results
d n ∆ ε α sorgerr sprjerr CPUorg CPUprj

80 320 0.08 0.20 0.02 0 0 1.05 0.56
128 512 0.08 0.20 0.02 0 0 2.72 1.10
216 864 0.08 0.20 0.02 0 0 8.83 2.12
248 992 0.08 0.20 0.02 0 0 12.53 2.53
320 1280 0.08 0.20 0.02 0 0 23.70 3.35
408 1632 0.08 0.20 0.02 0 0 43.80 4.75

I d = |s|, n = 4d,∆ = 0.08, ε = 0.2

I α = Achlioptas density
P(Tij = −1) = P(Tij = 1) = α

2
P(Tij = 0) = 1− α

I serr = number of di�erent
characters

I CPU: seconds of elapsed time

I 1 sampling ofA,Q, T
Sentence: Conticuere omnes intentique ora tenebant, inde toro [...]
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Reducing redundancy in n

I How about taking n = (1 + ∆)d?
I m = n− d ≈ ∆d is very small
I MakesAx = b very short and fat
I Prevents compressed sensing fromworking correctly
not enough constraints

I Would need bothm and d to be≈ n andAQ = 0:
impossible
Rn too small to hostm+ d ≈ 2n orthogonal vectors

I Relax toAQ ≈ 0?
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Almost orthogonality by the JLL
Aim atA>, Qwithm+ d ≈ 2n andAQ ≈ 0

I JLLCorollary: ∃O(ek) approx orthog vectors inRk
Pf. Let T be a k × p random projector (RP), use conc. meas. on ‖z‖22

Prob( (1− ε)‖z‖22 ≤ ‖Tz‖22 ≤ (1 + ε)‖z‖22 ) ≥ 1− 2e−C(ε
2−ε3)k

given x, y ∈ Rn apply to x+ y, x− y and union bound:

|〈Tx, Ty〉 − 〈x, y〉| = 1
4

∣∣‖T (x+ y)‖2 − ‖T (x− y)‖2 − ‖x+ y‖2 + ‖x− y‖2
∣∣

≤ 1
4

∣∣‖T (x+ y)‖2 − ‖x+ y‖2
∣∣+ 1

4

∣∣‖T (x− y)‖2 − ‖x− y‖2
∣∣

≤ ε
4

(‖x+ y‖2 + ‖x− y‖2) = ε
2

(‖x‖2 + ‖y‖2)

with prob≥ 1− 4e−Cε
2k; apply to std basis mtx Ip, get

−ε ≤ 〈Tei, Tej〉 − 〈ei, ej〉 ≤ ε

⇒ ∃p almost orthogonal vectors inRk , and k = O( 1
ε2

ln p)⇒ p = O(ek)

I Algorithm: k = n, p = dene, get 2k columns from T Ip

Also see [https://terrytao.wordpress.com/2013/07/18/
a-cheap-version-of-the-kabatjanskii-levenstein-bound-for-almost-orthogonal-vectors/]
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Almost orthogonality by the JLL

I Aim atm× n A and n×mQ s.t.AQ ≈ 0
with n = (1 + ∆′)m and∆′ “small” (say∆′ < 1)

I Need 2m approx orthog vectors inRn with n < 2m
JLL errors too large for such “small” sizes

I Note we only needAQ = 0:
can accept non-orthogonality in rows ofA& cols ofQ
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Almost orthogonality by LP

I SampleQ and computeA using an LP
WLOG: we could sampleA and computeQ

I max
∑
i≤m
j≤n

Uniform(−1, 1)Aij

I subject toAQ = 0 andA ∈ [−1, 1]

I form = 328 and n = 590 (i.e.∆′ = 0.8):
I error:

∑
AiQ

j = O(10−10)
I rank: full (not really, but |A| = O(ε))
I CPU: 688s (meh)

I form = 328 and n = 492 (i.e.∆′ = 0.5): the same
I form = 328 and n = 426 (i.e.∆′ = 0.3): CPU 470s
I Reduce CPU time by solvingm LPs decidingAi (for i ≤ m)

297 / 402



Computational results

m n ∆′ sorg
err sprj

err CPUorg CPUprj

328 426 0.3 182 15 2.45 1.87
328 426 0.3 154 0 2.20 1.49
328 459 0.4 0 1 4.47 2.45
328 459 0.4 5 17 2.86 1.46
328 492 0.5 60 0 4.53 1.18
328 492 0.5 34 0 5.38 1.18
328 590 0.8 14 0 8.30 1.41
328 590 0.8 107 4 6.76 1.43

I CPU for computingA,Q not counted:
precomputation is possible

I Approximate beats precise!
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In summary

I If s is short, set∆′ = ∆ and use compressed sensing (CS)
I If s is longer, try increasing∆′ and use CS
I If s is very long, use JLL-projected CS
I Can use approximately orthogonalA,Q too

Conticuere omnes, intentique ora tenebant.
Inde toro pater Aeneas sic orsus ab alto:
Infandum, regina, iubes renovare dolorem.
Troianas ut opes et lamentabile regnum eruerint Danai
Quaequae ipse miserrima vidi et quorum pars magna fui.

[Virgil, Aeneid, Cantus II]

m = 1896, n = 2465

∆′ = 0.3: min s.t. CS is accurate

method error CPU
CS 0 29.67s
JLL-CS 2 17.13s

These results are consistentover3 samplings

Technique applies to all sparse retrieval problems
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De�nition

I Optimization version. GivenK ∈ N, determine the
maximum number kn(K) of unit spheres that can be
placed adjacent to a central unit sphere so their
interiors do not overlap

I Decision version. Given n,K ∈ N, is kn(K) ≤ n?
in other words, determine whether n unit spheres can be placed
adjacent to a central unit sphere so that their interiors do not
overlap

Funny story: Newton and Gregory went down the pub. . .
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Some examples

n = 6,K = 2 n = 12,K = 3 more dimensions

2 1 0 -1 -2210-1-2

-2

-1

0

1

2
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Radius formulation

Given n,K ∈ N, determine whether there exist n vectors
x1, . . . , xn ∈ RK such that:

∀i ≤ n ‖xi‖2
2 = 4

∀i < j ≤ n ‖xi − xj‖2
2 ≥ 4
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Contact point formulation

Given n,K ∈ N, determine whether there exist n vectors
x1, . . . , xn ∈ RK such that:

∀i ≤ n ‖xi‖2
2 = 1

∀i < j ≤ n ‖xi − xj‖2
2 ≥ 1
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Spherical codes

I SK−1 ⊂ RK unit sphere centered at origin
I K-dimensional spherical z-code:

I (�nite) subset C ⊂ SK−1

I ∀x 6= y ∈ C x · y ≤ z
I non-overlapping interiors:

