Advanced Mathematical Programming
 Formulations \& Applications

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

INF580

Outline

Introduction

Decidability
Efficiency and Hardness
Some combinatorial
problems
NP-hardness
Systematics
Distance Geometry
The universal isometric
embedding
Dimension reduction
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap for the DGP
Concluding remarks
Clustering in Natural Language

```
Clustering on graphs
Clustering in Euclidean
spaces
Distance resolution limit
MP formulations
Clustering in high
dimensions
Random projections in LP
Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression
Sparsity and \(\ell_{1}\) minimization
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
```


What is Mathematical Programming?

- Formal declarative language for describing optimization problems
- As expressive as any imperative language
- Interpreter = solver
- Shifts focus from algorithmics to modelling

Syntax

- A valid sentence:

$$
\left.\min \begin{array}{l}
x_{1}+2 x_{2}-\log \left(x_{1} x_{2}\right) \\
x_{1} x_{2}^{2} \geq 1 \\
0 \leq x_{1} \leq 1 \\
x_{2} \in \mathbb{N} .
\end{array}\right\} \quad[P]
$$

- An invalid one:

$$
\begin{array}{ll}
\min & \frac{\dot{x_{2}}}{}+x_{1}++\sin \cos \\
& x_{x_{2}} \geq x_{x_{1}} \\
& \sum_{i \leq x_{1}} x_{i}=0 \\
& x_{1} \neq x_{2} \\
& x_{1}<x_{2}
\end{array}
$$

MINLP Formulation

Given functions $f, g_{1}, \ldots, g_{m}: \mathbb{Q}^{n} \rightarrow \mathbb{Q}$ and $Z \subseteq\{1, \ldots, n\}$

$$
\left.\begin{array}{rrl}
\min & f(x) & \\
\forall i \leq m & g_{i}(x) & \leq 0 \\
\forall j \in Z & x_{j} & \in \mathbb{Z}
\end{array}\right\} \quad[P]
$$

- $\phi(x)=0 \quad \Leftrightarrow \quad(\phi(x) \leq 0 \wedge-\phi(x) \leq 0)$
- $L \leq x \leq U \quad \Leftrightarrow \quad(L-x \leq 0 \wedge x-U \leq 0)$
- f, g_{i} represented by expression DAGs

$$
x_{1}+\frac{x_{1} x_{2}}{\log \left(x_{2}\right)}
$$

Class of all formulations $P: \mathbb{M P}$

Semantics

- Given $P \in \mathbb{M P}$, there are three possibilities: $\llbracket P \rrbracket$ exists, P is unbounded, P is infeasible
- P is feasible iff $\llbracket P \rrbracket$ exists or is unbounded otherwise it is infeasible
- P has an optimum iff $\llbracket P \rrbracket$ exists otherwise it is infeasible or unbounded

Are feasibility and optimality really different?

- Feasibility prob. $g(x) \leq 0$: can be written as MP $\min \{0 \mid g(x) \leq 0\}$
- Bounded MP min $\{f(x) \mid g(x) \leq 0\}$: bisection on f_{0} in $f(x) \leq f_{0} \wedge g(x) \leq 0$
- Unbounded MP: not equivalent to feasibility

Example

$$
P \equiv \min \left\{x_{1}+2 x_{2}-\log \left(x_{1} x_{2}\right) \mid x_{1} x_{2}^{2} \geq 1 \wedge 0 \leq x_{1} \leq 1 \wedge x_{2} \in \mathbb{N}\right\}
$$

$\llbracket P \rrbracket=(\operatorname{opt}(P), \operatorname{val}(P))$
$\operatorname{opt}(P)=(1,1)$
$\operatorname{val}(P)=3$

Solvers (or "interpreters")

- Take formulation P as input
- Output $\llbracket P \rrbracket$ and possibly other information
- Trade-off between generality and efficiency
(i) Linear Programming (LP)
f, g_{i} linear, $Z=\varnothing$
(ii) Mixed-Integer LP (MILP)
f, g_{i} linear, $Z \neq \varnothing$
(iii) Nonlinear Programming (NLP)
some nonlinearity in $f, g_{i}, Z=\varnothing$
f, g_{i} convex: convex NLP (cNLP)
(iv) Mixed-Integer NLP (MINLP)
some nonlinearity in $f, g_{i}, Z \neq \varnothing$
f, g_{i} convex: convex MINLP (cMINLP)
- Each solver targets a given class

Some application fields

- Production industry planning, scheduling, allocation, ...
- Transportation \& logistics facility location, routing, rostering, ...
- Service industry pricing, strategy, product placement, ...
- Energy industry (all of the above)
- Machine Learning \& Artificial Intelligence clustering, approximation error minimization
- Biochemistry \& medicine protein structure, blending, tomography, ...
- Mathematics

Kissing number, packing of geometrical objects,...

Outline

Introduction

Decidability

Efficiency and Hardness
Some combinatorial
problems
NP-hardness
Systematics
Distance Geometry
The universal isometric
embedding
Dimension reduction
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap for the DGP
Concluding remarks
Clustering in Natural Language

```
Clustering on graphs
Clustering in Euclidean
spaces
Distance resolution limit
MP formulations
Clustering in high
dimensions
Random projections in LP
Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression
Sparsity and \(\ell_{1}\) minimization
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
```


Can we solve MPs?

- "Solve MPs": is there an algorithm \mathcal{D} s.t.:
$\forall P \in \mathbb{M} \mathbb{P} \quad \mathcal{D}(P)= \begin{cases}\text { infeasible } & P \text { is infeasible } \\ \text { unbounded } & P \text { is unbounded } \\ \llbracket P \rrbracket & \text { otherwise }\end{cases}$
- I.e. does there exist a single, all-powerful solver?

Formal systems (FS)

- Aformal system consists of:
- an alphabet
- a formal grammar
allowing the determination of formulce and sentences
- a set A of axioms (given sentences)
- a set R of inference rules allowing the derivation of new sentences from old ones
- A theory T is the smallest set of sentences that is obtained by recursively applying R to A

Example: PA1

- Theory: 1st order sentences about \mathbb{N}
- Alphabet: $+, \times, \wedge, \vee, \forall, \exists, \neg,=, S(\cdot)$ and variable names
- Peano's Axioms:

```
    1. \(\forall x(0 \neq S(x))\)
    2. \(\forall x, y(S(x)=S(y) \rightarrow x=y)\)
    3. \(\forall x(x+0=x)\)
    4. \(\forall x(x \times 0=0)\)
    5. \(\forall x, y(x+S(y)=S(x+y))\)
    6. \(\forall x, y(x \times S(y)=x \times y+x)\)
    7. axiom schema over all \((k+1)\)-ary \(\phi: \forall y=\left(y_{1}, \ldots, y_{k}\right)\)
    \((\phi(0, y) \wedge \forall x \phi(x, y) \rightarrow \phi(S(x), y)) \rightarrow \forall x \phi(x, y)\)
```

- Inference: see
https://en.wikipedia.org/wiki/List_of_rules_of_inference e.g. modus ponens $((P \rightarrow Q) \wedge P) \rightarrow Q)$
- Generates ring $(\mathbb{Z},+, \times)$ and arithmetical proofs e.g. $\exists x \in \mathbb{N}^{n} \forall i\left(p_{i}(x) \leq 0\right)$ (polynomial MINLP feasibility)

Example: Reals

- Theory: polynomial systems over \mathbb{R}
- Alphabet: $+, \times, \wedge, \vee, \forall, \exists,=,<, \leq, 0,1$,variable names
- Axioms: field and order
- Inference: see
https://en.wikipedia.org/wiki/List_of_rules_of_inference e.g. modus ponens $((P \rightarrow Q) \wedge P) \rightarrow Q)$
- Generates polynomial rings $\mathbb{R}\left[X_{1}, \ldots, X_{k}\right]$ (for all k) e.g. $\exists x \in \mathbb{R}^{n} \forall i\left(p_{i}(x) \leq 0\right)$ (polynomial NLP feasibility)

The use of formal systems

Given a FS \mathcal{F} :

- A decision problem is a set P of sentences

Decide if a given sentence f belongs to P

- Decidability in formal systems:

$$
P \equiv \text { provable sentences }
$$

- Proof of f : finite sequence of sentences ending with f; sentences either axioms or derived from predecessors by inference rules
- PA1: decide if sentence f about \mathbb{N} has a proof PA1 contains $\exists x \in \mathbb{Z}^{n} \forall i p_{i}(x) \leq 0 \quad$ (poly p)
- Reals: decide if sentence f about \mathbb{R} has a proof Reals contains $\exists x \in \mathbb{Z}^{n} \forall i p_{i}(x) \leq 0 \quad$ (poly p)
- Formal study of MINLP/NLP feasibility

Decidability, computability, solvability

- Decidability: applies to decision problems
- Computability: applies to function evaluation
- Is the function f, mapping i to the i-th prime integer, computable?
- Is the function g, mapping Cantor's CH to 1 if provable in ZFC axiom system and to 0 otherwise, computable?
- Solvability: applies to other problems E.g. to optimization problems!

Completeness and decidability

- Complete FS F for $f \in \mathcal{F}$, either f or $\neg f$ is provable
otherwise \mathcal{F} is incomplete
- Decidable FS F:
\exists algorithm \mathcal{D} s.t.

$$
\forall f \in \mathcal{F}\left\{\begin{array}{l}
\mathcal{D}(f)=1 \quad \text { iff } f \text { is provable } \\
\mathcal{D}(f)=0 \quad \text { iff } f \text { is not provable }
\end{array}\right.
$$

otherwise \mathcal{F} is undecidable

Example: PA1

- Gödel's lst incompleteness theorem: PA1 is incomplete
- Turing's theorem: PA1 is undecidable
- PA1 is undecidable and incomplete

Gödel's 1st incompleteness theorem

- \mathcal{F} : any FS extending PA1
- Thm. \mathcal{F} is either incomplete or inconsistent
- ϕ : sentence " ϕ not provable in \mathcal{F} " denoted $\mathcal{F} \nvdash \phi$; it can be constructed in \mathcal{F}; hard part of thm.
- Assume \mathcal{F} is complete: either $\mathcal{F} \vdash \phi$ or $\mathcal{F} \vdash \neg \phi$
- If $\mathcal{F} \vdash \phi$ then $\mathcal{F} \vdash(\mathcal{F} \nvdash \phi)$ i.e. $\mathcal{F} \nvdash \phi$, contradiction
- If $\mathcal{F} \vdash \neg \phi$ then $\mathcal{F} \vdash \neg(\mathcal{F} \nvdash \phi)$ i.e. $\mathcal{F} \vdash(\mathcal{F} \vdash \phi)$ this implies $\mathcal{F} \vdash \phi$, i.e. $\mathcal{F} \vdash \phi \wedge \neg \phi, \mathcal{F}$ inconsistent
- Assume \mathcal{F} is inconsistent: any sentence is provable, i.e. \mathcal{F} complete
details: $0=1$, hence $0 \vee \psi$ and $1 \vee \psi$, hence $(0 \wedge 1) \vee \psi$, i.e. ψ, and symmetrically for $\neg \psi$, for any ψ
- WARNING: $\mathcal{F} \forall \phi \not \equiv \mathcal{F} \vdash \neg \phi$

Turing's theorem

- Turing Machine (TM): computation model
- infinite tape with cells storing finite alphabet letters
- head reads/writes/skips i-th cell, moves left/right
- states=program (e.g. if s write $0 \&$ move left)
- initial tape content: input, final tape content: output
- final state \perp : termination; \varnothing nonterm.
- TM dynamics can be written in PA1 statements
- Any PA1 sentence $p(x)$ can be represented by TM: while(1) i=0; if $p(x)$ return YES; else $\mathrm{i}=\mathrm{i}+1$ only terminates if true; loops forever iffalse
- \exists universal TM (UTM) representing all PA1 sentences
- TM termination \Leftrightarrow decidability in PA1
- Halting Problem (HP):

$$
\text { TM } M \mathcal{\&} \text { input } x, \text { is } M(x)=\perp ?
$$

- HP is undecidable

Turing's theorem

- enumerate all TMs: $\left(M_{i} \mid i \in \mathbb{N}\right)$
- halting function $H(i, x)= \begin{cases}1 & M_{i}(x)=\perp \\ 0 & M_{i}(x)=\varnothing\end{cases}$
- show $H \neq F$ for any computable $F(i, x)$:
- $\operatorname{let} G(i)= \begin{cases}0 & F(i, i)=0 \\ 1 & \text { othw }\end{cases}$
G is partial computable because F is computable
- let M_{y} be the TM computing G
- consider $H(y, y)$:
- if $F(y, y)=0$ then $G(y)=0$ so $M_{y}(y)=\perp$ and $H(y, y)=1$
- if $F(y, y) \neq 0$ then $G(y)$ is undefined so $M_{y}(y)=\varnothing$ and $H(y, y)=0$
- so $H(y, y) \neq F(y, y)$ for all y
- H is uncomputable $\Rightarrow P A 1$ is undecidable

Example: Reals

- Tarski's theorem: Reals is decidable
- Algorithm:
constructs solution sets (YES) or derives contradictions(NO)
\Rightarrow provides proofs or contradictions for all sentences!
- \Rightarrow Reals is complete
- Reals is decidable and complete

Tarski's theorem

- Algorithm based on quantifier elimination
- Feasible sets of polynomial systems $p(x) \leq 0$ have finitely many connected components
- Each connected component recursively built of cylinders over points or intervals extremities: pts., $\pm \infty$, algebraic curves at previous recursion levels
- In some sense, generalization of Reals in \mathbb{R}^{1}

Dense linear orders

Given a sentence ϕ in DLO

- Reduce to DNF $\exists x_{i} q_{i}(x)$ with $q_{i}=\bigwedge q_{i j}$
- Each $q_{i j}$ has form $s=t$ or $s<t$ (s, t vars or consts)
- s, t both constants: $s<t, s=t$ verified and replaced by 1 or 0
- s, t the same variable x_{i} :
$s<t$ replaced by $0, s=t$ replaced by 1
- if s is x_{i} and t is not:
$s=t$ means "replace x_{i} by t " (eliminate x_{i})
- remaining case:
q_{i} conj. of $s<x_{i}$ and $x_{i}<t$: replace by $s<t$ (eliminate x_{i})
- q_{i} no longer depends on x_{i}, rewrite $\exists x_{i} q_{i}$ as q_{i}
- Repeat over vars. x_{i}, obtain real intervals or contradictions

Quantifier elimination!

