Advanced Mathematical Optimization

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

INF580

About the course

- ► Aims of lectures: theory and algorithms won't repeat much of MAP557
- ► Aims of TD: modelling abilities in practice with AMPL, Python and perhaps Julia
- ► Warning:

 $some\ disconnection\ between\ lectures\ and\ TD\ is\ normal$

Exam: I prefer project (max 2 people) or oral exam issue with timeslot: I am not free the week 190318-

http://www.lix.polytechnique.fr/~liberti/ teaching/dix/inf580-19

Outline

Summary Introduction Random projections in LP MP language Random projection theory Solvers Projecting feasibility MP systematics Projecting optimality Some applications Solution retrieval Decidability Application to quantile regression Formal systems Sparsity and ℓ_1 minimization Gödel Motivation Turing Basis pursuit Tarski Theoretical results Completeness and incompleteness Application to noisy channel encoding MP solvability Improvements Efficiency and Hardness Clustering in Natural Language Some combinatorial problems in NP Clustering on graphs NP-hardness Clustering in Euclidean spaces Complexity of solving MP formulations Distance resolution limit MP formulations Distance Geometry The universal isometric embedding Random projections again Dimension reduction Kissing Number Problem Lower bounds Distance geometry problem Upper bounds from SDP? Distance geometry in MP DGP cones Gregory's upper bound Barvinok's Naive Algorithm Delsarte's upper bound Isomap for the DGP Pfender's upper bound

Outline

Introduction MP language Solvers MP systematics Some applications

What is *Mathematical Optimization*?

- **▶** Mathematics of solving optimization problems
- ► Formal language: Mathematical Programming (MP)
- ► Sentences: descriptions of optimization problems
- ► Interpreted by solution algorithms ("solvers")
- ► As expressive as any imperative language
- ► Shifts focus from algorithmics to modelling

MP Formulations

Given functions $f, g_1, \ldots, g_m : \mathbb{Q}^n \to \mathbb{Q}$ and $Z \subseteq \{1, \ldots, n\}$

► More general than it looks:

$$L \leq x \leq U \quad \Leftrightarrow \quad (L - x \leq 0 \land x - U \leq 0)$$

 $ightharpoonup f, g_i$ represented by expression DAGs

$$x_1 + \frac{x_1 x_1}{\log(x_1)}$$

Class of all formulations $P: \mathbb{MP}$

Semantics of MP formulations

- $ightharpoonup [\![P]\!] =$ optimum (or optima) of P
- ▶ Given $P \in \mathbb{MP}$, there are *three possibilities*: [P] exists, P is unbounded, P is infeasible
- ► *P is feasible* iff [P] exists or is unbounded otherwise it is infeasible
- ► *P has an optimum* iff [[P]] exists otherwise it is infeasible or unbounded

Example

$$P \equiv \min\{x_1 + 2x_2 - \log(x_1 x_2) \mid x_1 x_2^2 \ge 1 \land 0 \le x_1 \le 1 \land x_2 \in \mathbb{N}\}\$$

$$[\![P]\!]=(\mathsf{opt}(P),\mathsf{val}(P))$$

$$\operatorname{opt}(P) = (1,1)$$

Are feasibility and optimality really different?

- Feasibility prob. $g(x) \le 0$: can be written as MP $\min\{0 \mid g(x) \le 0\}$
- ▶ Bounded MP $\min\{f(x) \mid g(x) \leq 0\}$: bisection on f_0 in $f(x) \leq f_0 \land g(x) \leq 0$
- Unbounded MP: not equivalent to feasibility in general, cannot prove unboundedness

Bisection algorithm

- $P \equiv \min\{f(x) \mid \forall i \in I \ g(x) \le 0 \land x \in X\}$
- ► Assume global optimum of *P* is between given lower/upper bounds
- ▶ Reformulate P to a parametrized feasibility problem $Q(f_0) = \{x \in X \mid f(x) \leq f_0 \land \forall i \in I \ g(x) \leq 0\}$

Bisection algorithm

```
1: while lower and upper bounds differ by > \epsilon do

2: let f_0 be midway between bounds

3: if Q(f_0) is feasible then

4: update upper bound to f_0

5: else

6: update lower bound to f_0

7: end if

8: end while
```

Bisection algorithm for MP

```
1: initialize candidate global optimum \hat{x}
 2: while lower and upper bounds differ by > \epsilon \, \mathbf{do}
      let f_0 be midway between bounds
      if Q(f_0) is feasible then
         find a feasible point x'
 5:
         if x' improves \hat{x} then
 6:
 7:
           update \hat{x} to x'
            update upper bound to f(\hat{x})
8:
         end if
9:
      else
10:
         update lower bound to f_0
11:
      end if
12:
13: end while
```

Bisection algorithm for MP (formal)

Given:

- **b** global optimal value approximation tolerance $\epsilon > 0$
- ightharpoonup lower bound f, upper bound \bar{f}
- ▶ an algorithm A which finds an element in a set or certifies emptyness

Bisection algorithm for MP (formal)

```
1: let (\hat{x}, \hat{f}) = (\text{uninitialized}, \bar{f})
 2: while \bar{f} - f > \epsilon \operatorname{do}
 3: let f_0 = (f + \bar{f})/2
 4: if Q(f_0) \neq \emptyset then
 5: (x', f') = A(Q)
 6: if f' < \hat{f} then
 7: update (\hat{x}, \hat{f}) \leftarrow (x', f')
8:
              update \bar{f} \leftarrow \hat{f}
           end if
 9:
        else
10:
           update f \leftarrow f_0
11:
        end if
12:
13: end while
```

Subsection 1

MP language

Entities of a MP formulation

- ► Sets of indices
- ► Parameters problem input, or *instance*
- ► Decision variables will encode the solution after solver execution
- ► Objective function
- **▶** Constraints

Example

Linear Program (LP) in standard form

- ► $I = \{1, ..., n\}$: row indices $J = \{1, ..., n\}$: col. indices
- $ightharpoonup c \in \mathbb{R}^n, b \in \mathbb{R}^m, A \text{ an } m \times n \text{ matrix}$
- $x \in \mathbb{R}^n$
- $ightharpoonup \min_{x} c^{\top} x$

MP language implementations

- ► Humans model with quantifiers (\forall , \sum ,...) e.g. $\forall i \in I \sum_{i \in J} a_{ij}x_j \leq b_i$
- Solvers accept lists of explicit constraints e.g. $4x_1 + 1.5x_2 + x_6 \le 2$
- ► Translation from structured to flat formulation
- ► MP language implementations AMPL, GAMS, Matlab+YALMIP, Python+PyOMO/cvx, Julia+JuMP, ...

AMPL

- ► AMPL = A Mathematical Programming Language
- ► Syntax similar to human notation
- ► Implementation sometimes somewhat buggy
- ► Commercial & closed-source
 - ► extremely rapid prototyping
 - we get free licenses for this course
 - ► free open-source AMPL sub-dialect in GLPK glpsol
- ► Can also use Python+PyOMO, or Julia+JuMP

Subsection 2

Solvers

Solvers

- ► Solver: a solution algorithm for a whole subclass of MP
- ightharpoonup Take formulation P as input
- ightharpoonup Output $\llbracket P \rrbracket$ and possibly other information
- ► Trade-off between generality and efficiency

Some subclasses of MP

- (i) LINEAR PROGRAMMING (LP) $f, g_i \text{ linear}, Z = \emptyset$
- (ii) MIXED-INTEGER LP (MILP) $f, q_i \text{ linear}, Z \neq \emptyset$
- (iii) NONLINEAR PROGRAMMING (NLP) some nonlinearity in $f, g_i, Z = \emptyset$ f, g_i convex: convex NLP (cNLP)
- (iv) MIXED-INTEGER NLP (MINLP) some nonlinearity in $f, g_i, Z \neq \emptyset$ f, g_i convex: convex MINLP (cMINLP)

And their solvers

- (i) LINEAR PROGRAMMING (LP) simplex algorithm, interior point method (IPM) Implementations: CPLEX, GLPK, CLP
- (ii) MIXED-INTEGER LP (MILP)
 cutting plane alg., Branch-and-Bound (BB)
 Implementations: CPLEX, GuRoBi
- (iii) NONLINEAR PROGRAMMING (NLP)
 IPM, gradient descent (cNLP), spatial BB (sBB)
 Implementations: IPOPT (cNLP), Baron, Couenne
- (iv) MIXED-INTEGER NLP (MINLP)
 outer approximation (cMINLP), sBB
 Implementations: Bonmin (cMINLP), Baron, Couenne

Subsection 3

MP systematics

Types of MP

Continuous variables:

- ► LP (linear functions)
- QP (quadratic obj. over affine sets)
- QCP (linear obj. over quadratically def'd sets)
- QCQP (quadr. obj. over quadr. sets)
- cNLP (convex sets, convex obj. fun.)
- ► SOCP (LP over 2nd ord. cone)
- ► SDP (LP over PSD cone)
- COP (LP over copositive cone)
- ► NLP (nonlinear functions)

Types of MP

Mixed-integer variables:

- ► IP (integer programming), MIP (mixed-integer programming)
- extensions: MILP, MIQ, MIQCP, MIQCQP, cMINLP, MINLP
- ▶ BLP (LP over $\{0,1\}^n$)
- ▶ BQP (QP over $\{0,1\}^n$)

Some more "exotic" classes:

- ► MOP (multiple objective functions)
- ► BLevP (optimization constraints)
- SIP (semi-infinite programming)

Subsection 4

Some applications

Some application fields

- ► Production industry planning, scheduling, allocation, ...
- ► Transportation & logistics facility location, routing, rostering, ...
- Service industry pricing, strategy, product placement, ...
- ► Energy industry power flow optimization, monitoring smart grids,...
- Machine Learning & Artificial Intelligence clustering, approximation error minimization
- Biochemistry & medicine protein structure, blending, tomography, ...
- ► Mathematics
 Kissing number, packing of geometrical objects,...

Easy example

A bank needs to invest C gazillion dollars, and focuses on two types of investments: one, imaginatively called (a), guarantees a 15% return, while the other, riskier and called, surprise surprise, (b), is set to a 25%. At least one fourth of the budget C must be invested in (a), and the quantity invested in (b) cannot be more than double the quantity invested in (a). How do we choose how much to invest in (a) and (b) so that revenue is maximized?

Easy example

- ► Parameters:
 - ightharpoonup budget C
 - return on investment on (a): 15%, on (b): 25%
- ► Decision variables:
 - $ightharpoonup x_a =$ budget invested in (a)
 - $ightharpoonup x_b =$ budget invested in (b)
- ▶ Objective function: $1.15 x_a + 1.25 x_b$
- **▶** Constraints:
 - $ightharpoonup x_a + x_b = C$
 - $x_a > C/4$
 - $ightharpoonup x_b \le 2x_a$

Easy example: remarks

- ► Missing trivial constraints: verify that $x_a = C + 1$, $x_b = -1$ satisfies constraints forgot $x \ge 0$
- ► No numbers in formulations: replace numbers by parameter symbols

► Formulation generality: extend to n investments:

$$\left. \begin{array}{lll} \max \limits_{x \geq 0} & \sum \limits_{j \leq n} c_j x_j & & \\ & \sum \limits_{j \leq n} x_j & = & C \\ & x_1 & \geq & pC \\ & dx_1 - x_2 & \geq & 0 \end{array} \right\}$$

Example: monitoring an electrical grid

An electricity distribution company wants to monitor certain quantities at the lines of its grid by placing measuring devices at the buses. There are three types of buses: consumer, generator, and repeater. There are five types of devices:

- A: installed at any bus, and monitors all incident lines (cost: 0.9MEUR)
- ► B: installed at consumer and repeater buses, and monitors at most two incident lines (cost: 0.5MEUR)
- ► C: installed at generator buses only, and monitors at most one incident line (cost: 0.3MEUR)
- ➤ D: installed at repeater buses only, and monitors at most one incident line (cost: 0.2MEUR)
- ► E: installed at consumer buses only, and monitors at most one incident line (cost: 0.3MEUR).

Provide a least-cost installation plan for the devices at the buses, so that all lines are monitored by at least one device.

Example: the electrical grid

Example: formulation

- ► Index sets:
 - V: set of buses v
 - ightharpoonup E: set of lines $\{u, v\}$
 - ightharpoonup A: set of directed lines (u, v)
 - $\forall u \in V \text{ let } N_u = \text{buses adjacent to } u$
 - ► D: set of device types
 - ▶ D_M : device types covering > 1 line
 - $D_1 = D \setminus D_M$
- ► Parameters:
 - $\triangleright \ \forall v \in V \quad b_v = \mathbf{bus} \ \mathbf{type}$
 - $ightharpoonup \forall d \in D \quad c_d =$ device cost

Example: formulation

- ▶ Decision variables
 - ▶ $\forall d \in D, v \in V$ $x_{dv} = 1$ iff device type d installed at bus v
 - ▶ $\forall d \in D, (u, v) \in A$ $y_{duv} = 1$ iff device type d installed at bus u measures line $\{u, v\}$
 - all variables are binary
- **▶** Objective function

$$\min_{x,y} \sum_{d \in D} c_d \sum_{v \in V} x_{dv}$$

Example: formulation

- **▶** Constraints
 - device types:

$$\begin{aligned} \forall v \in V \quad b_v &= \text{gen} \quad \rightarrow \quad x_{\mathsf{B}v} = 0 \\ \forall v \in V \quad b_v \in \{\text{con}, \text{rep}\} \quad \rightarrow \quad x_{\mathsf{C}v} = 0 \\ \forall v \in V \quad b_v \in \{\text{gen}, \text{con}\} \quad \rightarrow \quad x_{\mathsf{D}v} = 0 \\ \forall v \in V \quad b_v \in \{\text{gen}, \text{rep}\} \quad \rightarrow \quad x_{\mathsf{E}v} = 0 \end{aligned}$$

at most one device type at each bus

$$\forall v \in V \quad \sum_{d \in D} x_{dv} \le 1$$

Example: formulation

- **▶** Constraints
 - A: every line incident to installed device is monitored

$$\forall u \in V, v \in N_u \quad y_{\mathsf{A}uv} = x_{\mathsf{A}u}$$

▶ B: two monitored lines incident to installed device

$$\forall u \in V \quad \sum_{v \in N_u} y_{\mathsf{B}uv} = 2x_{\mathsf{B}u}$$

► C,D,E: one monitored line incident to installed device

$$\forall d \in D_1, u \in V \quad \sum_{v \in N_u} y_{duv} = x_{du}$$

▶ line is monitored

$$\forall \{u, v\} \in E \quad \sum_{d \in D} y_{duv} + \sum_{e \in D} y_{evu} \ge 1$$

Example: solution

 $all\ lines\ monitored, no\ redundancy, cost\ 9.2 MEUR$

Outline

Decidability Formal systems Gödel Turing Tarski Completeness and incompleteness MP solvability

Can we solve MPs?

▶ "Solve MPs": is there an algorithm \mathcal{D} s.t.:

$$\forall P \in \mathbb{MP} \quad \mathcal{D}(P) = \left\{ \begin{array}{ll} \text{infeasible} & P \text{ is infeasible} \\ \text{unbounded} & P \text{ is unbounded} \\ \llbracket P \rrbracket & \text{otherwise} \end{array} \right.$$

► I.e. does there exist a single, all-powerful solver?

Subsection 1

Formal systems

Formal systems (FS)

- ► A formal system consists of:
 - ▶ an alphabet
 - ➤ a formal grammar allowing the determination of formulæ and sentences
 - ▶ a set A of axioms (given sentences)
 - a set R of inference rules allowing the derivation of new sentences from old ones
- ► A *theory T* is the smallest set of sentences that is obtained by recursively applying *R* to *A*

[Smullyan, Th. of Formal Systems, 1961]

Example: PA1

- ▶ Theory: 1st order provable sentences about \mathbb{N}
- ▶ Alphabet: $+, \times, \wedge, \vee, \rightarrow, \forall, \exists, \neg, =, S(\cdot)$ and variable names
- ► Peano's Axioms:
 - 1. $\forall x \ (0 \neq S(x))$
 - 2. $\forall x, y \ (S(x) = S(y) \rightarrow x = y)$
 - 3. $\forall x (x + 0 = x)$
 - **4.** $\forall x \ (x \times 0 = 0)$
 - **5.** $\forall x, y \ (x + S(y) = S(x + y))$
 - **6.** $\forall x, y \ (x \times S(y) = x \times y + x)$
 - 7. axiom schema over all (k+1)-ary ϕ : $\forall y = (y_1, \dots, y_k)$ $(\phi(0,y) \land \forall x \phi(x,y) \rightarrow \phi(S(x),y)) \rightarrow \forall x \phi(x,y)$
- Inference: see

 $\label{eq:https://en.wikipedia.org/wiki/List_of_rules_of_inference} \ \text{e.g.} \ modus \ ponens \ (P \land (P \to Q)) \to Q$

► Generates ring $(\mathbb{N}, +, \times)$ and arithmetical proofs e.g. $\exists x \in \mathbb{N}^n \ \forall i \ (p_i(x) \leq 0)$ (polynomial MINLP feasibility)

Example: Reals

- ▶ Theory: 1st order provable sentences about \mathbb{R}
- ► Alphabet: $+, \times, \wedge, \vee, \forall, \exists, =, <, \leq, 0, 1$, variable names
- ► Axioms: field and order
- ► Inference: see

```
\label{eq:local_local_potential} \begin{split} & \texttt{https://en.wikipedia.org/wiki/List_of\_rules_of\_inference} \\ & \textbf{e.g.} \ \textit{modus ponens} \ (P \land (P \rightarrow Q)) \rightarrow Q \end{split}
```

► Generates polynomial rings $\mathbb{R}[X_1, \dots, X_k]$ (for all k) e.g. $\exists x \in \mathbb{R}^n \ \forall i \ (p_i(x) \leq 0)$ (polynomial NLP feasibility)

Relevance of FSs to MP

Given a FS \mathcal{F} :

- ► A decision problem is a set P of sentences Decide if a given sentence f belongs to P
- ► Decidability in formal systems: $P \equiv$ provable sentences
- ▶ *Proof of f*: finite sequence of sentences ending with *f*; sentences either axioms or derived from predecessors by inference rules
- ▶ PA1: decide if sentence f about \mathbb{N} has a proof PA1 contains $\exists x \in \mathbb{Z}^n \ \forall i \ p_i(x) \leq 0$ (poly p)
- Formal study of MINLP/NLP feasibility

Decidability, computability, solvability

- ► Decidability: applies to decision problems
- ► Computability: applies to function evaluation
 - ► Is the function *f*, mapping *i* to the *i*-th prime integer, computable?
 - ► Is the function *g*, mapping Cantor's CH to 1 if provable in ZFC axiom system and to 0 otherwise, computable?
- ➤ Solvability: applies to other problems E.g. to optimization problems

Completeness and decidability

- ► Complete FS \mathcal{F} : for any $f \in \mathcal{F}$, either f or $\neg f$ is provable otherwise \mathcal{F} is incomplete
- ▶ $\frac{\text{Decidable FS } \mathcal{F}}{\text{Balgorithm } \mathcal{D}}$ s.t.

$$\forall f \in \mathcal{F} \left\{ egin{array}{ll} \mathcal{D}(f) = 1 & ext{iff } f ext{ is provable} \\ \mathcal{D}(f) = 0 & ext{iff } f ext{ is not provable} \end{array} \right.$$

otherwise \mathcal{F} is undecidable

Example: PA1

- ► Gödel's 1st incompleteness theorem: PA1 is incomplete
- ► Turing's theorem: PA1 is undecidable
- ightharpoonup \Rightarrow PA1 is incomplete and undecidable

Subsection 2

Gödel

Gödel's 1st incompleteness theorem

- \triangleright \mathcal{F} : any FS extending PA1
- ▶ Thm. \mathcal{F} complete iff inconsistent
- ϕ : sentence " ϕ not provable in \mathcal{F} " denoted $\mathcal{F} \not\vdash \phi$; it can be constructed $\underline{in \mathcal{F}}$; hard part of thm.
 - ► : "is provable" in PA1; : in meta-language
 - ► Assume \mathcal{F} is complete: either $\mathcal{F} \vdash \phi$ or $\mathcal{F} \vdash \neg \phi$
 - ▶ If $\mathcal{F} \vdash \phi$ then $\mathcal{F} \vdash (\mathcal{F} \not\vdash \phi)$ i.e. $\mathcal{F} \not\vdash \phi$, contradiction
 - ► If $\mathcal{F} \vdash \neg \phi$ then $\mathcal{F} \vdash \neg (\mathcal{F} \not\vdash \phi)$ i.e. $\mathcal{F} \vdash (\mathcal{F} \vdash \phi)$ this implies $\mathcal{F} \vdash \phi$, i.e. $\mathcal{F} \vdash (\phi \land \neg \phi)$, \mathcal{F} inconsistent
 - ► Assume \mathcal{F} is inconsistent: any sentence is provable, i.e. \mathcal{F} complete details: $P \land \neg P$, hence P and $\neg P$, so for any Q we have $P \lor Q$, whence Q (since $\neg P$ and $P \lor Q$), implying $P \land \neg P \to Q$
- ► If we want PA1 to be consistent, it must be incomplete
- **► Warning:** $\mathcal{F} \not\vdash \phi \equiv \neg (\mathcal{F} \vdash \phi) \not\equiv \mathcal{F} \vdash \neg \phi$

Gödel's encoding

- ► For $\psi \in PA1$, $\lceil \psi \rceil \in \mathbb{N}$ integer which encodes the proof let me sweep the details under the carpet
- ► 「·¬ is an injective map
- ► Inverse: $\langle \lceil \phi \rceil \rangle = \phi$ ϕ is the sentence corresponding to Gödel's number $\lceil \phi \rceil$
- ightharpoonup Encode/decode in $\mathbb N$ any sentence of a formal system

Gödel's self-referential sentence ϕ

- ► For integers x,y $\exists g \in \mathbb{N} \langle g \rangle \equiv \mathsf{proof}(x,y)$: holds if $\langle x \rangle$ is a proof in PA1 for the sentence $\langle y \rangle$
- ▶ For integers m, n, p $\exists g \in \mathbb{N} \ \langle g \rangle \equiv \mathsf{sost}(m, n, p) =$ encoding in \mathbb{N} of the sentence obtained by replacing in $\langle m \rangle$ the (typographical sign of the) free variable symbol $\langle n \rangle$ with the integer p
- ▶ let y be the encoding of the (typographical sign of the) variable symbol 'y' (remark: $y = \neg 'y' \neg \in \mathbb{N}$)
- ▶ $\gamma(y) \equiv \neg \exists x \in \mathbb{N} \text{ proof}(x, \text{sost}(y, \mathbf{y}, y))$: there is no proof in PA1 for the sentence obtained from replacing, in the sentence $\langle y \rangle$, every free variable symbol 'y' with the integer y
- ▶ let $q = \lceil \gamma(y) \rceil$, replace y with q in $\gamma(y)$, get $\phi \equiv \gamma(q)$ so $\phi \equiv \neg \exists x \in \mathbb{N} \text{ proof}(x, \text{sost}(q, \mathbf{y}, q))$

Gödel's self-referential sentence ϕ

$$\phi \equiv \neg \exists x \in \mathbb{N} \ \mathsf{proof}(x, \mathsf{sost}(q, \mathbf{y}, q)) \, \Big| \,$$

- ► Let $\psi \equiv \operatorname{sost}(q, \mathbf{y}, q)$ ϕ states: "there is no proof in PA1 for the sentence ψ " ψ defined by replacing the free variable symbol 'y' in $\langle q \rangle$ with q
- ► How did we obtain ϕ ? ϕ obtained by replacing the free variable y in $\gamma(y)$ with q, i.e. $\phi \equiv \gamma(q)$
- ▶ Recall: $q = \lceil \gamma(y) \rceil$, i.e. $\langle q \rangle \equiv \gamma(y)$
- \triangleright So $\psi \equiv \phi$
- ► Hence ϕ states " ϕ is not provable in PA1"

Subsection 3

Turing

Turing machines

- ► Turing Machine (TM): computation model
 - ▶ infinite tape with cells storing finite alphabet letters
 - ▶ head reads/writes/skips *i*-th cell, moves left/right
 - \blacktriangleright states=program (e.g. if s write 0, move left, change to state t)
 - ▶ initial tape content: input, final tape content: output
 - ► final state ⊥: termination; Ø nonterm
- $ightharpoonup \exists$ universal TM (UTM) U s.t.
 - ightharpoonup given the "program" of a TM T and an input x
 - ightharpoonup U "simulates" T running on x
- ightharpoonup The basis of the modern computer
- ► Halting Problem (HP): does a given M terminate on input x?

Given TM M & input
$$x$$
, is $M(x) = \bot$?

► Turing's theorem: HP is undecidable

Turing's proof (informal)

- ► Suppose \exists TM "halt" s.t. halt(T, x) = 1 if T(x) terminates, 0 othw
- ▶ Then construct function G(x) as follows: if halt(G, x) = 1 then loop forever else stop
- ▶ If G(x) terminates then halt(G, x) = 0, contradiction
- ▶ If G(x) loops forever then halt (G, x) = 1, contradiction
- ightharpoonup \Rightarrow TM halt cannot exist

Turing's proof (formal)

- ▶ Enumerate all TMs: $(M_i \mid i \in \mathbb{N})$
- ▶ Halting function $\mathsf{halt}(i,\ell) = \left\{ \begin{array}{ll} 1 & \text{if } M_i(\ell) = \bot \\ 0 & \text{if } M_i(\ell) = \varnothing \end{array} \right.$
- ► Show halt \neq F for any total computable $F(i, \ell)$:
 - ▶ let G(i) = 0 if F(i, i) = 0 or undefined (Ø) othw G is partial computable because F is computable
 - ▶ let M_j be the TM computing G for any i, $M_j(i) = \bot$ iff G(i) = 0
 - ightharpoonup consider halt(j, j):
 - halt $(j,j)=1 \rightarrow M_j(j)=\bot \rightarrow G(j)=0 \rightarrow F(j,j)=0$
 - $\blacktriangleright \ \ \mathsf{halt}(j,j) = 0 \to M_j(j) = \varnothing \to G(j) = \varnothing \to F(j,j) \neq 0$
 - ▶ so halt $(j, j) \neq F(j, j)$ for all j
- ► halt is uncomputable

Turing and Gödel

- ► TM provable with input $\alpha \in \mathsf{PA1}$: while(1) i=0; if $\lceil \alpha \rceil = \mathsf{i}$ return YES; else i=i+1 provable(α) = \bot iff $\mathsf{PA1} \vdash \alpha$
- ► termination of provable ⇔ decidability in PA1
- ► Gödel's ϕ is not provable \Rightarrow PA1 is undecidable

PA1 incomplete and undecidable

Subsection 4

Tarski

Example: Reals

- ► Tarski's theorem: Reals is decidable
- ► Algorithm:

 constructs solution sets (YES) or derives contradictions(NO)

 ⇒ provides proofs or contradictions for all sentences
- ➤ Reals is complete and also decidable since every complete theory is decidable (why?)

Tarski's theorem

- ► Algorithm based on quantifier elimination
- Feasible sets of polynomial systems $p(x) \le 0$ have finitely many connected components
- ► Each connected component recursively built of cylinders over points or intervals extremities: pts., ±∞, algebraic curves at previous recursion levels
- ▶ In some sense, generalization of Reals in \mathbb{R}^1

Dense linear orders

Given a sentence ϕ in DLO

- ▶ Reduce to DNF w/clauses $\exists x_i \ q_i(x) \text{ with } q_i = \bigwedge q_{ij}$
- ▶ Each q_{ij} has form s = t or s < t (s, t vars or consts)
 - ▶ s, t both constants: s < t, s = t verified and replaced by 1 or 0
 - > s, t the same variable x_i : s < t replaced by 0, s = t replaced by 1
 - if s is x_i and t is not: s = t means "replace x_i by t" (eliminate x_i)
 - remaining case: q_i conj. of $s < x_i$ and $x_i < t$: replace by s < t (eliminate x_i)
- $ightharpoonup q_i$ no longer depends on x_i , rewrite $\exists x_i \ q_i$ as q_i
- ightharpoonup Repeat over vars. x_i , obtain real intervals or contradictions

Quantifier elimination!

Subsection 5

Completeness and incompleteness

Decidability and completeness

- ► PA1 is incomplete and undecidable
- ► Reals is complete and decidable
- ightharpoonup Are there FS \mathcal{F} that are:
 - incomplete and decidable?
 - complete and undecidable?