∀i < j ‖xi − xj‖2
2 ≥ 1

⇔ ‖xi‖2
2 + ‖xj‖2

2 − 2xi · xj ≥ 1

⇔ 1 + 1− 2xi · xj ≥ 1

⇔ 2xi · xj ≤ 1

⇔ xi · xj ≤
1

2
= cos

(π
3

)
= z
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Subsection 1

Lower bounds
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Lower bounds

I Construct spherical 1
2
-code C with |C| large

I Nonconvex NLP formulations
I SDP relaxations
I Combination of the two techniques
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MINLP formulation

Maculan, Michelon, Smith 1995

Parameters:
I K : space dimension
I n: upper bound to kn(K)

Variables:
I xi ∈ RK : center of i-th vector
I αi = 1 i� vector i in con�guration

max
n∑
i=1

αi

∀i ≤ n ||xi||2 = αi
∀i < j ≤ n ||xi − xj ||2 ≥ αiαj
∀i ≤ n xi ∈ [−1, 1]K

∀i ≤ n αi ∈ {0, 1}
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Reformulating the binary products

I Additional variables: βij = 1 i� vectors i, j in
con�guration

I Linearize αiαj by βij
I Add constraints:

∀i < j ≤ n βij ≤ αi

∀i < j ≤ n βij ≤ αj

∀i < j ≤ n βij ≥ αi + αj − 1
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Computational experiments

AMPL and Baron
I CertifyingYES

I n = 6,K = 2: OK, 0.60s
I n = 12,K = 3: OK, 0.07s
I n = 24,K = 4: FAIL, CPU time limit (100s)

I CertifyingNO
I n = 7,K = 2: FAIL, CPU time limit (100s)
I n = 13,K = 3: FAIL, CPU time limit (100s)
I n = 25,K = 4: FAIL, CPU time limit (100s)

Almost useless
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Modelling the decision problem

max
x,α

α

∀i ≤ n ||xi||2 = 1
∀i < j ≤ n ||xi − xj||2 ≥ α
∀i ≤ n xi ∈ [−1, 1]K

α ≥ 0


I Feasible solution (x∗, α∗)

I KNP instance is YES i� α∗ ≥ 1

[Kucherenko, Belotti, Liberti, Maculan,Discr. Appl. Math. 2007]
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Computational experiments
AMPL and Baron

I CertifyingYES
I n = 6,K = 2: FAIL, CPU time limit (100s)
I n = 12,K = 3: FAIL, CPU time limit (100s)
I n = 24,K = 4: FAIL, CPU time limit (100s)

I CertifyingNO
I n = 7,K = 2: FAIL, CPU time limit (100s)
I n = 13,K = 3: FAIL, CPU time limit (100s)
I n = 25,K = 4: FAIL, CPU time limit (100s)

Apparently even more useless
But more informative (arccosα =min. angular sep)

CertifyingYESbyα ≥ 1
I n = 6,K = 2: OK, 0.06s
I n = 12,K = 3: OK, 0.05s
I n = 24,K = 4: OK, 1.48s
I n = 40,K = 5: FAIL, CPU time limit (100s)
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What about polar coordinates?
I ∀i ≤ n xi = (xi1, . . . , xiK) 7→ (ϑi1, . . . , ϑi,K−1)

I Formulation

(†) ∀k ≤ K ρ sinϑi,k−1

K−1∏
h=k

cosϑih = xik

(‡) ∀i < j ≤ n ‖xi − xj‖2
2 ≥ ρ2

∀i ≤ n, k ≤ K (sin(ϑik))
2 + (cos(ϑik))

2 = 1

(optional) ρ = 1

I Only need to decide sik = sinϑik and cik = cosϑik
I Replace x in (‡) using (†): get polyprog in s, c
I Numerically more challenging to solve (polydeg 2K)

I OPENQUESTION: useful for bounds?
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Subsection 2

Upper bounds from SDP?
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SDP relaxation of Euclidean distances

I Linearization of scalar products

∀i, j ≤ n xi · xj −→ Xij

whereX is an n× n symmetric matrix
I ‖xi‖2

2 = xi · xi = Xii

I ‖xi−xj‖2
2 = ‖xi‖2

2 + ‖xj‖2
2− 2xi ·xj = Xii +Xjj − 2Xij

I X = xx> ⇒ X − xx> = 0makes linearization exact
I Relaxation:

X − xx> � 0⇒ Schur(X, x) =

(
IK x>

x X

)
� 0
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SDP relaxation of binary constraints

I ∀i ≤ n αi ∈ {0, 1} ⇔ α2
i = αi

I LetA be an n× n symmetric matrix

I Linearize αiαj byAij (hence α2
i byAii)

I A = αα>makes linearization exact

I Relaxation: Schur(A,α) � 0
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SDP relaxation of [MMS95]

max
n∑
i=1

αi

∀i ≤ n Xii = αi
∀i < j ≤ n Xii +Xjj − 2Xij ≥ Aij
∀i ≤ n Aii = αi

∀i < j ≤ n Aij ≤ αj
∀i < j ≤ n Aij ≤ αi
∀i < j ≤ n Aij ≥ αi + αj − 1

Schur(X, x) � 0
Schur(A,α) � 0

∀i ≤ n xi ∈ [−1, 1]K

α ∈ [0, 1]n

X ∈ [−1, 1]n
2

A ∈ [0, 1]n
2
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Computational experiments

I Python, PICOS andMosek
orOctave and SDPT3

I bound always equal to n
I prominent failure :-(
I Why?

I can combine inequalities to removeA from SDP

∀i < j Xii +Xjj − 2Xij ≥ Aij ≥ αi + αi − 1

⇒ Xii +Xjj − 2Xij ≥ αi + αi − 1

(then eliminate all constraints inA)
I integrality of α completely lost
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SDP relaxation of [KBLM07]

max α
∀i ≤ n Xii = 1

∀i < j ≤ n Xii +Xjj − 2Xij ≥ α

X ∈ [−1, 1]n
2

X � 0
α ≥ 0



319 / 402



Computational experiments

WithK = 2

n α∗

2 4.00
3 3.00
4 2.66
5 2.50
6 2.40
7 2.33
8 2.28
9 2.25
10 2.22
11 2.20
12 2.18
13 2.16
14 2.15
15 2.14
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Computational experiments
WithK = 3

Always−→ 2?
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An SDP-based heuristic?