Decidability and completeness

- PA1 is incomplete and undecidable
- Reals is complete and decidable
- Are there FS \mathcal{F} that are:
- incomplete and decidable?
- complete and undecidable?

Incomplete and decidable (trivial)

- Nolnference:

Any FS with $<\infty$ axiom schemata and no inference rules

- Only possible proofs: sequences of axioms
- Only provable sentences: axioms
- For any other sentence f : no proof of f or $\neg f$
- Trivial decision algorithm: given f, output YES if f is a finite axiom sequence, NO otherwise
- Nolnference is decidable and incomplete

Incomplete and decidable (nontrivial)

- ACF: Algebraically Closed Fields (e.g. ©
field axioms + "every polynomial splits" schema
- ACF decidable by quantifier elimination
- $\mathrm{ACF}_{p}: \mathrm{ACF} \cup \operatorname{AXIOM}\left(\mathrm{C}_{p} \equiv\left[\sum_{j \leq p} 1=0\right]\right)$ (p prime)
- $\forall p$ (prime) C_{p} independent of $\mathrm{ACF} \Rightarrow$
\Rightarrow decidability as in ACF
- \exists fields of every prime characteristic p \Rightarrow each $A C F_{p}$ satisfies C_{p} and negates C_{q} for $q \neq p$
- In ACF, no proof of C_{p} nor $\neg \mathrm{C}_{p}$ possible
- Decision alg. $\mathcal{D}(\psi)$ for ACF:
- if $\psi \equiv C_{p}$ or $\neg C_{p}$ for some prime p, return NO
- else run quantifier elimination on ψ
- ACF is decidable and incomplete
if ACF axioms include $\neg C_{p}$ for all p, then ACF complete

Complete and undecidable (impossible)

- FS \mathcal{F} complete:
$\forall \psi \in \mathcal{F} \exists$ proof of ψ or $\neg \psi$
- Proofs are finite sequences of sentences
- Algorithm \mathcal{D} :

1. iteratively generate all (countably many) proofs combine axioms w/inference rules and repeat
2. for each new sentence τ, is $\tau \equiv \psi$ or $\tau \equiv \neg \psi$?

Return 1 or 0 and break; else continue

- \mathcal{D} terminates because \mathcal{F} is complete
- If FS is complete, then it is decidable

The two meanings of completeness

- WARNING!!!
"complete" is used in two different ways in logic

1. Gödel's lst incompleteness theorem

FS \mathcal{F} complete if ϕ or $\neg \phi$ provable $\forall \phi$
2. A : sentences; R : inference rules
A complete wrt R if $A \vDash \psi \Rightarrow A \vdash \psi$

- $A \vDash \psi: \psi$ is logically valid never false for any FS whaxioms A and infer. rules R
- Gödel's completeness theorem: FOL is complete
- Pay attention when reading literature/websites

Undecidability \& Incompleteness

- [Nonexistence of a proof for $f] \not \equiv[$ Proof of $\neg f]$ If FS decidable \& incomplete, decision alg. answers NO to f and $\neg f$ for f independent
- Information complexity: decision $=1$ bit, proof $=$ many bits
- Undecidability and incompleteness are different!

Is MP solvable?

- Hilbert's 10th problem: is there an algorithm for solving polynomial Diophantine equations?
- Modern formulation: are polynomial systems over \mathbb{Z} solvable?
- [Matiyasevich 1970]: NO can use them to model UTM dynamics
- Let $p(\alpha, x)=0$ be a Univ. Dioph. Eq. (UDE)
- $\min \{0 \mid p(\alpha, x)=0\}$ is an undecidable (feasibility) MP
- $\min (p(\alpha, x))^{2}$ is an unsolvable (optimization) MP

Outline

Introduction
Decidability

Efficiency and Hardness

Some combinatorial
problems
NP-hardness
Systematics
Distance Geometry
The universal isometric
embedding
Dimension reduction
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap for the DGP
Concluding remarks
Clustering in Natural Language

```
Clustering on graphs
Clustering in Euclidean
spaces
Distance resolution limit
MP formulations
Clustering in high
dimensions
Random projections in LP
Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression
Sparsity and \(\ell_{1}\) minimization
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
```


Worst-case algorithmic complexity

- Computational complexity theory: worst-case time/space taken by an algorithm to complete
- Algorithm \mathcal{A}
- e.g. to determine whether a graph $G=(V, E)$ is connected or not
- input: G; size of input: $\nu=|V|+|E|$
- How does the CPU time $\tau(\mathcal{A})$ used by \mathcal{A} vary with ν ?
- $\tau(\mathcal{A})=O\left(\nu^{k}\right)$ for fixed k : polytime
- $\tau(\mathcal{A})=O\left(2^{\nu}\right)$: exponential
- polytime \leftrightarrow efficient
- exponential \leftrightarrow inefficient

Polytime algorithms are "efficient"

-Why are polynomials special?

- Many different variants of Turing Machines (TM)
- Polytime is invariant to all definitions of TM
- In practice, $O(\nu)-O\left(\nu^{3}\right)$ is an acceptable range covering most practically useful efficient algorithms
- Many exponential algorithms are also usable in practice for limited sizes

Instances and problems

- An input to an algorithm \mathcal{A} : instance
- Collection of all inputs for \mathcal{A} : problem consistent with "set of sentences" from decidability
- BUT:
- A problem can be solved by different algorithms
- There are problems which no algorithm can solve
- Given a problem P, what is the complexity of the best algorithm that solves P ?

Complexity classes

- Focus on decision problems
- If \exists polytime algorithm for P, then $P \in \mathbf{P}$
- If there is a polytime checkable certificate for all YES instances of P, then $P \in \mathbf{N P}$
- No-one knows whether $\mathbf{P}=\mathbf{N P}$ (we think not)
- NP includes problems for which we don't think a polytime algorithms exist e.g. k-CLIQUE, SUBSET-SUM, KNAPSACK, HAMILTONIAN CYCLE, SAT, ...

Subsection 1

Some combinatorial problems

k-CLIQUE

- Instance: $(G=(V, E), k)$
- Problem: determine whether G has a clique of size k

- 1-CLIgUE? YES (every graph is YES)
- 2-CLIgUE? YES (every non-empty graph is YES)
- 3-CLIgUE? YES (triangle $\{1,2,4\}$ is a certificate) certificate can be checked in $O(k)<O(n)$
- 4-cligue? NO
no polytime certificate unless $\mathrm{P}=\mathrm{NP}$

MP formulations for CLIgUE

Variables? Objective? Constraints?

MP formulations for cLIgUE

Variables? Objective? Constraints?

- Pure feasibility problem:

MP formulations for CLIgUE

Variables? Objective? Constraints?

- Pure feasibility problem:
- Max Cligue:

$$
\left.\begin{array}{rrl}
\max & \sum_{i \in V} x_{i} & \\
\\
\} \notin E & x_{i}+x_{j} & \leq 1 \\
& x & \in\{0,1\}^{n}
\end{array}\right\}
$$

SUBSET-SUM

- Instance: list $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ and $b \in \mathbb{N}$
- Problem: is there $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} a_{j}=b$?
- $a=(1,1,1,4,5), b=3:$ YES $J=\{1,2,3\}$
all $b \in\{0, \ldots, 12\}$ yield YES instances
- $a=(3,6,9,12), b=20: \mathbf{N O}$

MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

- Pure feasibility problem:

$$
\left.\begin{array}{rl}
\sum_{j \leq n} a_{j} x_{j} & =b \\
x & \in\{0,1\}^{n}
\end{array}\right\}
$$

KNAPSACK

- Instance: $c, w \in \mathbb{N}^{n}, K \in \mathbb{N}$
- Problem: find $J \subseteq\{1, \ldots, n\}$ s.t. $c(J) \leq K$ and $w(J)$ is maximum
- $c=(1,2,3), w=(3,4,5), K=3$
- $c(J) \leq K$ feasible for J in $\varnothing,\{j\},\{1,2\}$
- $w(\varnothing)=0, w(\{1,2\})=3+4=7, w(\{j\}) \leq 5$ for $j \leq n$
$\Rightarrow J_{\text {max }}=\{1,2\}$
- $K=0$:infeasible
- natively expressed as an optimization problem
- notation: $c(J)=\sum_{j \in J} c_{j}$ (similarly for $w(J)$)

MP formulation for KNAPSACK

Variables? Objective? Constraints?

MP formulation for KNAPSACK

Variables? Objective? Constraints?

$$
\left.\max \begin{array}{rl}
\sum_{j \leq n} w_{j} x_{j} & \\
\sum_{j \leq n} c_{j} x_{j} & \leq K \\
x & \in\{0,1\}^{n}
\end{array}\right\}
$$

Hamiltonian Cycle

- Instance: $G=(V, E)$
- Problem: does G have a Hamiltonian cycle?
cycle covering every $v \in V$ exactly once

NO

1—N (cert. $\rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 1$)

MP formulation for Hamiltonian Cycle

Variables? Objective? Constraints?

MP formulation for Hamiltonian Cycle

Variables? Objective? Constraints?

$$
\begin{array}{r}
\forall i \in V \quad \sum_{\substack{j \in V \\
\{i, j \in \in \in}} x_{i j}=1 \\
\forall j \in V \sum_{\substack{i, V V \\
\{i, j\} \in E}} x_{i j}=1 \\
\sum_{\substack{i \in S, j \notin S \\
\{i, j \in \mathcal{E}}} x_{i j} \geq 1 \tag{3}
\end{array}
$$

WARNING: second order statement!
quantified over sets
other warning: need arcs not edges in (1)-(3)

Satisfiability (SAT)

- Instance: boolean logic sentence f in CNF

$$
\bigwedge_{i \leq m} \bigvee_{j \in C_{i}} \ell_{j}
$$

where $\ell_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}$ for $j \leq n$

- Problem: is there $\phi: x \rightarrow\{0,1\}^{n}$ s.t. $\phi(f)=1$?
- $f \equiv\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right)$
$x_{1}=x_{2}=1, x_{3}=0$ is a YES certificate
- $f \equiv\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$

ϕ	$x=(1,1)$	$x=(0,0)$	$x=(1,0)$	$x=(0,1)$
false	C_{2}	C_{1}	C_{3}	C_{4}

MP formulation for SAT

Exercise

Subsection 2

NP-hardness

NP-Hardness

- Do hard problems exist? Depends on $\mathbf{P} \neq \mathrm{NP}$
- Next best thing: define hardest problem in NP
- A problem P is NP-hard if Every problem Q in NP can be solved in this way:

1. given an instance q of Q transform it in polytime to an instance $\rho(q)$ of P s.t. q is YES iff $\rho(q)$ is YES
2. run the best algorithm for P on $\rho(q)$, get answer $\alpha \in\{\mathrm{YES}, \mathrm{NO}\}$
3. return α
ρ is called a polynomial reduction from Q to P

- If P is in NP and is NP-hard, it is called NP-complete
- Every problem in NP reduces to sat [Cook 1971]

Cook's theorem

> Theorem l: If a set S of strings is accepted by some nondeterministic Turing machine within polynomial time, then S is P-reducible to \{DNF tautologies\}.

Boolean decision variables store TM dynamics

Proposition symbols:

```
    Ps,t for 1\leqi i\leql, 1\leqs,t\leqT.
P i
at step t contains the symbol }\mp@subsup{\sigma}{i}{}\mathrm{ .
            Q i
true iff at step t the machine is in
state q}\mp@subsup{\textrm{g}}{\textrm{i}}{
    S.s,t for l\leqs,t\leqT is true iff at
time t square number s}\mathrm{ is scanned
by the tape head.
```

Definition of TM dynamics in CNF

$$
B_{t} \text { asserts that at time } t \text { one and }
$$

only one square is scanned:

$$
\begin{aligned}
& B_{t}=\left(S_{1, t} \vee S_{2, t} \vee \ldots \vee S_{T, t}\right) \& \\
& {\left[\underset{1 \leq i<j \leq T}{\mathcal{G}}\left(\neg S_{i, t} \vee \neg S_{j, t}\right)\right]}
\end{aligned}
$$

that if at time t the machine is in state q_{i} scanning symbol σ_{j}, then at time $t+1$ the machine is in state q_{k}, where q_{k} is the state given by the transition function for M.
$\left.G_{i, j}^{t}={\underset{S}{G}=1}_{T}^{T} \neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee Q_{t+1}^{k}\right)$

Description of a dynamical system using a declarative programming language (SAT) - what MP is all about!