Incomplete and decidable (trivial)

- NoInference: Any FS with $<\infty$ axiom schemata and no inference rules
- ► Only possible proofs: sequences of axioms
- ► Only provable sentences: axioms
- ► For any other sentence f: no proof of f or $\neg f$
- ► Trivial decision algorithm: given f, output YES if f is a finite axiom sequence, NO otherwise
- ► NoInference is incomplete and decidable

Incomplete and decidable (nontrivial)

- ► ACF: Algebraically Closed Fields (e.g. C) field axioms + "every polynomial splits" schema
- ► ACF decidable by quantifier elimination
- ► ACF_p: ACF \cup C_p \equiv $[\sum_{j \leq p} 1 = 0]$ (with p prime)
- ▶ $\forall p \text{ (prime) } \mathsf{C}_p \text{ independent of ACF} \Rightarrow \\ \Rightarrow decidability as in ACF}$
- ▶ \exists fields of every prime characteristic p \Rightarrow each ACF_p satisfies C_p and negates C_q for $q \neq p$
- ► In ACF, no proof of C_p nor $\neg C_p$ possible
- ▶ Decision alg. $\mathcal{D}(\psi)$ for ACF:
 - if $\psi \equiv C_p$ or $\neg C_p$ for some prime p, return NO
 - lacktriangle else run quantifier elimination on ψ
- ► ACF is incomplete and decidable

Complete and undecidable (impossible)

- ► FS \mathcal{F} complete: $\forall \psi \in \mathcal{F} \exists \operatorname{proof of} \psi \operatorname{or} \neg \psi$
- ► Recall proofs are finite sequences of sentences
- ▶ Algorithm $\mathcal{D}(\psi)$:
 - 1. iteratively generate all (countably many) proofs combine axioms w/inference rules and repeat
 - 2. for each proof, is last sentence $\equiv \psi$ or $\equiv \neg \psi$? Return 1 or 0 and break; else continue
- $ightharpoonup \mathcal{D}$ terminates because \mathcal{F} is complete
- ► If FS is complete, then it is decidable

The two meanings of completeness

- ► WARNING!!!
 - "complete" is used in two different ways in logic
 - 1. Gödel's 1st incompleteness theorem FS \mathcal{F} complete if ϕ or $\neg \phi$ provable $\forall \phi$
 - 2. Gödel's completeness theorem
 - ightharpoonup A: set of sentences in \mathcal{F}
 - ightharpoonup M a model of \mathcal{F} (domain of var symbols)
 - ▶ If $\exists M$ s.t. A^M is true, then A consistent
 - ▶ If A consistent, then $\exists M$ s.t. A^M is true
- ➤ Pay attention when reading literature/websites

Subsection 6

MP solvability

Polynomial equations in integers

► Consider the feasibility-only MP

$$\min\{0 \mid \forall i \le m \ g_i(x) = 0 \land x \in \mathbb{Z}^n\}$$

with $g_i(x)$ composed by arithmetical expressions $(+, -, \times, \div)$

► Rewrite as a *Diophantine equation* (DE):

$$\exists x \in \mathbb{Z}^n \quad \sum_{i \le m} (g_i(x))^2 = 0 \tag{1}$$

- Can restrict to \mathbb{N} wlog, i.e. Eq. (1) \in PA1 write $x_i = x_i^+ x_i^-$ where $x_i^+, x_i^- \in \mathbb{N}^n$
- ► Formulæ of PA1 are generally undecidable but is the subclass (1) of PA1 decidable or not?

Hilbert's 10th problem

► Hilbert:

Given a Diophantine equation with any number of unknowns and with rational integer coefficients: devise a process which could determine by a finite number of operations whether the equation is solvable in rational integers

- ▶ Davis & Putnam: conjecture DEs are undecidable
 - ightharpoonup consider set \mathbb{RE} of recursively enumerable (r.e.) sets
 - $ightharpoonup R \subseteq \mathbb{N}$ is in \mathbb{RE} if \exists TM listing all and only elements in R
 - ▶ some \mathbb{RE} sets are undecidable, e.g. $R = \{ \lceil \phi \rceil \mid \mathsf{PA1} \vdash \phi \}$ r.e.: list all proofs; undecidable: by Gödel's thm
 - for each $R \in \mathbb{RE}$ show \exists polynomial p(r, x) s.t. $r \in R \leftrightarrow \exists x \in \mathbb{N}^n \ p(r, x) = 0$
 - ▶ if can prove it, ∃ undecidable DEs

Proof strategy

- Strategy: model recursive functions using polynomial systems
- ► D&P+Robinson: universal quantifiers removed, but eqn system involves exponentials
- Matiyasevich: exploits exponential growth of Pell's equation solutions to remove exponentials
- ightharpoonup \Rightarrow DPRM theorem, implying DE undecidable

Negative answer to Hilbert's 10th problem

Structure of the DPRM theorem

- ► Gödel's proof of his 1st incompleteness thm. r.e. sets \equiv DEs with $< \infty \exists$ and bounded \forall quantifiers
- **Davis' normal form** one bounded quantifier suffices: $\exists x_0 \forall a \leq x_0 \exists x \ p(a, x) = 0$
 - \triangleright (2 bnd qnt \equiv 1 bnd qnt on pairs) and induction
- ► Robinson's idea get rid of universal quantifier by using exponent vars
 - idea: $[\exists x_0 \forall a \leq x_0 \exists x \ p(a, x) = 0]$ " \rightarrow " $\left[\exists x \prod_{a \leq x_0} p(a, x) = 0\right]$ "
 - precise encoding needs variables in exponents
- ► Matyiasevic's contribution

 $express c = b^a using polynomials$

- use Pell's equation $x^2 dy^2 = 1$
- lacksquare solutions (x_n, y_n) satisfy $x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n$
- $ightharpoonup x_n, y_n$ grow exponentially with n

MP is unsolvable

- ► Consider list of all TMs $(M_i \mid i \in \mathbb{N})$ if $M_i(x) = \bot$ at t-th execution step, write $M_i^t(x) = \bot$
- ▶ Yields all sets in $\mathbb{RE} = (R_i \mid i \in \mathbb{N})$ by dovetailing at k-th round, perform k-th step of $M_i(1)$, (k-1)-st of $M_i(2)$, ..., l-st of $M_i(k)$ $\Rightarrow \forall k \in \mathbb{N} \text{ and } \ell \leq k \text{ if } M_i^{\ell}(k-\ell+1) = \bot$ let $R_i \leftarrow R_i \cup \{k-\ell+1\}$ $R_i = \{k-\ell+1 \mid \exists k \in \mathbb{N}, \ell \leq k \ (M_i^{\ell}(k-\ell+1) = \bot)\}$
- ▶ DPRM theorem: $\forall R \in \mathbb{RE}$, R represented by poly eqn
- ► Let $R_i \in \mathbb{RE}$ s.t. M_i is a UTM ⇒ \exists Universal DE (UDE), say U(r, x) = 0
- ▶ $\min\{0 \mid U(r,x) = 0 \land (r,x) \in \mathbb{N}^{n+1}\}$: undecidable (feasibility) MP
- $\blacktriangleright \min_{{r\in \mathbb{N}}\atop{x\in \mathbb{N}^n}}(U(r,x))^2$: unsolvable (optimization) MP

Common misconception

"Since $\mathbb N$ is contained in $\mathbb R$, how is it possible that Reals is decidable but DE (= Reals $\cap \mathbb N$) is not?"

After all, if a problem contains a hard subproblem, it's hard by inclusion, right?

- ► Can you express DE $p(x) = 0 \land x \in \mathbb{N}$ in Reals?
 - ▶ p(x) = 0 belongs to both DE and Reals, **OK**

 - $q(x) = x(x-1)\cdots(x-a) \text{ only good for } \{0,1,\ldots,a\}$ $q(x) = \prod_{i \in \omega} (x-i) \text{ is } \infty \text{ly long, invalid}$
 - ► IMPOSSIBLE!

 if it were possible, DE would be decidable, contradiction

MIQCP is undecidable

► [Jeroslow 1973]: MIQCP:

$$\min_{\forall i \le m} c^{\top}x
\forall i \le m x^{\top}Q^{i}x + a_{i}^{\top}x + b_{i} \ge 0
x \in \mathbb{Z}^{n}$$
(†)

is undecidable

Proof:

- ightharpoonup Let U(r,x) = 0 be an UDE
- ▶ $P(r) \equiv \min\{u \mid (1-u)U(r,x) = 0 \land u \in \{0,1\} \land x \in \mathbb{Z}^n\}$ P(r) describes an undecidable problem
- Linearize every product $x_i x_j$ by y_{ij} and add $y_{ij} = x_i x_j$ until only degree l and 2 left
- ► Obtain MIQCP (†)

Some MIQCQPs are decidable

- ▶ If each Q_i is diagonal PSD, decidable [Witzgall 1963]
- ▶ If x are bounded in $[x^L, x^U] \cap \mathbb{Z}^n$, decidable can express $x \in \{\lceil x^L \rceil, \lceil x^L \rceil + 1, \dots, \lfloor x^U \rfloor\}$ by polynomial

$$\forall i \le m \quad \prod_{x_i^L \le i \le x_i^U} (x - i) = 0$$

 $turn\ into\ poly\ system\ in\ \mathbb{R}\ (in\ \mathsf{Reals},\ decidable)$

- ightharpoonup
 ightharpoonup Bounded (vars) easier than unbounded (for \mathbb{Z})
- ► [MIQP decision vers.] is decidable

$$\left. \begin{array}{ll} \mathbf{Q}\mathbf{F} \ \ \mathbf{decision} \ \ \mathbf{vers.} \ \ \mathbf{J} \ \ \mathbf{s} \ \ \mathbf{decidable} \\ x^\top Qx + c^\top x & \leq & \gamma \\ Ax & \geq & b \\ \forall j \in Z \ \ x_j & \in & \mathbb{Z} \end{array} \right\} \qquad \text{(in NP [Del Pia et al. 2014])}$$

NLP is undecidable

We can't represent unbounded subsets of \mathbb{N} by polynomials But we can if we allow some transcendental functions

$$x \in \mathbb{Z} \longleftrightarrow \sin(\pi x) = 0$$

► Constrained NLP is undecidable:

$$\min\{0 \mid U(a,x) = 0 \land \forall j \le n \ \sin(\pi x_j) = 0\}$$

Even with just one nonlinear constraint:

$$\min\{0, \mid (U(a,x))^2 + \sum_{j \le n} (\sin(\pi x_j))^2 = 0\}$$

► Unconstrained NLP is undecidable:

$$\min(U(a,x))^2 + \sum_{j \le n} (\sin(\pi x_j))^2$$

► Box-constrained NLP is undecidable (boundedness doesn't help):

$$\min\{(U(a, \tan x_1, \dots, \tan x_n))^2 + \sum_{i \le n} (\sin(\pi \tan x_i))^2 \mid -\frac{\pi}{2} \le x \le \frac{\pi}{2}\}$$

Some NLPs are decidable

- ► All polynomial NLPs are decidable by decidability of Reals
- ▶ QUADRATIC PROGRAMMING (QP) is decidable over Q

$$\min \quad x^{\top}Qx + c^{\top}x \\
Ax \ge b$$
(P)

- ► Bricks of the proof
 - ightharpoonup if Q is PSD, $\llbracket P \rrbracket \in \mathbb{Q}$
 - 1. remove inactive constr., active are eqn, use to replace vars
 - work out KKT conditions, they are linear in rational coefficients
 - 3. \Rightarrow solution is rational
 - ▶ ∃ polytime IPM for solving P [Renegar&Shub 1992]
 - ▶ unbounded case treated in [Vavasis 1990]
- ightharpoonup \Rightarrow [QP decision version] is in NP
 - \Rightarrow QP is decidable over $\mathbb Q$

Rationals

- ► [Robinson 1949]: RT (1st ord. theory over ℚ) is undecidable
- ▶ [Pheidas 2000]: *existential* theory of \mathbb{Q} (ERT) is open can we decide wether p(x) = 0 has solutions in \mathbb{Q} ? Boh!
- ► [Matyiasevich 1993]:
 - equivalence between DEH and ERT
 - ► DEH = [DE restricted to homogeneous polynomials]
 - but we don't know whether DEH is decidable

Note that Diophantus solved DE in positive rationals

Outline

Introduction MP language Solvers MP systematics Some applications Decidability Formal systems Gödel	Summary Random projections in LP Random projection theory Projecting feasibility Projecting optimality Solution retrieval Application to quantile regression Sparsity and ℓ_1 minimization Motivation
Turing Tarski Completeness and incompleteness MP solvability Efficiency and Hardness Some combinatorial problems in NP NP-hardness Complexity of solving MP formulations	Basis pursuit Theoretical results Application to noisy channel encoding Improvements Clustering in Natural Language Clustering on graphs Clustering in Euclidean spaces
Distance Geometry The universal isometric embedding Dimension reduction Distance geometry problem Distance geometry in MP DGP cones Barvinok's Naive Algorithm Isomap for the DGP	Distance resolution limit MP formulations Random projections again Kissing Number Problem Lower bounds Upper bounds from SDP? Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Worst-case algorithmic complexity

- ➤ Computational complexity theory: worst-case time/space taken by an algorithm to complete
- ightharpoonup Algorithm \mathcal{A}
 - e.g. to determine whether a graph G = (V, E) is connected or not
 - input: G; size of input: $\nu = |V| + |E|$
- ▶ How does the CPU time $\tau(A)$ used by A vary with ν ?
 - ▶ $\tau(A) = O(\nu^k)$ for fixed k: polytime
 - $ightharpoonup au(\mathcal{A}) = O(2^{\nu})$: exponential
- **▶** polytime ↔ efficient
- ightharpoonup exponential \leftrightarrow inefficient

The " $O(\cdot)$ " calculus

$$\forall f, g : \mathbb{N} \to \mathbb{N} \quad f <_O g \quad \leftrightarrow \quad \exists n \in \mathbb{N} \ \forall \nu > n \left(f(\nu) < g(\nu) \right)$$

$$\forall f: \mathbb{N} \to \mathbb{N} \quad O(f) \quad = \quad \{g: \mathbb{N} \to \mathbb{N} \mid \exists C \in \mathbb{N} \; (g <_O C \, f)\}$$

$$\forall f,g: \mathbb{N} \to \mathbb{N} \quad O(f) < O(g) \quad \leftrightarrow \quad f \in O(g) \ \land \ g \not\in O(f)$$

Polytime algorithms are "efficient"

- ► Why are polynomials special?
- ► Many different variants of Turing Machines (TM)
- ► Polytime is *invariant* to all definitions of TM e.g. TM with ∞ly many tapes: simulate with a single tape running along diagonals, similarly to dovetailing
- ► In practice, $O(\nu)$ - $O(\nu^3)$ is an acceptable range covering most practically useful efficient algorithms
- Many exponential algorithms are also usable in practice for limited sizes

Instances and problems

- ▶ An input to an algorithm A: instance
- ► Collection of all inputs for A: problem consistent with "set of sentences" from decidability
- ► Remarks
 - ► There are problems which no algorithm can solve
 - ► A problem can be solved by different algorithms
- ► Given prob. *P* find complexity of *best alg.* solving *P*

$$\min_{<_{O}} \{ \tau(\mathcal{A}) \mid \mathcal{A} \text{ solves } P \}$$

► We (generally) don't know how to search over all algs for *P* when we do, we find <u>lower bounds</u> for complexity (usually hard)

Complexity classes: P, NP

- ► Focus on decision problems
- ▶ If \exists polytime algorithm for P, then $P \in \mathbf{P}$
- ► If there is a polytime checkable *certificate* for all YES instances of P, then $P \in \mathbb{NP}$
- ightharpoonup No-one knows whether P = NP (we think not)
- NP includes problems for which we don't think a polytime algorithm exists

e.g. k-clique, subset-sum, knapsack, hamiltonian cycle, sat, ...

Equivalent definition of NP

- ▶ NP: problems solved by *nondeterministic* polytime TM
- ► (⇒) Assume ∃ polysized certificate for every YES instance. Nondeterministic polytime algorithm: concurrently explore all possible polysized certificates, call verification oracle for each, determine YES/NO.
- ► (⇐) Run nondeterministic polytime algorithm: trace will look like a tree (branchings at tests, loops unrolled) with polytime depth. If YES there will be a terminating polysized sequence of steps from start to termination, serving as a polysized certificate

Subsection 1

Some combinatorial problems in \overline{NP}

k-clique

- ▶ Instance: (G = (V, E), k)
- ightharpoonup Problem: determine whether G has a clique of size k

- ► 1-CLIQUE? YES (every graph is YES)
- ► 2-CLIQUE? YES (every non-empty graph is YES)
- ▶ 3-CLIQUE? YES (triangle $\{1,2,4\}$ is a certificate) certificate can be checked in $O(k^2) < O(n^2)$ (k fixed)
- ► 4-CLIQUE? NO
 no polytime certificate unless P = NP

Variables? Objective? Constraints?

Variables? Objective? Constraints?

▶ Decision variables: $\forall j \in V$ $x_j = \begin{cases} 1 & j \in k\text{-clique} \\ 0 & \text{otherwise} \end{cases}$

Variables? Objective? Constraints?

- **▶** Decision variables: $\forall j \in V$ $x_j = \begin{cases} 1 & j \in k\text{-clique} \\ 0 & \text{otherwise} \end{cases}$
- ▶ no objective (pure feasibility MP)

Variables? Objective? Constraints?

- **▶** Decision variables: $\forall j \in V$ $x_j = \begin{cases} 1 & j \in k\text{-clique} \\ 0 & \text{otherwise} \end{cases}$
- ▶ no objective (pure feasibility MP)
- ► Constraints: "if $x_i = x_j = 1$, then $\{i, j\} \in E$ "

Variables? Objective? Constraints?

- ▶ Decision variables: $\forall j \in V \quad x_j = \begin{cases} 1 & j \in k\text{-clique} \\ 0 & \text{otherwise} \end{cases}$
- ▶ no objective (pure feasibility MP)
- ► Constraints: "if $x_i = x_j = 1$, then $\{i, j\} \in E$ "

$$\forall i \neq j \in V \quad x_i x_j = \begin{cases} 1 & \{i, j\} \in E \\ 0 & \text{otherwise} \end{cases}$$

► Issue: nonlinear term in equality constr ⇒ nonconvex

Variables? Objective? Constraints?

- **▶** Decision variables: $\forall j \in V$ $x_j = \begin{cases} 1 & j \in k\text{-clique} \\ 0 & \text{otherwise} \end{cases}$
- ▶ no objective (pure feasibility MP)
- ► Constraints: "if $x_i = x_j = 1$, then $\{i, j\} \in E$ "

$$\forall i \neq j \in V \quad x_i x_j = \begin{cases} 1 & \{i, j\} \in E \\ 0 & \text{otherwise} \end{cases}$$

- ▶ **Issue:** nonlinear term in equality constr \Rightarrow nonconvex
- ▶ **Prop.**: C clique in $G \Leftrightarrow C$ stable in \bar{G}
- ▶ Use constraints for k-stable in \bar{G} instead: "if $\{i, j\} \in E(\bar{G})$, then $x_i = 1$ or $x_j = 1$ or neither but not both"

Variables? Objective? Constraints?

- **▶** Decision variables: $\forall j \in V$ $x_j = \begin{cases} 1 & j \in k\text{-clique} \\ 0 & \text{otherwise} \end{cases}$
- ▶ no objective (pure feasibility MP)
- ► Constraints: "if $x_i = x_j = 1$, then $\{i, j\} \in E$ "

$$\forall i \neq j \in V \quad x_i x_j = \begin{cases} 1 & \{i, j\} \in E \\ 0 & \text{otherwise} \end{cases}$$

- ► Issue: nonlinear term in equality constr \Rightarrow nonconvex
- ▶ **Prop.**: C clique in $G \Leftrightarrow C$ stable in \bar{G}
- ▶ Use constraints for k-stable in \bar{G} instead: "if $\{i, j\} \in E(\bar{G})$, then $x_i = 1$ or $x_j = 1$ or neither but not both"

$$\forall i \neq j \in V \text{ with } \{i, j\} \notin E \quad x_i + x_j \leq 1$$

► Any other constraint?

▶ Pure feasibility problem:

$$\forall \{i, j\} \notin E \quad x_i + x_j \leq 1$$

$$\sum_{i \in V} x_i = k$$

$$x \in \{0, 1\}^n$$

▶ Pure feasibility problem:

$$\forall \{i, j\} \notin E \quad x_i + x_j \leq 1$$

$$\sum_{i \in V} x_i = k$$

$$x \in \{0, 1\}^n$$

► Max Clique:

$$\max \sum_{i \in V} x_i
\forall \{i, j\} \notin E \quad x_i + x_j \leq 1
\quad x \in \{0, 1\}^n$$

AMPL code for Max Clique

File clique.mod

```
# clique.mod
param n integer, > 0;
set V := 1..n;
set E within {V,V};
var x{V} binary;
maximize clique_card: sum{j in V} x[j];
subject to notstable{i in V, j in V : i<j and (i,j) not in E}:
    x[i] + x[j] <= 1;

File clique.dat</pre>
```

```
# clique.dat
param n := 5;
set E := (1,2) (1,4) (2,4) (2,5) (3,5);
```

AMPL code for Max Clique

File clique.run:

```
# clique.run
model clique.mod;
data clique.dat;
option solver cplex;
solve;
printf "C =";
for {j in V : x[j] > 0} {
   printf " "d", j;
}
printf " \n";
```

Run with "ampl clique.run" on command line

```
CPLEX 12.8.0.0: optimal integer solution; objective 3
0 MIP simplex iterations
0 branch-and-bound nodes
C = 1 2 4
```

SUBSET-SUM

- ▶ Instance: list $a = (a_1, ..., a_n) \in \mathbb{N}^n$ and $b \in \mathbb{N}$
- ▶ Problem: is there $J \subseteq \{1, ..., n\}$ such that $\sum_{j \in J} a_j = b$?

- ▶ a = (1, 1, 1, 4, 5), b = 3: YES with $J = \{1, 2, 3\}$ all $b \in \{0, ..., 12\}$ yield YES instances
- ightharpoonup a = (3, 6, 9, 12), b = 20: NO

MP formulations for Subset-Sum

Variables? Objective? Constraints?

MP formulations for Subset-Sum

Variables? Objective? Constraints?

► Pure feasibility problem:

$$\left.\begin{array}{rcl}
\sum_{j \le n} a_j x_j & = & b \\
x & \in & \{0, 1\}^n
\end{array}\right\}$$

AMPL code for subset-sum

File subsetsum.mod

```
# subsetsum.mod
param n integer, > 0;
set N := 1..n;
param a{N} integer, >= 0;
param b integer, >= 0;
var x{N} binary;
subject to subsetsum: sum{j in N} a[j]*x[j] = b;
File subsetsum.dat
# subsetsum.dat
param n := 5;
param a :=
1 1
param b := 3;
```

Code your own subsetsum.run!

KNAPSACK

- ▶ Instance: $c, w \in \mathbb{N}^n, K \in \mathbb{N}$
- ▶ Problem: find $J \subseteq \{1, ..., n\}$ s.t. $c(J) \le K$ and w(J) is maximum

- c = (5, 6, 7), w = (3, 4, 5), K = 11
 - $ightharpoonup c(J) \le 11$ feasible for J in \emptyset , $\{j\}$, $\{1,2\}$
 - ▶ $w(\varnothing) = 0, w(\{1, 2\}) = 3 + 4 = 7, w(\{j\}) \le 5 \text{ for } j \le n$ ⇒ $J_{\text{max}} = \{1, 2\}$
- ightharpoonup K = 4: infeasible
- natively expressed as an optimization problem
- ▶ notation: $c(J) = \sum_{j \in J} c_j$ (similarly for w(J))

MP formulation for KNAPSACK

Variables? Objective? Constraints?

MP formulation for KNAPSACK

Variables? Objective? Constraints?

$$\max \sum_{\substack{j \le n \\ j \le n}} w_j x_j \\
\sum_{j \le n} c_j x_j \le K \\
x \in \{0, 1\}^n$$

AMPL code for knapsack

File knapsack.mod

```
# knapsack.mod
param n integer, > 0;
set N := 1..n;
param c{N} integer;
param w{N} integer;
param K integer, >= 0;
var x{N} binary;
maximize value: sum{j in N} w[j]*x[j];
subject to knapsack: sum{j in N} c[j]*x[j] <= K;</pre>
File knapsack.dat
# knapsack.dat
param n := 3;
param : c w :=
1 5 3
2 6 4
3 75:
param K := 11;
```

Code your own knapsack.run!

HAMILTONIAN CYCLE

- ▶ Instance: G = (V, E)
- ▶ Problem: does G have a Hamiltonian cycle? cycle covering every $v \in V$ exactly once

NO

YES (cert. $1 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 1$)

MP formulation for Hamiltonian Cycle

Variables? Objective? Constraints?

MP formulation for Hamiltonian Cycle

Variables? Objective? Constraints?

$$\forall i \in V \qquad \sum_{\substack{j \in V \\ (i,j) \in F}} x_{ij} = 1 \tag{2}$$

$$\forall j \in V \qquad \sum_{\substack{i \in V \\ \{i,j\} \in E}} x_{ij} = 1 \tag{3}$$

$$\forall \varnothing \subsetneq S \subsetneq V \quad \sum_{\substack{i \in S, j \notin S \\ \{i,j\} \in E}} x_{ij} \geq 1 \tag{4}$$

WARNING: Eq. (4) is a second order statement! quantified over sets yields exponentially large set of constraints

AMPL code for Hamiltonian Cycle

File hamiltonian.mod

```
# hamiltonian mod
param n integer, > 0;
set V default 1..n. ordered:
set E within {V,V};
set A := E union {i in V, j in V : (j,i) in E};
# index set for nontrivial subsets of V
set PV := 1..2**n-2:
# nontrivial subsets of V
set S\{k \text{ in PV}\} := \{i \text{ in V}: (k \text{ div } 2**(\text{ord}(i)-1)) \text{ mod } 2 = 1\};
var x{A} binary;
subject to successor{i in V} :
  sum{j in V : (i,j) in A} x[i,j] = 1;
subject to predecessor{j in V} :
  sum{i in V : (i,j) in A} x[i,j] = 1;
# breaking non-hamiltonian cycles
subject to breakcycles{k in PV}:
  sum\{i \text{ in } S[k], j \text{ in } V \text{ diff } S[k]: (i,j) \text{ in } A\} x[i,j] >= 1;
```

Code your own .dat and .run files!

Satisfiability (sat)

► <u>Instance</u>: boolean logic sentence f in CNF

$$\bigwedge_{i \le m} \bigvee_{j \in C_i} \ell_j$$

where
$$\ell_j \in \{x_j, \bar{x}_j\}$$
 for $j \leq n$

- ▶ Problem: is there $\phi: x \to \{0,1\}^n$ s.t. $\phi(f) = 1$?
- $f \equiv (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2)$ $x_1 = x_2 = 1, x_3 = 0 \text{ is a YES certificate}$
- $f \equiv (x_1 \vee x_2) \wedge (\bar{x}_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee x_2) \wedge (x_1 \vee \bar{x}_2)$

ϕ	x = (1, 1)	x = (0,0)	x = (1,0)	x = (0, 1)
false	C_2	C_1	C_3	C_4

Variables? Objective? Constraints?

Variables? Objective? Constraints? Algorithm $\hat{\rho}$ to generate MP from $\bigwedge_{i \leq m} \bigvee_{j \in C_i} \ell_j$:

Variables? Objective? Constraints?

Algorithm $\hat{\rho}$ to generate MP from $\bigwedge_{i \leq m} \bigvee_{j \in C_i} \ell_j$:

▶ Literals $\ell_j \in \{x_j, \bar{x}_j\}$: decision variables in $\{0, 1\}$

$$\hat{\rho}(\ell_j) \longmapsto \begin{cases} x_j & \text{if } \ell_j \equiv x_j \\ 1 - x_j & \text{if } \ell_j \equiv \bar{x}_j \end{cases}$$

▶ Clauses $\Gamma_i \equiv \bigvee_{j \in C_i} \ell_j$: constraints

$$\hat{\rho}(\Gamma_i) \quad \longmapsto \quad \sum_{j \in C_i} \hat{\rho}(\ell_j) \ge 1$$

► Conjunction: feasibility-only ILP

$$\hat{\rho}\left(\bigwedge_{i}\Gamma_{i}\right) \longmapsto \forall i \leq m \quad \hat{\rho}(\Gamma_{i})$$

- ▶ **Prop.:** sat instance q is YES iff ILP instance $\hat{\rho}(q)$ is YES
- ▶ **Proof:** Let $L = (\ell_1, \ldots, \ell_n)$ be a solution of SAT. Then $x^* = (x_1^*, \ldots, x_n^*)$ where $x_j^* = 1$ iff ℓ_j = true and $x_j^* = 0$ iff ℓ_j = false is a feasible solution of ILP (satisfies each clause constraint by definition of $\hat{\rho}$).

Conversely: if x solves ILP, then form solution L of sat by mapping $x_j^* = 1$ to true and $x_j^* = 0$ to false, result follows again by defn of $\hat{\rho}$.

AMPL code for SAT?