1. X∗ ∈ Rn2 : SDP relaxation solution of [KBLM07]
2. Perform PCA, get x̄ ∈ RnK

3. Local NLP solver on [KBLM07] with starting point x̄

However. . .
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TheUselessness Theorem

Thm.
1. The SDP relaxation of [KBLM07] is useless
2. In fact, it is extremely useless

1. Part 1: Uselessness
I Independent ofK:
no useful bounds in function ofK

2. Part 2: Extreme uselessness
(a) For all n, the bound is 2n

n−1
(b) ∃ opt.X∗ with eigenvalues 0, n

n−1 , . . . ,
n
n−1

By 2(b), applyingMDS/PCAmakes no sense
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Proof of extreme uselessness

Strategy:
I Pull a simple matrix solution out of a hat
I Write primal and dual SDP of [KBLM07]
I Show it is feasible in both
I Hence it is optimal
I Analyse solution:

I all n− 1 positive eigenvalues are equal
I its objective function value is 2n/(n− 1)
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Primal SDP

∀1 ≤ i ≤ j ≤ n letBij = (1ij) and 0 elsewhere

quanti�er natural form standard form dual var
maxα maxα

∀i ≤ n Xii = 1 Eii •X = 1 ui
∀i < j ≤ n Xii +Xjj − 2Xij ≥ α Aij •X + α ≤ 0 wij

Aij = −Eii − Ejj + Eij + Eji

∀i < j ≤ n Xij ≤ 1 (Eij + Eji) •X ≤ 2 yij
∀i < j ≤ n Xij ≥ −1 (−Eij − Eji) •X ≤ 2 zij

X � 0 X � 0
α ≥ 0 α ≥ 0
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Dual SDP

min
∑
i

ui + 2
∑
i<j

(yij + zij)∑
i

uiEii +
∑
i<j

(
(yij − zij)(Eij − Eji) + wijAij

)
� 0

∑
i<j

wij ≥ 1

w, y, z ≥ 0

Simplify |v| = y + z, v = y − z:

min
∑
i

ui + 2
∑
i<j

|vij |∑
i

uiEii +
∑
i<j

(
vij(Eij − Eji) + wijAij

)
� 0

∑
i<j

wij ≥ 1

w, v ≥ 0
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Pulling a solution out of a hat

α∗ =
2n

n− 1

X∗ =
n

n− 1
In −

1

n− 1
1n

u∗ =
2

n− 1

w∗ =
1

n(n− 1)

v∗ = 0

where 1n = all-one n× nmatrix
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Solution veri�cation
I linear constraints: by inspection
I X � 0: eigenvalues ofX∗ are 0, n

n−1
, . . . , n

n−1

I
∑

i uiEii +
∑

i<j(vij(Eij − Eji) + wijAij) � 0:∑
i

u∗iEii +
∑
i<j

w∗ijAij

=
2

n− 1

∑
i

Eii +
1

n(n− 1)

∑
i<j

Aij

=
2

n− 1
In +

1

n(n− 1)

(
− (n− 1)In + (1n − In)

)
=

1

n(n− 1)
1n � 0

328 / 402



Corollary

lim
n→∞

v(n, [KBLM07]) = lim
n→∞

2n

n− 1
= 2

as observed in computational experiments
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Subsection 3

Gregory’s upper bound
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Surface upper bound
Gregory 1694, Szpiro 2003
Consider a kn(3) con�guration
inscribed into a super-sphere of
radius 3. Imagine a lamp at the
centre of the central sphere that
casts shadows of the surround-
ing balls onto the inside sur-
face of the super-sphere. Each
shadowhas a surface area of 7.6;
the total surface of the super-
ball is 113.1. So 113.1

7.6 = 14.9 is an
upper bound to kn(3).

At end of XVII century, yielded Newton/Gregory dispute
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Subsection 4

Delsarte’s upper bound
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Pair distribution on sphere surface
I Spherical z-code C has xi · xj ≤ z (i < j ≤ n = |C|)

∀t ∈ [−1, 1] σt =
1

n

∣∣{(i, j) | i, j ≤ n ∧ xi · xj = t}
∣∣

I t-code: let σt = 0 for t ∈ (1/2, 1)

I |C| = n <∞: only �nitely many σt 6= 0∫
[−1,1]

σtdt =
∑

t∈[−1,1]

σt =
1

n
|all pairs| = n2

n
= n

σ1 =
1

n
n = 1

∀t ∈ (1/2, 1) σt = 0

∀t ∈ [−1, 1] σt ≥ 0

|{σt > 0 | t ∈ [−1, 1]}| < ∞
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Growing Delsarte’s LP
I Decision variables: σt, for t ∈ [−1, 1]

I Objective function:

max |C| = maxn = max
σ

∑
t∈[−1,1]

σt

= σ1 + max
σ

∑
t∈[−1,1/2]

σt = 1 + max
σ

∑
t∈[−1,1/2]

σt

Note n not a parameter in this formulation

I Constraints:

∀t ∈ [−1, 1/2] σt ≥ 0

I LP unbounded! — needmore constraints
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Gegenbauer cuts
I Look for function familyF : [−1, 1]→ R s.t.

∀φ ∈ F
∑

t∈[−1,1/2]

φ(t)σt ≥ 0

I Most popularF : Gegenbauer polynomialsGK
h

I Special caseGKh = P γ,γh of Jacobi polynomials (where γ = (K − 2)/2)

Pα,βh =
1

2h

h∑
i=0

(
h+ α

i

)(
h+ β

h− 1

)
(t+ 1)i(t− 1)h−i

I Matlab knows them: GKh (t) = gegenbauerC(h, (K − 2)/2, t)

I Octave knows them: GKh (t) = gsl_sf_gegenpoly_n(h, K−2
2 , t)

need command pkg load gsl before function call

I TheyencodedependenceonK
335 / 402



Delsarte’s LP

I Primal:

1 + max
∑

t∈[−1, 1
2

]

σt

∀h ∈ H
∑

t∈[−1, 1
2

]

GK
h (t)σt ≥ −GK

h (1)

∀t ∈ [−1, 1
2
] σt ≥ 0.

 [DelP]
I Dual:

1 + min
∑
h∈H

(−GK
h (1))dh

∀t ∈ [−1, 1
2
]

∑
h∈H

GK
h (t)dh ≥ 1

∀h ∈ H dh ≤ 0.

 [DelD]
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Delsarte’s theorem

I [Delsarte et al., 1977]

Theorem
Let d0 > 0 and F : [−1, 1]→ R such that:

(i) ∃H ⊆ (N ∪ {0}) and d ∈ R|H|+ ≥ 0
s.t. F (t) =

∑
h∈H

dhG
K
h (t)

(ii) ∀t ∈ [−1, z] F (t) ≤ 0

Then kn(K) ≤ F (1)
d0

I Proof based on properties of Gegenbauer polynomials

I Best upper bound:minF (1)/d0⇒min
d0=1

F (1)⇒ [DelD]

I [DelD] “models” Delsarte’s theorem
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Delsarte’s normalized LP (GK
h (1) = 1)

I Primal:

1 + max
∑

t∈[−1, 1
2

]

σt

∀h ∈ H
∑

t∈[−1, 1
2

]

GK
h (t)σt ≥ −1

∀t ∈ [−1, 1
2
] σt ≥ 0

 [DelP]
I Dual:

1 + min
∑
h∈H

(−1)dh

∀t ∈ [−1, 1
2
]
∑
h∈H

GK
h (t)dh ≥ 1

∀h ∈ H dh ≤ 0

 [DelD]
I d0 = 1⇒ remove 0 fromH
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Focus on normalized [DelD]