Cook's theorem: sets and params

- Reduce nondeterministic polytime TM M to MILP
- Tuple ($Q, \Sigma, s, F, \delta)$: states, alphabet, initial, final, transition
- Transition relation $\delta:(Q \backslash F \times \Sigma) \times(Q \times \Sigma \times\{-1,1\})$
- M polytime: terminates in $p(n)$ n size of input, $p(\cdot)$ polynomial
- Index sets: states Q, characters Σ, tape cells I, steps K $|K|=O(p(n)),|I|=2|K|$
- Parameters: initial tape string $\tau_{i}=\operatorname{symbol} j \in \Sigma$ in cell i

Cook's theorem: decision vars

- $\forall i \in I, j \in \Sigma, k \in K$ $t_{i j k}=1$ iff tape cell i contains symbol j at step k
- $\forall i \in I, k \in K$
$h_{i k}=1$ iff head is at tape cell i at step k
- $\forall \ell \in Q, k \in K$
$q_{\ell k}=1$ iff M is in state ℓ at step k

Cook's theorem: constraints (informal)

1. Initialization:
1.1 initial string τ on tape at step $k=0$
1.2 M in initial state s at step $k=0$
1.3 head initial position on cell $i=0$ at $k=0$
2. Execution:
2.1 $\forall i, k$: cell i has exactly one symbol j at step k
$2.2 \forall i, k$: if cell i changes symbol between step k and $k+1$, head must be on cell i at step k
$2.3 \forall k$: M is in exactly one state
2.4 $\forall k, i, j \in \Sigma$: cell i and symbol j in state k lead to possible cells, symbol and states as given by δ
3. Termination:
3.1 M reaches termination at some step $k \leq p(n)$

Cook's theorem: constraints (informal)

1. Initialization:

$$
\begin{aligned}
& 1.1 \quad \forall i\left(t_{i, \tau_{i}, 0}=1\right) \\
& 1.2 q_{s, 0}=1 \\
& 1.3 h_{0,0}=1
\end{aligned}
$$

2. Execution:

$$
\begin{aligned}
& \text { 2.1 } \forall i, k\left(\sum_{j} t_{i j k}=1\right) \\
& 2.2 \forall i, j \neq j^{\prime}, k<p(n)\left(t_{i j k} t_{i, j^{\prime}, k+1}=h_{i k}\right) \\
& \text { 2.3 } \forall k \sum_{i} h_{i k}=1 \\
& \text { 2.4 } \forall i, \ell, j, k \\
& \quad\left(h_{i k} q_{\ell k} t_{i j k}=\sum_{\left((\ell, j),\left(\ell^{\prime}, j^{\prime}, d\right)\right) \in \delta} h_{i+d, k+1} q_{\ell^{\prime}, k+1} t_{i+d, j^{\prime}, k+1}\right)
\end{aligned}
$$

3. Termination:

$$
3.1 \sum_{k, f \in F} q_{f k}=1
$$

Cook's theorem: conclusion

- Nonlinear constraints can be linearized:

$$
\begin{aligned}
& z=x y \wedge x, y \in\{0,1\} \wedge z \in[0,1] \equiv \\
& z \leq x \wedge z \leq y \wedge z \geq x+y-1 \wedge x \in\{0,1\} \wedge z \in[0,1]
\end{aligned}
$$

- MILP is feasibility only
- MILP has polynomial size
- \Rightarrow MILP is NP-hard

Reduction graph

After Cook's theorem

To prove NP-hardness of a new problem P, pick a known NP-hard problem Q that "looks similar enough" to P and find a polynomial reduction ρ from Q to P [Karp 1972]

Why it works: suppose P easier than Q, solve Q by calling $\rho \circ \operatorname{Alg}_{P}$, conclude Q as easy as P, contradiction

Example of polynomial reduction

- STABLE: given $G=(V, E)$ and $k \in \mathbb{N}$, does it contain a stable set of size k ?
- We know k-cligue is NP-complete, reduce from it
- Given instance (G, k) of cligue consider the complement graph (computable in polytime)

$$
\bar{G}=(V, \bar{E}=\{\{i, j\} \mid i, j \in V \wedge\{i, j\} \notin E\})
$$

- Thm.: G has a clique of size k iff \bar{G} has a stable set of size k
- $\rho(G)=\bar{G}$ is a polynomial reduction from cligue to STABLE
- \Rightarrow stable is $\mathbb{N P}$-hard
- stable is also in NP $U \subseteq V$ is a stable set iff $E(G[U])=\varnothing$ (polytime verification)
- \Rightarrow stable is $\mathbb{N P}^{-c o m p l e t e}$

MILP is NP-hard (from sat)

- sat is NP-hard by Cook's theorem, Reduce from sat in CNF

$$
\bigwedge_{i \leq m} \bigvee_{j \in C_{i}} \ell_{j}
$$

where ℓ_{j} is either x_{j} or $\bar{x}_{j} \equiv \neg x_{j}$

- Polynomial reduction ρ

SAT	x_{j}	\bar{x}_{j}	\vee	\wedge
MILP	x_{j}	$1-x_{j}$	+	≥ 1

- E.g. $\rho \operatorname{maps}\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right)$ to

$$
\min \left\{0 \mid x_{1}+x_{2} \geq 1 \wedge x_{3}-x_{2} \geq 0 \wedge x \in\{0,1\}^{3}\right\}
$$

- sat is YES iff MILP is feasible (same solution, actually)

Complexity of Quadratic Programming

$$
\left.\begin{array}{rl}
\min \quad x^{\top} Q x & +c^{\top} x \\
A x & \geq b
\end{array}\right\}
$$

- Quadratic Programming $=$ QP
- Quadratic objective, linear constraints, continuous variables
- Many applications (e.g. portfolio selection)
- If Q PSD then objective is convex, problem is in P
- If Q has at least one negative eigenvalue, NP-hard
- Decision problem: "is the min. obj.fun. value ≤ 0 ?"

QP is NP-hard

- By reduction from SAT, let σ be an instance
- $\hat{\rho}(\sigma, x) \geq 1$: linear constraints of SAT \rightarrow MILP reduction
- Consider QP

$$
\left.\begin{array}{rl}
\min & f(x)=\sum_{j \leq n} x_{j}\left(1-x_{j}\right) \\
& \hat{\rho}(\sigma, x) \geq 1 \\
& 0 \leq x \leq 1
\end{array}\right\}
$$

- Claim: σ is YES iff $\operatorname{val}(\dagger)=0$
- Proof:
- assume σ YES with soln. x^{*}, then $x^{*} \in\{0,1\}^{n}$, hence $f\left(x^{*}\right)=0$, since $f(x) \geq 0$ for all $x, \operatorname{val}(\dagger)=0$
- assume σ NO, suppose $\operatorname{val}(\dagger)=0$, then (\dagger) feasible with soln. x^{\prime}, since $f\left(x^{\prime}\right)=0$ then $x^{\prime} \in\{0,1\}$, feasible in sat hence σ is YES, contradiction

Box-constrained QP is NP-hard

- Add surplus vars v to sat \rightarrow MILP constraints:

$$
\begin{aligned}
& \hat{\rho}(\sigma, x)-1-v=0 \\
& \quad\left(\text { denote by } \forall i \leq m\left(a_{i}^{\top} x-b_{i}-v_{i}=0\right)\right)
\end{aligned}
$$

- Now sum them on the objective

$$
\left.\begin{array}{ll}
\min & \sum_{j \leq n} x_{j}\left(1-x_{j}\right)+\sum_{i \leq m}\left(a_{i}^{\top} x-b_{i}-v_{i}\right)^{2} \\
& 0 \leq x \leq 1, v \geq 0
\end{array}\right\}
$$

- Issue: v not bounded above
- Reduce from 3sAt, get ≤ 3 literals per clause \Rightarrow can consider $0 \leq v \leq 2$

cQKP is NP-hard

- continuous Quadratic Knapsack Problem (cQKP)
- Reduction from subset-sum
given list $a \in \mathbb{Q}^{n}$ and γ, is there $J \subseteq\{1, \ldots, n\}$ s.t. $\sum_{j \in J} a_{j}=\gamma$?
reduce to $f(x)=\sum_{j} x_{j}\left(1-x_{j}\right)$
- σ is a YES instance of SUBSET-SUM
- let $x_{j}^{*}=1$ iff $j \in J, x_{j}^{*}=0$ otherwise
- feasible by construction
- f is non-negative on $[0,1]^{n}$ and $f\left(x^{*}\right)=0$: optimum
- σ is a NO instance of SUBSET-SUM
- suppose opt $(\mathbf{c Q K P})=x^{*}$ s.t. $f\left(x^{*}\right)=0$
- then $x^{*} \in\{0,1\}^{n}$ because $f\left(x^{*}\right)=0$
- feasibility of $x^{*} \rightarrow \operatorname{supp}\left(x^{*}\right)$ solves σ, contradiction, hence $f\left(x^{*}\right)>0$

QP on a simplex is NP-hard

$$
\left.\min \begin{array}{rl}
f(x)=x^{\top} Q x & +c^{\top} x \\
\sum_{j \leq n} x_{j} & =1 \\
\forall j \leq n \quad x_{j} & \geq 0
\end{array}\right\}
$$

- Reduce max cligue to subclass $f(x)=-\sum_{\{i, j\} \in E} x_{i} x_{j}$

Motzkin-Straus formulation (MSF)

- Theorem [Motzkin\& Straus 1964]

Let C be the maximum clique of the instance $G=(V, E)$ of max cligue $\exists x^{*} \in \mathrm{opt}(\mathrm{MSF}) \quad f^{*}=f\left(x^{*}\right)=\frac{1}{2}\left(1-\frac{1}{\omega(G)}\right)$
$\forall j \in V \quad x_{j}^{*}= \begin{cases}\frac{1}{\omega(G)} & \text { if } j \in C \\ 0 & \text { otherwise }\end{cases}$

Proof of the Motzkin-Straus theorem

$$
x^{*}=\operatorname{opt}\left(\max _{\substack{x \in[0,1]^{n} \\ \sum_{j} x_{j}=1}} \sum_{i j \in E} x_{i} x_{j}\right) \text { s.t. }\left|C=\left\{j \in V \mid ; x_{j}^{*}>0\right\}\right| \text { smallest }(\ddagger)
$$

1. C is a clique

- Suppose $1,2 \in C$ but $\{1,2\} \notin E[C]$, then $x_{1}^{*}, x_{2}^{*}>0$, can perturb by small $\epsilon \in\left[-x_{1}^{*}, x_{2}^{*}\right]$, get $x^{\epsilon}=\left(x_{1}^{*}+\epsilon, x_{2}^{*}-\epsilon, \ldots\right)$, feasible w.r.t. simplex and bounds
- $\{1,2\} \notin E \Rightarrow x_{1} x_{2}$ does not appear in $f(x) \Rightarrow f\left(x^{\epsilon}\right)$ depends linearly on ϵ; by optimality of x^{*}, f achieves max for $\epsilon=0$, in interior of its range $\Rightarrow f(\epsilon)$ constant
- set $\epsilon=-x_{1}^{*}$ or $=x_{2}^{*}$ yields global optima with more zero components than x^{*}, against assumption (\ddagger), hence $\{1,2\} \in E[C]$, by relabeling C is a clique

Proof of the Motzkin-Straus theorem

$$
x^{*}=\operatorname{opt}\left(\max _{\substack{x \in[0,1] n \\ \sum_{j} x_{j}=1}} \sum_{i j \in E} x_{i} x_{j}\right) \text { s.t. }\left|C=\left\{j \in V \mid ; x_{j}^{*}>0\right\}\right| \text { smallest }(\ddagger)
$$

2. $|C|=\omega(G)$

- square simplex constraint $\sum_{j} x_{j}=1$, get

$$
\sum_{j \in V} x_{j}^{2}+2 \sum_{i<j \in V} x_{i} x_{j}=1
$$

- by construction $x_{j}^{*}=0$ for $j \notin C \Rightarrow$

$$
\psi\left(x^{*}\right)=\sum_{j \in C}\left(x_{j}^{*}\right)^{2}+2 \sum_{i<j \in C} x_{j}^{*} x_{j}^{*}=\sum_{j \in C}\left(x_{j}^{*}\right)^{2}+2 f\left(x^{*}\right)=1
$$

- $\psi(x)=1$ for all feasible x, so $f(x)$ achieves maximum when $\sum_{j \in C}\left(x_{j}^{*}\right)^{2}$ is minimum, i.e. $x_{j}^{*}=\frac{1}{|C|}$ for all $j \in C$
- again by simplex constraint

$$
f\left(x^{*}\right)=1-\sum_{j \in C}\left(x_{j}^{*}\right)^{2}=1-|C| \frac{1}{|C|^{2}} \leq 1-\frac{1}{\omega(G)}
$$

so $f\left(x^{*}\right)$ attains maximum $1-1 / \omega(G)$ when $|C|=\omega(G)$

Copositive programming

- STQP: $\min x^{\top} Q x: \sum_{j} x_{j}=1 \wedge x \geq 0$

NP-hard by Motzkin-Straus

- Linearize: $X=x x^{\top}$
- $A \bullet B=\operatorname{tr}\left(A^{\top} B\right)$ write StQP objective as $\min Q \bullet X$
- Let $C=\left\{X \mid X=x x^{\top} \wedge x \geq 0\right\}, \mathcal{C}=\operatorname{conv}(C)$
- $\sum_{j} x_{j}=1 \Leftrightarrow\left(\sum_{j} x_{j}\right)^{2}=1^{2} \Leftrightarrow \mathbf{1} \bullet X=1$
- $\operatorname{STQP} \equiv \min Q \bullet X: 1 \bullet X=1 \wedge X \in \mathcal{C}$
- Dual $\equiv \max y: Q-y \mathbf{1} \in \mathcal{C}^{*}$ $\mathcal{C}^{*}=\left\{A \mid \forall x \geq 0\left(x^{\top} A x \geq 0\right)\right\}$ (copositive cone)
- \Rightarrow cNLP which is NP-hard!

Two exercises

- Prove that quartic polynomial optimization is NP-hard; reduce from one of the combinatorial problems given during the course, and make sure that at least one monomial of degree four appears with non-zero coefficient in the MP formulation.
- As above, but for cubic polynomial optimization.