Without a numeric encoding of SAT instances, we can only write AMPL code for single instances (i.e. "we are $\hat{\rho}$ ")

```
Example: file sat.run (flat formulation) for instance (x_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_2)
```

```
# sat.run
var x{1..3} binary;
subject to con1: x[1] + (1-x[2]) + x[3] >= 1;
subject to con2: (1-x[1])+ x[2] >= 1;
option solver cplex;
solve;
display x, solve_result;
```

Subsection 2

NP-hardness

NP-Hardness

- ▶ Do hard problems exist? Depends on $P \neq NP$
- ► Next best thing: define hardest problem in NP
- ▶ Prob. P is $\boxed{\mathbf{NP}\text{-}hard}$ if $\forall Q \in \mathbf{NP} \exists \mathbf{polytime} \ \text{alg.} \ \rho_Q$:
 - 1. $q \in Q \mapsto \rho_Q(q) \in P$ with q YES iff $\rho_Q(q)$ YES
 - 2. run best alg. for P on $\rho_Q(q),$ get answer $\alpha \in \{\mathsf{YES}, \mathsf{NO}\}$
 - 3. return α as answer for q
 - ho_Q is called a *polynomial reduction* from Q to P

P hardest since othw, using ρ_Q , Q would be "easier than itself"!

- ► If *P* is in NP and is NP-hard, it is called NP-complete
- ► Reduction idea: "model" Q using "language" of P
- ► Every problem in NP reduces to SAT [Cook 1971]

Cook's theorem

Theorem 1: If a set S of strings is accepted by some nondeterministic Turing machine within polynomial time, then S is P-reducible to {DNF tautologies}.

$Boolean\ decision\ variables\ store\ TM\ dynamics$

Proposition symbols:

 $S_{s,t}$ for lss,tsT is true iff at time t square number s is scanned by the tape head.

Definition of TM dynamics in CNF

B_t asserts that at time t one and only one square is scanned:

$$B_t = (S_{1,t} \lor S_{2,t} \lor \dots \lor S_{T,t}) \xi$$

$$[\begin{smallmatrix} \xi & (\neg S_{1,t} & \vee \neg S_{j,t})]\\ 1 \leq i < j \leq T\end{smallmatrix}$$

$$G_{i,j}^{t} = \begin{cases} T & \text{if } v \cap S_{s,t} & \text{if } v \cap P_{s,t}^{j} & \text{if } v \in Q_{t+1}^{k} \end{cases}$$

Description of a dynamical system using a declarative programming language (SAT) — what MP is all about!

The MP version of Cook's theorem

Thm.

Any problem in **NP** can be polynomially reduced to a MILP

Proof

(Sketch) Model the dynamics of a nondeterministic polytime TM using binary variables and constraints involving sums and products; and then linearize the products of binary variables by means of Fortet's inequalities

Cook's theorem: sets and params

- ► Reduce nondeterministic polytime TM M to MILP
- ► Tuple $(Q, \Sigma, s, F, \delta)$: states, alphabet, initial, final, transition
- ► Transition relation δ : $(Q \setminus F \times \Sigma) \times (Q \times \Sigma \times \{-1, 1\})$ δ : state ℓ , symbol $j \mapsto$ state ℓ' , symbol j', direction d
- ▶ *M* polytime: terminates in p(n) n size of input, $p(\cdot)$ polynomial
- ► Index sets: states Q, characters Σ , tape cells I, steps K|K| = O(p(n)), |I| = 2|K|
- Parameters: initial tape string $\tau_i = \text{symbol } j \in \Sigma \text{ in cell } i$

Cook's theorem: decision vars

- $\forall i \in I, j \in \Sigma, k \in K$ $t_{ijk} = 1 \text{ iff tape cell } i \text{ contains symbol } j \text{ at step } k$
- ▶ $\forall i \in I, k \in K$ $h_{ik} = 1$ iff <u>head</u> is at tape cell i at step k
- $\forall \ell \in Q, k \in K$ $q_{\ell k} = 1 \text{ iff } M \text{ is in } \underline{state} \ \ell \text{ at step } k$

Cook's theorem: constraints (informal)

1. Initialization:

- 1.1 initial string τ on tape at step k=0
- 1.2 M in initial state s at step k = 0
- 1.3 head initial position on cell i = 0 at k = 0

2. Execution:

- **2.1** $\forall i, k$: cell *i* has exactly one symbol *j* at step *k*
- 2.2 $\forall i, k$: if cell i changes symbol between step k and k+1, head must be on cell i at step k
- 2.3 $\forall k$: *M* is in exactly one state
- 2.4 $\forall k, i, j \in \Sigma$: cell i and symbol j in state k lead to possible cells, symbol and states as given by δ

3. Termination:

3.1 M reaches termination at some step $k \leq p(n)$

Cook's theorem: constraints

1. Initialization:

- 1.1 $\forall i \quad t_{i,\tau_i,0} = 1$ 1.2 $q_{s,0} = 1$ 1.3 $h_{0,0} = 1$
- 2. Execution:

2.1
$$\forall i, k$$
 $\sum_{j} t_{ijk} = 1$
2.2 $\forall i, j \neq j', k < p(n)$ $t_{ijk} t_{i,j',k+1} = h_{ik}$
2.3 $\forall k$ $\sum_{i} h_{ik} = 1$
2.4 $\forall i, \ell, j, k$ $|\delta(\ell, j)| h_{ik} q_{\ell k} t_{ijk} = \sum_{((\ell, j), (\ell', j', d)) \in \delta} h_{i+d,k+1} q_{\ell',k+1} t_{i+d,j',k+1}$

3. Termination:

$$3.1 \sum_{k, f \in F} q_{fk} = 1$$

Cook's theorem: conclusion

- ► MP in previous slide MINLP not MILP
- For $x, y \in \{0, 1\}$ and $z \in [0, 1]$ $z = xy \Leftrightarrow z \le x \land z \le y \land z \ge x + y - 1$

- ► MILP is feasibility only
- ► MILP has polynomial size
- $ightharpoonup \Rightarrow MILP is NP-hard$

Reduction graph

After Cook's theorem

To prove NP-hardness of a new problem P, pick a known NP-hard problem Q that "looks similar enough" to P and find a polynomial reduction ρ_Q from Q to P [Karp 1972]

Why it works: suppose P easier than Q, solve Q by calling $\mathrm{Alg}_P \circ \rho_Q$, conclude Q as easy as P, contradiction

Example of polynomial reduction

- ► STABLE: given G = (V, E) and $k \in \mathbb{N}$, does it contain a stable set of size k?
- ▶ We know *k*-clique is NP-complete, reduce from it
 - Given instance (G, k) of CLIQUE consider the *complement* graph (computable in polytime)

$$\bar{G} = (V, \bar{E} = \{\{i,j\} \mid i,j \in V \land \{i,j\} \not\in E\})$$

- **Prop.:** G has a clique of size k iff \bar{G} has a stable set of size k
- $ho(G)=ar{G}$ is a polynomial reduction from CLIQUE to STABLE
- ightharpoonup \Rightarrow stable is \mathbb{NP} -hard
- ► STABLE is also in NP $U \subseteq V$ is a stable set iff $E(G[U]) = \emptyset$ (polytime verification)
- ▶ \Rightarrow STABLE is \mathbb{NP} -complete

Subsection 3

Complexity of solving MP formulations

LP is in P

- ► Khachian's algorithm (Ellipsoid method)
- ► Karmarkar's algorithm
- ▶ IPM with crossover IPM: penalize $x \ge 0$ by $-\beta \log(x)$, polysized sequence of subproblems crossover: polytime number of simplex pivots get to opt
- ► No known pivot rule makes simplex alg. polytime! greedy pivot has exponential complexity on Klee-Minty cube

(Recall) MILP is NP-hard

► SAT NP-hard by Cook's theorem, reduce from SAT

$$\bigwedge_{i \leq m} \bigvee_{j \in C_i} \ell_j$$

where ℓ_j is either x_j or $\bar{x}_j \equiv \neg x_j$

▶ Polynomial reduction $\hat{\rho}$

► E.g. $\hat{\rho}$ maps $(x_1 \vee x_2) \wedge (\bar{x}_2 \vee x_3)$ to

$$\min\{0 \mid x_1 + x_2 \ge 1 \land x_3 - x_2 \ge 0 \land x \in \{0, 1\}^3\}$$

► SAT is YES iff MILP is feasible

Complexity of Quadratic Programming (QP)

$$\min x^{\top}Qx + c^{\top}x
Ax \ge b$$

- Quadratic obj, linear consts, continuous vars
- Many applications (e.g. portfolio selection)
- ightharpoonup If Q has at least one negative eigenvalue, NP-hard
- ▶ Decision problem: "is the min. obj. fun. value ≤ 0 ?"
- ▶ If Q PSD then objective is convex, problem is in P KKT conditions become linear system, data in $\mathbb{Q} \Rightarrow soln$ in \mathbb{Q}

QP is NP-hard

- **b** By reduction from SAT, let σ be an instance of SAT
- $\hat{\rho}(\sigma,x) \geq 1$: linear constraints of SAT \rightarrow MILP reduction
- ► Consider QP subclass

$$\min f(x) = \sum_{j \le n} x_j (1 - x_j)
\hat{\rho}(\sigma, x) \ge 1
0 \le x \le 1$$
(†)

- ► Claim: σ is YES iff val(\dagger) = opt. obj. fun. val. of (\dagger) = 0
- ► Proof:
 - ▶ assume σ YES with soln. x^* , then $x^* \in \{0,1\}^n$, hence $f(x^*) = 0$, since $f(x) \ge 0$ for all x, val $(\dagger) = 0$
 - ▶ assume σ NO, suppose val(\dagger) = 0, then (\dagger) feasible with soln. x', since f(x') = 0 then $x' \in \{0, 1\}$, feasible in SAT hence σ is YES, contradiction

Box-constrained QP is NP-hard

$$\min_{x \in [x^L, x^U]} \quad x^\top Q x \quad + \quad c^\top x \quad \bigg\}$$

► Add surplus vars v to sat \rightarrow MILP constraints:

$$\begin{split} \hat{\rho}(\sigma,x) - 1 - v &= 0 \\ \textbf{(denote by } \forall i \leq m \ (a_i^\top x - b_i - v_i = 0) \textbf{)} \end{split}$$

► Consider special QP subclass

$$\min \left\{ \begin{array}{ll} \sum_{j \le n} x_j (1 - x_j) + \sum_{i \le m} (a_i^\top x - b_i - v_i)^2 \\ 0 \le x \le 1, v \ge 0 \end{array} \right\}$$

- ► Issue: v not bounded above
- Reduce from 3SAT, get ≤ 3 literals per clause \Rightarrow can consider $0 \leq v \leq 2$

cQKP is NP-hard

lacktriangle continuous Quadratic Knapsack Problem (cQKP)

$$\min f(x) = x^{\top} Q x + c^{\top} x
\sum_{j \le n} a_j x_j = \gamma
x \in [0,1]^n,$$

► Reduction from SUBSET-SUM

```
given list a\in\mathbb{Q}^n and \gamma, is there J\subseteq\{1,\ldots,n\} s.t. \sum\limits_{j\in J}a_j=\gamma? reduce to special QP subclass with f(x)=\sum\limits_j x_j(1-x_j)
```

- $ightharpoonup \sigma$ is a YES instance of SUBSET-SUM
 - let $x_i^* = 1$ iff $j \in J, x_j^* = 0$ otherwise
 - Feasible by construction
 - f is non-negative on $[0,1]^n$ and $f(x^*)=0$: optimum
- $ightharpoonup \sigma$ is a NO instance of SUBSET-SUM
 - suppose $opt(cQKP) = x^* with f(x^*) = 0$
 - then $x^* \in \{0,1\}^n$ because $f(x^*) = 0$
 - Feasibility of x^* → $J = \text{supp}(x^*)$ solves σ , contradiction $\Rightarrow f(x^*) > 0$

$$\begin{array}{c} \mathbf{QP} \ \mathbf{on} \ \mathbf{a} \ \mathbf{simplex} \ \mathbf{is} \ \mathbf{NP-hard} \\ \min \ \ f(x) = x^{\top}Qx \ + \ c^{\top}x \\ \sum\limits_{j \leq n} x_j \ = \ 1 \\ \forall j \leq n \ \ x_j \ \geq \ 0 \end{array} \right\}$$

Reduce max clique to QP subclass $f(x) = -\sum x_i x_j$ Motzkin-Straus formulation (MSF):

$$\max\{\sum_{\{i,j\}\in E} x_i x_j \mid \sum_{j\in V} x_j = 1 \land x \ge 0\}$$

► Theorem | Motzkin& Straus 1964|

Let
$$C$$
 be the maximum clique of the instance $G=(V,E)$ of max clique $\exists x^* \in \operatorname{opt}(\operatorname{MSF})$ with $f^*=f(x^*)=\frac{1}{2}-\frac{1}{2\omega(G)}$
$$\forall j \in V \qquad x_j^*=\left\{ \begin{array}{ll} \frac{1}{\omega(G)} & \text{if } j \in C \\ 0 & \text{otherwise} \end{array} \right.$$

 $\blacktriangleright \ \omega(G)$: size of max clique in G

Proof of the Motzkin-Straus theorem

$$x^* = \operatorname{opt}(\max_{x \in [0,1]^n \atop \sum_j x_j = 1} \sum_{ij \in E} x_i x_j) \text{ s.t. } |C = \{j \in V \mid x_j^* > 0\}| \text{ smallest (\ddagger)}$$

1. C is a clique

- Suppose $1,2 \in C$ but $\{1,2\} \notin E$, then $x_1^*, x_2^* > 0$, can perturb by $\epsilon \in [-x_1^*, x_2^*]$, get $x^\epsilon = (x_1^* + \epsilon, x_2^* \epsilon, \ldots)$, feasible w.r.t. simplex and bounds
- ▶ $\{1,2\} \not\in E \Rightarrow x_1x_2$ does not appear in $f(x) \Rightarrow f(x^{\epsilon})$ depends linearly on ϵ ; by optimality of x^* , f achieves max for $\epsilon = 0$, in interior of its range $\Rightarrow f(\epsilon)$ constant
- setting $\epsilon = -x_1^*$ or $= x_2^*$ yields global optima with more zero components than x^* , against assumption (‡), hence $\{1,2\} \in E[C]$, by relabeling C is a clique

Proof of the Motzkin-Straus theorem

$$x^* = \mathsf{opt}(\max_{x \in [0,1]^n \atop \sum_j x_j = 1} \sum_{ij \in E} x_i x_j) \text{ s.t. } |C = \{j \in V \mid x_j^* > 0\}| \text{ smallest (\ddagger)}$$

2. $|C| = \omega(G)$

square simplex constraint $\sum_{i} x_{i} = 1$, get

$$\sum_{j \in V} x_j^2 + 2 \sum_{i < j \in V} x_i x_j = 1$$

by construction $x_j^* = 0$ for $j \notin C \Rightarrow$

$$\psi(x^*) \equiv \sum_{j \in C} (x_j^*)^2 + 2\sum_{i < j \in C} x_j^* x_j^* = \sum_{j \in C} (x_j^*)^2 + 2f(x^*) = 1$$

- $\psi(x)=1$ for all feasible x, so f(x) achieves maximum when $\sum_{j\in C}(x_j^*)^2$ is minimum, i.e. $x_j^*=\frac{1}{|C|}$ for all $j\in C$
- again by simplex constraint

$$2f(x^*) = 1 - \sum_{j \in C} (x_j^*)^2 = 1 - |C| \frac{1}{|C|^2} \le 1 - \frac{1}{\omega(G)}$$

so $f(x^*)$ attains max $\frac{1}{2} - \frac{1}{2\omega(G)}$ when $|C| = \omega(G) \Rightarrow \forall j \in C \ x_j = \frac{1}{\omega(G)}$

Copositive programming

- STQP: $\min x^{\top}Qx : \sum_{j} x_{j} = 1 \land x \ge 0$ NP-hard by Motzkin-Straus
- ► Linearize: $X = xx^{\top}$ replace $x_i x_j$ by X_{ij} and add constraints $X_{ij} = x_i x_j$
- ▶ Define $A \bullet B = \operatorname{tr}(A^{\top}B) = \sum_{i,j} A_{ij} B_{ij}$ write StQP (linearized) objective as min $Q \bullet X$

- ► STQP $\equiv \min Q \bullet X : \mathbf{1} \bullet X = 1 \land X \in \overline{C}$ linear obj. \Rightarrow optima attained at extrema of feas. set \Rightarrow can replace C by its convex hull \overline{C}

 \bar{C} is a completely positive cone

- **Dual** ≡ max $y : Q y\mathbf{1} \in \bar{C}^* = \{A \mid \forall x \ge 0 \ (x^\top Ax \ge 0)\}$ \bar{C}^* is a copositive cone
- ightharpoonup \Rightarrow Pair of NP-hard cNLPs!

Two exercises

- ▶ Prove that quartic polynomial optimization is NP-hard; reduce from one of the combinatorial problems given during the course, and make sure that at least one monomial of degree four appears with non-zero coefficient in the MP formulation.
- ► As above, but for *cubic polynomial optimization*.

Portfolio optimization

You, a private investment banker, are seeing a customer. She tells you "I have 3,450,000\$ I don't need in the next three years. Invest them in low-risk assets so I get at least 2.5% return per year."

Model the problem of determining the required portfolio. Missing data are part of the fun (and of real life).

[Hint: what are the decision variables, objective, constraints? What data are missing?]

Outline

Summary Distance Geometry The universal isometric embedding Dimension reduction Distance geometry problem Distance geometry in MP DGP cones Barvinok's Naive Algorithm Isomap for the DGP

A gem in Distance Geometry

- Heron lived around year 0
- Hang out at Alexandria's library

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

- ightharpoonup A =area of triangle

Useful to measure areas of agricultural land

Heron's theorem: Proof [M. Edwards, high school student, 2007]

B. $s = \frac{1}{2}(a+b+c) = x+y+z$

A.
$$2\alpha + 2\beta + 2\gamma = 2\pi \Rightarrow \alpha + \beta + \gamma = \pi$$

$$r + ix = ue^{i\alpha}$$

$$r + iy = ve^{i\beta}$$

$$r + iz = we^{i\gamma}$$

$$\Rightarrow (r+ix)(r+iy)(r+iz) = (uvw)e^{i(\alpha+\beta+\gamma)} = 0$$

$$\Rightarrow (r+ix)(r+iy)(r+iz) = (uvw)e^{i(x+y+r)} = uvw e^{i\pi} = -uvw \in \mathbb{R}$$

$$\Rightarrow \operatorname{Im}((r+ix)(r+iy)(r+iz)) = 0$$

$$\Rightarrow r^2(x+y+z) = xyz \Rightarrow r = \sqrt{\frac{xyz}{x+y+z}}$$

$$egin{array}{lll} s-a & = & x+y+z-y-z=x \\ s-b & = & x+y+z-x-z=y \\ s-c & = & x+y+z-x-y=z \end{array}$$

$$A = \frac{1}{2}(ra + rb + rc) = r\frac{a+b+c}{2} = rs = \sqrt{s(s-a)(s-b)(s-c)}$$

Subsection 1

The universal isometric embedding

Representing metric spaces in \mathbb{R}^n

- ► Given metric space (X, d) with dist. matrix $D = (d_{ij})$, embed X in a Euclidean space with same dist. matrix
- ► Consider *i*-th row $\delta_i = (d_{i1}, \ldots, d_{in})$ of D
- ▶ Embed $i \in X$ by vector $\delta_i \in \mathbb{R}^n$
- ▶ **Define** $f(X) = \{\delta_1, \dots, \delta_n\}, f(d(i, j)) = ||f(i) f(j)||_{\infty}$
- ▶ Thm.: $(f(X), \ell_{\infty})$ is a metric space with distance matrix D
- ▶ Practical issue: *embedding* is high-dimensional (\mathbb{R}^n)

[Kuratowski 1935]

Proof

- ► Consider $i, j \in X$ with distance $d(i, j) = d_{ij}$
- ► Then

$$f(d(i,j)) = \|\delta_i - \delta_j\|_{\infty} = \max_{k \le n} |d_{ik} - d_{jk}| \le \max_{k \le n} |d_{ij}| = d_{ij}$$

ineq. \leq above from triangular inequalities in metric space:

$$d_{ik} \leq d_{ij} + d_{jk} \quad \land \quad d_{jk} \leq d_{ij} + d_{ik}$$

$$\Rightarrow \quad d_{ik} - d_{jk} \leq d_{ij} \quad \land \quad d_{jk} - d_{ik} \leq d_{ij}$$

$$\Rightarrow \quad |d_{ik} - d_{jk}| \leq d_{ij}$$

If valid $\forall i, j$ then valid for \max

 $ightharpoonup \max |d_{ik} - d_{jk}| \text{ over } k \leq n \text{ is achieved when}$

$$k \in \{i, j\} \Rightarrow f(d(i, j)) = d_{ij}$$

Subsection 2

Dimension reduction

Schoenberg's theorem

- ► [I. Schoenberg, Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espace de Hilbert", Ann. Math., 1935]
- ▶ Question: Given $n \times n$ symmetric matrix D, what are necessary and sufficient conditions s.t. D is a EDM¹ corresponding to n points $x_1, \ldots, x_n \in \mathbb{R}^K$ with K minimum?
- Main theorem: Thm.

$$D=(d_{ij})$$
 is an EDM iff $\frac{1}{2}(d_{1i}^2+d_{1j}^2-d_{ij}^2\mid 2\leq i,j\leq n)$ is PSD of rank K

► Gave rise to one of the most important results in data science: Classic Multidimensional Scaling

¹Euclidean Distance Matrix

Gram in function of EDM

- $ightharpoonup x = (x_1, \dots, x_n) \subseteq \mathbb{R}^K$, written as $n \times K$ matrix
- ▶ matrix $G = xx^{\top} = (x_i \cdot x_j)$ is the Gram matrix of xLemma: $G \succeq 0$ and each $M \succeq 0$ is a Gram matrix of some x
- ► A variant of Schoenberg's theorem

 Relation between EDMs and Gram matrices:

$$G = -\frac{1}{2}JD^2J \qquad (\S)$$

• where $D^2 = (d_{ij}^2)$ and

$$J = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} = \begin{pmatrix} 1 - \frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\ -\frac{1}{n} & 1 - \frac{1}{n} & \cdots & -\frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & \cdots & 1 - \frac{1}{n} \end{pmatrix}$$

Multidimensional scaling (MDS)

- ► Often get approximate EDMs \tilde{D} from raw data (dissimilarities, discrepancies, differences)
- $lackbox{} ilde{G} = -rac{1}{2}J ilde{D}^2J$ is an approximate Gram matrix
- ► Approximate Gram \Rightarrow spectral decomposition $P\tilde{\Lambda}P^{\top}$ has $\tilde{\Lambda} \not\geq 0$
- Let Λ closest PSD diagonal matrix to $\tilde{\Lambda}$: zero the negative components of $\tilde{\Lambda}$
- $ightharpoonup x = P\sqrt{\Lambda}$ is an "approximate realization" of \tilde{D}

Classic MDS: Main result

- 1. Prove lemma: matrix is Gram iff it is PSD
- 2. Prove Schoenberg's theorem: $G = -\frac{1}{2}JD^2J$

Proof of lemma

- ▶ $Gram \subseteq PSD$
 - ightharpoonup x is an $n \times K$ real matrix
 - $ightharpoonup G = xx^{\top}$ its Gram matrix
 - ▶ For each $y \in \mathbb{R}^n$ we have

$$yGy^{\top} = y(xx^{\top})y^{\top} = (yx)(x^{\top}y^{\top}) = (yx)(yx)^{\top} = ||yx||_2^2 \ge 0$$

- ightharpoonup \Rightarrow $G \succeq 0$
- ▶ $PSD \subseteq Gram$
 - ightharpoonup Let $G \succeq 0$ be $n \times n$
 - ► Spectral decomposition: $G = P\Lambda P^{\top}$ (P orthogonal, $\Lambda \geq 0$ diagonal)

 - $G = P\Lambda P^{\top} = (P\sqrt{\Lambda})(\sqrt{\Lambda}^{\top}P^{\top}) = (P\sqrt{\Lambda})(P\sqrt{\Lambda})^{\top}$
 - Let $x = P\sqrt{\Lambda}$, then G is the Gram matrix of x

Schoenberg's theorem proof (1/2)

- ► Assume zero centroid WLOG (can translate *x* as needed)
- **Expand:** $d_{ij}^2 = ||x_i x_j||_2^2 = (x_i x_j)(x_i x_j) = x_i x_i + x_j x_j 2x_i x_j$ (*)
- Aim at "inverting" (*) to express $x_i x_j$ in function of d_{ij}^2
- Sum (*) over i: $\sum_i d_{ij}^2 = \sum_i x_i x_i + n x_j x_j 2 x_j \sum_i x_i$ o by zero centroid
- ightharpoonup Similarly for j and divide by n, get:

$$\frac{1}{n}\sum_{i\leq n}d_{ij}^2 = \frac{1}{n}\sum_{i\leq n}x_ix_i + x_jx_j \quad (\dagger)$$

$$\frac{1}{n}\sum_{j\leq n}d_{ij}^2 = x_ix_i + \frac{1}{n}\sum_{j\leq n}x_jx_j \quad (\ddagger)$$

▶ Sum (†) over j, get:

$$\frac{1}{n} \sum_{i,j} d_{ij}^2 = n \frac{1}{n} \sum_{i} x_i x_i + \sum_{j} x_j x_j = 2 \sum_{i} x_i x_i$$

ightharpoonup Divide by n, get:

$$\frac{1}{n^2} \sum_{i,j} d_{ij}^2 = \frac{2}{n} \sum_i x_i x_i \quad (**)$$

Schoenberg's theorem proof (2/2)

► Rearrange (*), (†), (‡) as follows:

$$2x_i x_j = x_i x_i + x_j x_j - d_{ij}^2 (5)$$

$$x_i x_i = \frac{1}{n} \sum_j d_{ij}^2 - \frac{1}{n} \sum_j x_j x_j$$
 (6)

$$x_{j}x_{j} = \frac{1}{n}\sum_{i}d_{ij}^{2} - \frac{1}{n}\sum_{i}x_{i}x_{i}$$
 (7)

▶ Replace LHS of Eq. (6)-(7) in RHS of Eq. (5), get

$$2x_i x_j = \frac{1}{n} \sum_k d_{ik}^2 + \frac{1}{n} \sum_k d_{kj}^2 - d_{ij}^2 - \frac{2}{n} \sum_k x_k x_k$$

▶ By (**) replace $\frac{2}{n}\sum_{i}x_{i}x_{i}$ with $\frac{1}{n^{2}}\sum_{i,j}d_{ij}^{2}$, get

$$2x_ix_j = \frac{1}{n}\sum_k (d_{ik}^2 + d_{kj}^2) - d_{ij}^2 - \frac{1}{n^2}\sum_{k,k} d_{hk}^2 \quad (\S)$$

which expresses $x_i x_j$ in function of D

Principal Component Analysis (PCA)

- Given an approximate distance matrix D
- $ightharpoonup \operatorname{find} x = \operatorname{MDS}(D)$
- ► However, you want $x = P\sqrt{\Lambda}$ in K dimensions $\frac{but}{\Lambda} \operatorname{rank}(\Lambda) > K$
- ► Only keep K largest components of Λ zero the rest
- ► Get realization in desired space

Example 1/3

Mathematical genealogy skeleton

Example 2/3

A partial view

	Euler	Thibaut	Pfaff	Lagrange	Laplace	Möbius	Gudermann	Dirksen	Gauss
Kästner	10	1	1	9	8	2	2	2	2
Euler		11	9	1	3	10	12	12	8
Thibaut			2	10	10	3	1	1	3
Pfaff				8	8	1	3	3	1
Lagrange					2	9	11	11	7
Laplace						9	11	11	7
Möbius							4	4	2
Gudermann								2	4
Dirksen									4

Example 3/3

Subsection 3

Distance geometry problem

The Distance Geometry Problem (DGP)

Given
$$K \in \mathbb{N}$$
 and $G = (V, E, d)$ with $d : E \to \mathbb{R}_+$, find $x : V \to \mathbb{R}^K$ s.t.

$$\forall \{i, j\} \in E \quad ||x_i - x_j||_2^2 = d_{ij}^2$$

Given a weighted graph , draw it so edges are drawn as

segments with lengths = weights

Some applications

- ightharpoonup clock synchronization (K=1)
- ightharpoonup sensor network localization (K=2)
- ightharpoonup molecular structure from distance data (K=3)
- ightharpoonup autonomous underwater vehicles (K = 3)
- ▶ distance matrix completion (whatever *K*)
- finding graph embeddings

Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial measurements of their time differences

- ightharpoonup K = 1
- ► V: timestamps
- $ightharpoonup \{u,v\} \in E ext{ if known time difference between } u,v$
- ▶ d: values of the time differences

Used in time synchronization of distributed networks

Clock synchronization

Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to locate a set of geographically distributed objects using measurements of the distances between some object pairs

- ightharpoonup K=2
- ► V: (mobile) sensors
- $ightharpoonup \{u,v\} \in E ext{ iff distance between } u,v ext{ is measured}$
- ► d: distance values

Used whenever GPS not viable (e.g. underwater) $d_{uv} \otimes \text{battery consumption in P2P communication betw. } u, v$

Sensor network localization

Molecular structure from distance data

From [Liberti et al., SIAM Rev., 2014]

- K = 3
- ► V: atoms
- \blacktriangleright $\{u,v\} \in E$ iff distance between u,v is known
- ▶ d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid) Covalent bond lengths and angles known precisely Distances ≤ 5.5 measured approximately by NMR

Graph embeddings

- Relational knowledge best represented by graphs
- ▶ We have fast algorithms for clustering vectors
- ► Task: represent a graph in \mathbb{R}^n
- "Graph embeddings" and "distance geometry": almost synonyms
- ► Used in Natural Language Processing (NLP) obtain "word vectors" & "concept vectors"
- ➤ Project: create a graph-of-words from a sentence, enrich it with semantic distances, then use MP formulations for DG to embed the graph in a low-dimensional space

Complexity

- ▶ DGP₁ with $d: E \to \mathbb{Q}_+$ is in NP
 - ▶ if instance YES \exists realization $x \in \mathbb{R}^{n \times 1}$
 - ▶ if some component $x_i \notin \mathbb{Q}$ translate x so $x_i \in \mathbb{Q}$
 - ightharpoonup consider some other x_j
 - let $\ell = |\operatorname{sh. path} p : i \to j| = \sum_{\{u,v\} \in p} d_{uv} \in \mathbb{Q}$

 - ightharpoonup \Rightarrow verification of

$$\forall \{i, j\} \in E \quad |x_i - x_j| = d_{ij}$$

in polytime

▶ DGP_K may not be in NP for K > 1don't know how to verify $||x_i - x_j||_2 = d_{ij}$ for $x \notin \mathbb{Q}^{nK}$

Hardness

Partition is NP-hard

Given
$$a = (a_1, \ldots, a_n) \in \mathbb{N}^n, \exists I \subseteq \{1, \ldots, n\} \text{ s.t. } \sum_{i \in I} a_i = \sum_{i \notin I} a_i$$
?