Rewrite−dh as dh:

1 + min
∑
h∈H

dh

∀t ∈ [−1, 1
2
]
∑
h∈H

GK
h (t)dh ≤ −1

∀h ∈ H dh ≥ 0

 [DelD]

Issue: semi-in�nite LP (SILP) (how do we solve it?)
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Approximate SILP solution

I Only keep �nitely many constraints
I Discretize [−1, 1] with a �nite T ⊂ [−1, 1]

I Obtain relaxation [DelD]T :

val([DelD]T ) ≤ val([DelD])

I Risk: val([DelD]T ) < minF (1)/d0

not a valid bound to kn(K)

I Happens if soln. of [DelD]T infeasible in [DelD]
i.e. infeasible w.r.t. some of the∞ly many removed constraints
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SILP feasibility

I Given SILP S̄ ≡ min{c>x | ∀i ∈ Ī a>i x ≤ bi}
I Relax to LP S ≡ min{c>x | ∀i ∈ I a>i x ≤ bi}, where I ( Ī

I Solve S, get solution x∗

I Let ε = max{a>i x∗ − bi | i ∈ Ī}
continuous optimization w.r.t. single var. i

I If ε ≤ 0 then x∗ feasible in S̄
⇒ val(S̄) ≤ c>x∗

I If ε > 0 re�ne S and repeat
I Apply to [DelD]T , get solution d∗ feasible in [DelD]
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[DelD] feasibility

1. Choose discretization T of [−1, 1/2]

2. Solve

1 + min
∑
h∈H

dh

∀t ∈ T
∑
h∈H

GKh (t)dh ≤ −1

∀h ∈ H dh ≥ 0

 [DelD]T
get solution d∗

3. Solve ε = max{1 +
∑
h∈H

GK
h (t)dh | t ∈ [−1, 1/2]}

4. If ε ≤ 0 then d∗ feasible in [DelD]
⇒ kn(K) ≤ 1 +

∑
h∈H d

∗
h

5. Else re�ne T and repeat from Step 2
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Subsection 5

Pfender’s upper bound
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Pfender’s upper bound theorem
Thm.
Let Cz = {xi ∈ SK−1 | i ≤ n ∧ ∀j 6= i (xi · xj ≤ z)}; c0 > 0; f : [−1, 1]→ R s.t.:
(i)

∑
i,j≤n

f(xi · xj) ≥ 0 (ii) f(t) + c0 ≤ 0 for t ∈ [−1, z] (iii) f(1) + c0 ≤ 1

Then n ≤ 1
c0

([Pfender 2006])
Let g(t) = f(t) + c0

n2c0 ≤ n2c0 +
∑
i,j≤n

f(xi · xj) by (i)

=
∑
i,j≤n

(f(xi · xj) + c0) =
∑
i,j≤n

g(xi · xj)

≤
∑
i≤n

g(xi · xi) since g(t) ≤ 0 for t ≤ z and xi ∈ Cz for i ≤ n

= ng(1) since ‖xi‖2 = 1 for i ≤ n
≤ n since g(1) ≤ 1.
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Pfender’s LP

I Condition (i) of Theorem valid for conic combinations of
suitable functionsF :

f(t) =
∑
h∈H

chfh(t) for some ch ≥ 0,

e.g.F =Gegenbauer polynomials (again)

I Get SILP

max
c∈R|H|

c0 (minimize 1/c0 ≥ n)

∀ t ∈ [−1, z]
∑
h∈H

chG
K
h (t) + c0 ≤ 0 (ii)∑

h∈H
chG

K
h (1) + c0 ≤ 1 (iii)

∀ h ∈ H ch ≥ 0 (conic comb.)


I Discretize [−1, z] by �nite T , solve LP, check validity (again)
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Delsarte’s and Pfender’s theorem compared
I Delsarte & Pfender’s theorem look similar:

Delsarte Pfender
(i) F (t)G. poly comb (i) f(t)G. poly comb
(ii) ∀t ∈ [−1, z] F (t) ≤ 0 (ii) ∀t ∈ [−1, z] f(t) + c0 ≤ 0

(iii) f(1) + c0 ≤ 1

⇒ kn(K) ≤ F (1)
d0

⇒ kn(K) ≤ 1
c0

I Try settingF (t) = f(t) + c0: condition (ii) is the same

I By condition (iii) in Pfender’s theorem

kn(K) ≤ F (1)

d0

=
f(1) + c0

c0

≤ 1

c0

⇒Delsarte bound at least as tight as Pfender’s
I Delsarte (i)⇒

∫
[−1,1]

F (t)dt ≥ 0⇒
∫

[−1,1]
(f(t) + c0)dt ≥ 0

Pfender (i)⇒
∫

[−1,1]
f(t)dt ≥ 0more stringent

I Delsarte requires weaker condition and yields tighter bound
Conditioned on F (t) = f(t) + c0, not a proof! Verify computationally
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The �nal, easy improvement

I However you compute your upper boundB:
I The number of surrounding balls is integer
I If kn(K) ≤ B, then in fact kn(K) ≤ bBc
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Pfender’s upper bound

Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again
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Job o�ers
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An example
Under the responsibility of the Commercial Director, the Optimisation / Operations Senior Manager
will have the responsibility to optimise and develop operational aspects for VINCI Airports current
and future portfolio of airports. They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering the objectives of the Technical
Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial
Director in the development and implementation of plans, strategies and reporting processes. As part
of the exercise of its function, the Optimisation Manager will undertake the following: Identification
and development of cross asset synergies with a specific focus on the operations and processing functions
of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives
of the various technical services agreements, the strategy of the individual airports and the Group.
This function will include: Participation in the definition of airport strategy. Definition of this
airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation
Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various
technical services agreements with our airports by developing specific technical competences from the
Head Office level. Oversee the management and definition of all optimisation projects. Identification,
overview and management of the project managers responsible for the delivery of the various optimization
projects at each asset. Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Development and implementation of the Group
optimisation plan. Definition of economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service
levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the
strategies, trends and best practices of the airport industry and other reference industries in terms of
the applicability to the optimization plan. Study of the needs and preferences of the passengers,
through a continuous process of marketing research at all of the airports within the VINCI Airports
portfolio. Development of benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Development and participation in the expansion or refurbishment projects
of the airports, to assure a correct configuration and positioning of the operational and commercial
area that can allow the optimization of the revenues and operational efficiency. Support the Director
Business Development through the analysis and opportunity assessment of areas of optimization for all
target assets in all bids and the preparation and implementation of the strategic plan once the
assets are acquired. Maintain up to date knowledge of market trends and key initiatives related
to the operational and commercial aspects of international airports [...]