Portfolio optimization

You, a private investment banker, are seeing a customer. She tells you "I have 3,450,000\$ I don't need in the next three years. Invest them in low-risk assets so I get at least 2.5% return per year."

Model the problem of determining the required portfolio. Missing data are part of the fun (and of real life).

Outline

Introduction
Decidability
Efficiency and Hardness
Some combinatorial
problems
NP-hardness

Systematics

Distance Geometry
The universal isometric
embedding
Dimension reduction
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap for the DGP
Concluding remarks
Clustering in Natural Language

```
Clustering on graphs
Clustering in Euclidean
spaces
Distance resolution limit
MP formulations
Clustering in high
dimensions
Random projections in LP
Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression
Sparsity and \(\ell_{1}\) minimization
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
```


Types of MP

Continuous variables:

- LP (linear functions)
- QP (quadratic obj. over affine sets)
- QCP (linear obj. over quadratically def'd sets)
- QCQP (quadr. obj. over quadr. sets)
- cNLP (convex sets, convex obj. fun.)
- SOCP (LP over 2nd ord. cone)
- SDP (LP over PSD cone)
- COP (LP over copositive cone)
- NLP (nonlinear functions)

Types of MP

Mixed-integer variables:

- IP (integer programming), MIP (mixed-integer programming)
- extensions: MILP, MIQ, MIQCP, MIQCQP, cMINLP, MINLP
- BLP (LP over $\{0,1\}^{n}$)
- BQP (QP over $\{0,1\}^{n}$)

More "exotic" classes:

- MOP (multiple objective functions)
- BLevP (optimization constraints)
- SIP (semi-infinite programming)

Outline

Introduction
Decidability
Efficiency and Hardness
Some combinatorial
problems
NP-hardness
Systematics

Distance Geometry

The universal isometric embedding
Dimension reduction
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm Isomap for the DGP
Concluding remarks
Clustering in Natural Language

```
Clustering on graphs
Clustering in Euclidean
spaces
Distance resolution limit
MP formulations
Clustering in high
dimensions
Random projections in LP
Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression
Sparsity and \(\ell_{1}\) minimization
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound
```


A gem in Distance Geometry

- Heron's theorem
- Heron lived around year 0
- Hang out at Alexandria's library

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

- $A=$ area of triangle
- $s=\frac{1}{2}(a+b+c)$

Useful to measure areas of agricultural land

$$
\text { A. } 2 \alpha+2 \beta+2 \gamma=2 \pi \Rightarrow \alpha+\beta+\gamma=\pi
$$

B. $s=\frac{1}{2}(a+b+c)=x+y+z$

$$
\begin{gathered}
r+i x=u e^{i \alpha} \\
r+i y=v e^{i \beta} \\
r+i z=w e^{i \gamma} \\
\Rightarrow(r+i x)(r+i y)(r+i z)=(u v w) e^{i(\alpha+\beta+\gamma)}= \\
u v w e^{i \pi}=-u v w \in \mathbb{R} \\
\Rightarrow \operatorname{Im}((r+i x)(r+i y)(r+i z))=0 \\
\Rightarrow r^{2}(x+y+z)=x y z \Rightarrow r=\sqrt{\frac{x y z}{x+y+z}}
\end{gathered}
$$

$$
\begin{aligned}
s-a & =x+y+z-y-z=x \\
s-b & =x+y+z-x-z=y \\
s-c & =x+y+z-x-y=z \\
\mathcal{A}=\frac{1}{2}(r a+r b+r c)= & r \frac{a+b+c}{2}=r s=\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
$$

Subsection 1

The universal isometric embedding

Representing metric spaces in \mathbb{R}^{n}

- Given metric space (X, d) with dist. matrix $D=\left(d_{i j}\right)$, embed X in a Euclidean space with same dist. matrix
- Consider i-th row $\delta_{i}=\left(d_{i 1}, \ldots, d_{i n}\right)$ of D
- Embed $i \in X$ by vector $\delta_{i} \in \mathbb{R}^{n}$
- Define $f(X)=\left\{\delta_{1}, \ldots, \delta_{n}\right\}, f(d(i, j))=\|f(i)-f(j)\|_{\infty}$
- Thm.: $\left(f(X), \ell_{\infty}\right)$ is a metric space with distance matrix D
- Practical issue: embedding is high-dimensional ($\left.\mathbb{R}^{n}\right)$

Proof

- Consider $i, j \in X$ with distance $d(i, j)=d_{i j}$
- Then
$f(d(i, j))=\left\|\delta_{i}-\delta_{j}\right\|_{\infty}=\max _{k \leq n}\left|d_{i k}-d_{j k}\right| \leq \max _{k \leq n}\left|d_{i j}\right|=d_{i j}$
ineq. \leq above from triangular inequalities in metric space:
$d_{i k} \leq d_{i j}+d_{j k} \wedge d_{j k} \leq d_{i j}+d_{i k} \Rightarrow\left|d_{i k}-d_{j k}\right| \leq d_{i j}$
- max $\left|d_{i k}-d_{j k}\right|$ over $k \leq n$ is achieved when

$$
k \in\{i, j\} \Rightarrow f(d(i, j))=d_{i j}
$$

Subsection 2

Dimension reduction

Schoenberg's theorem

- [I. Schoenberg, Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espace de Hilbert", Ann. Math., 1935]
- Question: Given $n \times n$ symmetric matrix D, what are necessary and sufficient conditions s.t. D is a EDM ${ }^{1}$ corresponding to n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{K}$ with K minimum?
- Main theorem:

Thm.
$D=\left(d_{i j}\right)$ is an EDM iff $\frac{1}{2}\left(d_{1 i}^{2}+d_{1 j}^{2}-d_{i j}^{2} \mid 2 \leq i, j \leq n\right)$ is PSD of rank K

- Gave rise to one of the most important results in data science: Classic Multidimensional Scaling

[^0]
Gram in function of EDM

- $x=\left(x_{1}, \ldots, x_{n}\right) \subseteq \mathbb{R}^{K}$, written as $n \times K$ matrix
- matrix $G=x x^{\top}=\left(x_{i} \cdot x_{j}\right)$ is the Gram matrix of x

Lemma: $G \succeq 0$ and each $M \succeq 0$ is a Gram matrix of some x

- A variant of Schoenberg's theorem

Relation between EDMs and Gram matrices:

$$
\begin{equation*}
G=-\frac{1}{2} J D^{2} J \tag{§}
\end{equation*}
$$

- where $D^{2}=\left(d_{i j}^{2}\right)$ and

$$
J=I_{n}-\frac{1}{n} \mathbf{1} \mathbf{1}^{\top}=\left(\begin{array}{cccc}
1-\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\
-\frac{1}{n} & 1-\frac{1}{n} & \cdots & -\frac{1}{n} \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{1}{n} & -\frac{1}{n} & \cdots & 1-\frac{1}{n}
\end{array}\right)
$$

Multidimensional scaling (MDS)

- Often get approximate EDMs \tilde{D} from raw data (dissimilarities, discrepancies, differences)
- $\tilde{G}=-\frac{1}{2} J \tilde{D}^{2} J$ is an approximate Gram matrix
- Approximate Gram \Rightarrow spectral decomposition $P \tilde{\Lambda} P^{\top}$ has $\tilde{\Lambda} \nsupseteq 0$
- Let Λ closest PSD diagonal matrix to $\tilde{\Lambda}$: zero the negative components of $\tilde{\Lambda}$
- $x=P \sqrt{\Lambda}$ is an "approximate realization" of \tilde{D}

Classic MDS: Main result

1. Prove lemma: matrix is Gram iff it is PSD
2. Prove Schoenberg's theorem: $G=-\frac{1}{2} J D^{2} J$

Proof of lemma

- Gram $\subseteq P S D$
- x is an $n \times K$ real matrix
- $G=x x^{\top}$ its Gram matrix
- For each $y \in \mathbb{R}^{n}$ we have

$$
y G y^{\top}=y\left(x x^{\top}\right) y^{\top}=(y x)\left(x^{\top} y^{\top}\right)=(y x)(y x)^{\top}=\|y x\|_{2}^{2} \geq 0
$$

- $\Rightarrow G \succeq 0$
- PSD \subseteq Gram
- Let $G \succeq 0$ be $n \times n$
- Spectral decomposition: $G=P \Lambda P^{\top}$
(P orthogonal, $\Lambda \geq 0$ diagonal)
- $\Lambda \geq 0 \Rightarrow \sqrt{\Lambda}$ exists
- $G=P \Lambda P^{\top}=(P \sqrt{\Lambda})\left(\sqrt{\Lambda}^{\top} P^{\top}\right)=(P \sqrt{\Lambda})(P \sqrt{\Lambda})^{\top}$
- Let $x=P \sqrt{\Lambda}$, then G is the Gram matrix of x

Schoenberg's theorem proof (1/2)

- Assume zero centroid WLOG (can translate x as needed)
- Expand: $d_{i j}^{2}=\left\|x_{i}-x_{j}\right\|_{2}^{2}=\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)=x_{i} x_{i}+x_{j} x_{j}-2 x_{i} x_{j}$
- Aim at "inverting" (*) to express $x_{i} x_{j}$ in function of $d_{i j}^{2}$
- Sum (*) over $i: \sum_{i} d_{i j}^{2}=\sum_{i} x_{i} x_{i}+n x_{j} x_{j}-2 x_{j} \sum_{i} \widehat{x i}^{0}$ by zero centroid
- Similarly for j and divide by n, get:

$$
\begin{align*}
\frac{1}{n} \sum_{i \leq n} d_{i j}^{2} & =\frac{1}{n} \sum_{i \leq n} x_{i} x_{i}+x_{j} x_{j} \\
\frac{1}{n} \sum_{j \leq n} d_{i j}^{2} & =x_{i} x_{i}+\frac{1}{n} \sum_{j \leq n} x_{j} x_{j}
\end{align*}
$$

- Sum (\dagger) over j, get:

$$
\frac{1}{n} \sum_{i, j} d_{i j}^{2}=n \frac{1}{n} \sum_{i} x_{i} x_{i}+\sum_{j} x_{j} x_{j}=2 \sum_{i} x_{i} x_{i}
$$

- Divide by n, get:

$$
\frac{1}{n^{2}} \sum_{i, j} d_{i j}^{2}=\frac{2}{n} \sum_{i} x_{i} x_{i}
$$

Schoenberg's theorem proof (2/2)

- Rearrange $(*),(\dagger),(\ddagger)$ as follows:

$$
\begin{align*}
2 x_{i} x_{j} & =x_{i} x_{i}+x_{j} x_{j}-d_{i j}^{2} \tag{4}\\
x_{i} x_{i} & =\frac{1}{n} \sum_{j} d_{i j}^{2}-\frac{1}{n} \sum_{j} x_{j} x_{j} \tag{5}\\
x_{j} x_{j} & =\frac{1}{n} \sum_{i} d_{i j}^{2}-\frac{1}{n} \sum_{i} x_{i} x_{i} \tag{6}
\end{align*}
$$

- Replace LHS of Eq. (5)-(6) in RHS of Eq. (4), get

$$
2 x_{i} x_{j}=\frac{1}{n} \sum_{k} d_{i k}^{2}+\frac{1}{n} \sum_{k} d_{k j}^{2}-d_{i j}^{2}-\frac{2}{n} \sum_{k} x_{k} x_{k}
$$

$-\operatorname{By}(* *)$ replace $\frac{2}{n} \sum_{i} x_{i} x_{i}$ with $\frac{1}{n^{2}} \sum_{i, j} d_{i j}^{2}$, get

$$
\begin{equation*}
2 x_{i} x_{j}=\frac{1}{n} \sum_{k}\left(d_{i k}^{2}+d_{k j}^{2}\right)-d_{i j}^{2}-\frac{1}{n^{2}} \sum_{h, k} d_{h k}^{2} \tag{§}
\end{equation*}
$$

which expresses $x_{i} x_{j}$ in function of D

Principal Component Analysis (PCA)

- Given an approximate distance matrix D
- find $x=\operatorname{MDS}(D)$
- However, you want $x=P \sqrt{\Lambda}$ in K dimensions but $\operatorname{rank}(\Lambda)>K$
- Only keep K largest components of Λ zero the rest
- Get realization in desired space

Example 1/3

Mathematical genealogy skeleton

Example 2/3

Apartial view

	Euler	Thibaut	Pfaff	Lagrange	Laplace	Möbius	Gudermann	Dirksen	Gauss
Kästner	10	1	1	9	8	2	2	2	2
Euler		11	9	1	3	10	12	12	8
Thibaut			2	10	10	3	1	1	3
Pfaff				8	8	1	3	3	1
Lagrange					2	9	11	11	7
Laplace						9	11	11	7
Möbius						4	4	2	
Gudermann							2	4	
Dirksen								4	

$$
D=\left(\begin{array}{cccccccccc}
0 & 10 & 1 & 1 & 9 & 8 & 2 & 2 & 2 & 2 \\
10 & 0 & 11 & 9 & 1 & 3 & 10 & 12 & 12 & 8 \\
1 & 11 & 0 & 2 & 10 & 10 & 3 & 1 & 1 & 3 \\
1 & 9 & 2 & 0 & 8 & 8 & 1 & 3 & 3 & 1 \\
9 & 1 & 10 & 8 & 0 & 2 & 9 & 11 & 11 & 7 \\
8 & 3 & 10 & 8 & 2 & 0 & 9 & 11 & 11 & 7 \\
2 & 10 & 3 & 1 & 9 & 9 & 0 & 4 & 4 & 2 \\
2 & 12 & 1 & 3 & 11 & 11 & 4 & 0 & 2 & 4 \\
2 & 12 & 1 & 3 & 11 & 11 & 4 & 2 & 0 & 4 \\
2 & 8 & 3 & 1 & 7 & 7 & 2 & 4 & 4 & 0
\end{array}\right)
$$