- ► Reduce Partition to DGP₁
- ▶ $a \longrightarrow \text{cycle } C$ $V(C) = \{1, ..., n\}, E(C) = \{\{1, 2\}, ..., \{n, 1\}\}$
- ► For i < n let $d_{i,i+1} = a_i$ $d_{n,n+1} = d_{n1} = a_n$
- ▶ *E.g.* for a = (1, 4, 1, 3, 3), get cycle graph:

[Saxe, 1979] 159/392

Partition is YES \Rightarrow DGP₁ is YES

- ▶ Given: $I \subset \{1, ..., n\}$ s.t. $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$
- **Construct:** realization x of C in \mathbb{R}
 - 1. $x_1 = 0$ // start
 - 2. induction step: suppose x_i known if $i \in I$

$$\begin{array}{ll} \mathbf{let}\; x_{i+1} = x_i + d_{i,i+1} & \text{// go right} \\ \mathbf{else} \\ \mathbf{let}\; x_{i+1} = x_i - d_{i,i+1} & \text{// go left} \end{array}$$

► Correctness proof: by the same induction but careful when i = n: have to show $x_{n+1} = x_1$

Partition is YES \Rightarrow DGP₁ is YES

$$(1) = \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \in I} d_{i,i+1} =$$

$$= \sum_{i \in I} a_i = \sum_{i \notin I} a_i =$$

$$= \sum_{i \notin I} d_{i,i+1} = \sum_{i \notin I} (x_i - x_{i+1}) = (2)$$

$$(1) = (2) \Rightarrow \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \notin I} (x_i - x_{i+1}) \Rightarrow \sum_{i \le n} (x_{i+1} - x_i) = 0$$
$$\Rightarrow (x_{n+1} - x_n) + (x_n - x_{n-1}) + \dots + (x_3 - x_2) + (x_2 - x_1) = 0$$
$$\Rightarrow x_{n+1} = x_1$$

Partition is NO \Rightarrow DGP₁ is NO

- By contradiction: suppose DGP₁ is YES, x realization of C
- $F = \{\{u, v\} \in E(C) \mid x_u < x_v\},\$ $E(C) \setminus F = \{\{u, v\} \in E(C) \mid x_u > x_v\}$
- ▶ Trace x_1, \ldots, x_n : follow edges in $F(\rightarrow)$ and in $E(C) \setminus F(\leftarrow)$

▶ Let $J = \{i < n \mid \{i, i+1\} \in F\} \cup \{n \mid \{n, 1\} \in F\}$

$$\Rightarrow \sum_{i \in J} a_i = \sum_{i \notin J} a_i$$

- ► So J solves Partition instance, contradiction
- ightharpoonup \Rightarrow DGP is NP-hard, DGP₁ is NP-complete

Number of solutions

- \triangleright (G, K): DGP instance
- $ilde{X} \subseteq \mathbb{R}^{Kn}$: set of solutions
- ► Congruence: composition of translations, rotations, reflections
- $ightharpoonup C = \mathbf{set} \ \mathbf{of} \ \mathbf{congruences} \ \mathbf{in} \ \mathbb{R}^K$
- ▶ $x \sim y$ means $\exists \rho \in C \ (y = \rho x)$: distances in x are preserved in y through ρ
- ightharpoonup \Rightarrow if $|\tilde{X}| > 0$, $|\tilde{X}| = 2^{\aleph_0}$

Number of solutions modulo congruences

Congruence is an equivalence relation \sim on \tilde{X} (reflexive, symmetric, transitive)

- lacktriangleright Partitions \tilde{X} into equivalence classes
- $ightharpoonup X = \tilde{X}/\sim$: sets of representatives of equivalence classes
- Focus on |X| rather than $|\tilde{X}|$

Rigidity, flexibility and |X|

- ightharpoonup infeasible $\Leftrightarrow |X| = 0$
- ▶ rigid graph $\Leftrightarrow |X| < \aleph_0$
- ▶ globally rigid graph $\Leftrightarrow |X| = 1$
- flexible graph $\Leftrightarrow |X| = 2^{\aleph_0}$
- $ightharpoonup |X| = \aleph_0$: impossible by Milnor's theorem

Milnor's theorem implies $|X| \neq \aleph_0$

ightharpoonup System S of polynomial equations of degree 2

$$\forall i \le m \quad p_i(x_1, \dots, x_{nK}) = 0$$

- ▶ Let X be the set of $x \in \mathbb{R}^{nK}$ satisfying S
- ▶ Number of connected components of X is $O(3^{nK})$ [Milnor 1964]
- ► Assume |X| is countable; then G cannot be flexible \Rightarrow each incongruent rlz is in a separate component \Rightarrow by Milnor's theorem, there's finitely many of them

Examples

$$V^{1} = \{1, 2, 3\}$$

$$E^{1} = \{\{u, v\} \mid u < v\}$$

$$d^{1} = 1$$

$$V^2 = V^1 \cup \{4\}$$

$$E^2 = E^1 \cup \{\{1,4\},\{2,4\}\}$$

$$d^2 = 1 \wedge d_{14} = \sqrt{2}$$

$$\begin{split} V^3 &= V^2 \\ E^3 &= \{\{u,u+1\} | u \leq 3\} \cup \{1,4\} \\ d^1 &= 1 \end{split}$$

ho congruence in \mathbb{R}^2 $\Rightarrow
ho x$ valid realization |X|=1

 $\begin{array}{l} \rho \ \text{reflects} \ x_4 \ \text{wrt} \ \overline{x_1,x_2} \\ \Rightarrow \rho x \ \text{valid realization} \\ |X| = 2 \ (\text{△}, \text{)} \end{array}$

ho rotates $\overline{x_2x_3}$, $\overline{x_1x_4}$ by θ $\Rightarrow \rho x$ valid realization |X| is uncountable $(\Box, \Box, \Box, \Box, \ldots)$

Subsection 4

Distance geometry in MP

DGP formulations and methods

- System of equations
- Unconstrained global optimization (GO)
- Constrained global optimization
- ► SDP relaxations and their properties
- Diagonal dominance
- ► Concentration of measure in SDP
- Isomap for DGP

System of quadratic equations

$$\forall \{u, v\} \in E \quad ||x_u - x_v||^2 = d_{uv}^2 \tag{8}$$

Computationally: useless reformulate using slacks:

$$\min_{x,s} \left\{ \sum_{\{u,v\} \in E} s_{uv}^2 \mid \forall \{u,v\} \in E \quad \|x_u - x_v\|^2 = d_{uv}^2 + s_{uv} \right\}$$
 (9)

Unconstrained Global Optimization

$$\min_{x} \sum_{\{u,v\} \in E} (\|x_u - x_v\|^2 - d_{uv}^2)^2$$
 (10)

Globally optimal obj. fun. value of (10) is 0 iff x solves (8)

Computational experiments in [Liberti et al., 2006]:

- ► GO solvers from 10 years ago
- ▶ randomly generated protein data: ≤ 50 atoms
- ▶ cubic crystallographic grids: ≤ 64 atoms

Constrained global optimization

- ► Relax objective f to concave part, remove constant term, rewrite min f as max f
- Reformulate convex part of obj. fun. to convex constraints
- ► Exact reformulation

$$\max_{x} \sum_{\{u,v\} \in E} \|x_u - x_v\|^2 \\
\forall \{u,v\} \in E \quad \|x_u - x_v\|^2 \le d_{uv}^2$$
(11)

Theorem (Activity)

At a glob. opt. x^* of a YES instance, all constraints of (11) are active

Linearization

$$\Rightarrow \forall \{i, j\} \in E \quad ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j = d_{ij}^2$$

$$\Rightarrow \begin{cases} \forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\ X = x x^\top \end{cases}$$

Relaxation

$$X = x x^{\top}$$

$$\Rightarrow X - x x^{\top} = 0$$

$$(\text{relax}) \Rightarrow X - x x^{\top} \succeq 0$$

$$\text{Schur}(X, x) = \begin{pmatrix} I_K & x^{\top} \\ x & X \end{pmatrix} \succeq 0$$

If x does not appear elsewhere \Rightarrow get rid of it (e.g. choose x = 0):

$$replace \ \mathsf{Schur}(X,x) \succeq 0 \ \textit{by} \ X \succeq 0$$

SDP relaxation

$$\min F \bullet X$$

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^{2}$$

$$X \succeq 0$$

How do we choose F?

$$F \bullet X = \mathrm{Tr}(F^\top X)$$

Some possible objective functions

► For protein conformation:

$$\min \sum_{\{i,j\} \in E} (X_{ii} + X_{jj} - 2X_{ij})$$

with = changed to \ge in constraints (or max and \le) "push-and-pull" the realization

► [Ye, 2003], application to wireless sensors localization

$$\min \mathsf{Tr}(X)$$

$$\operatorname{Tr}(X) = \operatorname{Tr}(P^{-1}\Lambda P) = \operatorname{Tr}(P^{-1}P\Lambda) = \operatorname{Tr}(\Lambda) = \sum_i \lambda_i \Rightarrow \operatorname{hope\ to\ minimize\ rank}$$

► How about "just random"?

How do you choose?

for want of some better criterion...

TEST!

- Download protein files from Protein Data Bank (PDB) they contain atom realizations
- ► Mimick a Nuclear Magnetic Resonance experiment Keep only pairwise distances < 5.5
- ➤ Try and reconstruct the protein shape from those weighted graphs
- Quality evaluation of results:

► LDE(x) =
$$\max_{\{i,j\} \in E} | ||x_i - x_j|| - d_{ij} |$$

► MDE(x) =
$$\sum_{|E|} \sum_{\{i,j\} \in E} ||x_i - x_j|| - d_{ij}|$$

Empirical choice

- ► Ye very fast but often imprecise
- ► Random good but nondeterministic
- ▶ Push-and-Pull: can relax $X_{ii} + X_{jj} 2X_{ij} = d_{ij}^2$ to $X_{ii} + X_{jj} 2X_{ij} \ge d_{ij}^2$ easier to satisfy feasibility, useful later on
- ► Heuristic: add $+\eta \text{Tr}(X)$ to objective, with $\eta \ll 1$ might help minimize solution rank

Efficiency vs. mathematical rigor

- ► Today we wish to solve problems with very large sizes
- ► We need methods that work computationally
- ▶ But we'd also like methods that are mathematically sound exactness, guaranteed approximation ratios, etc
- Unfortunately, there is no correlation between the efficiency of a methodology and the ease of proving approximation guarantees
- ► In industry: we care FIRST about the empirical efficiency, and NEXT about the proofs
- ► In academia: often the opposite, but mostly both
- ▶ In practice, we use inductive/abductive inference in order to guide us in looking for an efficient algorithm sometimes these inferences can lead to approximation proofs in probability

Retrieving realizations in \mathbb{R}^K

- ▶ SDP relaxation yields $n \times n$ PSD matrix X^*
- ▶ We need $n \times K$ realization matrix x^*
- ightharpoonup Recall $PSD \Leftrightarrow Gram$
- ▶ Apply PCA to X^* , keep K largest comps, get x'
- ► This yields solutions with errors
- ▶ Use x' as starting pt for local NLP solver

When SDP solvers hit their size limit

- ► SDP solver: technological bottleneck
- ► Can we use an LP solver instead?
- Diagonally Dominant (DD) matrices are PSD
- Not vice versa: inner approximate PSD cone $Y \succeq 0$
- ► Idea by A.A. Ahmadi [Ahmadi & Hall 2015]

Diagonally dominant matrices

$n \times n$ matrix X is DD if

$$\forall i \le n \quad X_{ii} \ge \sum_{j \ne i} |X_{ij}|.$$

$$\text{E.g.} \quad \left(\begin{array}{ccccccc} 1 & 0.1 & -0.2 & 0 & 0.04 & 0 \\ 0.1 & 1 & -0.05 & 0.1 & 0 & 0 \\ -0.2 & -0.05 & 1 & 0.1 & 0.01 & 0 \\ 0 & 0.1 & 0.1 & 1 & 0.2 & 0.3 \\ 0.04 & 0 & 0.01 & 0.2 & 1 & -0.3 \\ 0 & 0 & 0 & 0.3 & -0.3 & 1 \end{array} \right)$$

DD Linearization

$$\forall i \le n \quad X_{ii} \ge \sum_{j \ne i} |X_{ij}| \tag{*}$$

- ► linearize $|\cdot|$ by additional matrix var T⇒ write |X| as T
- $ightharpoonup \Rightarrow (*) \text{ becomes}$

$$X_{ii} \ge \sum_{j \ne i} T_{ij}$$

- ▶ add "sandwich" constraints $-T \le X \le T$
- ► Can easily prove (*) by sandwich constraints:

$$\begin{array}{lcl} X_{ii} & \geq & \displaystyle \sum_{j \neq i} T_{ij} \geq \displaystyle \sum_{j \neq i} X_{ij} \\ \\ X_{ii} & \geq & \displaystyle \sum_{j \neq i} T_{ij} \geq \displaystyle \sum_{j \neq i} - X_{ij} \end{array}$$

DD Programming (DDP)

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2$$

$$X \quad is \quad DD$$

$$\Rightarrow \left\{ \begin{array}{ccc} \forall \{i,j\} \in E & X_{ii} + X_{jj} - 2X_{ij} & = & d_{ij}^2 \\ \forall i \leq n & \sum\limits_{\substack{j \leq n \\ j \neq i}} T_{ij} & \leq & X_{ii} \\ & -T \leq X & \leq & T \end{array} \right.$$

The issue with inner approximations

DDP could be infeasible!

Exploit push-and-pull

- ► Enlarge the feasible region
- ► From

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2$$

- ▶ Use "push" objective min $\sum_{ij \in E} X_{ii} + X_{jj} 2X_{ij}$
- Relax to

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} \ge d_{ij}^2$$

Hope to achieve LP feasibility

DDP formulation for the DGP

$$\min \sum_{\{i,j\}\in E} (X_{ii} + X_{jj} - 2X_{ij})
\forall \{i,j\}\in E
\forall i \leq n$$

$$X_{ii} + X_{jj} - 2X_{ij} \geq d_{ij}^{2}
\sum_{\substack{j \leq n \\ j \neq i}} T_{ij} \leq X_{ii}$$

$$-T \leq X \leq T
T \geq 0$$

Solve, then retrieve solution in \mathbb{R}^K with PCA

Subsection 5

DGP cones

Cones

▶ Set *C* is a *cone* if:

$$\forall A, B \in C, \ \alpha, \beta \ge 0 \quad \alpha A + \beta B \in C$$

► If C is a cone, the *dual cone* is

$$C^* = \{ y \mid \forall x \in C \ \langle x, y \rangle \ge 0 \}$$

all vectors making acute angles with elements of C

▶ If $C \subset \mathbb{S}_n$ (set $n \times n$ symmetric matrices)

$$C^* = \{ Y \mid \forall X \in C \ (Y \bullet X \ge 0) \}$$

▶ A $n \times n$ matrix cone C is finitely generated by $\mathcal{X} \subset \mathbb{R}^n$ if

$$\forall X \in C \; \exists \delta \in \mathbb{R}_+^{|\mathcal{X}|} \quad X = \sum_{x \in \mathcal{X}} \delta_x x x^\top$$

PSD (resp. DD) are cones of PSD (resp. DD) matrices: prove it

Representations of \mathbb{DD}

- ► Consider E_{ii} , E_{ij}^+ , E_{ij}^- in \mathbb{S}_n Define $\mathcal{E}_0 = \{E_{ii} \mid i \leq n\}$, $\mathcal{E}_1 = \{E_{ij}^{\pm} \mid i < j\}$, $\mathcal{E} = \mathcal{E}_0 \cup \mathcal{E}_1$
- $ightharpoonup E_{ii} = diag(0, ..., 0, 1_i, 0, ..., 0)$
- $ightharpoonup E_{ij}^+$ has minor $\begin{pmatrix} 1_{ii} & 1_{ij} \\ 1_{ji} & 1_{jj} \end{pmatrix}$, 0 elsewhere
- $ightharpoonup E_{ij}^-$ has minor $\begin{pmatrix} 1_{ii} & -1_{ij} \\ -1_{ji} & 1_{jj} \end{pmatrix}$, 0 elsewhere
- ▶ Thm. $\mathbb{DD} = \mathbf{cone} \ \mathbf{generated} \ \mathbf{by} \ \mathcal{E}_{[Barker \& Carlson 1975]}$ Pf. Rays in \mathcal{E} are extreme, all DD matrices generated by \mathcal{E}
- ► Cor. DD finitely gen. by $\mathcal{X}_{\mathbb{DD}} = \{e_i \mid i \leq n\} \cup \{(e_i \pm e_j) \mid j < \ell \leq n\}$ Pf. Verify $E_{ii} = e_i e_i^{\top}, E_{ij}^{\pm} = (e_i \pm e_j)(e_i \pm e_j)^{\top}$, where e_i is the *i*-th std basis element of \mathbb{R}^n

Finitely generated dual cone theorem

Thm. If C finitely gen. by \mathcal{X} , then

$$C^* = \{ Y \mid \forall x \in \mathcal{X} \ (Y \bullet xx^\top \ge 0) \}$$

- \blacktriangleright (\supseteq) Let Y s.t. $\forall x \in \mathcal{X} \ (Y \bullet xx^{\top} \ge 0)$
 - $\blacktriangleright \ \forall X \in C, X = \sum_{x \in \mathcal{X}} \delta_x x x^{\top}$ (by fin. gen.)
 - ▶ hence $Y \bullet X = \sum_{x} \delta_{x} Y \bullet xx^{\top} \ge 0$ (by defn. of Y)
 - ▶ whence $Y \in C^*$ (by defn. of C^*)
- ▶ (⊆) Suppose $Z \in C^* \setminus \{Y \mid \forall x \in \mathcal{X} \ (Y \bullet xx^\top \ge 0)\}$
 - ▶ then $\exists \mathcal{X}' \subset \mathcal{X} \text{ s.t. } \forall x \in \mathcal{X}' \ (Z \bullet xx^\top < 0)$
 - consider any $Y = \sum_{x \in \mathcal{Y}} \delta_x x x^\top \in C$ with $\delta \ge 0$
 - ▶ then $Z \bullet Y = \sum_{x \in X'} \delta_x Z \bullet xx^\top < 0 \text{ so } Z \notin C^*$
 - ▶ contradiction $\Rightarrow C^* = \{Y \mid \forall x \in \mathcal{X} \ (Y \bullet xx^\top \ge 0)\}$

Dual cone constraints

- **Remark:** $X \bullet vv^{\top} = v^{\top}Xv$
- ► Use finitely generated dual cone theorem
- ightharpoonup Decision variable matrix X
- **▶** Constraints:

$$\forall v \in \mathcal{X} \quad v^{\top} X v \ge 0$$

- ► Cor. $\mathbb{DD}^* \supset \mathbb{PSD}$ Pf. $X \in \mathbb{PSD}$ iff $\forall v \in \mathbb{R}^n \ vXv \ge 0$, so certainly valid $\forall v \in \mathcal{X}$
- $\begin{tabular}{l} \blacksquare & If $|\mathcal{X}|$ polysized, get compact formulation \\ & \textit{otherwise use column generation} \end{tabular}$
- $|\mathcal{X}_{\mathbb{DD}}| = |\mathcal{E}| = O(n^2)$

Dual cone DDP formulation for DGP

$$\min \sum_{\substack{\{i,j\} \in E}} (X_{ii} + X_{jj} - 2X_{ij}) \\
\forall \{i,j\} \in E \qquad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\
\forall v \in \mathcal{X}_{\mathbb{DD}} \qquad v^{\top} X v \geq 0$$

 $v^{\top}Xv \geq 0$ for $v \in \mathcal{X}_{\mathbb{DD}}$ equivalent to:

$$\forall i \le n \quad X_{ii} \ge 0$$

$$\forall \{i, j\} \notin E \quad X_{ii} + X_{jj} - 2X_{ij} \ge 0$$

$$\forall i < j \quad X_{ii} + X_{jj} + 2X_{ij} \ge 0$$

Note we went back to equality "pull" constraints (why?)

Quantifier $\forall \{i,j\} \not\in E$ should be $\forall i < j$ but we already have those constraints $\forall \{i,j\} \in E$

Properties

- ► SDP relaxation of original problem
- ► DualDDP relaxation of SDP hence also of original problem
- Yields extremely tight obj fun bounds w.r.t. SDP
- Solutions may have large negative rank in some applications, retrieving feasible solutions may be difficult

Subsection 6

Barvinok's Naive Algorithm

Concentration of measure

From [Barvinok, 1997]

The value of a "well behaved" function at a random point of a "big" probability space X is "very close" to the mean value of the function.

and

In a sense, measure concentration can be considered as an extension of the law of large numbers.

Concentration of measure

Given Lipschitz function $f: X \to \mathbb{R}$ s.t.

$$\forall x, y \in X \quad |f(x) - f(y)| \le L||x - y||_2$$

for some $L \ge 0$, there is *concentration of measure* if \exists constants c, C s.t.

$$\forall \varepsilon > 0 \quad \mathsf{P}_x(|f(x) - \mathsf{E}(f)| > \varepsilon) \le c \, e^{-C\varepsilon^2/L^2}$$

where $E(\cdot)$ is w.r.t. given Borel measure μ over X

 \equiv "discrepancy from mean is unlikely"

Barvinok's theorem

Consider:

- ▶ for each $k \le m$, manifolds $\mathcal{X}_k = \{x \in \mathbb{R}^n \mid x^\top Q^k x = a_k\}$ where $m \le \mathsf{poly}(n)$
- feasibility problem $F \equiv \left[\bigcap_{k \leq m} \mathcal{X}_k \neq \varnothing\right]$
- ▶ SDP relaxation $\forall k \leq m \ (Q^k \bullet X = a_k) \land X \succeq 0 \text{ with soln. } \bar{X}$
- ▶ Algorithm: $T \leftarrow \mathsf{factor}(\bar{X}); \quad y \sim \mathcal{N}^n(0,1); \quad x' \leftarrow Ty$

Then:

 $ightharpoonup \exists c > 0, n_0 \in \mathbb{N} \text{ such that } \forall n \geq n_0$

$$\mathsf{Prob}\left(\forall k \leq m \quad \mathsf{dist}(x', \mathcal{X}_k) \leq c\,\sqrt{\|\bar{X}\|_2 \ln n}\right) \geq 0.9.$$

Algorithmic application

- ightharpoonup x' is "close" to each \mathcal{X}_k : try local descent from x'
- ightharpoonup \Rightarrow Feasible QP solution from an SDP relaxation

Elements of Barvinok's formula

$$\mathsf{Prob}\left(\forall k \leq m \quad \mathsf{dist}(x', \mathcal{X}_k) \leq c\,\sqrt{\|\bar{X}\|_2 \ln n}\right) \geq 0.9.$$

- $ightharpoonup \sqrt{\|\bar{X}\|_2}$ arises from T (a factor of \bar{X})
- \blacktriangleright $\sqrt{\ln n}$ ensures concentration of measure
- ▶ 0.9 follows by adjusting parameter values in "union bound"

Application to the DGP

- $\forall \{i,j\} \in E \quad \mathcal{X}_{ij} = \{x \mid ||x_i x_j||_2^2 = d_{ij}^2\}$
- $lackbox{ DGP can be written as } igcap_{\{i,j\} \in E} \mathcal{X}_{ij}$
- ▶ SDP relaxation $X_{ii} + X_{jj} 2X_{ij} = d_{ij}^2 \wedge X \succeq 0$ with soln. \bar{X}
- ▶ Difference with Barvinok: $x \in \mathbb{R}^{Kn}$, $\operatorname{rk}(\bar{X}) \leq K$
- ▶ IDEA: sample $y \sim \mathcal{N}^{nK}(0, \frac{1}{\sqrt{K}})$
- ▶ Thm. Barvinok's theorem works in rank K

Proof structure

- ► Show that, on average, $\forall k \leq m \, (Ty)^{\top} Q^k(Ty) = Q^K \bullet \bar{X} = a_k$
 - compute multivariate integrals
 - ightharpoonup bilinear terms disappear because y normally distributed
 - decompose multivariate int. to a sum of univariate int.
- ► Exploit concentration of measure to show errors happen rarely
 - a couple of technical lemmata yielding bounds
 - ▶ \Rightarrow bound Gaussian measure μ of ε -neighbourhoods of

$$A_i^- = \{ y \in \mathbb{R}^{n \times K} \mid \mathcal{Q}^i(Ty) \le Q^i \bullet \bar{X} \}$$

$$A_i^+ = \{ y \in \mathbb{R}^{n \times K} \mid \mathcal{Q}^i(Ty) \ge Q^i \bullet \bar{X} \}$$

$$A_i = \{ y \in \mathbb{R}^{n \times K} \mid \mathcal{Q}^i(Ty) = Q^i \bullet \bar{X} \}.$$

- use "union bound" for measure of $A_i^-(\varepsilon) \cap A_i^+(\varepsilon)$
- ▶ show $A_i^-(\varepsilon) \cap A_i^+(\varepsilon) = A_i(\varepsilon)$
- use "union bound" to measure intersections of $A_i(\varepsilon)$
- ightharpoonup appropriate values for some parameters \Rightarrow result

The heuristic

- 1. Solve SDP relaxation of DGP, get soln. \bar{X} use DDP+LP if SDP+IPM too slow
- 2. a. $T = \mathsf{factor}(\bar{X})$ b. $y \sim \mathcal{N}^{nK}(0, \frac{1}{\sqrt{K}})$ c. x' = Ty
- 3. Use x' as starting point for a local NLP solver on formulation

$$\min_{x} \sum_{\{i,j\} \in E} (\|x_i - x_j\|^2 - d_{ij}^2)^2$$

and return improved solution x

Subsection 7

$Isomap \ for \ the \ DGP$

Isomap for DG

- 1. Let D' be the (square) weighted adjacency matrix of G
- 2. Complete D' to approximate EDM \tilde{D}
- 3. Perform PCA on \tilde{D} given K dimensions
 - (a) Let $\tilde{B} = -(1/2)J\tilde{D}J$, where $J = I (1/n)\mathbf{1}\mathbf{1}^{\top}$
 - (b) Find eigenval/vects Λ , P so $\tilde{B} = P^{\top} \Lambda P$
 - (c) Keep $\leq K$ largest nonneg. eigenv. of Λ to get $\tilde{\Lambda}$
 - (d) Let $\tilde{x} = P^{\top} \sqrt{\tilde{\Lambda}}$

Vary Step 2 to generate Isomap heuristics

Why it works

- ightharpoonup G represented by weighted partial adj. matrix D'
- ightharpoonup don't know full EDM, approximate to \tilde{D}
- ightharpoonup \Rightarrow get \tilde{B} , not generally Gram
- ► ≤ K largest nonnegative eigenvalues ⇒ "closest PSD matrix" B' to \tilde{B} having rank ≤ K
- ▶ Factor it to get $\tilde{x} \in \mathbb{R}^{Kn}$

Variants for Step 2

- A. Floyd-Warshall all-shortest-paths algorithm on G (classic Isomap)
- B. Find a spanning tree (SPT) of G and compute a random realization in $\bar{x} \in \mathbb{R}^K$, use its sqEDM
- C. Solve a push-and-pull SDP/DDP/DualDDP to find a realization $\bar{x} \in \mathbb{R}^n$, use its sqEDM

Post-processing: Use \tilde{x} as starting point for local NLP solver

Subsection 8

Summary

Matrix reformulations

- ► Quadratic nonconvex too difficult?
- ► Solve SDP relaxation
- ► SDP relaxation too large?
- ► Solve DDP approximation
- ▶ Get $n \times n$ matrix solution, need $K \times n$!