. . .and blah blah blah: IS THIS APPROPRIATE FORMYCV?
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Try Natural Language Processing

I Automated summary
I Relation Extraction
I Named Entity Recognition (NER)
I Keywords
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Automated summary
./summarize.py job01.txt

They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering
the objectives of the Technical Services Agreements activities of VINCI
Airports. The Optimisation Manager will support the Commercial Director
in the development and implementation of plans, strategies and reporting
processes. Identification and development of cross asset synergies with
a specific focus on the operations and processing functions of the airport.
Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Definition of
economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of
processing efficiency, service levels, passenger convenience and
harmonization of the non-aeronautical activities. Development of
benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Maintain up to date knowledge of market
trends and key initiatives related to the operational and commercial
aspects of international airports. You have a diverse range of
experiences working at or with airports across various disciplines such
as operations, ground handling, commercial, etc. Demonstrated high
level conceptual thinking, creativity and analytical skills.

Does it help? hard to say
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Relation Extraction
./relextr-mitie.py job01.txt

======= RELATIONS =======
Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES_EVENT ] Head Office
Head Office [ INFLUENCED_BY ] Self
Head Office [ INTERRED_HERE ] Self
VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self
Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office
Self [ ORGANIZATIONS_WITH_THIS_SCOPE ] Head Office
Self [ PEOPLE_INVOLVED ] Head Office
Self [ PLACE_OF_DEATH ] Head Office
Head Office [ RELIGION ] Self
VINCI Airports [ RELIGION ] Optimisation Strategy

Does it help? hardly
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Named Entity Recognition

./ner-mitie.py job01.txt

==== NAMED ENTITIES =====
English MISC
French MISC
Head Office ORGANIZATION
Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON
Technical Services Agreements MISC
VINCI Airports ORGANIZATION

Does it help? . . .maybe

For a documentD, let NER(D) = named entity words
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Subsection 1

Clustering on graphs
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Exploit NER to infer relations

1. Recognize named entities from all documents
2. Use them to compute distances among documents
3. Usemodularity clustering
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The named entities
1. Operations Head Airports O�ce VINCI Technical Self French / Strategy Agreements English Services Optimisation
2. Europe and P&CWork Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate

International English
3. Scientist Product Analyze Java Features & Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press

Performance Deezer Data Computer
4. Lean6Sigma Lean-type O�ce Banking Paris CDI France RPAMiddle Accenture English Front Benelux
5. Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance market develop Finance & IS&T

Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
6. Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia English Fares with Company

Inc
7. Paris Integration France Automation Automotive French . Linux/Genivi HMI UI Software EB Architecture Elektrobit technologies

GUIDE Engineers German Technology SWwell-structured Experts Tools
8. Product Google Managers Python JavaScript AWS JSONBigQuery Java Platform Engineering HTMLMySQL Services Professional

Googles Ruby Cloud OAuth
9. EHR Aledades Provide Wellness Perform ACO Visits EHR-system-speci�c Coordinator AledadeMedicare Greenway Allscripts
10. Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata & Python Company GDIA Ford Visa SPARKData

Applied Science Work C++ RUnix/Linux Physics Microsoft Operations Monte JAVAMobility Insight Analytics Engineering Computer
Motor SQLOperation Carlo PowerPoint

11. Management Java CANDIDATE Application Statistics Gurobi Provides Provider Mathematics Service Maintains Deliver SM&G
SAS/HPF SAS Data Science Economics Marriott PROFILE Providers OR Engineering Computer SQL Education

12. Alto Statistics Java Sunnyvale ResearchML Learning Science Operational Machine Amazon Computer C++ Palo Internet R Seattle
13. LLamasoft Work Fortune Chain Supply C# Top GuruWhat Impactful Team LLamasofts Makes Gartner Gain
14. Worldwide Customer JavaMosel Service Python Energy Familiarity CPLEX Research Partnering Amazon R SQL CSOperations
15. Operations Science Research Engineering Computer Systems or Build
16. Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain Economics Experience R Research US

Scientist UK SQL Japan Economist
17. Competency Statistics Knowledge Employer communication ResearchMachine EEOUnited ORMAWay OFCCP CorporationMining

&C# Python Visual Studio Opportunity Excellent Modeling Data Jacksonville Arena Talent Skills Science Florida Life Equal
AnyLogic Facebook CSX Oracle The Strategy Vision Operations Industrial Stream of States Analytics Engineering Computer
Framework Technology

18. Java Asia Research Safety in Europe Activities North CompanyWestRocks Sustainability AmericaMasters WRKC++Norcross
Optimization GA ILOG South NYSEOperations AMPL CPLEX Identify Participate OPLWestRock

19. Management Federal Administration SystemNAS Development JMP Tra�c Aviation FAA AdvancedMcLean Center CAASD Flow Air
Tableau Oracle MITRE TFM Airspace National SQL Campus

20. Abilities & Skills 9001-Quality SManagement ISOGED
21. Statistics Group RDBMSResearchMathematics Teradata ORSA Greenplum Java SAS U.S. Solution Time Oracle Military Strategy

Physics Linear/Non-Linear Operations both Industrial Series Econometrics Engineering Clarity Regression 357 / 402



Word similarity: WordNet
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WordNet: hyponyms of “boat”
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Wu-Palmer word similarity
Semantic WordNet distance between wordsw1, w2

wup(w1, w2) =
2 depth(lcs(w1, w2))

len(shortest_path(w1, w2)) + 2 depth(lcs(w1, w2))

I lcs: lowest common subsumer
earliest common word in paths from both words toWordNet root

I depth: length of path from root to word

Example: wup(dog,boat)?
depth( whole ) = 4
18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate

-> chordate -> animal -> organism -> living_thing -> whole -> artifact
-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat

13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat

wup(dog,boat) = 8/21 = 0.380952380952
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Extensions of Wu-Palmer similarity

I to lists of wordsH,L:

wup(H,L) =
1

|H| |L|
∑
v∈H

∑
w∈L

wup(v, w)

I to pairs of documentsD1, D2:

wup(D1, D2) = wup(NER(D1),NER(D2))

I wup and its extensions are always in [0, 1]
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The similarity matrix