Example 3/3

Subsection 3

Distance geometry problem

The Distance Geometry Problem (DGP)

Given $K \in \mathbb{N}$ and $G=(V, E, d)$ with $d: E \rightarrow \mathbb{R}_{+}$, find $x: V \rightarrow \mathbb{R}^{K}$ s.t.

$$
\forall\{i, j\} \in E \quad\left\|x_{i}-x_{j}\right\|_{2}^{2}=d_{i j}^{2}
$$

Some applications

- clock synchronization ($K=1$)
- sensor network localization $(K=2)$
- molecular structure from distance data $(K=3)$
- autonomous underwater vehicles $(K=3)$
- distance matrix completion (whatever K)

Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial measurements of their time differences

- $K=1$
- V : timestamps
- $\{u, v\} \in E$ if known time difference between u, v
- d : values of the time differences

Clock synchronization

Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to locate a set of geographically distributed objects using measurements of the distances between some object pairs

- $K=2$
- V : (mobile) sensors
- $\{u, v\} \in E$ iff distance between u, v is measured
- d: distance values

```
Used whenever GPS not viable (e.g. underwater)
duv}\propto\propto\mathrm{ battery consumption in P2P communication betw. u,v
```


Sensor network localization

Molecular structure from distance data

From [Liberti et al., SLAM Rev., 2014]

- $K=3$
- V :atoms
- $\{u, v\} \in E$ iff distance between u, v is known
- d : distance values

```
Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances \lesssim 5.5 measured approximately by NMR
```


Complexity

- DGP $_{1}$ with $d: E \rightarrow \mathbb{Q}_{+}$is in NP
- if instance YES \exists realization $x \in \mathbb{R}^{n \times 1}$
- if some component $x_{i} \notin \mathbb{Q}$ translate x so $x_{i} \in \mathbb{Q}$
- consider some other x_{j}
- let $\ell=\mid$ sh. path $p: i \rightarrow j \mid=\sum_{\{u, v\} \in p} d_{u v} \in \mathbb{Q}$
- then $x_{j}=x_{i} \pm \ell \rightarrow x_{j} \in \mathbb{Q}$
- \Rightarrow verification of

$$
\forall\{i, j\} \in E \quad\left|x_{i}-x_{j}\right|=d_{i j}
$$

in polytime

- DGP $_{K}$ may not be in NP for $K>1$ don't know how to verify $\left\|x_{i}-x_{j}\right\|_{2}=d_{i j}$ for $x \notin \mathbb{Q}^{n K}$

Hardness

Partition is NP-hard
Given $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}, \exists I \subseteq\{1, \ldots, n\}$ s.t. $\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}$?

- Reduce Partition to DGP ${ }_{1}$
- $a \longrightarrow$ cycle C

$$
V(C)=\{1, \ldots, n\}, E(C)=\{\{1,2\}, \ldots,\{n, 1\}\}
$$

- For $i<n$ let $d_{i, i+1}=a_{i}$

$$
d_{n, n+1}=d_{n 1}=a_{n}
$$

- E.g. for $a=(1,4,1,3,3)$, get cycle graph:

Partition is YES $\Rightarrow \mathrm{DGP}_{1}$ is YES

- Given: $I \subset\{1, \ldots, n\}$ s.t. $\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}$
- Construct: realization x of C in \mathbb{R}

$$
\text { 1. } x_{1}=0 \quad / / \text { start }
$$

2. induction step: suppose x_{i} known
if $i \in I$
let $x_{i+1}=x_{i}+d_{i, i+1} \quad / /$ go right
else

$$
\text { let } x_{i+1}=x_{i}-d_{i, i+1} \quad / / \text { go left }
$$

- Correctness proof: by the same induction but careful when $i=n$: have to show $x_{n+1}=x_{1}$

Partition is YES \Rightarrow DGP $_{1}$ is YES

$$
\begin{gathered}
(1)=\sum_{i \in I}\left(x_{i+1}-x_{i}\right)=\sum_{i \in I} d_{i, i+1}= \\
=\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}= \\
=\sum_{i \neq I} d_{i, i+1}=\sum_{i \notin I}\left(x_{i}-x_{i+1}\right)=(2) \\
(1)=(2) \Rightarrow \sum_{i \in I}\left(x_{i+1}-x_{i}\right)=\sum_{i \neq I}\left(x_{i}-x_{i+1}\right) \Rightarrow \sum_{i \leq n}\left(x_{i+1}-x_{i}\right)=0 \\
\Rightarrow\left(x_{n+1}-x_{n}\right)+\left(x_{n}-x_{n-1}\right)+\cdots+\left(x_{3}-x_{2}\right)+\left(x_{2}-x_{1}\right)=0 \\
\Rightarrow x_{n+1}=x_{1}
\end{gathered}
$$

Partition is $\mathrm{NO} \Rightarrow \mathrm{DGP}_{1}$ is NO

- By contradiction: suppose DGP $_{1}$ is YES, x realization of C
- $F=\left\{\{u, v\} \in E(C) \mid x_{u} \leq x_{v}\right\}$,
$E(C) \backslash F=\left\{\{u, v\} \in E(C) \mid x_{u}>x_{v}\right\}$
- Trace x_{1}, \ldots, x_{n} : follow edges in $F(\rightarrow)$ and in $E(C) \backslash F(\leftarrow)$

- Let $J=\{i<n \mid\{i, i+1\} \in F\} \cup\{n \mid\{n, 1\} \in F\}$

$$
\Rightarrow \quad \sum_{i \in J} a_{i}=\sum_{i \notin J} a_{i}
$$

- So J solves Partition instance, contradiction
$\Rightarrow \Rightarrow$ DGP is NP-hard, DGP ${ }_{1}$ is NP-complete

Number of solutions

- (G, K) : DGP instance
- $\tilde{X} \subseteq \mathbb{R}^{K n}$: set of solutions
- Congruence: composition of translations, rotations, reflections
- $C=$ set of congruences in \mathbb{R}^{K}
- $x \sim y$ means $\exists \rho \in C(y=\rho x):$ distances in x are preserved in y through ρ
$\Rightarrow \Rightarrow$ if $|\tilde{X}|>0,|\tilde{X}|=2^{\aleph_{0}}$

Number of solutions modulo congruences

- Congruence is an equivalence relation \sim on \tilde{X} (reflexive, symmetric, transitive)

- Partitions \tilde{X} into equivalence classes
- $X=\tilde{X} / \sim$: sets of representatives of equivalence classes
- Focus on $|X|$ rather than $|\tilde{X}|$

Rigidity, flexibility and $|X|$

- infeasible $\Leftrightarrow|X|=0$
- rigid graph $\Leftrightarrow|X|<\aleph_{0}$
- globally rigid graph $\Leftrightarrow|X|=1$
- flexible graph $\Leftrightarrow|X|=2^{\aleph_{0}}$
- $|X|=\aleph_{0}$: impossible by Milnor's theorem

Milnor's theorem implies $|X| \neq \aleph_{0}$

- System S of polynomial equations of degree 2

$$
\forall i \leq m \quad p_{i}\left(x_{1}, \ldots, x_{n K}\right)=0
$$

- Let X be the set of $x \in \mathbb{R}^{n K}$ satisfying S
- Number of connected components of X is $O\left(3^{n K}\right)$ [Milnor 1964]
- Assume $|X|$ is countable; then G cannot be flexible \Rightarrow each incongruent rlz is in a separate component \Rightarrow by Milnor's theorem, there's finitely many of them

Examples

$$
\begin{aligned}
& V^{1}=\{1,2,3\} \\
& E^{1}=\{\{u, v\} \mid u<v\} \\
& d^{1}=1 \\
& V^{2}=V^{1} \cup\{4\} \\
& E^{2}=E^{1} \cup\{\{1,4\},\{2,4\}\} \\
& d^{2}=1 \wedge d_{14}=\sqrt{2} \\
& V^{3}=V^{2} \\
& E^{3}=\{\{u, u+1\} \mid u \leq 3\} \cup\{1,4\} \\
& d^{1}=1
\end{aligned}
$$

ρ congruence in \mathbb{R}^{2}
$\Rightarrow \rho x$ valid realization $|X|=1$
ρ reflects x_{4} wrt $\overline{x_{1}, x_{2}}$
$\Rightarrow \rho x$ valid realization $|X|=2(\triangle, \diamond)$
ρ rotates $\overline{x_{2} x_{3}}, \overline{x_{1} x_{4}}$ by θ
$\Rightarrow \rho x$ valid realization
$|X|$ is uncountable
$(\square, \square, \square, \square, \ldots$)

Subsection 4

Distance geometry in MP

DGP formulations and methods

- System of equations
- Unconstrained global optimization (GO)
- Constrained global optimization
- SDP relaxations and their properties
- Diagonal dominance
- Concentration of measure in SDP
- Isomap for DGP

System of quadratic equations

$$
\begin{equation*}
\forall\{u, v\} \in E \quad\left\|x_{u}-x_{v}\right\|^{2}=d_{u v}^{2} \tag{7}
\end{equation*}
$$

Computationally: useless reformulate using slacks:

$$
\min _{x, s}\left\{\sum_{\{u, v\} \in E} s_{u v}^{2} \mid \forall\{u, v\} \in E \quad\left\|x_{u}-x_{v}\right\|^{2}=d_{u v}^{2}+s_{u v}\right\} \text { (8) }
$$

Unconstrained Global Optimization

$$
\begin{equation*}
\min _{x} \sum_{\{u, v\} \in E}\left(\left\|x_{u}-x_{v}\right\|^{2}-d_{u v}^{2}\right)^{2} \tag{9}
\end{equation*}
$$

Globally optimal obj. fun. value of (9) is 0 iff x solves (7)

Computational experiments in [Liberti et al., 2006]:

- GO solvers from 10 years ago
- randomly generated protein data: ≤ 50 atoms
- cubic crystallographic grids: ≤ 64 atoms

Constrained global optimization

- $\min _{x} \sum_{\{u, v\} \in E}\left|\left\|x_{u}-x_{v}\right\|^{2}-d_{u v}^{2}\right|$ exactly reformulates (7)
- Relax objective f to concave part, remove constant term, rewrite $\min -f$ as max f
- Reformulate convex part of obj. fun. to convex constraints
- Exact reformulation

$$
\left.\begin{array}{rl}
\max _{x} & \sum_{\{u, v\} \in E}\left\|x_{u}-x_{v}\right\|^{2} \tag{10}\\
v\} \in E & \left\|x_{u}-x_{v}\right\|^{2} \leq d_{u v}^{2}
\end{array}\right\}
$$

Theorem (Activity)
At a glob. opt. x^{*} of a YES instance, all constraints of (10) are active

Linearization

$$
\begin{array}{r}
\Rightarrow \quad \forall\{i, j\} \in E \quad\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i} \cdot x_{j}=d_{i j}^{2} \\
\Rightarrow\left\{\begin{aligned}
\forall\{i, j\} \in E \quad X_{i i}+X_{j j}-2 X_{i j} & =d_{i j}^{2} \\
X & =x x^{\top}
\end{aligned}\right.
\end{array}
$$

Relaxation

$$
\begin{aligned}
X & =x x^{\top} \\
\Rightarrow \quad X-x x^{\top} & =0
\end{aligned}
$$

$$
(\text { relax }) \quad \Rightarrow \quad X-x x^{\top} \succeq 0
$$

$$
\operatorname{Schur}(X, x)=\left(\begin{array}{cc}
I_{K} & x^{\top} \\
x & X
\end{array}\right) \succeq 0
$$

If x does not appear elsewhere \Rightarrow get rid of it (e.g. choose $x=0$):

$$
\text { replace } \operatorname{Schur}(X, x) \succeq 0 \text { by } X \succeq 0
$$

SDP relaxation

$$
\begin{aligned}
& \min F \bullet X \\
& \forall\{i, j\} \in E \quad X_{i i}+X_{j j}-2 X_{i j}=d_{i j}^{2} \\
& X \succeq 0
\end{aligned}
$$

How do we choose F ?

$$
F \bullet X=\operatorname{Tr}\left(F^{\top} X\right)
$$

Some possible objective functions

- For protein conformation:

$$
\min \sum_{\{i, j\} \in E}\left(X_{i i}+X_{j j}-2 X_{i j}\right)
$$

with $=$ changed to \geq in constraints (or max and $\leq)$
"push-and-pull" the realization

- [Ye, 2003], application to wireless sensors localization

$$
\min \operatorname{Tr}(X)
$$

$\operatorname{Tr}(X)=\operatorname{Tr}\left(P^{-1} \Lambda P\right)=\operatorname{Tr}\left(P^{-1} P \Lambda\right)=\operatorname{Tr}(\Lambda)=\sum_{i} \lambda_{i}$
\Rightarrow hope to minimize rank

- How about "just random"?

How do you choose?

for want of some better criterion...

TEST!