Solution rank reduction methods

- ► Multidimensional Scaling (MDS)
- ► Principal Component Analysis (PCA)
- ► Barvinok's naive algorithm (BNA)
- ► Isomap

All provide good starting points for local NLP descent

Can also use them for general dimensionality reduction n vectors in $\mathbb{R}^n \longrightarrow n$ vectors in \mathbb{R}^K

Outline

Random projections in LP Random projection theory Projecting feasibility Projecting optimality Solution retrieval Application to quantile regression

The gist of random projections

- Let A be a $m \times n$ data matrix (columns in \mathbb{R}^m , $m \gg 1$)
- ► T short & fat, normally sampled componentwise

$$\underbrace{\left(\begin{array}{ccc} \vdots \vdots & \vdots \\ T \end{array}\right)}_{T} \underbrace{\left(\begin{array}{ccc} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{array}\right)}_{A} = \underbrace{\left(\begin{array}{ccc} \vdots & \vdots & \vdots \\ T \end{array}\right)}_{TA}$$

► Then $\forall i < j \|A_i - A_j\|_2 \approx \|TA_i - TA_j\|_2$ "wahp"

wahp

"wahp" = "with arbitrarily high probability" the probability of E_k (depending on some parameter k) approaches 1 "exponentially fast" as k increases

$$\mathbf{P}(E_k) \approx 1 - O(e^{-k})$$

Johnson-Lindenstrauss Lemma (JLL)

Thm.

Given $A\subseteq \mathbb{R}^m$ with |A|=n and $\varepsilon>0$ there is $k\sim O(\frac{1}{\varepsilon^2}\ln n)$ and a $k\times m$ matrix T s.t.

$$\forall x,y \in A \quad (1-\varepsilon)\|x-y\| \ \leq \ \|Tx-Ty\| \ \leq \ (1+\varepsilon)\|x-y\|$$

If $k \times m$ matrix T is sampled componentwise from $N(0, \frac{1}{\sqrt{k}})$, then

 $P(A \text{ and } TA \text{ approximately congruent}) \ge \frac{1}{n}$

 $({\color{red} nontrivial}) - result follows by probabilistic method$

Note that $1/\sqrt{k}$ is the standard deviation, not the variance

In practice

- ▶ $P(A \text{ and } TA \text{ approximately congruent}) \ge \frac{1}{n}$
- ► re-sampling sufficiently many times gives wahp
- Empirically, sample T few times (once will do) $\mathbb{E}_T(\|Tx Ty\|) = \|x y\|$ probability of error decreases wahp

Surprising fact:

k is independent of the original number of dimensions m

Clustering Google images

[L. & Lavor, 2017]

Clustering without random projections

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
Out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

Too slow!

Clustering with random projections

```
Get["Projection.m"];
VKimg = JohnsonLindenstrauss[VHimg, 0.1];
VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]
Out[34]= {0.002232, {1, 2, 2, 2, 2, 3, 2, 2, 2, 3}}
```

From 0.405s CPU time to 0.00232s Same clustering

Projecting formulations

- ► Given:
 - ightharpoonup F(p,x): MP formulation with params p & vars x
 - ightharpoonup sol(F): solution of F
 - ► C: formulation class (e.g. LP, NLP, MILP, MINLP)
 - ► R rnd proj operator if R, F commute:

$$RF(p,x) \triangleq FR(p,x)$$

- ▶ "Thm.": $\forall F \in \mathscr{C} \operatorname{sol}(F) \approx \operatorname{sol}(RF) \operatorname{wahp}$
- ► Low distortion result holds for a formulation
- ▶ Today we see this for $\mathscr{C} = LP$
- ► I'm working on QP we have theoretical results (no tests) for SDP/SOCP

Subsection 1

Random projection theory

The shape of a set of points

► Lose dimensions but not too much accuracy

Given $A_1, \ldots, A_n \in \mathbb{R}^m$ find $k \ll m$ and $A'_1, \ldots, A'_n \in \mathbb{R}^k$ s.t. A and A' "have almost the same shape"

► What is the shape of a set of points?

 $congruence \Leftrightarrow same \ shape: \|A_i - A_j\| = \|A_i' - A_j'\|$

► Approximate congruence \equiv small distortion: A, A' have almost the same shape if

$$\forall i < j \le n \quad (1 - \varepsilon) \|A_i - A_j\| \le \|A_i' - A_j'\| \le (1 + \varepsilon) \|A_i - A_j\|$$

for some small $\varepsilon > 0$

Losing dimensions = "projection"

In the plane, hopeless

In 3D: no better

Recall the JLL

Thm.

Given $A \subseteq \mathbb{R}^m$ with |A| = n and $\varepsilon > 0$ there is $k \sim O(\frac{1}{\varepsilon^2} \ln n)$ and a $k \times m$ matrix T s.t.

$$\forall x, y \in A \quad (1 - \varepsilon) \|x - y\| \le \|Tx - Ty\| \le (1 + \varepsilon) \|x - y\|$$

Sketch of a JLL proof by pictures

Thm.

Let T be a $k \times m$ random projector sampled from $N(0,\frac{1}{\sqrt{k}})$, and $u \in \mathbb{R}^m$ s.t. $\|u\|=1$. Then $\mathbb{E}(\|Tu\|^2)=\|u\|^2$

Surface area of a slice of hypersphere

$$\bar{S}_m(r) = \frac{2\pi^{m/2}r^{m-1}}{\Gamma(m/2)} \qquad S_m \triangleq \bar{S}_m(1)$$

Lateral surface of infinitesimally high hypercylinder

$$d\bar{S}_{m}(t) = S_{m-1}(1 - t^{2})^{\frac{m-2}{2}}dt$$

$$dt$$

$$t$$

$$\sqrt{1 - t^{2}}$$

Area of polar caps

$$\mathcal{A}^{\mathbf{pc}} = \int_{t}^{1} d\bar{S}_{m}(s) = 2S_{m-1} \int_{t}^{1} (1 - s^{2})^{\frac{m-2}{2}} ds$$

$$1 + x \le e^x$$
 for all x and $\int_{1}^{1} f(s)ds \le \int_{1}^{\infty} f(s)ds$ for $f \ge 0$

$$\Rightarrow \mathcal{A}^{\mathbf{pc}} \leq 2S_{m-1} \int_t^\infty \!\!\! e^{-\frac{m-2}{2}s^2} ds = \frac{2S_{m-1}}{\sqrt{m-2}} \sqrt{\frac{\pi}{2}} \; \mathrm{erfc} \left(\frac{\sqrt{m-2}t}{\sqrt{2}} \right) = O(e^{-t^2})$$

- Polar caps area decreases wahp as $m o \infty$
 - ► Concentration of measure

Rnd proj preserve norms on avg

Thm.

Let T be a $k \times m$ rectangular matrix with each component sampled from $N(0,\frac{1}{\sqrt{k}})$, and $u \in \mathbb{R}^m$ s.t. $\|u\|=1$. Then $\mathbb{E}(\|Tu\|^2)=1$

Proof

$$\blacktriangleright \ \forall i \leq k \ \text{let} \ v_i = \sum_{j \leq n} T_{ij} u_j$$

$$\mathbb{E}(v_i) = \mathbb{E}\left(\sum_{j \le m} T_{ij} u_j\right) = \sum_{j \le m} \mathbb{E}(T_{ij}) u_j = 0$$

$$\qquad \text{Var}(v_i) = \sum_{j \leq m} \text{Var}(T_{ij}u_j) = \sum_{j \leq m} \text{Var}(T_{ij})u_j^2 = \sum_{j \leq m} \frac{u_j^2}{k} = \frac{1}{k}\|u\|^2 = \frac{1}{k}$$

$$\blacktriangleright \quad \tfrac{1}{k} = \mathsf{Var}(v_i) = \mathbb{E}(v_i^2 - (\mathbb{E}(v_i))^2) = \mathbb{E}(v_i^2 - 0) = \mathbb{E}(v_i^2)$$

$$\mathbb{E}(\|Tu\|^2) = \mathbb{E}(\|v\|^2) = \mathbb{E}\left(\sum_{i \le k} v_i^2\right) = \sum_{i \le k} \mathbb{E}(v_i^2) = \sum_{i \le k} \frac{1}{k} = 1$$

Can we argue that the variance decreases wahp?

An intuitive explanation

- ▶ Polar caps area $\mu(\mathcal{A}_t^m) = \mu(\{u \in \mathbb{S}^{m-1} \mid |u_m| \ge t\})$ decreases wahp
- ► Can we infer the same for $\mu(\mathcal{B}_t^m) = \mu(\{u \in \mathbb{S}^{m-1} \mid |||Tu||^2 1| \ge t\})$?

Intermezzo: The union bound

- ▶ Events E_1, \ldots, E_k such that $P(E_i) \ge 1 t$ for each $i \le k$
- \blacktriangleright What is $P(\text{all } E_i)$?

▶
$$\mathbf{P}(\mathbf{all}\ E_i) = 1 - \mathbf{P}(\mathbf{at}\ \mathbf{least}\ \mathbf{one}\ \neg E_i) \Rightarrow$$

$$\mathbf{P}(\bigcap_{i \le k} E_i) = 1 - \mathbf{P}(\bigcup_{i \le k} (\neg E_i)) \ge$$

$$\ge 1 - \sum_{i=1}^k \mathbf{P}(\neg E_i) = 1 - \sum_{i=1}^k (1 - (1 - t)) = 1 - kt$$

► So P(all
$$E_i$$
) $\geq 1 - kt$

Where the $\varepsilon^{-2} \ln n$ comes from

- ▶ B = set of unit vectors; by "intuitive explanation" $\Rightarrow \forall u \in B \; \exists \mu, \nu' > 0 \; \text{s.t. P} (1 - t \leq ||Tu|| \leq 1 + t) \geq 1 - \mu e^{-\nu' m t^2}$
- Fix¹ m and union bound: $\Rightarrow \exists \nu \text{ s.t. } \mathbf{P}(\forall u \in B \ 1 - t \le \|Tu\| \le 1 + t) \ge 1 - |B|\mu e^{-\nu t^2}$
- ► Prob. $\in [0,1] \Rightarrow$ require $1 |B|\mu e^{-\nu t^2} > 0$: $\Rightarrow |B|\mu e^{-\nu t^2} < 1$
- Let $t = \varepsilon \sqrt{k}$: $\Rightarrow |B| \mu e^{-\nu \varepsilon^2 k} < 1$
- $ightharpoonup \Rightarrow k > \nu \varepsilon^{-2} \ln(|B|) + \chi$, where $\chi = \frac{\ln \mu}{\nu \varepsilon^2}$ is a fixed constant
- ightharpoonup $\Rightarrow \exists \operatorname{constant} C \operatorname{s.t.} \boxed{k > C\varepsilon^{-2} \ln(|B|)}$

¹ In this explanation, C = C(m); but C can be made independent of m

Apply to vector differences

- $\triangleright \ \forall x, y \in A \text{ we have}$

$$||Tx - Ty||^2 = ||T(x - y)||^2 = ||x - y||^2 ||T\frac{x - y}{||x - y||}||^2 = ||x - y||^2 ||Tu||^2$$

- $\mathbb{E}(\|Tu\|^2) = \|u\| = 1 \Rightarrow \boxed{\mathbb{E}(\|Tx Ty\|^2) = \|x y\|^2}$
- ► Let $B = \{\frac{x-y}{\|x-y\|} \mid x,y \in A\}$ $|B| = O(n^2) \Rightarrow k = C\varepsilon^{-2}\ln(n)$ for some constant C
- ▶ By concentration of measure on \mathcal{B}^m , $\exists \varepsilon \in (0,1)$ s.t.

$$(1 - \varepsilon) \|x - y\|^2 \le \|Tx - Ty\|^2 \le (1 + \varepsilon) \|x - y\|^2$$
 (*)

holds with positive probability

Probabilistic method: ∃T such that (*) holds This is the statement of the Johnson-Lindenstrauss Lemma

Randomized algorithm

▶ Distortion has low probability [Gupta 02]:

$$\forall x, y \in A \quad \mathbf{P}(\|Tx - Ty\| \le (1 - \varepsilon)\|x - y\|) \le \frac{1}{n^2}$$

$$\forall x, y \in A \quad \mathbf{P}(\|Tx - Ty\| \ge (1 + \varepsilon)\|x - y\|) \le \frac{1}{n^2}$$

▶ Probability \exists pair $x, y \in A$ distorting Euclidean distance: union bound over $\binom{n}{2}$ pairs

$$\begin{aligned} \mathbf{P}(\neg (A \text{ and } TA \text{ have almost the same shape})) & \leq & \binom{n}{2} \frac{2}{n^2} = 1 - \frac{1}{n} \\ \mathbf{P}(A \text{ and } TA \text{ have almost the same shape}) & \geq & \frac{1}{n} \end{aligned}$$

JLL follows by probabilistic method

Subsection 2

Projecting feasibility

Easy cases

Thm.

 $T: \mathbb{R}^m \to \mathbb{R}^k$ a JLL random projection, $b, A_1, \ldots, A_n \in \mathbb{R}^m$ a RLM_X instance. For any given vector $x \in X$, we have:

- (i) If $b = \sum_{i=1}^{n} x_i A_i$ then $Tb = \sum_{i=1}^{n} x_i TA_i$ by linearity of T
- (ii) If $b \neq \sum_{i=1}^{n} x_i A_i$ then $\mathbf{P}\left(Tb \neq \sum_{i=1}^{n} x_i TA_i\right) \geq 1 2e^{-\mathcal{C}k}$ by JLL applied to $\|b \sum_i x_i A_i\|$
- (iii) If $b \neq \sum_{i=1}^{n} y_i A_i$ for all $y \in X \subseteq \mathbb{R}^n$, where |X| is finite, then

$$\mathbf{P}\left(\forall y \in X \ Tb \neq \sum_{i=1}^{n} y_i TA_i\right) \geq 1 - 2|X|e^{-\mathcal{C}k}$$

for some constant C > 0 (independent of n, k)

by union bound

Separating hyperplanes

When |X| is large, project separating hyperplanes instead

- ▶ Convex $C \subseteq \mathbb{R}^m$, $x \notin C$: then \exists hyperplane c separating x, C
- ▶ In particular, true if $C = cone(A_1, ..., A_n)$ for $A \subseteq \mathbb{R}^m$
- ▶ Can show $x \in C \Leftrightarrow Tx \in TC$ with high probability
- As above, if $x \in C$ then $Tx \in TC$ by linearity of T Difficult part is proving the converse
- Can also project point-to-cone distances

Projection of separating hyperplanes

Thm.

Given $c, b, A_1, \ldots, A_n \in \mathbb{R}^m$ of unit norm s.t. $b \notin \text{cone}\{A_1, \ldots, A_n\}$ pointed, $\varepsilon > 0$, $c \in \mathbb{R}^m$ s.t. $c^\top b < -\varepsilon, c^\top A_i \geq \varepsilon$ $(i \leq n)$, and T a random projector:

$$\mathbf{P}[Tb \notin \mathsf{cone}\{TA_1, \dots, TA_n\}] \ge 1 - 4(n+1)e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$$

for some constant C.

Proof

Let $\mathscr A$ be the event that T approximately preserves $\|c-\chi\|^2$ and $\|c+\chi\|^2$ for all $\chi\in\{b,A_1,\ldots,A_n\}$. Since $\mathscr A$ consists of 2(n+1) events, by the JLL ("squared variant") and the union bound, we get

$$\mathbf{P}(\mathscr{A}) > 1 - 4(n+1)e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$$

Now consider $\chi = b$

$$\begin{split} \langle Tc, Tb \rangle &= \frac{1}{4} (\|T(c+b)\|^2 - \|T(c-b)\|^2) \\ \text{by JLL} &\leq \frac{1}{4} (\|c+b\|^2 - \|c-b\|^2) + \frac{\varepsilon}{4} (\|c+b\|^2 + \|c-b\|^2) \\ &= c^\top b + \varepsilon < 0 \end{split}$$

and similarly $\langle Tc, TA_i \rangle \geq 0$

[Vu et al., Math. OR, 2018]

The feasibility projection theorem

```
Thm.
```

```
Given \delta>0, \exists sufficiently large m\leq n such that: for any LFP input A,b where A is m\times n we can sample a random k\times m matrix T with k\ll m and
```

P(orig. LFP feasible \iff proj. LFP feasible) $\geq 1 - \delta$

Subsection 3

Projecting optimality

Notation

- $P \equiv \min\{cx \mid Ax = b \land x \ge 0\} \text{ (original problem)}$
- ► $TP \equiv \min\{cx \mid TAx = Tb \land x \ge 0\}$ (projected problem)
- ightharpoonup v(P) =optimal objective function value of P
- v(TP) = optimal objective function value of TP

The optimality projection theorem

- ightharpoonup Assume feas(P) is bounded
- Assume all optima of P satisfy $\sum_{j} x_{j} \leq \theta$ for some given $\theta > 0$ (prevents cones from being "too flat")

Thm.

Given $\delta > 0$,

$$v(P) - \delta \le v(TP) \le v(P) \tag{*}$$

holds with arbitrarily high probability (w.a.h.p.)

more precisely, (*) holds with prob. $1-4ne^{-\mathcal{C}(\varepsilon^2-\varepsilon^3)k}$ where $\varepsilon=\delta/(2(\theta+1)\eta)$ and $\eta=O(\|y\|_2)$ where y is a dual optimal solution of P having minimum norm

The easy part

Show $v(TP) \le v(P)$:

- ► Constraints of P: $Ax = b \land x \ge 0$
- ► Constraints of TP: $TAx = Tb \land x > 0$
- ightharpoonup \Rightarrow constraints of P are lin. comb. of constraints of P
- → any solution of P is feasible in TP
 (btw, the converse holds almost never)
- \triangleright P and TP have the same objective function
- ightharpoonup \Rightarrow TP is a relaxation of P \Rightarrow $v(TP) \le v(P)$

The hard part (sketch)

Eq. (12) equivalent to P for $\delta = 0$

$$\begin{cases}
cx & \leq v(P) - \delta \\
Ax & = b \\
x & \geq 0
\end{cases}$$
(12)

Note: for $\delta > 0$, Eq. (12) is infeasible

By feasibility projection theorem,

$$\left. \begin{array}{rcl} cx & \leq & v(\boldsymbol{P}) - \delta \\ TAx & = & Tb \\ x & \geq & 0 \end{array} \right\}$$

is infeasible w.a.h.p. for $\delta > 0$

- Restate: $cx < v(P) \delta \wedge TAx = Tb \wedge x \ge 0$ infeasible w.a.h.p.
- $ightharpoonup \Rightarrow cx \geq v(P) \delta \text{ holds w.a.h.p. for } x \in \text{feas}(TP)$
- $ightharpoonup v(P) \delta \le v(TP)$

Subsection 4

Solution retrieval

Projected solutions are infeasible in P

- $ightharpoonup Ax = b \Rightarrow TAx = Tb$ by linearity
- However, Thm.

For $x \ge 0$ s.t. TAx = Tb, Ax = b with probability zero

if not, an x belonging to (n-k)-dim. subspace would belong to an (n-m)-dim. subspace (with $k \ll m$) with positive probability

► Can't get solution for original LFP using projected LFP!

Solution retrieval by duality

- ▶ <u>Primal</u> min{ $c^{\top}x \mid Ax = b \land x \ge 0$ } ⇒ <u>dual</u> max{ $b^{\top}y \mid A^{\top}y \le c$ }
- Let $x' = \operatorname{sol}(TP)$ and $y' = \operatorname{sol}(\operatorname{dual}(TP))$
- $\Rightarrow (TA)^{\top} y' = (A^{\top} T^{\top}) y' = A^{\top} (T^{\top} y') \le c$
- $ightharpoonup \Rightarrow T^{\top}y' \text{ is a solution of dual}(P)$
- ightharpoonup \Rightarrow we can compute an optimal basis J for P
- Solve $A_J x_J = b$, get x_J , obtain a solution x^* of P
- Won't work in practice: errors in computing J

Solution retrieval by pseudoinverse

- ► *H*: optimal basis of *TP*we can trust that given by solver
- ▶ $|H| = k \Rightarrow A_H$ is $m \times k$ (tall and slim)
- ► Pseudoinverse: solve $k \times k$ system $A_H^{\top} A_H x_H = A_H^{\top} b$ ⇒ $x_H = (A_H^{\top} A_H)^{-1} A_H^{\top} b$
- ▶ let $x = (x_H, 0)$
- ► Can prove small feasibility error wahp
- ► ISSUE: may be slightly infeasible empirically: $x \ge 0$ but $x^- = \min(0, x) \to 0$ as $k \to \infty$

Subsection 5

Application to quantile regression

Conditional random variables

- random variable B conditional on A_1, \ldots, A_p
- ▶ assume *B* depends linearly on $\{A_j \mid j \leq p\}$
- \blacktriangleright want to find $x_1, \ldots, x_n \in \mathbb{R}$ s.t.

$$B = \sum_{j \le p} x_j A_j$$

- use samples $b, a_1, \ldots, a_p \in \mathbb{R}^m$ to find estimates
- $ightharpoonup a^i = \mathbf{row}, a_j = \mathbf{column}$

Sample statistics

expectation:

$$\hat{\mu} = \underset{\mu \in \mathbb{R}}{\arg\min} \sum_{i < m} (b_i - \mu)^2$$

► conditional expectation (*linear regression*):

$$\hat{\nu} = \operatorname*{arg\,min}_{\nu \in \mathbb{R}^p} \sum_{i \le m} (b_i - \nu a^i)^2$$

sample median:

$$\begin{split} \hat{\xi} &= & \underset{\xi \in \mathbb{R}}{\operatorname{arg\,min}} \sum_{i \leq m} |b_i - \xi| \\ &= & \underset{\xi \in \mathbb{R}}{\operatorname{arg\,min}} \sum_{i \leq m} \left(\frac{1}{2} \max(b_i - \xi, 0) - \frac{1}{2} \min(b_i - \xi, 0) \right) \end{split}$$

► conditional sample median: similarly

Quantile regression

> sample τ -quantile:

$$\hat{\xi} = \mathop{\arg\min}_{\xi \in \mathbb{R}} \sum_{i \leq m} \left(\tau \max(b_i - \xi, 0) - (1 - \tau) \min(b_i - \xi, 0) \right)$$

• conditional sample τ -quantile (quantile regression):

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \sum_{i \leq m} \left(\tau \max(b_i - \beta a^i, 0) - (1 - \tau) \min(b_i - \beta a^i, 0) \right)$$

Linear Programming formulation

Let
$$A = (a_j \mid j \leq n)$$
; then

$$\hat{\beta} = \mathop{\rm arg\,min}_{} \qquad \begin{array}{ccc} \tau u^{+} + (1 - \tau) u^{-} & \\ & A(\beta^{+} - \beta^{-}) + u^{+} - u^{-} & = & b \\ & \beta, u & \geq & 0 \end{array} \right\}$$

- **parameters:** A is $m \times p, b \in \mathbb{R}^m, \tau \in \mathbb{R}$
- **decision variables:** $\beta^+, \beta^- \in \mathbb{R}^p, u^+, u^- \in \mathbb{R}^m$
- ▶ LP constraint matrix is $m \times (2p + 2m)$ density: p/(p+m) can be high

Large datasets

- Russia Longitudinal Monitoring Survey hh1995f
 - m = 3783, p = 855
 - A = hf1995f, b = log avg(A)
 - ▶ 18.5% dense
 - poorly scaled data, CPLEX yields infeasible (!!!) after around 70s CPU
 - quantreg in R fails
- ▶ $14596 \text{ RGB photos on my HD, scaled to } 90 \times 90 \text{ pixels}$
 - m = 14596, p = 24300
 - each row of A is an image vector, $b = \sum A$
 - ► 62.4% dense
 - ► CPLEX killed by OS after ≈30min (presumably for lack of RAM) on 16GB
 - could not load dataset in R
- ▶ Results ⇒ LP too large, projected LP can be solved

Electricity prices

- Every hour over 365 days in 2015 (8760 rows)
- ▶ From 22 countries (columns) from the European zone

	orig	proj
1	5.82e-01	5.69e-01
2	9.46e-02	0
3	0	0
4	1.06-01	1.18e-01
5	2.73e-04	6.92e-05
6	-4.81e-06	-2.07e-05
7	1.32e-01	1.36e-01
8	0	0
9	0	0
10	0	0
11	-3.46e-08	-2.45e-05
12	0	0
13	5.66e-02	5.49e-02
14	-2.50e-04	2.91e-03
15	2.86e-02	2.81e-02
16	0	0
17	0	0
18	0	9.35e-02
19	0	0
20	2.23e-09	0
21	0	-7.99e-06

- Permutation (18,2) (21,20) applied to proj gives same nonzero pattern and reduces ℓ₂ error from 0.13 to 0.01
- ► For every proj solution I found I could always find a permutation with this property!!
- ...On closer inspection, many columns reported equal data
- ► Small numerical error
- ► Approximate solutions respect Nonzero pattern
- ► LP too small for approximation to have an impact on CPU time

Outline

Sparsity and ℓ_1 minimization Motivation Basis pursuit Theoretical results Application to noisy channel encoding Improvements

Subsection 1

Motivation

Coding problem for costly channels

- ▶ Need to send a long sparse vector $y \in \mathbb{R}^n$ with $n \gg 1$ on a costly channel
 - 1. Sample full rank $m \times n$ encoding matrix A with $m \le n$ both parties know A
 - 2. Encode $b = Ay \in \mathbb{R}^m$
 - 3. Send b
- ▶ Decode by finding sparsest x s.t. Ax = b

Coding problem for noisy channels

- ▶ Need to send a "word" $w \in \mathbb{R}^d$ on a noisy channel
- ▶ Encoding $n \times d$ matrix Q, with n > d, send $z = Qw \in \mathbb{R}^n$ preliminary: both parties know Q
- ▶ (Low) prob. e of error: e n comp. of z sent wrong they can be totally off
- Receive (wrong) vector $\bar{z} = z + x$ where x is sparse
- ightharpoonup Can we recover z?
- A^T Q
- ► Choose $m \times n$ matrix A s.t. m = n d and AQ = 0
- $\bigcup_{\mathbf{Q}} \bigcap_{\mathbf{n}} \quad \mathbf{Let} \, b = A\bar{z} = A(z+x) = A(Qw+x) = AQw + Ax = Ax$
 - Suppose we can find sparsest x' s.t. Ax' = b
- ► Recover $w' = (Q^{\top}Q)^{-1}Q^{\top}z'$ Likelihood of getting small $\|w - w'\|$?

Subsection 2

Basis pursuit

Sparsest solution of a linear system

- ▶ Problem $P^0(A, b) \equiv \min\{\|x\|_0 \mid Ax = b\}$ is NP-hard Reduction from Exact Cover by 3-Sets [Garey&Johnson 1979, A6[MP5]]
- Relax to $P^1(A, b) \equiv \min\{||x||_1 \mid Ax = b\}$
- ► Reformulate to LP:

- ► Empirical observation: can often find optimum Too often for this to be a coincidence
- ► Theoretical justification by Candès, Tao, Donoho "Mathematics of sparsity", "Compressed sensing", "Compressive sampling"

Phase transition in sparse recovery

Consider $P^1(A, b)$ where A is $m \times n$

Probability that solution x^* of randomly generated P has sparsity s

[Tropp et al., Information and Inference, 2014]

Graphical intuition 1

▶ Wouldn't work with ℓ_2, ℓ_∞ norms

Ax = b flat at poles — "zero probability of sparse solution"

Warning: this is not a proof, and there are cases not explained by this drawing [Candès 2014]

Graphical intuition 2

- $ightharpoonup \hat{x}$ such that $A\hat{x} = b$ approximates x in ℓ_p norms
- ightharpoonup p = 1 only convex case zeroing some components

From [Davenport et al., 2012]; again, this is not a proof!