Too uniform! Try zeroing values belowmedian

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.38 0.49 0.47 0.47 0.44 0.54 0.31 0.44
0.63 1.00 0.45 0.45 0.54 0.40 0.42 0.42 0.57 0.49 0.46 0.45 0.59 0.35 0.43 0.42 0.42 0.41 0.47 0.32 0.40
0.51 0.45 1.00 0.40 0.53 0.35 0.37 0.37 0.58 0.47 0.43 0.40 0.59 0.28 0.39 0.37 0.38 0.35 0.43 0.24 0.35
0.51 0.45 0.40 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.38 0.48 0.47 0.47 0.45 0.53 0.33 0.44
0.66 0.54 0.53 0.63 1.00 0.34 0.35 0.35 0.49 0.42 0.39 0.37 0.50 0.29 0.36 0.35 0.35 0.34 0.40 0.26 0.34
0.45 0.40 0.35 0.45 0.34 1.00 0.42 0.43 0.66 0.54 0.49 0.45 0.67 0.34 0.44 0.43 0.43 0.40 0.49 0.28 0.40
0.46 0.42 0.37 0.46 0.35 0.42 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.34 0.45 0.45 0.44 0.42 0.50 0.28 0.40
0.47 0.42 0.37 0.46 0.35 0.43 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.36 0.47 0.45 0.45 0.43 0.51 0.30 0.42
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.33 0.31 0.29 0.40 0.23 0.28 0.27 0.28 0.26 0.31 0.21 0.26
0.58 0.49 0.47 0.56 0.42 0.54 0.54 0.55 0.33 1.00 0.46 0.43 0.59 0.34 0.42 0.41 0.41 0.39 0.46 0.31 0.39
0.54 0.46 0.43 0.52 0.39 0.49 0.49 0.51 0.31 0.46 1.00 0.39 0.56 0.29 0.38 0.36 0.36 0.34 0.41 0.24 0.35
0.50 0.45 0.40 0.49 0.37 0.45 0.47 0.48 0.29 0.43 0.39 1.00 0.70 0.40 0.50 0.49 0.48 0.46 0.54 0.35 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.40 0.59 0.56 0.70 1.00 0.23 0.29 0.29 0.29 0.28 0.33 0.20 0.27
0.38 0.35 0.28 0.38 0.29 0.34 0.34 0.36 0.23 0.34 0.29 0.40 0.23 1.00 0.48 0.45 0.46 0.42 0.52 0.30 0.43
0.49 0.43 0.39 0.48 0.36 0.44 0.45 0.47 0.28 0.42 0.38 0.50 0.29 0.48 1.00 0.39 0.39 0.36 0.45 0.26 0.37
0.47 0.42 0.37 0.47 0.35 0.43 0.45 0.45 0.27 0.41 0.36 0.49 0.29 0.45 0.39 1.00 0.48 0.46 0.54 0.33 0.44
0.47 0.42 0.38 0.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.51 0.32 0.43
0.44 0.41 0.35 0.45 0.34 0.40 0.42 0.43 0.26 0.39 0.34 0.46 0.28 0.42 0.36 0.46 0.43 1.00 0.53 0.31 0.43
0.54 0.47 0.43 0.53 0.40 0.49 0.50 0.51 0.31 0.46 0.41 0.54 0.33 0.52 0.45 0.54 0.51 0.53 1.00 0.36 0.46
0.31 0.32 0.24 0.33 0.26 0.28 0.28 0.30 0.21 0.31 0.24 0.35 0.20 0.30 0.26 0.33 0.32 0.31 0.36 1.00 0.47
0.44 0.40 0.35 0.44 0.34 0.40 0.40 0.42 0.26 0.39 0.35 0.46 0.27 0.43 0.37 0.44 0.43 0.43 0.46 0.47 1.00
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The similarity matrix

Too uniform! Try zeroing values belowmedian

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.00 0.49 0.47 0.47 0.44 0.54 0.00 0.44
0.63 1.00 0.45 0.45 0.54 0.00 0.00 0.00 0.57 0.49 0.46 0.45 0.59 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00
0.51 0.45 1.00 0.00 0.53 0.00 0.00 0.00 0.58 0.47 0.00 0.00 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.51 0.45 0.00 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.00 0.48 0.47 0.47 0.45 0.53 0.00 0.44
0.66 0.54 0.53 0.63 1.00 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.45 0.00 0.00 0.45 0.00 1.00 0.00 0.00 0.66 0.54 0.49 0.45 0.67 0.00 0.44 0.00 0.00 0.00 0.49 0.00 0.00
0.46 0.00 0.00 0.46 0.00 0.00 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.00 0.45 0.45 0.44 0.00 0.50 0.00 0.00
0.47 0.00 0.00 0.46 0.00 0.00 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.00 0.47 0.45 0.45 0.00 0.51 0.00 0.00
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.58 0.49 0.47 0.56 0.00 0.54 0.54 0.55 0.00 1.00 0.46 0.43 0.59 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00
0.54 0.46 0.00 0.52 0.00 0.49 0.49 0.51 0.00 0.46 1.00 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.45 0.00 0.49 0.00 0.45 0.47 0.48 0.00 0.43 0.00 1.00 0.70 0.00 0.50 0.49 0.48 0.46 0.54 0.00 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.00 0.59 0.56 0.70 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.48 0.45 0.46 0.00 0.52 0.00 0.43
0.49 0.00 0.00 0.48 0.00 0.44 0.45 0.47 0.00 0.00 0.00 0.50 0.00 0.48 1.00 0.00 0.00 0.00 0.45 0.00 0.00
0.47 0.00 0.00 0.47 0.00 0.00 0.45 0.45 0.00 0.00 0.00 0.49 0.00 0.45 0.00 1.00 0.48 0.46 0.54 0.00 0.44
0.47 0.00 0.00 0.47 0.00 0.00 0.44 0.45 0.00 0.00 0.00 0.48 0.00 0.46 0.00 0.48 1.00 0.00 0.51 0.00 0.00
0.44 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.46 0.00 1.00 0.53 0.00 0.00
0.54 0.47 0.00 0.53 0.00 0.49 0.50 0.51 0.00 0.46 0.00 0.54 0.00 0.52 0.45 0.54 0.51 0.53 1.00 0.00 0.46
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.47
0.44 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.43 0.00 0.44 0.00 0.00 0.46 0.47 1.00
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The graph

G = (V,E), weighted adjacencymatrixA
A is likeB with zeroed low components
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Modularity clustering
“Modularity is the fraction of the edges that fall within a cluster minus
the expected fraction if edges were distributed at random.”

I “at random”= random graphs over same degree sequence

I degree sequence= (k1, . . . , kn) where ki = |N(i)|
I “expected”= all possible “half-edge” recombinations

I expected edges between u, v: kukv/(2m) wherem = |E|
I mod(u, v) = 1

2m (Auv − kukv/(2m))

I mod(G) =
∑

{u,v}∈E
mod(u, v)xuv

xuv = 1 if u, v in the same cluster and 0 otherwise

I “Natural extension” to weighted graphs: ku =
∑
v Auv ,m =

∑
uv Auv
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Usemodularity to de�ne clustering
I What is the “best clustering”?

I Maximize discrepancy between actual and expected
“as far away as possible from average”

max
∑

{u,v}∈E
mod(u, v)xuv

∀u ∈ V, v ∈ V xuv ∈ {0, 1}


I Issue: optimum could be intransitive

I Idea: treat clusters as cliques (even if zero weight)
then clique partitioning constraints for transitivity

∀i < j < k xij + xjk − xik ≤ 1

∀i < j < k xij − xjk + xik ≤ 1

∀i < j < k − xij + xjk + xik ≤ 1

if i, j ∈ C and j, k ∈ C then i, k ∈ C
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The resulting clustering

cluster 1: job01, job02, job03, job05, job10

cluster 2: job04, job06, job22

cluster 3: job07, job08, job11, job12, job20

cluster 4: job13, job21, job23, job24, job25, job26, job27, job28
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Is it good?