- Download protein files from Protein Data Bank (PDB)
they contain atom realizations
- Mimick a Nuclear Magnetic Resonance experiment

Keep only pairwise distances < 5.5

- Try and reconstruct the protein shape from those weighted graphs
- Quality evaluation of results:
- $\operatorname{LDE}(x)=\max _{\{i, j\} \in E}\left|\left\|x_{i}-x_{j}\right\|-d_{i j}\right|$
- $\operatorname{MDE}(x)=\frac{1}{|E|} \sum_{\{i, j\} \in E}\left|\left\|x_{i}-x_{j}\right\|-d_{i j}\right|$

Objective function tests

SDP solved with Mosek

Name Inst	stance		$\underset{\mathrm{LDE}}{\mathrm{SD}} \mathrm{DP}+\underset{P C A}{\text { MDE }}$						CPU		
	$\|V\|$	$\|E\|$	PP	$\begin{gathered} \mathrm{LDE} \\ Y e \\ \hline \end{gathered}$	Rnd	PP	$\begin{array}{r} \mathrm{MDE} \\ \mathrm{Ye} \\ \hline \end{array}$	Rnd	PP	Ye	Rnd
C0700odd. 1	15	39	3.31	4.57	4.44	1.92	2.52	2.50	0.13	0.07	0.08
C0700odd. C	36	242	10.61	4.85	4.85	3.02	3.02	3.02	0.69	0.43	0.44
C0700.odd.G	36	308	4.57	4.77	4.77	2.41	2.84	2.84	0.86	0.54	0.54
C0150alter. 1	37	335	4.66	4.88	4.86	2.52	3.00	3.00	0.97	0.59	0.58
C0080create. 1	60	681	7.17	4.86	4.86	3.08	3.19	3.19	2.48	1.46	1.46
tiny	37	335	4.66	4.88	4.88	2.52	3.00	3.00	0.97	0.60	0.60
1 guu-1	150	959	10.20	4.93	4.93	3.43	3.43	3.43	9.23	5.68	5.70

Instance			$S D P+P C A+N L P$								
				LDE			MDE			CPU	
Name	$\|V\|$	$\|E\|$	PP	Ye	Rnd	PP	Ye	Rnd	PP	Ye	Rnd
1 b 03	89	456	0.00	0.00	0.00	0.00	0.00	0.00	8.69	6.28	9.91
1 crn	138	846	0.81	0.81	0.81	0.07	0.07	0.07	33.33	31.32	44.48
$1 \mathrm{guu}-1$	150	959	0.97	4.93	0.92	0.10	3.43	0.08	56.45	7.89	65.33

Choice

- Ye very fast but often imprecise
- Random good but nondeterministic
- Push-and-Pull: can relax $X_{i i}+X_{j j}-2 X_{i j}=d_{i j}^{2}$ to $X_{i i}+X_{j j}-2 X_{i j} \geq d_{i j}^{2}$
easier to satisfy feasibility, useful later on
- Heuristic: add $+\eta \operatorname{Tr}(X)$ to objective, with $\eta \ll 1$ might help minimize solution rank
- $\min \sum_{\{i, j\} \in E}\left(X_{i i}+X_{j j}-2 X_{i j}\right)+\eta \operatorname{Tr}(X)$

When SDP solvers hit their size limit

- SDP solver: technological bottleneck
- How can we best use an LP solver?
- Diagonally Dominant (DD) matrices are PSD
- Not vice versa: inner approximate PSD cone $Y \succeq 0$
- Idea by A.A. Ahmadi [Ahmadi \& Hall 2015]

You won't see this in TD, Octave + YALMIP is very slow, interface bottleneck

Diagonally dominant matrices

$n \times n$ matrix X is DD if

$$
\begin{aligned}
& \qquad \forall i \leq n \quad X_{i i} \geq \sum_{j \neq i}\left|X_{i j}\right| . \\
& \text { E.g. } \quad\left(\begin{array}{cccccc}
1 & 0.1 & -0.2 & 0 & 0.04 & 0 \\
0.1 & 1 & -0.05 & 0.1 & 0 & 0 \\
-0.2 & -0.05 & 1 & 0.1 & 0.01 & 0 \\
0 & 0.1 & 0.1 & 1 & 0.2 & 0.3 \\
0.04 & 0 & 0.01 & 0.2 & 1 & -0.3 \\
0 & 0 & 0 & 0.3 & -0.3 & 1
\end{array}\right)
\end{aligned}
$$

DD Linearization

$$
\begin{equation*}
\forall i \leq n \quad X_{i i} \geq \sum_{j \neq i}\left|X_{i j}\right| \tag{*}
\end{equation*}
$$

- introduce "sandwiching" variable T
- write $|X|$ as T
- add constraints $-T \leq X \leq T$
- by \geq constraint sense, write (*) as

$$
X_{i i} \geq \sum_{j \neq i} T_{i j}
$$

DD Programming (DDP)

$$
\left.\begin{array}{c}
\forall\{i, j\} \in E \quad X_{i i}+X_{j j}-2 X_{i j}= \\
X \quad \text { is }
\end{array} \begin{array}{l}
\mathrm{DD}
\end{array}\right\}
$$

The issue with inner approximations

DDP could be infeasible!

Exploit push-and-pull

- Enlarge the feasible region
- From

$$
\forall\{i, j\} \in E \quad X_{i i}+X_{j j}-2 X_{i j}=d_{i j}^{2}
$$

- Use "push" objective min $\sum_{i j \in E} X_{i i}+X_{j j}-2 X_{i j}$
- Relax to

$$
\forall\{i, j\} \in E \quad X_{i i}+X_{j j}-2 X_{i j} \geq d_{i j}^{2}
$$

Hope to achieve LP feasibility

DDP formulation for the DGP

$$
\left.\begin{array}{rrl}
\min & \sum_{\{i, j\} \in E}\left(X_{i i}+X_{j j}-2 X_{i j}\right) & \\
\forall\{i, j\} \in E & X_{i i}+X_{j j}-2 X_{i j} & \geq d_{i j}^{2} \\
\forall i \leq n & \sum_{\substack{j \leq n \\
j \neq i}} T_{i j} & \leq X_{i i} \\
-T \leq X & \leq T \\
T & \geq 0
\end{array}\right\}
$$

SDP vs. DDP: tests

Using "push-and-pull" objective in SDP SDP solved with Mosek, DDP with CPLEX

SDP + PCA							
	SDP				DDP		
Instance	$L D E$	$M D E$	CPU modl/soln	$L D E$	$M D E$	CPU modl/soln	
C0700odd.1	0.79	0.34	$0.06 / 0.12$	$\mathbf{0 . 3 8}$	$\mathbf{0 . 3 0}$	$0.15 / 0.15$	
C0700.odd.G	2.38	$\mathbf{0 . 8 9}$	$0.57 / .16$	$\mathbf{1 . 8 6}$	$\mathbf{0 . 5 8}$	$1.11 / \mathbf{0 . 9 5}$	
C0150alter.1	$\mathbf{1 . 4 8}$	$\mathbf{0 . 4 5}$	$0.73 / .33$	1.54	$\mathbf{0 . 5 5}$	$1.23 / 1.04$	
C0080create.1	2.49	$\mathbf{0 . 8 2}$	$1.63 / 7.86$	$\mathbf{0 . 9 8}$	$\mathbf{0 . 6 7}$	$3.39 / 4.07$	
1guu-1	$\mathbf{0 . 5 0}$	$\mathbf{0 . 1 5}$	$\mathbf{6 . 6 7 / 6 8 4 . 8 9}$	1.00	$\mathbf{0 . 8 5}$	$37.74 / 153.17$	

Subsection 5

DGP cones

Cones

- Set C is a cone if:

$$
\forall A, B \in C, \alpha, \beta \geq 0 \quad \alpha A+\beta B \in C
$$

- If C is a cone, the dual cone is

$$
C^{*}=\{y \mid \forall x \in C\langle x, y\rangle \geq 0\}
$$

- If $C \subset \mathbb{S}_{n}$ (set $n \times n$ symmetric matrices)

$$
C^{*}=\{Y \mid \forall X \in C(Y \bullet X \geq 0)\}
$$

- A $n \times n$ matrix cone C is finitely generated by $\mathcal{X} \subset \mathbb{R}^{n}$ if

$$
\forall X \in C \exists \delta \in \mathbb{R}_{+}^{|\mathcal{X}|} \quad X=\sum_{x \in \mathcal{X}} \delta_{x} x x^{\top}
$$

- $\mathbb{P S D}, \mathbb{D D}$ are cones (prove it)

Representations of $\mathbb{D D}$

- Consider $E_{i i}, E_{i j}^{+}, E_{i j}^{-}$in \mathbb{S}_{n}

Define $\mathcal{E}_{0}=\left\{E_{i i} \mid i \leq n\right\}, \mathcal{E}_{1}=\left\{E_{i j}^{ \pm} \mid i<j\right\}, \mathcal{E}=\mathcal{E}_{0} \cup \mathcal{E}_{1}$

- $E_{i i}=\operatorname{diag}\left(0, \ldots, 0,1_{i}, 0, \ldots, 0\right)$
- $E_{i j}^{+}$has minor $\left(\begin{array}{ll}1_{i i} & 1_{i j} \\ 1_{j i} & 1_{j j}\end{array}\right), 0$ elsewhere
- $E_{i j}^{-}$has minor $\left(\begin{array}{rr}1_{i i} & -1_{i j} \\ -1_{j i} & 1_{j j}\end{array}\right), 0$ elsewhere
- Thm. $\mathbb{D D D}=$ cone generated by \mathcal{E} [Barker \& Carlson 1975] Pf. Rays in \mathcal{E} are extreme, all DD matrices generated by \mathcal{E}
- Cor. $\mathbb{D D}$ finitely gen. by $\mathcal{X}_{\mathbb{D D}}=\left\{e_{i} \mid i \leq n\right\} \cup\left\{e_{i} \pm e_{j} \mid j<\ell \leq n\right\}$ Pf. Write $E_{i i}=e_{i} e_{i}^{\top}, E_{i j}^{ \pm}=\left(e_{i} \pm e_{j}\right)\left(e_{i} \pm e_{j}\right)^{\top}$, where e_{i} is the i-th std basis element of \mathbb{R}^{n}

Finitely generated dual cone theorem

Thm. If C finitely gen. by \mathcal{X}, then

$$
C^{*}=\left\{Y \mid \forall x \in \mathcal{X}\left(Y \bullet x x^{\top} \geq 0\right)\right\}
$$

- (\Rightarrow) Let Y s.t. $\forall x \in \mathcal{X}\left(Y \bullet x x^{\top} \geq 0\right)$
- $\forall X \in C, X=\sum_{x \in \mathcal{X}} \delta_{x} x x^{\top}$ (by fin. gen.)
- hence $Y \bullet X=\sum_{x} \delta_{x} Y \bullet x x^{\top} \geq 0$ (by hyp.)
- whence $Y \in C^{*}$
- (\Leftarrow) Suppose $Z \in C^{*} \backslash\left\{Y \mid \forall x \in \mathcal{X}\left(Y \bullet x x^{\top} \geq 0\right)\right\}$
- then $\exists \mathcal{X}^{\prime} \subset \mathcal{X}$ s.t. $\forall x \in \mathcal{X}^{\prime}\left(Z \bullet x x^{\top}<0\right)$ (by hyp.)
- consider any $Y=\sum_{x \in \mathcal{X}^{\prime}} \delta_{x} x x^{\top} \in C$ with $\delta \geq 0$
- then $Z \bullet Y=\sum_{x \in \mathcal{X}^{\prime}} \delta_{x} Z \bullet x x^{\top}<0$ so $Z \notin C^{*}$
- contradiction $\Rightarrow C^{*}=\left\{Y \mid \forall x \in \mathcal{X}\left(Y \bullet x x^{\top} \geq 0\right)\right\}$

Dual cone constraints

- Remark: $X \bullet v v^{\top}=v^{\top} X v$
- Use finitely generated dual cone theorem
- Decision variable matrix X
- Constraints:

$$
\forall v \in \mathcal{X} \quad v^{\top} X v \geq 0
$$

- If $|\mathcal{X}|$ polysized, get compact formulation otherwise use column generation
- $\left|\mathcal{X}_{\mathbb{D} \mathbb{D}}\right|=|\mathcal{E}|=O\left(n^{2}\right)$

Dual cone DDP formulation for DGP

$$
\left.\begin{array}{rrl}
\min & \sum_{\{i, j\} \in E}\left(X_{i i}+X_{j j}-2 X_{i j}\right) & \\
\forall\{i, j\} \in E & X_{i i}+X_{j j}-2 X_{i j} & =d_{i j}^{2} \\
\forall v \in \mathcal{X}_{\mathbb{D D}} & v^{\top} X v & \geq 0
\end{array}\right\}
$$

- $v^{\top} X v \geq 0$ for $v \in \mathcal{X}_{\mathbb{D} D}$ equivalent to:

$$
\begin{array}{rlrl}
\forall i \leq n \quad X_{i i} & \geq 0 \\
\forall\{i, j\} \notin E & X_{i i}+X_{j j}-2 X_{i j} & \geq 0 \\
\forall i<j & X_{i i}+X_{j j}+2 X_{i j} & \geq 0
\end{array}
$$

Properties

- SDP relaxation of original problem
- Thm. Dual cone DDP is a relaxation of SDP Pf. If $X \succeq 0$, then $\forall v \in \mathbb{R}^{n} v^{\top} X v \geq 0$ by defn., and $\mathcal{X}_{\mathbb{B} \mathbb{D}} \subset \mathbb{R}^{n}$
- Yields extremely tight obj fun bounds
- Solutions have large negative rank, unfortunately retrieving feasible solutions is difficult

Subsection 6

Barvinok's Naive Algorithm

Concentration of measure

From [Barvinok, 1997]
The value of a "well behaved" function at a random point of a "big" probability space X is "very close" to the mean value of the function. and

In a sense, measure concentration can be considered as an extension of the law of large numbers.