Subsection 3

Theoretical results

Main theorem and proof structure

- ► Thm. If:
 - $\hat{x} \in \mathbb{R}^n$ has t nonzeros and n-t near-zeros or zeros
 - ightharpoonup \bar{x} closest approx of \hat{x} with exactly t nonzeros
 - $ightharpoonup A \sim N(0,1)^{mn}$ with m < n but not too small
 - $\qquad \qquad b = A\hat{x} \text{ and } x^* \text{ is the unique min of } P^1(A,b)$

then x^* is a good approximation of \bar{x}

- $ightharpoonup \mathbf{Prop.}$ If A has the null space property (NSP), result follows
- ▶ **Prop.** If A has restricted isometry property (RIP), NSP follows
- ▶ **Prop.** If $A \sim N(0,1)^{mn}$, then A has RIP

Some notation

- ► Consider Ax = b where A is $m \times n$ with m < n \Rightarrow if feasible it has uncountably many solutions
- Let $x \in \mathbb{R}^n$ s.t. Ax = b, $N_A = \text{null}(A)$, $N_A^0 = N_A \setminus \{0\}$ $\Rightarrow \forall y \in N_A \text{ we have } A(x+y) = Ax + Ay = Ax + 0 = b$
- ► For $z \in \mathbb{R}^n$ and $S \subseteq N = \{1, ..., n\}$ let $S' = N \setminus S$ define $z[S] = ((z_j \text{ iff } j \in S) \text{ xor } 0 \mid j \leq n)$ restriction of z to S
- ▶ Note that $\forall z \in \mathbb{R}^n$ we have z = z[S] + z[S']

Null space property

- ▶ **Defn.** $\mathsf{NSP}_s(A) \equiv \forall S \subseteq \{1,\dots,n\} \ \big(|S| = s \ \rightarrow \ \forall y \in N_A^0 \ \|y[S]\|_1 < \|y[S']\|_1 \big)$ A has the null space property of order s
- ► Choose solution x^* of Ax = b with min ℓ_1 norm Let $S = \text{supp}(x^*)$ and suppose |S| = t
- ▶ **Prop.** $\forall x^* \in \mathbb{R}^n$ with $|\text{supp}(x^*)| = t$ and $b = Ax^*$ x^* unique min of $P^1(A, b)$ iff $\mathsf{NSP}_t(A)$

Proof of the proposition (\Rightarrow)

$[\forall x^* \ \textbf{(} x^* \ \textbf{uniq min of} \ P^1(A,Ax^*)\textbf{)}] \Rightarrow \mathsf{NSP}_t(A)$

- ▶ Suppose x^* unique soln of $P^1(A, b)$ with $b = Ax^*$
- ▶ Let $y \in N_A^0$ and $S \subseteq \{1, ..., n\}$ with |S| = t
- Since $|\operatorname{supp}(y[S])| = t$ y[S] unique min of $P^1(A, Ay[S])$ by hypothesis
- ▶ $y = y[S] + y[S'] \in N_A \Rightarrow 0 = Ay = A(y[S]) + A(y[S'])$ $\Rightarrow A(-y[S']) = Ay[S] \neq 0$
- ▶ By uniqueness, $||A(-y[S'])||_1 > ||Ay[S]||_1$ as claimed

Proof of the proposition (\Leftarrow)

$$\mathsf{NSP}_t(A) \Rightarrow \forall x^*, \mathbf{unique\ min}\ P^1(A,Ax^*)\ \mathbf{is}\ x^*$$

- ▶ Let $S = \text{supp}(x^*)$ and |S| = t
- Let \bar{x} soln. of Ax = b, then $\bar{x} = x^* y$ with $y \in N_A$

$$\begin{split} \|x^*\|_1 &= \|(x^* - \bar{x}[S]) + \bar{x}[S]\|_1 &\leq \text{[by triangle inequality]} \\ &\leq \|x^* - \bar{x}[S]\|_1 + \|\bar{x}[S]\|_1 &= \text{[since } S = \text{supp}(x^*)] \\ &= \|x^*[S] - \bar{x}[S]\|_1 + \|\bar{x}[S]\|_1 &= \text{[since } x^* - \bar{x} = y] \\ &= \|y[S]\|_1 + \|\bar{x}[S]\|_1 &< \text{[by NSP}_t(A)] \\ &< \|y[S']\|_1 + \|\bar{x}[S]\|_1 &= \text{[since } x^*[S'] = 0 \land y = x^* - \bar{x}] \\ &= \| - \bar{x}[S']\|_1 + \|\bar{x}[S]\|_1 &= \text{[since } \| - z\|_1 = \|z\|_1 \land z[S] + z[S'] = z] \\ &= \|\bar{x}\|_1 \end{split}$$

A variant of the null space property

- ▶ Motivation: "almost sparse solutions" given \hat{x} with $\operatorname{supp}(\hat{x}) \geq t$ and $b = A\hat{x}$, assume $\exists \epsilon > 0$ s.t. $\bar{x} = \max(0, x 1\epsilon)$ has $\operatorname{supp}(\bar{x}) = t$ i.e. \hat{x} "almost" has support size t
- Find closest approx x^* of \hat{x} with supp $(x^*) = t$
- ▶ Adapt null space property: $\mathsf{NSP}_t^{\rho}(A) \Leftrightarrow \exists \rho \in (0,1) \ \forall S \subseteq N \ (|S| = t \to \|y[S]\|_1 \le \rho \|y[S']\|_1)$
- ▶ **Prop.** $\mathsf{NSP}_t^\rho(A) \Rightarrow \mathsf{if}\ x^* \ \mathsf{min}\ \mathsf{of}\ P^1(A,A\hat{x})\ \mathsf{then}$

$$||x^* - \hat{x}||_1 \le 2\frac{1+\rho}{1-\rho}||\bar{x} - \hat{x}||_1$$

Moreover, if $supp(\hat{x}) = t$ then $x^* = \hat{x} = \bar{x}$

i.e. x^* is a good approximation of \bar{x}

Pf. see Thm. 5.8 in [Damelin & Miller 2012]

Restricted isometry property

- $\blacktriangleright \ \mathsf{RIP}_t^\delta(A) \quad \Leftrightarrow \quad \forall x \in \mathbb{R}^n \text{ s.t. } \mathsf{supp}(x) = t \text{ we have }$
 - $(1 \delta) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta) \|x\|_2^2$
- ▶ **Prop.** $\mathsf{RIP}_{2t}^{\delta}(A) \land \rho = \frac{\sqrt{2}\delta}{1-\delta} < 1 \implies \mathsf{NSP}_{t}^{\rho}(A)$ Pf. see Thm. 5.12 in [Damelin & Miller 2012]
- It suffices that $\delta < \frac{1}{1+\sqrt{2}} \approx 0.4142$

RIP and eigenvalues

- ► Recall $\text{RIP}_t^{\delta}(A)$: $\forall x \text{ with } S = \text{supp}(x) \text{ and } |S| = t$ $(1 - \delta) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta) \|x\|_2^2$
- ▶ Let $A_T = (A_i \mid i \in T)$, where A_i is the *i*-th col. of A
- $||Ax||_2^2 = \langle Ax, Ax \rangle = \langle A_S x[S], A_S x[S] \rangle = \langle A_S^\top A_S x[S], x[S] \rangle$
- ► Since A_S is $m \times t$, $B^S = A_S^T A_S$ is $t \times t$ and PSD
- ► Moreover, $\lambda_{\min}(B^S) \|x\|_2^2 \le \langle B^S x, x \rangle \le \lambda_{\max}(B^S) \|x\|_2^2$
- $\blacktriangleright \ \operatorname{Let} \lambda^L = \min_{|S| = t} \lambda_{\min}(B^S), \lambda^U = \max_{|S| = t} \lambda_{\max}(B^S)$
- $ightharpoonup \Rightarrow 1 \delta \le \lambda^L \le \lambda^U \le 1 + \delta$

RIP and $P^0(A, b)$

- ► Recall $P^0(A, b) \equiv \min\{||x||_0 \mid Ax = b\}$ is NP-hard find solution to Ax = b with smallest support size
- ▶ Thm. Let $\hat{x} \in \mathbb{R}^n$ with $|\text{supp}(x)| = t, \delta < 1, A$ s.t. $\text{RIP}_{2t}^{\delta}(A)$, $x^* = \text{arg}P^0(A, A\hat{x})$; then $x^* = \hat{x}$

Pf. Suppose false, let $y=x^*-\hat{x}\neq 0$; by defn of x^* we have $\|x^*\|_0 \leq \|\hat{x}\|_0 \leq t$, hence $\|y\|_0 \leq 2t$, so since A has RIP get $\|Ay\|_2^2 \in (1\pm\delta)\|y\|_2^2$, but $Ay=Ax^*-A\hat{x}=0$ while $y\neq 0$, and $\delta\in(0,1)\to 1\pm\delta>0$, hence $0\in(\alpha,\beta)$ where $\alpha,\beta>0$, contradiction

Thm. 23.6 [Shwartz & Ben-David, 2014]

Construction of A s.t. $\mathsf{RIP}_t^\delta(A)$

- ▶ Need $\lambda \approx 1$ for each eigenvalue λ of B^S
- ▶ ⇒ Need $\forall S \subseteq N \quad |S| = t \rightarrow A_S^{\top} A_S \approx I_t$
- ightharpoonup \Rightarrow Need

$$\forall i < j \le n \quad A_i^{\top} A_j \approx 0$$

$$\forall i \le n \quad A_i^{\top} A_i = ||A_i||_2^2 \approx 1$$

- ▶ Sufficient condition: A sampled from $N(0, \frac{1}{\sqrt{m}})^{mn}$
- ► Difference with JLL

RIP holds for uncountably many vectors x with $|\mathsf{supp}(x)| = t$ JLL holds for given sets of finitely many vectors with any support

Random matrices with orthogonal columns

- 1. Defn. Rnd vect $A_i \in \mathbb{R}^m$ is isotropic iff $cov(A_i) = I_m$ remark: (a) $cov(X) = \mathsf{E}(XX^\top)$; (b) if $A_i \sim \mathsf{N}(0,1)^m$ then A_i isotropic
- 2. An isotropic rnd vect A_i is s.t. $\forall x \in \mathbb{R}^m \ \mathsf{E}(\langle A_i, x \rangle^2) = \|x\|_2^2$ For two sq. symm. matrices B, C we have B = C iff $\forall x \ (x^\top B x = x^\top C x)$; hence $x^\top \mathsf{E}(A_i A_i^\top) x = x^\top I_m x$; LHS is $\mathsf{E}(\langle A_i, x \rangle^2)$, RHS is $\|x\|_2^2$
- 3. An isotropic rnd vect A_i in \mathbb{R}^m is s.t. $\mathsf{E}(\|X\|_2^2) = m$ $\mathsf{E}(\|X\|_2^2) = \mathsf{E}(X^\top X) = \mathsf{E}(\mathsf{tr}(X^\top X)) = \mathsf{E}(\mathsf{tr}(XX^\top)) = \mathsf{tr}(\mathsf{E}(XX^\top)) = \mathsf{tr}(I_m) = m$
- 4. Indep isotr rnd vect A_i , A_j in \mathbb{R}^m have $\mathsf{E}(\langle A_i, A_j \rangle^2) = m$ By conditional expectation $\mathsf{E}(\langle A_i, A_j \rangle^2) = \mathsf{E}_{A_j}(\mathsf{E}_{A_i}(\langle A_i, A_j \rangle^2 \mid A_j))$; by Item 2 inner expectation is $\|A_j\|_2^2$, by Item 3 outer is m
- 5. If $A_i \sim N(0,1)^m$, $||A_i||_2 \sim \sqrt{m}$ wahp by Thm. 3.1.1 in [Vershynin, 2018]
- 6. Independent rnd vectors are almost orthogonal Results above $\Rightarrow \|A_i\|_2, \|A_j\|_2, \langle A_i, A_j \rangle \sim \sqrt{m}$, normalize A_i, A_j to get $\langle \bar{A}_i, \bar{A}_j \rangle \sim 1/\sqrt{m} \Rightarrow$ for m large $\langle \bar{A}_i, \bar{A}_j \rangle \approx 0$

Construction of A s.t. $\mathsf{RIP}_t^\delta(A)$

▶ Thm. For $A \sim N(0,1)^{m \times n}$ and $\delta \in (0,1) \exists c_1, c_2 > 0$ depending on δ s.t.

$$\forall t < m \left(\frac{t}{c_1} \ln\left(\frac{n}{t}\right) \le m \to \mathsf{Prob}(\mathsf{RIP}_t^{\delta}(A)) \ge 1 - e^{c_2 m}\right)$$

Pf. see Thm. 5.17 in [Damelin & Miller, 2012]

Remark: extra \sqrt{m} factor in A comes from $\|\cdot\|_2 \leq \|\cdot\|_1 \leq \sqrt{m}\|\cdot\|_2$

► In practice:

- $ightharpoonup \operatorname{Prob}(\mathsf{RIP}_t^{\delta}(A)) = 0$ for m too small w.r.t. t fixed
- ▶ as m increases $Prob(RIP_t^{\delta}(A)) > 0$
- ▶ as m increases even more $\mathsf{Prob}(\mathsf{RIP}_t^{\delta}(A)) \to 1$ wahp
- ightharpoonup achieve logarithmic compression for large n and fixed t
- $A \sim N(0,1)^{mn} \land m \ge 10t \ln \frac{n}{t} \Rightarrow \mathsf{RIP}_t^{\frac{1}{3}}(A) \text{ wahp, Lem. 5.5.2 [Moitra 2018]}$
- works better than worst case bounds ensured by theory

Some literature

- 1. Damelin & Miller, The mathematics of signal processing, CUP, 2012
- 2. Vershynin, High-dimensional probability, CUP, 2018
- 3. Moitra, Algorithmic aspects of machine learning, CUP, 2018
- 4. Shwartz & Ben-David, Understanding machine learning, CUP, 2014
- 5. Hand & Voroninski, arxiv.org/pdf/1611.03935v1.pdf
- 6. Candès & Tao statweb.stanford.edu/~candes/papers/DecodingLP.pdf
- 7. Candès statweb.stanford.edu/~candes/papers/ICM2014.pdf
- 8. Davenport et al., statweb.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf
- 9. Lustig et al., people.eecs.berkeley.edu/~mlustig/CS/CSMRI.pdf

and many more (look for "compressed sensing")

Subsection 4

Application to noisy channel encoding

Noisy channel encoding procedure

Algorithm:

- 1. message: character string s
- 2. $w = \text{string2bitlist}(s) \in \{0, 1\}^d$
- 3. send z = Qw, receive $\bar{z} = z + \hat{x}$, let $b = A\bar{z}$ $\Delta = density \ of \ \hat{x}$, $Q \ is \ n \times d \ full \ rank \ with \ n > d$
- **4.** $x^* = \arg P^1(A, b)$
- 5. $z^* = \bar{z} x^*$
- **6.** $w^* = \mathsf{cap}(\mathsf{round}((Q^\top Q)^{-1}Q^\top z^*), [0, 1])$
- 7. $s^* = \text{bitlist2string}(w^*)$
- **8.** evaluate $s_{err} = ||s s^*||$

Parameter choice [Matousek]:

- $\Delta = 0.08$
- ightharpoonup n = 4d

Finding orthogonal A, Q

- ► [Matousek, Gärtner 2007]:
 - ▶ sample A componentwise from N(0,1)
 - ▶ then "find Q s.t. QA = 0"
 - ightharpoonup Gaussian elim. on underdet. system AQ=0
- ► Faster:
 - ▶ sample $n \times n$ matrix M from uniform distr full rank with probability l
 - ▶ find eigenvector matrix of $M^{\top}M$ (orthonormal basis) random rotation of standard basis (used in original JLL proof)
 - Concatenate d eigenvectors to make Q, and m = n d to make A

AQ = 0 by construction!

Subsection 5

Improvements

LP size reduction

- **▶** Motivation
 - ► Reduce CPU time spent on LP
 - ▶ n = 4d redundancy for $\Delta = 0.08$ error seems excessive
- ► Size of basis pursuit LP
 - $ightharpoonup Ax = b ext{ is an } m \times n ext{ system where } m = n d$
 - ► If $n \gg d$, m "relatively close" to n
 - ▶ Recall random projections for LP: use them!

Computational results

d	n	Δ	ϵ	α	s_{err}^{org}	s_{err}	\mathbf{CPU}^{org}	CPU^{prj}
80	320	0.08	0.20	0.02	0	0	1.05	0.56
128	512			0.02	0	0	2.72	1.10
216	864			0.02	0	0	8.83	2.12
248	992			0.02	0	0	12.53	2.53
320	1280			0.02	0	0	23.70	3.35
408	1632			0.02	0	0	43.80	4.75

$$d = |s|, n = 4d, \Delta = 0.08, \epsilon = 0.2$$

$$\begin{array}{l} \bullet \quad \alpha = & \text{Achlioptas density} \\ \mathsf{P}(T_{ij} = -1) = \mathsf{P}(T_{ij} = 1) = \frac{\alpha}{2} \\ \mathsf{P}(T_{ij} = 0) = 1 - \alpha \end{array}$$

- $ightharpoonup s_{\text{err}} = \text{number of different}$
- ► CPU: seconds of elapsed time
- ightharpoonup 1 sampling of A, Q, T

Sentence: Conticuere omnes intentique ora tenebant, inde toro [...]

Reducing redundancy in n

- ► How about taking $n = (1 + \Delta)d$?
- $ightharpoonup m = n d \approx \Delta d \text{ is very small}$
- Prevents compressed sensing from working correctly not enough constraints
- ► Would need both m and d to be $\approx n$ and AQ = 0: impossible

 \mathbb{R}^n too small to host $m+d\approx 2n$ orthogonal vectors

▶ Relax to $AQ \approx 0$?

Almost orthogonality by the JLL

Aim at A^{\top} , Q with $m + d \approx 2n$ and $AQ \approx 0$

▶ JLL Corollary: $\exists O(e^k)$ approx orthog vectors in \mathbb{R}^k

Pf. Let T be a $k \times p$ random projector (RP), use conc. meas. on $||z||_2^2$

$$\begin{array}{l} \mathsf{Prob}(\,(1-\varepsilon)\|z\|_2^2 \leq \|Tz\|_2^2 \leq (1+\varepsilon)\|z\|_2^2\,) \geq 1 - 2e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k} \\ \mathsf{given}\, x,y \in \mathbb{R}^n \; \mathsf{apply}\, \mathsf{to}\, x + y, x - y \; \mathsf{and} \, \mathsf{union} \, \mathsf{bound:} \end{array}$$

$$\begin{split} |\langle Tx, Ty \rangle - \langle x, y \rangle| &= \frac{1}{4} \big| \|T(x+y)\|^2 - \|T(x-y)\|^2 - \|x+y\|^2 + \|x-y\|^2 \big| \\ &\leq \frac{1}{4} \big| \|T(x+y)\|^2 - \|x+y\|^2 \big| + \frac{1}{4} \big| \|T(x-y)\|^2 - \|x-y\|^2 \big| \\ &\leq \frac{\varepsilon}{4} (\|x+y\|^2 + \|x-y\|^2) = \frac{\varepsilon}{2} (\|x\|^2 + \|y\|^2) \end{split}$$

with prob $\geq 1 - 4e^{-C\varepsilon^2 k}$; apply to std basis mtx I_p , get

$$-\varepsilon \le \langle T\mathbf{e}_i, T\mathbf{e}_j \rangle - \langle \mathbf{e}_i, \mathbf{e}_j \rangle \le \varepsilon$$

 $\Rightarrow \exists p \text{ almost orthogonal vectors in } \mathbb{R}^k, \text{ and } k = O(\frac{1}{\varepsilon^2} \ln p) \Rightarrow p = O(e^k)$

▶ Algorithm: $k = n, p = \lceil e^n \rceil$, get 2k columns from TI_p

 $Also see \verb|[https://terrytao.wordpress.com/2013/07/18/a-cheap-version-of-the-kabatjanskii-levenstein-bound-for-almost-orthogonal-vectors/]|$

Almost orthogonality by the JLL

- ► Aim at $m \times n$ A and $n \times m$ Q s.t. $AQ \approx 0$ with $n = (1 + \Delta')m$ and Δ' "small" (say $\Delta' < 1$)
- ▶ Need 2m approx orthog vectors in \mathbb{R}^n with n < 2m JLL errors too large for such "small" sizes
- Note we only need AQ = 0: can accept non-orthogonality in rows of A & cols of Q

Almost orthogonality by LP

- ➤ Sample Q and compute A using an LP WLOG: we could sample A and compute Q
- $\sum_{\substack{i \le m \\ j \le n}} \mathsf{Uniform}(-1,1) A_{ij}$
- ▶ subject to AQ = 0 and $A \in [-1, 1]$
- for m = 328 and n = 590 (i.e. $\Delta' = 0.8$):
 - error: $\sum A_i Q^j = O(10^{-10})$
 - rank: full (not really, but $|A| = O(\epsilon)$)
 - ► CPU: 688s (meh)
- for m = 328 and n = 492 (i.e. $\Delta' = 0.5$): the same
- for m = 328 and n = 426 (i.e. $\Delta' = 0.3$): **CPU 470s**
- ▶ Reduce CPU time by solving m LPs deciding A_i (for $i \le m$)

Computational results

m	n	Δ'	s_{err}^{org}	s_{err}^{prj}	CPU^{org}	CPU^{prj}
328	426	0.3	182	15	2.45	1.87
			154	0	2.20	1.49
	459	0.4	0	1	4.47	2.45
			5	17	2.86	1.46
	492	0.5	60	0	4.53	1.18
			34	0	5.38	1.18
	590	8.0	14	0	8.30	1.41
			107	4	6.76	1.43

- ► CPU for computing A, Q not counted: precomputation is possible
- ► Approximate beats precise!

In summary

[Virgil, Aeneid, Cantus II]

- ▶ If s is short, set $\Delta' = \Delta$ and use compressed sensing (CS)
- ▶ If s is longer, try increasing Δ' and use CS
- ightharpoonup If s is very long, use JLL-projected CS
- ightharpoonup Can use approximately orthogonal A, Q too

Conticuere omnes, intentique ora tenebant. Inde toro pater Aeneas sic orsus ab alto: Infandum, regina, iubes renovare dolorem. Troianas ut opes et lamentabile regnum eruerint Danai Quaequae ipse miserrima vidi et quorum pars magna fui.

$$m = 1896, n = 2465$$

 $\Delta'=0.3$: min s.t. CS is accurate

method	error	CPU
CS	0	29.67s
JLL-CS	2	17.13s

 $These \ results \ are \ consistent \ over \ 3 \ samplings$

 $Technique\ applies\ to\ all\ sparse\ retrieval\ problems$

Outline

Clustering in Natural Language Clustering on graphs Clustering in Euclidean spaces Distance resolution limit MP formulations Random projections again

Job offers

Optimisation / Operations Senior Manager

VINCL Airports

Rueil-Malmaison, Île-de-France, France

...for the delivery of the various optimization projects... to the success of each optimization project...

Pricing Data Scientist/Actuary - Price Optimization Specialist(H-F)

AXA Global Direct Région de Paris, France

...optimization. The senior price optimization... Optimization and Innovation team, and will be part...

Growth Data scientist - Product Features Team

Deezer

Paris, FR

OverviewPress play on your next adventure! Music... to join the Product Performance & Optimization team... www.deezer.com

Analystes et Consultants - Banque - Optimisation des opérations financières...

Accenture

Région de Paris, France

Nous recherchons des analystes jeunes diplômés et des consultants H/F désireux de travailler sur des problématiques d'optimisation des opérations bancaires (optimisation des modèles opérationnels et des processus) en France et au Benelux. Les postes sont à pourvoir en CDI, sur base d'un rattachement...

Electronic Health Record (EHR) Coordinator (Remote)

Aledade, Inc. - Bethesda, MD

Must have previous implementation or optimization experience with ambulatory EHRs and practice management software, preferably with expertise in Greenway,...

Operations Research Scientist

Ford Motor Company - **** 2,381 reviews - Dearborn, MI

Strong knowledge of optimization techniques (e.g. Develop optimization frameworks to support models related to mobility solution, routing problem, pricing and...

IS&T Controller ALSTOM Alstom

Saint-Ouen, FR

The Railway industry today is characterized... reviews, software deployment optimization. running... jobsearch.alstom.com

Fares Specialist / Spécialiste Optimisation des Tarifs Aériens

Egencia, an Expedia company Courbevoie - FR

EgenciaChaque année, Egencia accompagne des milliers de sociétés réparties dans plus de 60 pays à mieux gérer leurs programmes de voyage. Nous proposons des solutions modernes et des services d'exception à des millions de voyageurs, de la planification à la finalisation de leur vovage. Nous répondons...

Automotive HMI Software Experts or Software Engineers Elektrobit (EB)

Elektrobit Automotive offers in Paris interesting... performances and optimization area, and/or software...

Deployment Engineer, Professional Services, Google Cloud Google

Paris, France

Note: By applying to this position your... migration, network optimization, security best...

Operations Research Scientist

Marriott International, Inc - ★★★☆ 4.694 reviews - Bethesda, MD 20817 Analyzes data and builds optimization., Programming models and familiarity with

optimization software (CPLEX, Gurobi)....

Research Scientist - AWS New Artificial Intelligence Team!

Research Scientist - AWS New Artificial Intelligence Team Spiews - Palo Alto, CA

We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center...

An example

Under the responsibility of the Commercial Director, the Optimisation / Operations Senior Manager will have the responsibility to optimise and develop operational aspects for VINCI Airports current and future portfolio of airports. They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. As part of the exercise of its function, the Optimisation Manager will undertake the following: Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives of the various technical services agreements, the strategy of the individual airports and the Group. This function will include: Participation in the definition of airport strategy. Definition of this airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various technical services agreements with our airports by developing specific technical competences from the Head Office level. Oversee the management and definition of all optimisation projects. Identification, overview and management of the project managers responsible for the delivery of the various optimization projects at each asset. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Development and implementation of the Group optimisation plan. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the strategies, trends and best practices of the airport industry and other reference industries in terms of the applicability to the optimization plan. Study of the needs and preferences of the passengers, through a continuous process of marketing research at all of the airports within the VINCI Airports portfolio. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Development and participation in the expansion or refurbishment projects of the airports, to assure a correct configuration and positioning of the operational and commercial area that can allow the optimization of the revenues and operational efficiency. Support the Director Business Development through the analysis and opportunity assessment of areas of optimization for all target assets in all bids and the preparation and implementation of the strategic plan once the assets are acquired. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports [...]

... and blah blah: IS THIS APPROPRIATE FOR MY CV?

Try Natural Language Processing

- ► Automated summary
- ► Relation Extraction
- ► Named Entity Recognition (NER)
- ► Keywords

Automated summary ./summarize.py job01.txt

They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports. You have a diverse range of experiences working at or with airports across various disciplines such as operations, ground handling, commercial, etc. Demonstrated high level conceptual thinking, creativity and analytical skills.