Vinci Accenture Elektrobit Amazon 1-3
Axa Expedia Google CSX
Deezer fragment1 Ford Westrock
Alstom Marriott Mitre
Aledade Llamasoft Clarity

fragment2

I ?— named entities rarely appear in WordNet
I Desirable property: chooses number of clusters

368 / 402



Subsection 2

Clustering in Euclidean spaces
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Clustering vectors
Most frequent words w over collection C of documents d
./keywords.py
global environment customers strategic processes teams sql job industry use
java developing project process engineering field models opportunity drive
results statistical based operational performance using mathematical computer
new technical highly market company science role dynamic background products
level methods design looking modeling manage learning service customer
effectively technology requirements build mathematics problems plan services
time scientist implementation large analytical techniques lead available plus
technologies sas provide machine product functions organization algorithms
position model order identify activities innovation key appropriate different
complex best decision simulation strategy meet client assist quantitative
finance commercial language mining travel chain amazon pricing practices
cloud supply

tfidfC(w, d) =
|(t ∈ d | t = w)| |C|
|{h ∈ C | w ∈ h}|

keywordC(i, d) = wordw having ith best tfidfC(w, d)value
vecmC (d) = (tfidfC(keywordC(i, d), d) | i ≤ m)

Transforms documents to vectors
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Minimum sum-of-squares clustering

I MSSC, a.k.a. the k-means problem
I Given points p1, . . . , pn ∈ Rm, �nd clustersC1, . . . , Ck

min
∑
j≤k

∑
i∈Cj

‖pi − centroid(Cj)‖2
2

where centroid(Cj) = 1
|Cj |

∑
i∈Cj

pi

I k-means alg.: given initial clusteringC1, . . . , Ck

1: ∀j ≤ k compute yj = centroid(Cj)
2: ∀i ≤ n, j ≤ k if yj is the closest centr. to pi let xij = 1 else 0
3: ∀j ≤ k updateCj ← {pi | xij = 1 ∧ i ≤ n}
4: repeat until stability
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k-means with k = 2

Vinci AXA
Deezer Alstom
Accenture Elektrobit
Expedia Ford
Google Marriott
Aledade Amazon 1-3
Llamasoft CSX

WestRock
MITRE
Clarity

fragments 1-2
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k-means with k = 2: another run

Deezer Vinci
Elektrobit AXA
Google Accenture
Aledade Alstom

Expedia
Ford

Marriott
Llamasoft
Amazon 1-3

CSX
WestRock
MITRE
Clarity

fragments 1-2
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k-means with k = 2: third run!

AXA Vinci
Deezer Accenture
Expedia Alstom
Ford Elektrobit
Marriott Google
Llamasoft Aledade
Amazon 1-3
CSX
WestRock
MITRE
Clarity
fragments 1-2

A �ckle algorithm
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We can’t trust k-means: why?
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Subsection 3

Distance instability
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Nearest Neighbours
k-Nearest Neighbours (k-NN).
Given:

I k ∈ N
I a distance function d : Rn × Rn → R+

I a setX ⊂ Rn
I a point z ∈ Rn r X ,

�nd the subset Y ⊂ X such that:

(a) |Y| = k

(b) ∀y ∈ Y, x ∈ X (d(z, y) ≤ d(z, x))

I basic problem in data science
I pattern recognition, computational geometry, machine learning, data
compression, robotics, recommender systems, information retrieval, natural
language processing andmore

I Example: Used in Step 2 of k-means:
assign points to closest centroid

[Cover &Hart 1967]

377 / 402



With random variables

I Consider 1-NN
I Let ` = |X |
I Distance function family
{dm : Rn × Rn → R+}m

I For eachm:
I random variable Zm with some distribution overRn
I for i ≤ `, random variableXm

i with some distrib. over
Rn

I Xm
i iid w.r.t. i, Z

m independent of allXm
i

I Dm
min = min

i≤`
dm(Zm, Xm

i )

I Dm
max = max

i≤`
dm(Zm, Xm

i )
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Distance Instability Theorem

I Let p > 0 be a constant
I If

∃i ≤ ` (dm(Zm, Xm
i ))p converges asm→∞

then, for any ε > 0,

closest and furthest point are at about the same distance

Note “∃i” su�ces since ∀m we haveXm
i iid w.r.t. i

[Beyer et al. 1999]
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Distance Instability Theorem
I Let p > 0 be a constant
I If

∀i ≤ ` lim
m→∞

Var

(
(dm(Zm, Xm

i ))p

E((dm(Zm, Xm
i ))p)

)
= 0

then, for any ε > 0,

lim
m→∞

P(Dm
max ≤ (1 + ε)Dm

min) = 1

Note “∃i” su�ces since ∀m we haveXm
i iid w.r.t. i

[Beyer et al. 1999]
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Preliminary results
I Lemma. {Bm}m seq. of rnd. vars with �nite variance
and lim

m→∞
E(Bm) = b ∧ lim

m→∞
Var(Bm) = 0; then

∀ε > 0 lim
m→∞

P(‖Bm − b‖ ≤ ε) = 1

denotedBm →P b

I Slutsky’s theorem. {Bm}m seq. of rnd. vars and g a
continuous function; ifBm →P b and g(b) exists, then
g(Bm)→P g(b)

I Corollary. If {Am}m, {Bm}m seq. of
rnd. vars. s.t.Am →P a andBm →P b 6= 0 then
Am

Bm
→P

a
b
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Proof
1. µm = E((dm(Zm, Xm

i ))p) independent of i
(since allXm

i iid)

2. Vm =
(dm(Zm,Xm

i ))p

µm
→P 1:

I E(Vm) = 1 (rnd. var. over mean)⇒ limm E(Vm) = 1
I Hypothesis of thm.⇒ limm Var(Vm) = 0
I Lemma⇒ Vm →P 1

3. Vm = (Vm | i ≤ `)→P 1 (by iid)

4. Slutsky’s thm.⇒ min(Vm)→P min(1) = 1
simy formax

5. Corollary⇒ max(Vm)
min(Vm)

→P 1

6. Dmmax
Dmmin

= µm max(Vm)
µm min(Vm)

→P 1

7. Result follows (defn. of→P andDm
max ≥ Dm

min)
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When it applies

I iid random variables from any distribution
I Particular forms of correlation
e.g. Ui ∼ Uniform(0,

√
i),X1 = U1,Xi = Ui + (Xi−1/2) for i > 1

I Variance tending to zero
e.g.Xi ∼ N(0, 1/i)

I Discrete uniform distribution onm-dimensional
hypercube
for both data and query

I Computational experiments with k-means:
instability already with n > 15
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. . .and when it doesn’t

I Complete linear dependence on all distributions
can be reduced to NN in 1D

I Exact and approximate matching
query point= (or≈) data point

I Query point in a well-separated cluster in data
I Implicitly low dimensionality
project; but NNmust be stable in lower dim.