Concentration of measure

Given Lipschitz function $f: X \rightarrow \mathbb{R}$ s.t.

$$
\forall x, y \in X \quad|f(x)-f(y)| \leq L\|x-y\|_{2}
$$

for some $L \geq 0$, there is concentration of measure if \exists constants c, C s.t.

$$
\forall \varepsilon>0 \quad \mathrm{P}_{x}(|f(x)-\mathrm{E}(f)|>\varepsilon) \leq c e^{-C \varepsilon^{2} / L^{2}}
$$

三 "discrepancy from mean is unlikely"

Barvinok's theorem

Consider:

- for each $k \leq m$, manifolds $\mathcal{X}_{k}=\left\{x \in \mathbb{R}^{n} \mid x^{\top} Q^{k} x=a_{k}\right\}$
- a feasibility problem $x \in \bigcap_{k \leq m} \mathcal{X}_{k}$
- its SDP relaxation $\forall x \leq m\left(Q^{k} \bullet X=a_{k}\right)$ with soln. \bar{X}

Let $T=$ factor $(\bar{X}), y \sim \mathcal{N}^{n}(0,1)$ and $x^{\prime}=T y$

Then $\exists c$ and $n_{0} \in \mathbb{N}$ s.t. if $n \geq n_{0}$,

$$
\operatorname{Prob}\left(\forall k \leq m \operatorname{dist}\left(x^{\prime}, \mathcal{X}_{k}\right) \leq c \sqrt{\|\bar{X}\|_{2} \ln n}\right) \geq 0.9
$$

IDEA: since x^{\prime} is "close" to each \mathcal{X}_{k}, try local descent!

Application to the DGP

- $\forall\{i, j\} \in E \quad \mathcal{X}_{i j}=\left\{x \mid\left\|x_{i}-x_{j}\right\|_{2}^{2}=d_{i j}^{2}\right\}$
- DGP can be written as $\bigcap_{\{i, j\} \in E} \mathcal{X}_{i j}$
- SDP relaxation $X_{i i}+X_{j j}-2 X_{i j}=d_{i j}^{2} \wedge X \succeq 0$ with soln. \bar{X}
- Difference with Barvinok: $x \in \mathbb{R}^{K n}, \operatorname{rk}(\bar{X}) \leq K$
- IDEA: sample $y \sim \mathcal{N}^{n K}\left(0, \frac{1}{\sqrt{K}}\right)$
- Thm. Barvinok's theorem works in rank K

The heuristic

1. Solve SDP relaxation of DGP, get soln. \bar{X} use $D D P+L P$ if $S D P+I P M$ too slow
2. a. $T=\operatorname{factor}(\bar{X})$
b. $y \sim \mathcal{N}^{n K}\left(0, \frac{1}{\sqrt{K}}\right)$
c. $x^{\prime}=T y$
3. Use x^{\prime} as starting point for a local NLP solver on formulation

$$
\min _{x} \sum_{\{i, j\} \in E}\left(\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}
$$

and return improved solution x

SDP+Barvinok vs. $\mathrm{DDP}+$ Barvinok

	SDP			DDP		
Instance	$L D E$	$M D E$	$C P U$	$L D E$	$M D E$	$C P U$
C0700odd.1	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 6 3}$	0.00	$\mathbf{0 . 0 0}$	1.49
C0700.odd.G	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{2 1 . 6 7}$	0.42	0.01	30.51
C0150alter.1	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{2 9 . 3 0}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	34.13
C0080create.1	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{1 3 9 . 5 2}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{1 4 1 . 4 9}$
1b03	$\mathbf{0 . 1 8}$	$\mathbf{0 . 0 1}$	$\mathbf{1 3 2 . 1 6}$	$\mathbf{0 . 3 8}$	$\mathbf{0 . 0 5}$	$\mathbf{1 0 1 . 0 4}$
1crn	$\mathbf{0 . 7 8}$	$\mathbf{0 . 0 2}$	$\mathbf{8 0 0 . 6 7}$	$\mathbf{0 . 7 6}$	$\mathbf{0 . 0 4}$	$\mathbf{5 2 2 . 6 0}$
1guu-1	$\mathbf{0 . 7 9}$	$\mathbf{0 . 0 1}$	1900.48	$\mathbf{0 . 9 0}$	$\mathbf{0 . 0 4}$	$\mathbf{6 6 7 . 0 3}$

Most of the CPU time taken by local NLP solver

Subsection 7

Isomap for the DGP

Isomap for DG

1. Let D^{\prime} be the (square) weighted adjacency matrix of G
2. Complete D^{\prime} to approximate sqEDM \tilde{D}
3. Perform PCA on \tilde{D} given K dimensions
(a) Let $\tilde{B}=-(1 / 2) J \tilde{D} J$, where $J=I-(1 / n) 11^{\top}$
(b) Find eigenval/vects Λ, P so $\tilde{B}=P^{\top} \Lambda P$
(c) Keep $\leq K$ largest nonneg. eigenv. of Λ to get $\tilde{\Lambda}$
(d) Let $\tilde{x}=P^{\top} \sqrt{\tilde{\Lambda}}$

Vary Step 2 to generate Isomap heuristics

Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm on G
(classic Isomap)
B. Find a spanning tree (SPT) of G and compute a random realization in $\bar{x} \in \mathbb{R}^{K}$, use its sqEDM
C. Solve a push-and-pull SDP relaxation to find a realization $\bar{x} \in \mathbb{R}^{n}$, use its sqEDM
D. Solve an SDP relaxation with Barvinok objective to find $\bar{x} \in \mathbb{R}^{r}$ (with $r \leq\lfloor(\sqrt{8|E|+1}-1) / 2\rfloor$), use its sqEDM haven't really talked about this, sorry

Post-processing: Use \tilde{x} as starting point for local NLP solver

Results

Comparison with dgsol [Moré, Wu 1997]

Large instances

Instance			mde		Ide		CPU	
Name	$\|V\|$	$\|E\|$	IsoNLP	dgsol	IsoNLP	dgsol	IsoNLP	dgsol
water	$\mathbf{6 4 8}$	11939	$\mathbf{0 . 0 0 5}$	0.15	$\mathbf{0 . 5 5 7}$	0.81	26.98	$\mathbf{1 5 . 1 6}$
3al1	678	17417	$\mathbf{0 . 0 3 6}$	$\mathbf{0 . 0 0 7}$	$\mathbf{0 . 8 8 4}$	$\mathbf{0 . 8 1 0}$	$\mathbf{1 7 0 . 9 1}$	210.25
1hpv	1629	18512	$\mathbf{0 . 0 7 4}$	$\mathbf{0 . 0 7 8}$	$\mathbf{0 . 9 3 6}$	$\mathbf{0 . 9 3 2}$	374.01	$\mathbf{6 0 . 2 8}$
i12	2084	45251	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 0 3 5}$	$\mathbf{0 . 9 1 0}$	$\mathbf{0 . 9 3 2}$	465.10	$\mathbf{1 3 9 . 7 7}$
1tii	5684	$\mathbf{6 9 8 0 0}$	$\mathbf{0 . 0 7 8}$	$\mathbf{0 . 0 7 7}$	$\mathbf{0 . 9 5 0}$	$\mathbf{0 . 8 9 7}$	7400.48	$\mathbf{4 5 4 . 3 7 5}$

Subsection 8

Concluding remarks

Summary of difficulties

- Quadratic nonconvex too difficult?
- Solve SDP relaxation
- SDP relaxation too large?
- Solve DDP approximation
- Get $n \times n$ matrix solution, need $K \times n$!

Rank reduction methods

- Multidimensional Scaling (MDS)
- Principal Component Analysis (PCA)
- Barvinok's naive algorithm (BNA)
- Isomap

Can also use them for dimensionality reduction!
n vectors in $\mathbb{R}^{n} \longrightarrow \mathbb{R}^{K}$

Outline

Introduction
Decidability
Efficiency and Hardness
Some combinatorial
problems
NP-hardness
Systematics
Distance Geometry
The universal isometric
embedding
Dimension reduction
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap for the DGP
Concluding remarks
Clustering in Natural Language

Clustering on graphs Clustering in Euclidean spaces
Distance resolution limit
MP formulations
Clustering in high dimensions

```
Random projections in LP
    Projecting feasibility
    Projecting optimality
    Solution retrieval
    Quantile regression
    Sparsity and \elll minimization
Kissing Number Problem
    Lower bounds
    Upper bounds from SDP?
    Gregory's upper bound
    Delsarte's upper bound
    Pfender's upper bound
```


Job offers

Optimisation / Operations Senior Manager
VINCI Airports
Rueil-Malmaison, île-de-France, France
...for the delivery of the various optimization projects... to the success of each optimization project...

Pricing Data Scientist/Actuary - Price Optimization Specialist(H-F)
AXA Global Direct
Région de Paris, France
...optimization. The senior price optimization... Optimization and Innovation team, and will be part...

Growth Data scientist - Product Features Team
Deezer
Paris, FR
OverviewPress play on your next adventure! Music... to join the Product Performance \& Optimization team... www.deezer.com

Analystes et Consultants - Banque -Optimisation des opérations financières... Accenture
Région de Paris, France
Nous recherchons des analystes jeunes diplômés et des consultants H / F désireux de travailler sur des problématiques d'optimisation des opérations bancaires (optimisation des modèles opérationnels et des processus) en France et au Benelux. Les postes sont à pourvoir en CDI, sur base d'un rattachement...

Electronic Health Record (EHR) Coordinator (Remote)

Aledade, Inc. - Bethesda, MD
Must have previous implementation or optimization experience with ambulatory EHRs and practice management software, preferably with expertise in Greenway,...

Operations Research Scientist

Strong knowledge of optimization techniques (e.g. Develop optimization frameworks to support models related to mobility solution, routing problem, pricing and...

IS\&T Controller

ALSTOM
Alstom
Saint-Ouen, FR
The Railway industry today is characterized... reviews, software deployment optimization, running....jobsearch.alstom.com

Fares Specialist / Spécialiste Optimisation des Tarifs Aériens
Egencia, an Expedia company
Courbevoie -FR
EgenciaChaque année, Egencia accompagne des milliers de sociétés réparties dans plus de 60 pays à mieux gérer leurs programmes de voyage. Nous proposons des solutions modernes et des services d'exception à des millions de voyageurs, de la planification à la finalisation de leur voyage. Nous répondons...

Automotive HMI Software Experts or Software Engineers
Elektrobit (EB)
Paris Area, France
Elektrobit Automotive offers in Paris interesting.... performances and optimization area, and/or software...

Deployment Engineer, Professional Services, Google Cloud
Google
Paris, France
Note: By applying to this position your... migration, network optimization, security best...

Operations Research Scientist

Marriott International, Inc Analyzes data and builds optimization,. Programming models and familiarity with optimization software (CPLEX, Gurobi)....

Research Scientist - AWS New Artificial Intelligence Team!

/Research Scientist - AWS New Artificial Intelligence Team! əviews - Palo Alto, CA
We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center...

An exanne

Under the responsibility of the Commercial Director, the Optimisation / Operations Senior Manager will have the responsibility to optimise and develop operational aspects for VINCI Airports current and future portfolio of airports. They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. As part of the exercise of its function, the Optimisation Manager will undertake the following: Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives of the various technical services agreements, the strategy of the individual airports and the Group. This function will include: Participation in the definition of airport strategy. Definition of this airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various technical services agreements with our airports by developing specific technical competences from the Head Office level. Oversee the management and definition of all optimisation projects. Identification, overview and management of the project managers responsible for the delivery of the various optimization projects at each asset. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Development and implementation of the Group optimisation plan. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the strategies, trends and best practices of the airport industry and other reference industries in terms of the applicability to the optimization plan. Study of the needs and preferences of the passengers, through a continuous process of marketing research at all of the airports within the VINCI Airports portfolio. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Development and participation in the expansion or refurbishment projects of the airports, to assure a correct configuration and positioning of the operational and commercial area that can allow the optimization of the revenues and operational efficiency. Support the Director Business Development through the analysis and opportunity assessment of areas of optimization for all target assets in all bids and the preparation and implementation of the strategic plan once the assets are acquired. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports [...]

Try Natural Language Processing

- Automated summary
- Relation Extraction
- Named Entity Recognition (NER)
- Keywords

Automated summary

./summarize.py job01.txt
They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports. You have a diverse range of experiences working at or with airports across various disciplines such as operations, ground handling, commercial, etc. Demonstrated high level conceptual thinking, creativity and analytical skills.