Does it help? hard to say

Relation Extraction

```
./relextr-mitie.py job01.txt
```

```
====== RELATIONS ======
Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES_EVENT ] Head Office
Head Office [ INFLUENCED_BY ] Self
Head Office [ INTERRED_HERE ] Self
VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self
Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office
Self [ ORGANIZATIONS WITH THIS SCOPE ] Head Office
Self [ PEOPLE INVOLVED ] Head Office
Self [ PLACE OF DEATH ] Head Office
Head Office [ RELIGION ] Self
VINCI Airports [ RELIGION ] Optimisation Strategy
```

Does it help? hardly

Named Entity Recognition

```
./ner-mitie.py job01.txt
==== NAMED ENTITIES =====
English MISC
French MISC
Head Office ORGANIZATION
Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON
Technical Services Agreements MISC
VINCI Airports ORGANIZATION
Does it help?...maybe
```

For a document D, let NER(D) =named entity words

Subsection 1

Clustering on graphs

Exploit NER to infer relations

- 1. Recognize named entities from all documents
- 2. Use them to compute distances among documents
- 3. Use modularity clustering

The named entities

- Operations Head Airports Office VINCI Technical Self French/Strategy Agreements English Services Optimisation
 Europe and P&C Work Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate
- International English Scientist Product Analyze Java Features & Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press
- Performance Deezer Data Computer
- Lean6Sigma Lean-type Office Banking Paris CDI France RPA Middle Accenture English Front Benelux
- 5. Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance market develop Finance & IS&T Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
- Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia English Fares with Company
- Paris Integration France Automation Automotive French. Linux/Genivi HMI UI Software EB Architecture Elektrobit technologies
- GUIDE Engineers German Technology SW well-structured Experts Tools Product Google Managers Python JavaScript AWS JSON Big Query Java Platform Engineering HTML MySOL Services Professional
- Googles Ruby Cloud OAuth
- EHR Aledades Provide Wellness Perform ACO Visits EHR-system-specific Coordinator Aledade Medicare Greenway Allscripts
- 10. Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata & Python Company GDIA Ford Visa SPARK Data
 - Applied Science Work C++ R Unix/Linux Physics Microsoft Operations Monte JAVA Mobility Insight Analytics Engineering Computer Motor SOL Operation Carlo PowerPoint
- 11. Management Java CANDIDATE Application Statistics Gurobi Provides Provider Mathematics Service Maintains Deliver SM&G SAS/HPF SAS Data Science Economics Marriott PROFILE Providers OR Engineering Computer SQL Education
- Alto Statistics Java Sunnyvale Research ML Learning Science Operational Machine Amazon Computer C++ Palo Internet R Seattle
- LLamasoft Work Fortune Chain Supply C# Top Guru What Impactful Team LLamasofts Makes Gartner Gain
- Worldwide Customer Java Mosel Service Python Energy Familiarity CPLEX Research Partnering Amazon R SQL CS Operations
- Operations Science Research Engineering Computer Systems or Build
- 16. Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain Economics Experience R Research US Scientist UKSQL Japan Economist Competency Statistics Knowledge Employer communication Research Machine EEO United ORMA Way OFCCP Corporation Mining
- & C# Python Visual Studio Opportunity Excellent Modeling Data Jacksonville Arena Talent Skills Science Florida Life Equal AnyLogic Facebook CSX Oracle The Strategy Vision Operations Industrial Stream of States Analytics Engineering Computer Framework Technology
- 18. Java Asia Research Safety in Europe Activities North Company WestRocks Sustainability America Masters WRK C++ Norcross Optimization GA ILOG South NYSE Operations AMPL CPLEX Identify Participate OPL WestRock
- 19. Management Federal Administration System NAS Development JMP Traffic Aviation FAA Advanced McLean Center CAASD Flow Air
- Tableau Oracle MITRE TFM Airspace National SQL Campus 20. Abilities & Skills 9001-Ouality S Management ISO GED
 - Statistics Group RDBMS Research Mathematics Teradata ORSA Greenplum Java SAS U.S. Solution Time Oracle Military Strategy Physics Linear/Non-Linear Operations both Industrial Series Econometrics Engineering Clarity Regression

299/392

Word similarity: WordNet

WordNet: hyponyms of "boat"

Wu-Palmer word similarity

Semantic WordNet distance between words w_1, w_2

$$\mathsf{wup}(w_1, w_2) = \frac{2 \operatorname{depth}(\mathsf{lcs}(w_1, w_2))}{\mathsf{len}(\mathsf{shortest_path}(w_1, w_2)) + 2 \operatorname{depth}(\mathsf{lcs}(w_1, w_2))}$$

- lcs: lowest common subsumer
 earliest common word in paths from both words to WordNet root
- depth: length of path from root to word

Example: wup(dog, boat)?

depth(whole) = 4

```
-> chordate -> animal -> organism -> living_thing -> whole -> artifact
-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat

13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat
```

18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate

$$\text{wup}(\mathbf{dog}, \mathbf{boat}) = 8/21 = 0.380952380952$$

Extensions of Wu-Palmer similarity

 \blacktriangleright to lists of words H, L:

$$\operatorname{wup}(H,L) = \frac{1}{|H|\,|L|} \sum_{v \in H} \sum_{w \in L} \operatorname{wup}(v,w)$$

▶ to pairs of documents D_1, D_2 :

$$\mathsf{wup}(D_1,D_2) = \mathsf{wup}(\mathsf{NER}(D_1),\mathsf{NER}(D_2))$$

ightharpoonup wup and its extensions are always in [0,1]

The similarity matrix

 $1.00\ 0.63\ 0.51\ 0.51\ 0.66\ 0.45\ 0.46\ 0.47\ 0.72\ 0.58\ 0.54\ 0.50\ 0.72\ 0.38\ 0.49\ 0.47\ 0.47\ 0.44\ 0.54\ 0.31\ 0.44$ $0.63\ 1.00\ 0.45\ 0.45\ 0.54\ 0.40\ 0.42\ 0.42\ 0.57\ 0.49\ 0.46\ 0.45\ 0.59\ 0.35\ 0.43\ 0.42\ 0.42\ 0.41\ 0.47\ 0.32\ 0.40$ $0.51 \ 0.45 \ 1.00 \ 0.40 \ 0.53 \ 0.35 \ 0.37 \ 0.37 \ 0.58 \ 0.47 \ 0.43 \ 0.40 \ 0.59 \ 0.28 \ 0.39 \ 0.37 \ 0.38 \ 0.35 \ 0.43 \ 0.24 \ 0.35$ 0.51 0.45 0.40 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.38 0.48 0.47 0.47 0.45 0.53 0.33 0.44 $0.66\ 0.54\ 0.53\ 0.63\ 1.00\ 0.34\ 0.35\ 0.35\ 0.49\ 0.42\ 0.39\ 0.37\ 0.50\ 0.29\ 0.36\ 0.35\ 0.35\ 0.35\ 0.34\ 0.40\ 0.26\ 0.34$ $0.45 \,\, 0.40 \,\, 0.35 \,\, 0.45 \,\, 0.34 \,\, 1.00 \,\, 0.42 \,\, 0.43 \,\, 0.66 \,\, 0.54 \,\, 0.49 \,\, 0.45 \,\, 0.67 \,\, 0.34 \,\, 0.44 \,\, 0.43 \,\, 0.43 \,\, 0.40 \,\, 0.49 \,\, 0.28 \,\, 0.40$ $0.46 \,\, 0.42 \,\, 0.37 \,\, 0.46 \,\, 0.35 \,\, 0.42 \,\, 1.00 \,\, 0.44 \,\, 0.66 \,\, 0.54 \,\, 0.49 \,\, 0.47 \,\, 0.67 \,\, 0.34 \,\, 0.45 \,\, 0.45 \,\, 0.44 \,\, 0.42 \,\, 0.50 \,\, 0.28 \,\, 0.40$ $0.47\ 0.42\ 0.37\ 0.46\ 0.35\ 0.43\ 0.44\ 1.00\ 0.67\ 0.55\ 0.51\ 0.48\ 0.68\ 0.36\ 0.47\ 0.45\ 0.45\ 0.43\ 0.51\ 0.30\ 0.42$ $0.72\ 0.57\ 0.58\ 0.67\ 0.49\ 0.66\ 0.66\ 0.67\ 1.00\ 0.33\ 0.31\ 0.29\ 0.40\ 0.23\ 0.28\ 0.27\ 0.28\ 0.26\ 0.31\ 0.21\ 0.26$ $0.58 \,\, 0.49 \,\, 0.47 \,\, 0.56 \,\, 0.42 \,\, 0.54 \,\, 0.54 \,\, 0.55 \,\, 0.33 \,\, 1.00 \,\, 0.46 \,\, 0.43 \,\, 0.59 \,\, 0.34 \,\, 0.42 \,\, 0.41 \,\, 0.41 \,\, 0.39 \,\, 0.46 \,\, 0.31 \,\, 0.39$ $0.54\ 0.46\ 0.43\ 0.52\ 0.39\ 0.49\ 0.49\ 0.51\ 0.31\ 0.46\ 1.00\ 0.39\ 0.56\ 0.29\ 0.38\ 0.36\ 0.36\ 0.34\ 0.41\ 0.24\ 0.35$ $0.50 \ 0.45 \ 0.40 \ 0.49 \ 0.37 \ 0.45 \ 0.47 \ 0.48 \ 0.29 \ 0.43 \ 0.39 \ 1.00 \ 0.70 \ 0.40 \ 0.50 \ 0.49 \ 0.48 \ 0.46 \ 0.54 \ 0.35 \ 0.46$ $0.72 \ 0.59 \ 0.59 \ 0.68 \ 0.50 \ 0.67 \ 0.68 \ 0.40 \ 0.59 \ 0.56 \ 0.70 \ 1.00 \ 0.23 \ 0.29 \ 0.29 \ 0.29 \ 0.28 \ 0.33 \ 0.20 \ 0.27$ $0.38\ 0.35\ 0.28\ 0.38\ 0.29\ 0.34\ 0.34\ 0.36\ 0.23\ 0.34\ 0.29\ 0.40\ 0.23\ 1.00\ 0.48\ 0.45\ 0.46\ 0.42\ 0.52\ 0.30\ 0.43$ $0.49 \ 0.43 \ 0.39 \ 0.48 \ 0.36 \ 0.44 \ 0.45 \ 0.47 \ 0.28 \ 0.42 \ 0.38 \ 0.50 \ 0.29 \ 0.48 \ 1.00 \ 0.39 \ 0.39 \ 0.36 \ 0.45 \ 0.26 \ 0.37$ 0.47 0.42 0.37 0.47 0.35 0.43 0.45 0.45 0.27 0.41 0.36 0.49 0.29 0.45 0.39 1.00 0.48 0.46 0.54 0.33 0.440.47 0.42 0.38 0.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.51 0.32 0.430.44 0.41 0.35 0.45 0.34 0.40 0.42 0.43 0.26 0.39 0.34 0.46 0.28 0.42 0.36 0.46 0.43 1.00 0.53 0.31 0.430.54 0.47 0.43 0.53 0.40 0.49 0.50 0.51 0.31 0.46 0.41 0.54 0.33 0.52 0.45 0.54 0.51 0.53 1.00 0.36 0.46 $0.31\ 0.32\ 0.24\ 0.33\ 0.26\ 0.28\ 0.28\ 0.30\ 0.21\ 0.31\ 0.24\ 0.35\ 0.20\ 0.30\ 0.26\ 0.33\ 0.32\ 0.31\ 0.36\ 1.00\ 0.47$ $0.44\ 0.40\ 0.35\ 0.44\ 0.34\ 0.40\ 0.40\ 0.42\ 0.26\ 0.39\ 0.35\ 0.46\ 0.27\ 0.43\ 0.37\ 0.44\ 0.43\ 0.43\ 0.43\ 0.46\ 0.47\ 1.00$

The similarity matrix

Too uniform! Try zeroing values below median

				J			2		-												
/	1.00	0.63	0.51	0.51	0.66	0.45	0.46	0.47	0.72	0.58	0.54	0.50	0.72		0.49	0.47	0.47	0.44	0.54		$0.44 \$
1	0.63	1.00	0.45	0.45	0.54				0.57	0.49	0.46	0.45	0.59						0.47		0.00
l	0.51	0.45	1.00		0.53				0.58	0.47			0.59								0.00
l	0.51	0.45		1.00	0.63	0.45	0.46	0.46	0.67	0.56	0.52	0.49	0.68		0.48	0.47	0.47	0.45	0.53		0.44
١	0.66	0.54	0.53	0.63	1.00				0.49				0.50								0.00
l	0.45			0.45		1.00			0.66	0.54	0.49	0.45	0.67		0.44				0.49		0.00
l	0.46			0.46			1.00	0.44	0.66	0.54	0.49	0.47	0.67		0.45	0.45	0.44		0.50		0.00
l	0.47			0.46			0.44	1.00	0.67	0.55	0.51	0.48	0.68		0.47	0.45	0.45		0.51		0.00
l	0.72	0.57	0.58	0.67	0.49	0.66	0.66	0.67	1.00												0.00
١	0.58	0.49	0.47	0.56		0.54	0.54	0.55		1.00	0.46	0.43	0.59						0.46		0.00
١	0.54	0.46		0.52		0.49	0.49	0.51		0.46	1.00		0.56								0.00
١	0.50	0.45		0.49		0.45	0.47	0.48		0.43		1.00	0.70		0.50	0.49	0.48	0.46	0.54		0.46
١	0.72	0.59	0.59	0.68	0.50	0.67	0.67	0.68		0.59	0.56	0.70	1.00								0.00
l														1.00	0.48	0.45	0.46		0.52		0.43
ı	0.49			0.48		0.44	0.45	0.47				0.50		0.48	1.00				0.45		0.00
ı	0.47			0.47			0.45	0.45				0.49		0.45		1.00	0.48	0.46	0.54		0.44
١	0.47			0.47			0.44	0.45				0.48		0.46		0.48	1.00		0.51		0.00
١	0.44			0.45								0.46				0.46		1.00	0.53		0.00
١	0.54	0.47		0.53		0.49	0.50	0.51		0.46		0.54		0.52	0.45	0.54	0.51	0.53	1.00		0.46
١																				1.00	0.47
١	0.44			0.44								0.46		0.43		0.44			0.46	0.47	1.00 /

The graph

G = (V, E), weighted adjacency matrix A

 $A \ is \ like \ B \ with \ zeroed \ low \ components$

Modularity clustering

"Modularity is the fraction of the edges that fall within a cluster minus the expected fraction if edges were distributed at random."

- "at random" = random graphs over same degree sequence
- ▶ degree sequence = $(k_1, ..., k_n)$ where $k_i = |N(i)|$
- "expected" = all possible "half-edge" recombinations

- expected edges between u, v: $k_u k_v / (2m)$ where m = |E|
- $\mod(u,v) = (A_{uv} k_u k_v/(2m))$
- $\mod(G) = \sum_{\{u,v\} \in E} \mod(u,v) x_{uv}$

 $x_{uv} = 1$ if u, v in the same cluster and 0 otherwise

Natural extension" to weighted graphs: $k_u = \sum_v A_{uv}, m = \sum_{uv} A_{uv}$

Use modularity to define clustering

- ► What is the "best clustering"?
- ► Maximize discrepancy between actual and expected "as far away as possible from average"

$$\max \quad \sum_{\{u,v\} \in E} \mathsf{mod}(u,v) x_{uv}$$

$$\forall u \in V, v \in V \quad x_{uv} \in \{0,1\}$$

- ► Issue: optimum could be intransitive
- ► Idea: treat clusters as cliques (even if zero weight) then clique partitioning constraints for transitivity

$$\forall i < j < k$$
 $x_{ij} + x_{jk} - x_{ik} \le 1$
 $\forall i < j < k$ $x_{ij} - x_{jk} + x_{ik} \le 1$
 $\forall i < j < k$ $-x_{ij} + x_{jk} + x_{ik} \le 1$

if $i, j \in C$ and $j, k \in C$ then $i, k \in C$

The resulting clustering

Is it good?

Vinci	Accenture	Elektrobit	Amazon 1-3
Axa	Expedia	Google	CSX
Deezer	fragmentl	Ford	Westrock
Alstom	C	Marriott	Mitre
Aledade		Llamasoft	Clarity
			fragment2

- ?— named entities rarely appear in WordNet
- ▶ Desirable property: *chooses number of clusters*

Subsection 2

Clustering in Euclidean spaces

Clustering vectors

Most frequent words w over collection C of documents d./keywords.py

global environment customers strategic processes teams sql job industry use java developing project process engineering field models opportunity drive results statistical based operational performance using mathematical computer new technical highly market company science role dynamic background products level methods design looking modeling manage learning service customer effectively technology requirements build mathematics problems plan services time scientist implementation large analytical techniques lead available plus technologies sas provide machine product functions organization algorithms position model order identify activities innovation key appropriate different complex best decision simulation strategy meet client assist quantitative finance commercial language mining travel chain amazon pricing practices cloud supply

$$\begin{array}{lcl} \operatorname{tfidf}_C(w,d) & = & \frac{|(t \in d \mid t = w)| \, |C|}{|\{h \in C \mid w \in h\}|} \\ \operatorname{keyword}_C(i,d) & = & \operatorname{\textit{word}} w \operatorname{\textit{having}} i^{th} \operatorname{\textit{best}} \operatorname{tfidf}_C(w,d) \operatorname{\textit{value}} \\ \operatorname{vec}_C^m(d) & = & (\operatorname{tfidf}_C(\operatorname{keyword}_C(i,d),d) \mid i \leq m) \end{array}$$

Transforms documents to vectors

Minimum sum-of-squares clustering

- ightharpoonup MSSC, a.k.a. the k-means problem
- Given points $p_1, \ldots, p_n \in \mathbb{R}^m$, find clusters C_1, \ldots, C_k

$$\min \sum_{j \leq k} \sum_{i \in C_j} \|p_i - \mathsf{centroid}(C_j)\|_2^2$$

where
$$\operatorname{centroid}(C_j) = \frac{1}{|C_j|} \sum_{i \in C_j} p_i$$

▶ k-means alg.: given initial clustering C_1, \ldots, C_k

- 1: $\forall j \leq k \text{ compute } y_j = \text{centroid}(C_j)$
- 2: $\forall i \leq n, j \leq k \text{ if } y_j \text{ is the closest centr. to } p_i \text{ let } x_{ij} = 1 \text{ else } 0$
- 3: $\forall j \leq k \text{ update } C_j \leftarrow \{p_i \mid x_{ij} = 1 \land i \leq n\}$
- 4: repeat until stability

k-means with k=2

Vinci Deezer Accenture Expedia Google Aledade Llamasoft

AXA Alstom Elektrobit Ford **Marriott** Amazon 1-3 **CSX** WestRock **MITRE** Clarity fragments 1-2

k-means with k=2: another run

Deezer Elektrobit Google Aledade

Vinci **AXA** Accenture Alstom Expedia Ford **Marriott** Llamasoft Amazon 1-3 **CSX** WestRock **MITRE** Clarity fragments 1-2

k-means with k=2: third run!

AXA Vinci Deezer Accenture Expedia Alstom Ford Elektrobit **Marriott** Google Aledade Llamasoft Amazon 1-3 CSX WestRock **MITRE** Clarity fragments 1-2

A fickle algorithm

We can't trust *k*-means: why?

Subsection 3

Distance resolution limit

Nearest Neighbours

k-Nearest Neighbours (k-NN). Given:

- $k \in \mathbb{N}$
- a distance function $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$
- ightharpoonup a set $\mathcal{X} \subset \mathbb{R}^n$
- ightharpoonup a point $z \in \mathbb{R}^n \setminus \mathcal{X}$,

find the subset $\mathcal{Y} \subset \mathcal{X}$ such that:

- (a) $|\mathcal{Y}| = k$
- (b) $\forall y \in \mathcal{Y}, x \in \mathcal{X} \quad (d(z, y) \le d(z, x))$

- ▶ basic problem in data science
- pattern recognition, computational geometry, machine learning, data compression, robotics, recommender systems, information retrieval, natural language processing and more
- Example: Used in Step 2 of k-means: assign points to closest centroid

[Cover & Hart 1967]

With random variables

- ► Consider 1-NN
- $\blacktriangleright \ \operatorname{Let} \ell = |\mathcal{X}|$
- ► Distance function family

- \triangleright For each m:
 - random variable Z^m with some distribution over \mathbb{R}^n
 - for $i \leq \ell$, random variable X_i^m with some distrib. over \mathbb{R}^n
 - $\blacktriangleright \ \ X_i^m \ {\bf iid} \ {\bf w.r.t.} \ i, Z^m \ {\bf independent} \ {\bf of} \ {\bf all} \ X_i^m$
 - $D_{\min}^m = \min_{i < \ell} d^m(Z^m, X_i^m)$
 - $D_{\max}^m = \max_{i \le \ell} d^m(Z^m, X_i^m)$

Distance Instability Theorem

- Let p > 0 be a constant
- ▶ If

$$\exists i \leq \ell \quad (d^m(Z^m, X_i^m))^p \text{ converges as } m \to \infty$$

then, for any $\varepsilon > 0$,

closest and furthest point are at about the same distance

Note " $\exists i$ " suffices since $\forall m$ we have X_i^m iid w.r.t. i

[Beyer et al. 1999]

Distance Instability Theorem

- ightharpoonup Let p > 0 be a constant
- ► If

$$\exists i \leq \ell \quad \lim_{m \to \infty} \mathsf{Var}((d^m(Z^m, X^m_i))^p) = 0$$

then, for any $\varepsilon > 0$,

$$\lim_{m \to \infty} \mathbb{P}(D_{\max}^m \le (1 + \varepsilon)D_{\min}^m) = 1$$

Note " $\exists i$ " suffices since $\forall m$ we have X_i^m iid w.r.t. i

[Beyer et al. 1999]

Preliminary results

▶ <u>Lemma</u>. $\{B^m\}_m$ seq. of rnd. vars with finite variance and $\lim_{m\to\infty} \mathbb{E}(B^m) = b \wedge \lim_{m\to\infty} \mathsf{Var}(B^m) = 0$; then

$$\forall \varepsilon > 0 \lim_{m \to \infty} \mathbb{P}(\|B^m - b\| \le \varepsilon) = 1$$

denoted
$$B^m \to_{\mathbb{P}} b$$

- ▶ <u>Slutsky's theorem</u>. $\{B^m\}_m$ seq. of rnd. vars and g a continuous function; if $B^m \to_{\mathbb{P}} b$ and g(b) exists, then $g(B^m) \to_{\mathbb{P}} g(b)$
- ► <u>Corollary</u>. If $\{A^m\}_m$, $\{B^m\}_m$ seq. of rnd. vars. s.t. $A^m \to_{\mathbb{P}} a$ and $B^m \to_{\mathbb{P}} b \neq 0$ then $\{\frac{A^m}{B^m}\}_m \to_{\mathbb{P}} \frac{a}{b}$

Proof

- 1. $\mu_m = \mathbb{E}((d^m(Z^m, X_i^m))^p)$ independent of i (since all X_i^m iid)
- 2. $V_m = \frac{(d^m(Z^m, X_i^m))^p}{\mu_m} \to_{\mathbb{P}} 1$:
 - $ightharpoonup \mathbb{E}(V_m) = 1 \text{ (rnd. var. over mean)} \Rightarrow \lim_m \mathbb{E}(V_m) = 1$
 - ▶ Hypothesis of thm. $\Rightarrow \lim_m Var(V_m) = 0$
 - ightharpoonup Lemma $\Rightarrow V_m \rightarrow_{\mathbb{P}} 1$
- 3. $\mathbf{D}^m = ((d^m(Z^m, X_i^m))^p \mid i \leq \ell) \rightarrow_{\mathbb{P}} \mathbf{1} \text{ (by iid)}$
- 4. Slutsky's thm. $\Rightarrow \min(\mathbf{D}^m) \rightarrow_{\mathbb{P}} \min(\mathbf{1}) = 1$ simy for max
- 5. Corollary $\Rightarrow \frac{\max(\mathbf{D}^m)}{\min(\mathbf{D}^m)} \to_{\mathbb{P}} 1$
- 6. $\frac{D_{\max}^m}{D_{\min}^m} = \frac{\mu_m \max(\mathbf{D}^m)}{\mu_m \min(\mathbf{D}^m)} \rightarrow_{\mathbb{P}} 1$
- 7. Result follows (defn. of $\rightarrow_{\mathbb{P}}$ and $D_{\max}^m \geq D_{\min}^m$)

When it applies

- iid random variables from any distribution
- Particular forms of correlation e.g. $U_i \sim \mathsf{Uniform}(0, \sqrt{i}), X_1 = U_1, X_i = U_i + (X_{i-1}/2)$ for i > 1
- ► Variance tending to zero e.g. $X_i \sim N(0, 1/i)$
- Discrete uniform distribution on m-dimensional hypercube for both data and query
- ► Computational experiments with k-means: instability already with n > 15

... and when it doesn't

- ► Complete linear dependence on all distributions can be reduced to NN in 1D
- ► Exact and approximate matching query point = (or ≈) data point
- Query point in a well-separated cluster in data
- ► Implicitly low dimensionality project; but NN must be stable in lower dim.

Subsection 4

MP formulations

MP formulation

MINLP: nonconvex terms; continuous, binary and integer variables

Reformulation

The (MSSC) formulation has the same optima as:

► The only nonconvexities are products of binary by continuous <u>bounded</u> variables

Products of binary and continuous vars.

- ightharpoonup Suppose term xy appears in a formulation
- ► Assume $x \in \{0, 1\}$ and $y \in [0, 1]$ is bounded
- ightharpoonup means "either z = 0 or z = y"
- ► Replace xy by a new variable z
- ► Adjoin the following constraints:

$$z \in [0,1]$$

$$y - (1-x) \le z \le y + (1-x)$$

$$-x \le z \le x$$

ightharpoonup \Rightarrow Everything's linear now!

[Fortet 1959]

Products of binary and continuous vars.

- ightharpoonup Suppose term xy appears in a formulation
- ▶ Assume $x \in \{0,1\}$ and $y \in [y^L, y^U]$ is bounded
- ightharpoonup means "either z = 0 or z = y"
- ▶ Replace xy by a new variable z
- ► Adjoin the following constraints:

$$\begin{array}{rcl} z & \in & [\min(y^L,0),\max(y^U,0)] \\ y - (1-x)\max(|y^L|,|y^U|) \leq & z & \leq y + (1-x)\max(|y^L|,|y^U|) \\ -x\max(|y^L|,|y^U|) \leq & z & \leq x\max(|y^L|,|y^U|) \end{array}$$

ightharpoonup \Rightarrow Everything's linear now!

[L. et al. 2009]

MSSC is a convex MINLP

$$\min_{x,y,P,\chi,\xi} \sum_{i \leq n} \sum_{j \leq k} \chi_{ij}$$

$$\forall i \leq n, j \leq k \quad 0 \leq \chi_{ij} \leq P_{ij}$$

$$\forall i \leq n, j \leq k \quad P_{ij} - (1 - x_{ij})P^U \leq \chi_{ij} \leq x_{ij}P^U$$

$$\forall i \leq n, j \leq k \quad \|p_i - y_j\|_2^2 \leq P_{ij} \quad \Leftarrow \text{convex}$$

$$\forall j \leq k \quad \sum_{i \leq n} p_i x_{ij} = \sum_{i \leq n} \xi_{ij}$$

$$\forall i \leq n, j \leq k \quad y_j - (1 - x_{ij}) \max(|y^L|, |y^U|) \leq \xi_{ij} \leq y_j + (1 - x_{ij}) \max(|y^L|, |y^U|)$$

$$\forall i \leq n, j \leq k \quad -x_{ij} \max(|y^L|, |y^U|) \leq \xi_{ij} \leq x_{ij} \max(|y^L|, |y^U|)$$

$$\forall i \leq n \quad \sum_{j \leq k} x_{ij} = 1$$

$$\forall j \leq k \quad y_j \in [y^L, y^U]$$

$$x \in \{0, 1\}^{nk}$$

$$P \in [0, P^U]^{nk}$$

$$\chi \in [0, P^U]^{nk}$$

$$\forall i \leq n, j \leq k \quad \xi_{ij} \in [\min(y^L, 0), \max(y^U, 0)]$$

How to solve it

- ► cMINLP is NP-hard
- ► Algorithms:
 - Outer Approximation (OA)
 - ► Branch-and-Bound (BB)
- ► Best (open source) solver: Bonmin
- ► Another good (commercial) solver: KNITRO
- With k = 2, unfortunately...
 Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution, best possible 6.1855969 (32142.17 seconds)
- ► Interesting feature: the <u>bound</u> guarantees we can't to better than bound all BB algorithms provide it

Bonmin's first solution

Alstom Vinci Elektrobit AXA Ford Deezer Llamasoft Accenture Amazon 2 Expedia CSX Google **MITRE** Aledade **Clarity Marriott** Amazon 1 & 3 fragment 2 WestRock fragment 1

Couple of things left to try

- ► Approximate ℓ_2 by ℓ_1 norm ℓ_1 is a linearizable norm
- ► Randomly project the data lose dimensions but keep approximate shape

Linearizing convexity

- ► Replace $||p_i y_j||_2^2$ by $||p_i y_j||_1$
- Warning: optima will change but still within "clustering by distance" principle

$$\forall i \le n, j \le k \quad ||p_i - y_j||_1 = \sum_{a \le d} |p_{ia} - y_{ja}|$$

- ▶ Replace each $|\cdot|$ term by new vars. $Q_{ija} \in [0, P^U]$ Adjust P^U in terms of $||\cdot||_1$
- ► Adjoin constraints

$$\forall i \leq n, j \leq k \quad \sum_{a \leq d} Q_{ija} \quad \leq \quad P_{ij}$$

$$\forall i \leq n, j \leq k, a \leq d \quad -Q_{ija} \quad \leq \quad p_{ia} - y_{ja} \leq Q_{ija}$$

Obtain a MILP

Most advanced MILP solver: CPLEX

CPLEX's first solution

objective 112.24, bound 39.92, in 44.74s

AXA Vinci Deezer Accenture Ford Alstom **Marriott** Expedia Amazon 1-3 Elektrobit Llamasoft Google Aledade CSX WestRok **MITRE** Clarity fragments 1-2

Interrupted after 28ls with bound 59.68

Subsection 5

Random projections again

Works on the MSSC MP formulation too!

$$\min_{x,y,s} \sum_{i \leq n} \sum_{j \leq d} \| \mathbf{T} p_i - \mathbf{T} y_j \|_2^2 x_{ij}$$

$$\forall j \leq d$$

$$\frac{1}{s_j} \sum_{i \leq n} \mathbf{T} p_i x_{ij} = \mathbf{T} y_j$$

$$\forall i \leq n$$

$$\sum_{j \leq d} x_{ij} = 1$$

$$\forall j \leq d$$

$$\sum_{i \leq n} x_{ij} = s_j$$

$$\forall j \leq d$$

$$y_j \in \mathbb{R}^m$$

$$x \in \{0, 1\}^{nd}$$

$$s \in \mathbb{N}^d$$

where T is a $k \times m$ random projector replace Ty by y'

Works on the MSSC MP formulation too!

$$\min_{\substack{x,y',s \\ x,y',s \\ y \leq d}} \sum_{i \leq n} \sum_{j \leq d} \|\mathbf{T}p_i - y_j'\|_2^2 x_{ij}
\forall j \leq d$$

$$\frac{1}{s_j} \sum_{i \leq n} \mathbf{T}p_i x_{ij} = y_j'
\forall i \leq n$$

$$\sum_{j \leq d} x_{ij} = 1$$

$$\sum_{j \leq d} x_{ij} = s_j$$

$$\forall j \leq d$$

$$y_j' \in \mathbb{R}^k$$

$$x \in \{0,1\}^{nd}$$

$$s \in \mathbb{N}^d$$

$$(MSSC')$$

- where $k = O(\frac{1}{\varepsilon^2} \ln n)$
- less data, $|y'| < |y| \Rightarrow$ get solutions faster
- ► Yields smaller cMINLP

Bonmin on randomly proj. data

objective 5.07, bound 0.48, stopped at 180s

Deezer
Ford
Amazon 1-3
CSX
MITRE
fragment 1

Vinci AXA Accenture Alstom Expedia **Elektrobit** Google Aledade Marriott Llamasoft WestRock Clarity fragment 2

CPLEX on randomly proj. data

...although it doesn't make much sense for $\|\cdot\|_1$ norm...