384 / 402



Subsection 4

MP formulations
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MP formulation

min
x,y,s

∑
i≤n

∑
j≤k
‖pi − yj‖2

2 xij

∀j ≤ k 1
sj

∑
i≤n

pixij = yj

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k
∑
i≤n

xij = sj

∀j ≤ k yj ∈ Rm

x ∈ {0, 1}nk
s ∈ Nk


(MSSC)

MINLP: nonconvex terms; continuous, binary and integer
variables
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Reformulation
The (MSSC) formulation has the same optima as:

min
x,y,P

∑
i≤n

∑
j≤k

Pij xij

∀i ≤ n, j ≤ k ‖pi − yj‖2
2 ≤ Pij

∀j ≤ k
∑
i≤n

pixij =
∑
i≤n

yjxij

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ ([min
i≤n

pih,max
i≤n

pih] | h ≤ k)

x ∈ {0, 1}nk
P ∈ [0, PU ]nk


I The only nonconvexities are
products of binary by continuous bounded variables

387 / 402



Products of binary and continuous vars.
I Suppose term xy appears in a formulation

I Assume x ∈ {0, 1} and y ∈ [0, 1] is bounded
I means “either z = 0 or z = y”
I Replace xy by a new variable z
I Adjoin the following constraints:

z ∈ [0, 1]

y − (1− x) ≤ z ≤ y + (1− x)

−x ≤ z ≤ x

I ⇒Everything’s linear now!

[Fortet 1959]

388 / 402



Products of binary and continuous vars.
I Suppose term xy appears in a formulation

I Assume x ∈ {0, 1} and y ∈ [yL, yU ] is bounded
I means “either z = 0 or z = y”
I Replace xy by a new variable z
I Adjoin the following constraints:

z ∈ [min(yL, 0),max(yU , 0)]

y − (1− x) max(|yL|, |yU |) ≤ z ≤ y + (1− x) max(|yL|, |yU |)
−xmax(|yL|, |yU |) ≤ z ≤ xmax(|yL|, |yU |)

I ⇒Everything’s linear now!

[L. et al. 2009]
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MSSC is a convexMINLP
min

x,y,P,χ,ξ

∑
i≤n

∑
j≤k

χij

∀i ≤ n, j ≤ k 0 ≤ χij ≤ Pij
∀i ≤ n, j ≤ k Pij − (1− xij)PU ≤ χij ≤ xijPU

∀i ≤ n, j ≤ k ‖pi − yj‖22 ≤ Pij ⇐ convex

∀j ≤ k
∑
i≤n

pixij =
∑
i≤n

ξij

∀i ≤ n, j ≤ k yj − (1− xij) max(|yL|, |yU |) ≤ ξij ≤ yj + (1− xij) max(|yL|, |yU |)

∀i ≤ n, j ≤ k − xij max(|yL|, |yU |) ≤ ξij ≤ xij max(|yL|, |yU |)

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ [yL, yU ]

x ∈ {0, 1}nk

P ∈ [0, PU ]nk

χ ∈ [0, PU ]nk

∀i ≤ n, j ≤ k ξij ∈ [min(yL, 0),max(yU , 0)]

yj , ξij , yL, yU are vectors inRm 390 / 402



How to solve it

I cMINLP isNP-hard
I Algorithms:

I Outer Approximation (OA)
I Branch-and-Bound (BB)

I Best (open source) solver: Bonmin
I Another good (commercial) solver: KNitro
I With k = 2, unfortunately. . .

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution,
best possible 6.1855969 (32142.17 seconds)

I Interesting feature: the bound
guarantees we can’t to better than bound
all BB algorithms provide it
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Bonmin’s �rst solution

Alstom Vinci
Elektrobit AXA
Ford Deezer
Llamasoft Accenture
Amazon 2 Expedia
CSX Google
MITRE Aledade
Clarity Marriott
fragment 2 Amazon 1 & 3

WestRock
fragment 1
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Couple of things left to try

I Approximate `2 by `1 norm
`1 is a linearizable norm

I Randomly project the data
lose dimensions but keep approximate shape
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Linearizing convexity
I Replace ‖pi − yj‖22 by ‖pi − yj‖1
I Warning: optima will change

but still within “clustering by distance” principle

∀i ≤ n, j ≤ k ‖pi − yj‖1 =
∑
a≤d
|pia − yja|

I Replace each | · | term by new vars.Qija ∈ [0, PU ]
Adjust PU in terms of ‖ · ‖1

I Adjoin constraints

∀i ≤ n, j ≤ k
∑
a≤d

Qija ≤ Pij

∀i ≤ n, j ≤ k, a ≤ d −Qija ≤ pia − yja ≤ Qija

I Obtain aMILP
Most advancedMILP solver: CPLEX
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CPLEX’s �rst solution

objective 112.24, bound 39.92, in 44.74s

AXA Vinci
Deezer Accenture
Ford Alstom
Marriott Expedia
Amazon 1-3 Elektrobit
Llamasoft Google
CSX Aledade
WestRok
MITRE
Clarity
fragments 1-2

Interrupted after 281s with bound 59.68
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Subsection 5

Random projections again
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Works on theMSSCMP formulation too!

min
x,y,s

∑
i≤n

∑
j≤d
‖Tpi − Tyj‖2

2 xij

∀j ≤ d 1
sj

∑
i≤n

Tpixij = Tyj

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d
∑
i≤n

xij = sj

∀j ≤ d yj ∈ Rm

x ∈ {0, 1}nd
s ∈ Nd


where T is a k ×m random projector
replace Ty by y′
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Works on theMSSCMP formulation too!

min
x,y′,s

∑
i≤n

∑
j≤d
‖Tpi − y′j‖2

2 xij

∀j ≤ d 1
sj

∑
i≤n

Tpixij = y′j

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d
∑
i≤n

xij = sj

∀j ≤ d y′j ∈ Rk

x ∈ {0, 1}nd
s ∈ Nd


(MSSC′)

I where k = O( 1
ε2

lnn)

I less data, |y′| < |y| ⇒ get solutions faster
I Yields smaller cMINLP
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Bonmin on randomly proj. data
objective 5.07, bound 0.48, stopped at 180s

Deezer Vinci
Ford AXA
Amazon 1-3 Accenture
CSX Alstom
MITRE Expedia
fragment 1 Elektrobit

Google
Aledade
Marriott
Llamasoft
WestRock
Clarity

fragment 2
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CPLEX on randomly proj. data

. . .although it doesn’t makemuch sense for ‖ · ‖1 norm. . .

objective 53.19, bound 20.68, stopped at 180s

Vinci AXA
Deezer Accenture
Expedia Alstom
Google Elektrobit
Aledade Marriott
Ford Llamasoft
Amazon 1-3 WestRock
CSX MITRE
Clarity fragment 1-2
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Many clusterings?

Compare themwith clusteringmeasures
e.g. “adjustedmutual information score”
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THEEND
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