 $objective\ 53.19, bound\ 20.68, stopped\ at\ 180s$

Vinci Deezer Expedia Google Aledade Ford Amazon 1-3 CSX Clarity AXA
Accenture
Alstom
Elektrobit
Marriott
Llamasoft
WestRock
MITRE
fragment 1-2

Many clusterings?

Compare them with clustering measures e.g. "adjusted mutual information score"

Outline

Kissing Number Problem Lower bounds Upper bounds from SDP? Gregory's upper bound Delsarte's upper bound Pfender's upper bound

Definition

- ▶ Optimization version. Given $K \in \mathbb{N}$, determine the maximum number kn(K) of unit spheres that can be placed adjacent to a central unit sphere so their interiors do not overlap
- ▶ Decision version. Given $n, K \in \mathbb{N}$, is kn $(K) \leq n$? in other words, determine whether n unit spheres can be placed adjacent to a central unit sphere so that their interiors do not overlap

Funny story: Newton and Gregory went down the pub...

Some examples

$$n = 6, K = 2$$
 $n = 12, K = 3$

$$n = 12, K = 3$$

mo

ore	dime	ensions
n	τ (lattice)	τ (nonlattice)
0	0	
1	2	
2	6	
3	12	
4	24	
5	40	
6	72	
7	126	
8	240	
9	272	(306)*
10	336	(500)*
11	438	(582)*
12	756	(840)*
13	918	(1130)*
14	1422	(1582)*
15	2340	
16	4320	
17	5346	
18	7398	
19	10668	
20	17400	
21	27720	
22	49896	

Radius formulation

Given $n, K \in \mathbb{N}$, determine whether there exist n vectors $x_1, \ldots, x_n \in \mathbb{R}^K$ such that:

$$\forall i \le n \qquad ||x_i||_2^2 = 4$$

$$\forall i < j \le n \qquad ||x_i - x_j||_2^2 \ge 4$$

Contact point formulation

Given $n, K \in \mathbb{N}$, determine whether there exist n vectors $x_1, \ldots, x_n \in \mathbb{R}^K$ such that:

$$\forall i \le n \quad ||x_i||_2^2 = 1$$

 $\forall i < j \le n \quad ||x_i - x_j||_2^2 \ge 1$

Spherical codes

- ► $S^{K-1} \subset \mathbb{R}^K$ unit sphere centered at origin
- ► *K*-dimensional spherical *z*-code:
 - (finite) subset $\mathcal{C} \subset S^{K-1}$
- ► non-overlapping interiors:

$$\forall i < j \quad ||x_i - x_j||_2^2 \geq 1$$

$$\Leftrightarrow \quad ||x_i||_2^2 + ||x_j||_2^2 - 2x_i \cdot x_j \geq 1$$

$$\Leftrightarrow \quad 1 + 1 - 2x_i \cdot x_j \geq 1$$

$$\Leftrightarrow \quad 2x_i \cdot x_j \leq 1$$

$$\Leftrightarrow \quad x_i \cdot x_j \leq \frac{1}{2} = \cos\left(\frac{\pi}{3}\right) = z$$

Subsection 1

Lower bounds

Lower bounds

- ▶ Construct spherical $\frac{1}{2}$ -code C with |C| large
- ► Nonconvex NLP formulations
- ► SDP relaxations
- **▶** Combination of the two techniques

MINLP formulation

Maculan, Michelon, Smith 1995

Parameters:

- ► K: space dimension
- ightharpoonup n: upper bound to kn(K)

Variables:

- $x_i \in \mathbb{R}^K$: center of *i*-th vector
- $ightharpoonup \alpha_i = 1$ iff vector i in configuration

$$\max \sum_{i=1}^{n} \alpha_{i}$$

$$\forall i \leq n \qquad ||x_{i}||^{2} = \alpha_{i}$$

$$\forall i < j \leq n \quad ||x_{i} - x_{j}||^{2} \geq \alpha_{i}\alpha_{j}$$

$$\forall i \leq n \qquad x_{i} \in [-1, 1]^{K}$$

$$\forall i \leq n \qquad \alpha_{i} \in \{0, 1\}$$

Reformulating the binary products

- ► Additional variables: $\beta_{ij} = 1$ iff vectors i, j in configuration
- ► Linearize $\alpha_i \alpha_j$ by β_{ij}
- ► Add constraints:

$$\forall i < j \le n \qquad \beta_{ij} \le \alpha_i$$

$$\forall i < j \le n \qquad \beta_{ij} \le \alpha_j$$

$$\forall i < j \le n \qquad \beta_{ij} \ge \alpha_i + \alpha_j - 1$$

Computational experiments

AMPL and Baron

- ► Certifying YES
 - n = 6, K = 2: OK, 0.60s
 - n = 12, K = 3: OK, 0.07s
 - ightharpoonup n = 24, K = 4: FAIL, CPU time limit (100s)
- ► Certifying NO
 - ightharpoonup n = 7, K = 2: FAIL, CPU time limit (100s)

Almost useless

Modelling the decision problem

- ▶ Feasible solution (x^*, α^*)
- ► *KNP instance is* YES *iff* $\alpha^* \ge 1$

[Kucherenko, Belotti, Liberti, Maculan, Discr. Appl. Math. 2007]

Computational experiments

AMPL and Baron

- Certifying YES
 - n = 6, K = 2: FAIL, CPU time limit (100s)
 - n = 12, K = 3: FAIL, CPU time limit (100s)
 - n = 24, K = 4: FAIL, CPU time limit (100s)
- ► Certifying NO
 - n = 7, K = 2: FAIL, CPU time limit (100s)
 - n = 13, K = 3: FAIL, CPU time limit (100s)
 - n = 25, K = 4: FAIL, CPU time limit (100s)

Apparently even more useless

But more informative (arccos $\alpha = \min$, angular sep)

Certifying YES by $\alpha \geq 1$

- n = 6, K = 2: OK, 0.06s
- n = 12, K = 3: OK, 0.05s
- n = 24, K = 4: OK, 1.48s
- ightharpoonup n = 40, K = 5: FAIL, CPU time limit (100s)

What about polar coordinates?

- $\forall i \leq n \quad x_i = (x_{i1}, \dots, x_{iK}) \mapsto (\vartheta_{i1}, \dots, \vartheta_{i,K-1})$
- **▶** Formulation

$$(\dagger) \quad \forall k \leq K \quad \rho \sin \vartheta_{i,k-1} \prod_{h=k}^{K-1} \cos \vartheta_{ih} = \mathbf{x}_{ik}$$

$$(\dagger) \quad \forall i < j \leq n \quad \|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \geq \rho^2$$

$$\forall i \leq n, k \leq K \quad (\sin(\vartheta_{ik}))^2 + (\cos(\vartheta_{ik}))^2 = 1$$

$$(optional) \quad \rho = 1$$

- Only need to decide $s_{ik} = \sin \vartheta_{ik}$ and $c_{ik} = \cos \vartheta_{ik}$
- ▶ Replace x in (‡) using (†): get polyprog in s, c
- Numerically more challenging to solve (polydeg 2K)
- ► OPEN QUESTION: useful for bounds?

Subsection 2

Upper bounds from SDP?

SDP relaxation of Euclidean distances

► Linearization of scalar products

$$\forall i, j \leq n \qquad x_i \cdot x_j \longrightarrow X_{ij}$$

where X is an $n \times n$ symmetric matrix

- $\|x_i\|_2^2 = x_i \cdot x_i = X_{ii}$
- $||x_i x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 2x_i \cdot x_j = X_{ii} + X_{jj} 2X_{ij}$
- $ightharpoonup X = xx^{\top} \Rightarrow X xx^{\top} = 0$ makes linearization exact
- ► Relaxation:

$$X - xx^{\top} \succeq 0 \Rightarrow \mathsf{Schur}(X, x) = \left(\begin{array}{cc} I_K & x^{\top} \\ x & X \end{array} \right) \succeq 0$$

SDP relaxation of binary constraints

- $\forall i \le n \qquad \alpha_i \in \{0,1\} \Leftrightarrow \alpha_i^2 = \alpha_i$
- ▶ Let A be an $n \times n$ symmetric matrix
- ► Linearize $\alpha_i \alpha_j$ by A_{ij} (hence α_i^2 by A_{ii})
- $ightharpoonup A = \alpha \alpha^{\top}$ makes linearization exact
- ▶ Relaxation: Schur(A, α) $\succeq 0$

SDP relaxation of [MMS95]

$$\max \qquad \sum_{i=1}^{n} \alpha_{i}$$

$$\forall i \leq n \qquad X_{ii} = \alpha_{i}$$

$$\forall i < j \leq n \qquad X_{ii} + X_{jj} - 2X_{ij} \geq A_{ij}$$

$$\forall i \leq n \qquad A_{ii} = \alpha_{i}$$

$$\forall i < j \leq n \qquad A_{ij} \leq \alpha_{j}$$

$$\forall i < j \leq n \qquad A_{ij} \leq \alpha_{i}$$

$$\forall i < j \leq n \qquad A_{ij} \geq \alpha_{i} + \alpha_{j} - 1$$

$$\operatorname{Schur}(X, x) \geq 0$$

$$\operatorname{Schur}(A, \alpha) \geq 0$$

$$\forall i \leq n \qquad x_{i} \in [-1, 1]^{K}$$

$$\alpha \in [0, 1]^{n}$$

$$X \in [-1, 1]^{n^{2}}$$

$$A \in [0, 1]^{n^{2}}$$

Computational experiments

- ► Python, PICOS and Mosek or Octave and SDPT3
- ightharpoonup bound always equal to n
- prominent failure :-(
- ► Why?
 - can combine inequalities to remove A from SDP

$$\forall i < j \ X_{ii} + X_{jj} - 2X_{ij} \ge A_{ij} \ge \alpha_i + \alpha_i - 1$$

$$\Rightarrow X_{ii} + X_{jj} - 2X_{ij} \ge \alpha_i + \alpha_i - 1$$

(then eliminate all constraints in A)

ightharpoonup integrality of α completely lost

SDP relaxation of [KBLM07]

Computational experiments

With K=2

n	α^*
$\overline{}$	4.00
3	3.00
4	2.66
5	2.50
6	2.40
7	2.33
8	2.28
9	2.25
10	2.22
11	2.20
12	2.18
13	2.16
14	2.15
15	2.14
13	2.14

Computational experiments

With
$$K = 3$$

An SDP-based heuristic?

- 1. $X^* \in \mathbb{R}^{n^2}$: SDP relaxation solution of [KBLM07]
- 2. Perform PCA, get $\bar{x} \in \mathbb{R}^{nK}$
- 3. Local NLP solver on [KBLM07] with starting point \bar{x}

However...

The *Uselessness Theorem*

Thm.

- 1. The SDP relaxation of [KBLM07] is useless
- 2. In fact, it is extremely useless
- 1. Part 1: Uselessness
 - ► Independent of K: no useful bounds in function of K
- 2. Part 2: Extreme uselessness
 - (a) For all n, the bound is $\frac{2n}{n-1}$
 - (b) $\exists opt. \ X^* \ with \ eigenvalues \ 0, \frac{n}{n-1}, \dots, \frac{n}{n-1}$

By 2(b), applying MDS/PCA makes no sense

Proof of extreme uselessness

Strategy:

- ▶ Pull a simple matrix solution out of a hat
- ► Write primal and dual SDP of [KBLM07]
- ► Show it is feasible in both
- ► Hence it is optimal
- ► Analyse solution:
 - ▶ all n-1 positive eigenvalues are equal
 - its objective function value is 2n/(n-1)

Primal SDP

$$\forall 1 \leq i \leq j \leq n \text{ let } B_{ij} = (1_{ij}) \text{ and } 0 \text{ elsewhere}$$

quantifier	natural form	standard form	dual var
	$\max \alpha$	$\max \alpha$	
	$X_{ii} = 1$	$E_{ii} \bullet X = 1$	u_i
$\forall i < j \leq n$	$X_{ii} + X_{jj} - 2X_{ij} \ge \alpha$		w_{ij}
		$A_{ij} = -E_{ii} - E_{jj} + E_{ij} + E_{ji}$	
$\forall i < j \leq n$	$X_{ij} \le 1$	$(E_{ij} + E_{ji}) \bullet X \le 2$ $(-E_{ij} - E_{ji}) \bullet X \le 2$	y_{ij}
$\forall i < j \leq n$	$X_{ij} \geq -1$	$(-E_{ij}-E_{ji}) \bullet X \leq 2$	z_{ij}
	$X \succeq 0$	$X \succeq 0$	_
	$\alpha \geq 0$	$\alpha \geq 0$	

Dual SDP

$$\min \sum_{i} u_i + 2 \sum_{i < j} (y_{ij} + z_{ij})$$

$$\sum_{i} u_i E_{ii} + \sum_{i < j} ((y_{ij} - z_{ij})(E_{ij} - E_{ji}) + w_{ij} A_{ij}) \succeq 0$$

$$\sum_{i < j} w_{ij} \geq 1$$

$$w, y, z \geq 0$$

Simplify
$$|v| = y + z$$
, $v = y - z$:

$$\min \sum_{i} u_i + 2 \sum_{i < j} |v_{ij}|$$

$$\sum_{i} u_i E_{ii} + \sum_{i < j} \left(v_{ij} (E_{ij} - E_{ji}) + w_{ij} A_{ij} \right) \succeq 0$$

$$\sum_{i < j} w_{ij} \geq 1$$

$$w, v > 0$$

Pulling a solution out of a hat

$$\alpha^* = \frac{2n}{n-1}$$

$$X^* = \frac{n}{n-1}I_n - \frac{1}{n-1}\mathbf{1}_n$$

$$u^* = \frac{2}{n-1}$$

$$w^* = \frac{1}{n(n-1)}$$

$$v^* = 0$$

where $\mathbf{1}_n = all$ -one $n \times n$ matrix

Solution verification

- ► linear constraints: by inspection
- ▶ $X \succeq 0$: eigenvalues of X^* are $0, \frac{n}{n-1}, \dots, \frac{n}{n-1}$

$$\sum_{i} u_{i}^{*} E_{ii} + \sum_{i < j} w_{ij}^{*} A_{ij}$$

$$= \frac{2}{n-1} \sum_{i} E_{ii} + \frac{1}{n(n-1)} \sum_{i < j} A_{ij}$$

$$= \frac{2}{n-1} I_{n} + \frac{1}{n(n-1)} \left(-(n-1)I_{n} + (\mathbf{1}_{n} - I_{n}) \right)$$

$$= \frac{1}{n(n-1)} \mathbf{1}_{n} \succeq 0$$

Corollary

$$\lim_{n\to\infty}\mathsf{v}(n,\textbf{[KBLM07]})=\lim_{n\to\infty}\frac{2n}{n-1}=2$$

as observed in computational experiments

Subsection 3

Gregory's upper bound

Surface upper bound

Gregory 1694, Szpiro 2003

Consider a kn(3) configuration inscribed into a super-sphere of radius 3. Imagine a lamp at the centre of the central sphere that casts shadows of the surrounding balls onto the inside surface of the super-sphere. Each shadow has a surface area of 7.6: the total surface of the superball is 113.1. So $\frac{113.1}{7.6} = 14.9$ is an upper bound to kn(3).

At end of XVII century, yielded Newton/Gregory dispute

Subsection 4

Delsarte's upper bound

Pair distribution on sphere surface

▶ Spherical z-code C has $x_i \cdot x_j \le z$ $(i < j \le n = |C|)$

$$\forall t \in [-1, 1] \quad \sigma_t = \frac{1}{n} \big| \{ (i, j) \mid i, j \le n \land x_i \cdot x_j = t \} \big|$$

- ► *t*-code: let $\sigma_t = 0$ for $t \in (1/2, 1)$
- ▶ $|C| = n < \infty$: only finitely many $\sigma_t \neq 0$

$$\begin{split} \int_{[-1,1]} \sigma_t dt = & \sum_{t \in [-1,1]} \sigma_t = \frac{1}{n} |\mathbf{all \, pairs}| = \frac{n^2}{n} & = & n \\ \sigma_1 = & \frac{1}{n} n & = & 1 \\ \forall t \in (1/2,1) & \sigma_t & = & 0 \\ \forall t \in [-1,1] & \sigma_t & \geq & 0 \\ |\{\sigma_t > 0 \mid t \in [-1,1]\}| & < & \infty \end{split}$$

Growing Delsarte's LP

- ▶ Decision variables: σ_t , for $t \in [-1, 1]$
- **▶** Objective function:

$$\max_{\sigma} |\mathcal{C}| = \max_{\sigma} n = \max_{\sigma} \sum_{t \in [-1,1]} \sigma_t$$
$$= \sigma_1 + \max_{\sigma} \sum_{t \in [-1,1/2]} \sigma_t = 1 + \max_{\sigma} \sum_{t \in [-1,1/2]} \sigma_t$$

Note n not a parameter in this formulation

▶ Constraints:

$$\forall t \in [-1, 1/2] \quad \sigma_t \ge 0$$

► LP unbounded! — need more constraints

Gegenbauer cuts

▶ Look for function family $\mathscr{F}: [-1,1] \to \mathbb{R}$ s.t.

$$\forall \phi \in \mathscr{F} \quad \sum_{t \in [-1, 1/2]} \phi(t) \sigma_t \ge 0$$

- ▶ Most popular \mathscr{F} : Gegenbauer polynomials G_h^K
- ► Special case $G_h^K = P_h^{\gamma,\gamma}$ of $Jacobi \ polynomials$ (where $\gamma = (K-2)/2$)

$$P_h^{\alpha,\beta} = \frac{1}{2^h} \sum_{i=0}^h \binom{h+\alpha}{i} \binom{h+\beta}{h-1} (t+1)^i (t-1)^{h-i}$$

- ▶ Matlab knows them: $G_h^K(t) = \text{gegenbauerC}(h, (K-2)/2, t)$
- $\begin{tabular}{ll} \hline \textbf{Octave knows them:} $G_h^K(t) = \texttt{gsl_sf_gegenpoly_n}(h, \frac{K-2}{2}, t)$ \\ $ned\ command\ pkg\ load\ gsl\ before\ function\ call \end{tabular}$
- ightharpoonup They encode dependence on K

Delsarte's LP

► Primal:

$$\begin{cases}
1 + \max & \sum_{t \in [-1, \frac{1}{2}]} \sigma_t \\
\forall h \in H & \sum_{t \in [-1, \frac{1}{2}]} G_h^K(t) \sigma_t \geq -G_h^K(1) \\
\forall t \in [-1, \frac{1}{2}] & \sigma_t \geq 0.
\end{cases}$$
[DelP]

▶ Dual:

$$\begin{array}{ccc} 1 + \min & \sum\limits_{h \in H} (-G_h^K(1)) d_h \\ \forall t \in [-1, \frac{1}{2}] & \sum\limits_{h \in H} G_h^K(t) d_h & \geq & 1 \\ \forall h \in H & d_h & \leq & 0. \end{array} \right\} \textbf{[DelD]}$$

Delsarte's theorem

▶ |Delsarte et al., 1977|

Theorem

Let $d_0 > 0$ and $F : [-1, 1] \to \mathbb{R}$ such that:

(i)
$$\exists H \subseteq (\mathbb{N} \cup \{0\}) \text{ and } d \in \mathbb{R}_+^{|H|} \ge 0$$

s.t. $F(t) = \sum_{h \in H} d_h G_h^K(t)$

(ii)
$$\forall t \in [-1,z] \ F(t) \leq 0$$

 Then $kn(K) \leq \frac{F(1)}{d_0}$

Then
$$kn(K) \leq \frac{F(1)}{d_0}$$

- ▶ Proof based on properties of Gegenbauer polynomials
- ▶ Best upper bound: $\min F(1)/d_0 \Rightarrow \min_{d_0=1} F(1) \Rightarrow [DelD]$
- [DelD] "models" Delsarte's theorem

Delsarte's normalized LP ($G_h^K(1) = 1$)

► Primal:

$$\begin{cases}
1 + \max & \sum_{t \in [-1, \frac{1}{2}]} \sigma_t \\
\forall h \in H & \sum_{t \in [-1, \frac{1}{2}]} G_h^K(t) \sigma_t \geq -1 \\
\forall t \in [-1, \frac{1}{2}] & \sigma_t \geq 0
\end{cases}$$
[DelP]

▶ Dual:

$$\begin{cases}
1 + \min & \sum_{h \in H} (-1)d_h \\
\forall t \in [-1, \frac{1}{2}] & \sum_{h \in H} G_h^K(t)d_h \geq 1 \\
\forall h \in H & d_h \leq 0
\end{cases} [DelD]$$

 $d_0 = 1 \Rightarrow remove \ 0 \ from \ H$

Focus on normalized [DelD]

Rewrite $-d_h$ *as* d_h :

$$\begin{array}{cccc} 1 + \min & \sum\limits_{h \in H} \frac{d_h}{d_h} \\ \forall t \in [-1, \frac{1}{2}] & \sum\limits_{h \in H} G_h^K(t) \frac{d_h}{d_h} & \leq & -1 \\ \forall h \in H & \frac{d_h}{d_h} & \geq & 0 \end{array} \right\} \textbf{[DelD]}$$

Issue: *semi-infinite LP* (SILP) (how do we solve it?)

Approximate SILP solution

- Only keep finitely many constraints
- ▶ Discretize [-1, 1] with a finite $T \subset [-1, 1]$
- ightharpoonup Obtain <u>relaxation</u> [DelD]_T:

$$\operatorname{val}([\operatorname{DelD}]_T) \leq \operatorname{val}([\operatorname{DelD}])$$

- ► Risk: val([DelD]_T) < min $F(1)/d_0$ not a valid bound to kn(K)
- ▶ Happens if soln. of $[DelD]_T$ infeasible in [DelD] i.e. infeasible w.r.t. some of the ∞ ly many removed constraints

SILP feasibility

- ▶ Given SILP $\bar{S} \equiv \min\{c^{\top}x \mid \forall i \in \bar{I} \ a_i^{\top}x \leq b_i\}$
- ▶ Relax to LP $S \equiv \min\{c^{\top}x \mid \forall i \in I \ a_i^{\top}x \leq b_i\}$, where $I \subsetneq \overline{I}$
- ► Solve S, get solution x^*
- Let $\epsilon = \max\{a_i^{\top} x^* b_i \mid i \in \overline{I}\}\$ continuous optimization w.r.t. single var. i
- ► If $\epsilon \leq 0$ then x^* feasible in \bar{S} ⇒ $\mathsf{val}(\bar{S}) \leq c^\top x^*$
- ▶ If $\epsilon > 0$ refine S and repeat
- ▶ Apply to $[DelD]_T$, get solution d^* feasible in [DelD]

[DelD] feasibility

- 1. Choose discretization T of [-1, 1/2]
- 2. Solve

$$\begin{array}{lll} 1 + \min & \sum\limits_{h \in H} d_h & \\ \forall t \in T & \sum\limits_{h \in H} G_h^K(t) d_h & \leq & -1 \\ \forall h \in H & d_h & \geq & 0 \end{array} \right\} \textbf{[DelD]}_T$$

get solution d^*

3. Solve
$$\epsilon = \max\{1 + \sum_{h \in H} G_h^K(t)d_h \mid t \in [-1, 1/2]\}$$

4. If
$$\epsilon \leq 0$$
 then d^* feasible in [DelD] $\Rightarrow \operatorname{kn}(K) \leq 1 + \sum_{h \in H} d_h^*$

5. Else refine T and repeat from Step 2

Subsection 5

Pfender's upper bound

Pfender's upper bound theorem

Thm.

Let
$$C_z = \{x_i \in \mathbb{S}^{K-1} \mid i \leq n \land \forall j \neq i \ (x_i \cdot x_j \leq z)\}; c_0 > 0; f : [-1,1] \to \mathbb{R} \text{ s.t.:}$$
(i) $\sum_{i,j \leq n} f(x_i \cdot x_j) \geq 0$ (ii) $f(t) + c_0 \leq 0 \text{ for } t \in [-1,z]$ (iii) $f(1) + c_0 \leq 1$

Then $n \leq \frac{1}{c_0}$

([Pfender 2006])

Let $g(t) = f(t) + c_0$

$$n^2 c_0 \leq n^2 c_0 + \sum_{i,j \leq n} f(x_i \cdot x_j) \quad \text{by (i)}$$

$$= \sum_{i,j \leq n} (f(x_i \cdot x_j) + c_0) = \sum_{i,j \leq n} g(x_i \cdot x_j)$$

$$\leq \sum_{i \leq n} g(x_i \cdot x_i) \quad \text{since } g(t) \leq 0 \text{ for } t \leq z \text{ and } x_i \in \mathcal{C}_z \text{ for } i \leq n$$

$$= ng(1) \quad \text{since } ||x_i||_2 = 1 \text{ for } i \leq n$$

$$\leq n \quad \text{since } g(1) \leq 1.$$

Pfender's LP

Condition (i) of Theorem valid for conic combinations of suitable functions F:

$$f(t) = \sum_{h \in H} c_h f_h(t) \quad \text{ for some } c_h \ge 0,$$

e.g. $\mathcal{F} = Gegenbauer polynomials (again)$

► Get SILP

$$\left. \begin{array}{lll} \max & c_0 & (\text{minimize } 1/c_0 \geq n) \\ \forall \, t \in [-1,z] & \sum \limits_{h \in H} c_h G_h^K(t) + c_0 & \leq & 0 & \text{(ii)} \\ & \sum \limits_{h \in H} c_h G_h^K(1) + c_0 & \leq & 1 & \text{(iii)} \\ \forall \, h \in H & c_h & \geq & 0 & \text{(conic comb.)} \end{array} \right\}$$

▶ Discretize [-1, z] by finite T, solve LP, check validity (again)

Delsarte's and Pfender's theorem compared

▶ Delsarte & Pfender's theorem look similar:

Pfender
(i) $f(t)$ G. poly comb
(ii) $\forall t \in [-1, z] \ f(t) + c_0 \le 0$
(iii) $f(1) + c_0 \le 1$
(ii) $f(t)$ 6. poly collis (iii) $f(t) + c_0 \le 0$ (iii) $f(t) + c_0 \le 1$ $\Rightarrow \operatorname{kn}(K) \le \frac{1}{c_0}$

- ► Try setting $F(t) = f(t) + c_0$: condition (ii) is the same
- ▶ By condition (iii) in Pfender's theorem

$$kn(K) \le \frac{F(1)}{d_0} = \frac{f(1) + c_0}{c_0} \le \frac{1}{c_0}$$

⇒ Delsarte bound at least as tight as Pfender's

- ▶ Delsarte (i) $\Rightarrow \int_{[-1,1]} F(t)dt \ge 0 \Rightarrow \int_{[-1,1]} (f(t) + c_0)dt \ge 0$ Pfender (i) $\Rightarrow \int_{[-1,1]} f(t)dt \ge 0$ more stringent
- Delsarte requires weaker condition and yields tighter bound

Conditioned on $F(t) = f(t) + c_0$, not a proof! Verify computationally

The final, easy improvement

- ► However you compute your upper bound *B*:
- ► The number of surrounding balls is *integer*
- ▶ If $kn(K) \le B$, then in fact $kn(K) \le \lfloor B \rfloor$

THE END