Does it help? hard to say

Relation Extraction

```
./relextr-mitie.py job01.txt
======= RELATIONS =======
Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES_EVENT ] Head Office
Head Office [ INFLUENCED_BY ] Self
Head Office [ INTERRED_HERE ] Self
VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self
Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office
Self [ ORGANIZATIONS_WITH_THIS_SCOPE ] Head Office
Self [ PEOPLE_INVOLVED ] Head Office
Self [ PLACE_OF_DEATH ] Head Office
Head Office [ RELIGION ] Self
VINCI Airports [ RELIGION ] Optimisation Strategy
Does it help? hardly
```


Named Entity Recognition

./ner-mitie.py job01.txt
==== NAMED ENTITIES =====
English MISC
French MISC
Head Office ORGANIZATION
Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON
Technical Services Agreements MISC
VINCI Airports ORGANIZATION
Does it help? ... maybe
For a document D, let $\operatorname{NER}(D)=$ named entity words

Subsection 1

Clustering on graphs

Exploit NER to infer relations

1. Recognize named entities from all documents
2. Use them to compute distances among documents
3. Use modularity clustering

The named entities

1. Operations Head Airports Office VINCI Technical Self French / Strategy Agreements English Services Optimisation
2. Europe and P\&C Work Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate International English
3. Scientist Product Analyze Java Features \& Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press Performance Deezer Data Computer
4. Lean6Sigma Lean-type Office Banking Paris CDI France RPA Middle Accenture English Front Benelux
5. Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance market develop Finance \& IS\&T Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
6. Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia English Fares with Company Inc
7. Paris Integration France Automation Automotive French. Linux/Genivi HMI UI Software EB Architecture Elektrobit technologies GUIDE Engineers German Technology SW well-structured Experts Tools
8. Product Google Managers Python JavaScript AWS JSON BigQuery Java Platform Engineering HTML MySQL Services Professional Googles Ruby Cloud OAuth
9. EHR Aledades Provide Wellness Perform ACO Visits EHR-system-specific Coordinator Aledade Medicare Greenway Allscripts
10. Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata \& Python Company GDIA Ford Visa SPARK Data Applied Science Work C++ R Unix/Linux Physics Microsoft Operations Monte JAVA Mobility Insight Analytics Engineering Computer Motor SQL Operation Carlo PowerPoint
11. Management Java CANDIDATE Application Statistics Gurobi Provides Provider Mathematics Service Maintains Deliver SM\&G SAS/HPF SAS Data Science Economics Marriott PROFILE Providers OR Engineering Computer SQL Education
12. Alto Statistics Java Sunnyvale Research ML Learning Science Operational Machine Amazon Computer C++ Palo Internet R Seattle
13. LLamasoft Work Fortune Chain Supply C\# Top Guru What Impactful Team LLamasofts Makes Gartner Gain
14. Worldwide Customer Java Mosel Service Python Energy Familiarity CPLEX Research Partnering Amazon R SQL CS Operations
15. Operations Science Research Engineering Computer Systems or Build
16. Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain Economics Experience R Research US Scientist UK SQL Japan Economist
17. Competency Statistics Knowledge Employer communication Research Machine EEO United ORMA Way OFCCP Corporation Mining \& C\# Python Visual Studio Opportunity Excellent Modeling Data Jacksonville Arena Talent Skills Science Florida Life Equal AnyLogic Facebook CSX Oracle The Strategy Vision Operations Industrial Stream of States Analytics Engineering Computer Framework Technology
18. Java Asia Research Safety in Europe Activities North Company WestRocks Sustainability America Masters WRK C++ Norcross Optimization GA ILOG South NYSE Operations AMPL CPLEX Identify Participate OPL WestRock
19. Management Federal Administration System NAS Development JMP Traffic Aviation FAA Advanced McLean Center CAASD Flow Air Tableau Oracle MITRE TFM Airspace National SQL Campus
20. Abilities \& Skills 9001-Quality S Management ISO GED
21. Statistics Group RDBMS Research Mathematics Teradata ORSA Greenplum Java SAS U.S. Solution Time Oracle Military Strategy Physics Linear/Non-Linear Operations both Industrial Series Econometrics Engineering Clarity Regression
$160 / 307$

Word similarity: WordNet

WordNet: hyponyms of "boat"

Wu-Palmer word similarity

Semantic WordNet distance between words w_{1}, w_{2}

$$
\operatorname{wup}\left(w_{1}, w_{2}\right)=\frac{2 \operatorname{depth}\left(\operatorname{lcs}\left(w_{1}, w_{2}\right)\right)}{\operatorname{len}\left(\operatorname{shortest} _\operatorname{path}\left(w_{1}, w_{2}\right)\right)+2 \operatorname{depth}\left(\operatorname{lcs}\left(w_{1}, w_{2}\right)\right)}
$$

- lcs: lowest common subsumer
earliest common word in paths from both words to WordNet root
- depth: length of path from root to word

Example: wup(dog, boat)?

depth (whole) $=4$
18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate
-> chordate -> animal -> organism -> living_thing -> whole -> artifact
-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat
13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat

$$
\operatorname{wup}(\operatorname{dog}, \text { boat })=8 / 21=0.380952380952
$$

Extensions of Wu-Palmer similarity

- to lists of words H, L :

$$
\operatorname{wup}(H, L)=\frac{1}{|H||L|} \sum_{v \in H} \sum_{w \in L} \operatorname{wup}(v, w)
$$

- to pairs of documents D_{1}, D_{2} :

$$
\operatorname{wup}\left(D_{1}, D_{2}\right)=\operatorname{wup}\left(\operatorname{NER}\left(D_{1}\right), \operatorname{NER}\left(D_{2}\right)\right)
$$

- wup and its extensions are always in $[0,1]$

The similarity matrix

The similarity matrix

Too uniform! Try zeroing values below median

(1.00	0.63	0.5	0.51	0.66	0.45	0.46	0.47	0.72	0.58	0.54	0.50	0.72	0.49	0.47		0.44	0.54		0.44
0.63	1.00	0.45	0.45	0.54				0.57	0.49	0.46	0.45	0.59					0.47		
0.51	0.45	1.00		0.53				0.58	0.47			0.59							
0.51	0.45		1.00	0.63	0.45	0.46	0.46	0.67	0.56	0.52	0.49	0.68	0.48	0.47	0.47	0.45	0.53		0.44
0.66	0.54	0.53	0.63	1.00				0.49				0.50							
0.45			0.45		1.00			0.66	0.54	0.49	0.45	0.67	0.44				0.49		
0.46			0.46			1.00	0.44	0.66	0.54	0.49	0.47	0.67	0.45	0.45	0.44		0.50		
0.47			0.46			0.44	1.00	0.67	0.55	0.51	0.48	0.68	0.47	0.45	0.45		0.51		
0.72	0.57	0.58	0.67	0.49	0.66	0.66	0.67	1.00											
0.58	0.49	0.47	0.56		0.54	0.54	0.55		1.00	0.46	0.43	0.59					0.46		
0.54	0.46		0.52		0.49	0.49	0.51		0.46	1.00		0.56							
0.50	0.45		0.49		0.45	0.47	0.48		0.43		1.00	0.70	0.50	0.49	0.48	0.46	0.54		0.46
0.72	0.59	0.59	0.68	0.50	0.67	0.67	0.68		0.59	0.56	0.70	1.00							
												1.00	0.48	0.45	0.46		0.52		0.43
0.49			0.48		0.44	0.45	0.47				0.50	0.48	1.00				0.45		
0.47			0.47			0.45	0.45				0.49	- 0.45		1.00	0.48	0.46	0.54		0.44
0.47			0.47			0.44	0.45				0.48	-10.0.46		0.48	1.00		0.51		
0.44			0.45								0.46			0.46		1.00	0.53		
0.54	0.47		0.53		0.49	0.50	0.51		0.46		0.54	0.52	0.45	0.54	0.51	0.53	1.00		0.46
			O.															1.00	0.47
0.44			0.44								0.46	-100.43		0.44			0.46	60.47	1.00)

The graph

$G=(V, E)$, weighted adjacency matrix A
A is like B with zeroed low components

Modularity clustering

"Modularity is the fraction of the edges that fall within a cluster minus the expected fraction if edges were distributed at random."

- "at random" = random graphs over same degree sequence
- degree sequence $=\left(k_{1}, \ldots, k_{n}\right)$ where $k_{i}=|N(i)|$
- "expected" = all possible "half-edge" recombinations

- expected edges between $u, v: k_{u} k_{v} /(2 m)$ where $m=|E|$
- $\bmod (u, v)=\left(A_{u v}-k_{u} k_{v} /(2 m)\right)$
- $\bmod (G)=\sum_{\{u, v\} \in E} \bmod (u, v) x_{u v}$
$x_{u v}=1$ if u, v in the same cluster and 0 otherwise
- "Natural extension" to weighted graphs: $k_{u}=\sum_{v} A_{u v}, m=\sum_{u v} A_{u v}$

Use modularity to define clustering

- What is the "best clustering"?
- Maximize discrepancy between actual and expected "as far away as possible from average"

$$
\left.\begin{array}{ll}
\max & \sum_{\{u, v\} \in E} \bmod (u, v) x_{u v} \\
v \in V & x_{u v} \in\{0,1\}
\end{array}\right\}
$$

- Issue: optimum could be intransitive
- Idea: treat clusters as cliques (even if zero weight) then clique partitioning constraints for transitivity

$$
\begin{array}{lr}
\forall i<j<k & x_{i j}+x_{j k}-x_{i k} \leq 1 \\
\forall i<j<k & x_{i j}-x_{j k}+x_{i k} \leq 1 \\
\forall i<j<k & -x_{i j}+x_{j k}+x_{i k} \leq 1
\end{array}
$$

if $i, j \in C$ and $j, k \in C$ then $i, k \in C$

The resulting clustering

cluster 1: job01, job02, job03, job05, job10
cluster 2: job04, job06, job22
cluster 3: job07, job08, jobl1, job12, job20
job27.txt

Is it good?

Vinci	Accenture	Elektrobit	Amazon 1-3
Axa	Expedia	Google	CSX
Deezer	fragmentl	Ford	Westrock
Alstom		Marriott	Mitre
Aledade		Llamasoft	Clarity fragment2

-? - named entities rarely appear in WordNet

- Desirable property: chooses number of clusters

Subsection 2

Clustering in Euclidean spaces

Clustering vectors

Most frequent words ${ }^{w}$ over collection \triangle of documents \triangle ./keywords.py
global environment customers strategic processes teams sql job industry use java developing project process engineering field models opportunity drive results statistical based operational performance using mathematical computer new technical highly market company science role dynamic background products level methods design looking modeling manage learning service customer effectively technology requirements build mathematics problems plan services time scientist implementation large analytical techniques lead available plus technologies sas provide machine product functions organization algorithms position model order identify activities innovation key appropriate different complex best decision simulation strategy meet client assist quantitative finance commercial language mining travel chain amazon pricing practices cloud supply

$$
\begin{aligned}
\operatorname{tfidf}_{C}(w, d) & =\frac{|(t \in d \mid t=w)||C|}{|\{h \in C \mid w \in h\}|} \\
\text { keyword }_{C}(i, d) & =\text { wordwhaving } i^{t h} \text { best tfidf} \\
C & (w, d) \text { value } \\
\operatorname{vec}_{C}^{m}(d) & =\left(\operatorname{tfidf}_{C}\left(\text { keyword }_{C}(i, d), d\right) \mid i \leq m\right)
\end{aligned}
$$

Transforms documents to vectors

Minimum sum-of-squares clustering

- MSSC, a.k.a. the k-means problem
- Given points $p_{1}, \ldots, p_{n} \in \mathbb{R}^{m}$, find clusters C_{1}, \ldots, C_{k}

$$
\min \sum_{j \leq k} \sum_{i \in C_{j}}\left\|p_{i}-\operatorname{centroid}\left(C_{j}\right)\right\|_{2}^{2}
$$

where centroid $\left(C_{j}\right)=\frac{1}{\left|C_{j}\right|} \sum_{i \in C_{j}} p_{i}$

- k-means alg. given initial clustering C_{1}, \ldots, C_{k}

1: $\forall j \leq k$ compute $y_{j}=\operatorname{centroid}\left(C_{j}\right)$
2: $\forall i \leq n, j \leq k$ if y_{j} is the closest centr. to p_{i} let $x_{i j}=1$ else 0
3: $\forall j \leq k$ update $C_{j} \leftarrow\left\{p_{i} \mid x_{i j}=1 \wedge i \leq n\right\}$
4: repeat until stability

k-means with $k=2$

Vinci	AXA
Deezer	Alstom
Accenture	Elektrobit
Expedia	Ford
Google	Marriott
Aledade	Amazon 1-3
Llamasoft	CSX
	WestRock
	MITRE
	Clarity
	fragments 1-2

k-means with $k=2$: another run

Deezer	Vinci
Elektrobit	AXA
Google	Accenture
Aledade	Alstom
	Expedia
	Ford
	Marriott
	Llamasoft
	Amazon 1-3
	CSX
	WestRock
	MITRE
	Clarity
	fragments 1-2

k-means with $k=2$: third run!

A fickle algorithm

We can't trust k-means: why?

Subsection 3

Distance resolution limit

Nearest Neighbours

k-Nearest Neighbours (k-NN).
Given:

- $k \in \mathbb{N}$
- a distance function $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$
- a set $\mathcal{X} \subset \mathbb{R}^{n}$
- a point $z \in \mathbb{R}^{n} \backslash \mathcal{X}$,
find the subset $\mathcal{Y} \subset \mathcal{X}$ such that:
(a) $|\mathcal{Y}|=k$
(b) $\forall y \in \mathcal{Y}, x \in \mathcal{X} \quad(d(z, y) \leq d(z, x))$

- basic problem in data science
- pattern recognition, computational geometry, machine learning, data compression, robotics, recommender systems, information retrieval, natural language processing and more
- Example: Used in Step 2 of k-means: assign points to closest centroid

With random variables

- Consider 1-NN
- Let $\ell=|\mathcal{X}|$
- Distance function family
$\left\{d^{m}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}\right\}_{m}$

- For each m :
- random variable Z^{m} with some distribution over \mathbb{R}^{n}
- for $i \leq \ell$, random variable X_{i}^{m} with some distrib. over \mathbb{R}^{n}
- X_{i}^{m} iid w.r.t. i, Z^{m} independent of all X_{i}^{m}
- $D_{\min }^{m}=\min _{i \leq \ell} d^{m}\left(Z^{m}, X_{i}^{m}\right)$
- $D_{\max }^{m}=\max _{i \leq \ell} d^{m}\left(Z^{m}, X_{i}^{m}\right)$

Distance Instability Theorem

- Let $p>0$ be a constant
- If

$$
\exists i \leq \ell \quad\left(d^{m}\left(Z^{m}, X_{i}^{m}\right)\right)^{p} \text { converges as } m \rightarrow \infty
$$

then, for any $\varepsilon>0$,
closest and furthest point are at about the same distance

Note " $\exists i$ " suffices since $\forall m$ we have X_{i}^{m} iid w.r.t. i
[Beyer et al. 1999]

Distance Instability Theorem

- Let $p>0$ be a constant
- If

$$
\exists i \leq \ell \quad \lim _{m \rightarrow \infty} \operatorname{Var}\left(\left(d^{m}\left(Z^{m}, X_{i}^{m}\right)\right)^{p}\right)=0
$$

then, for any $\varepsilon>0$,

$$
\lim _{m \rightarrow \infty} \mathbb{P}\left(D_{\max }^{m} \leq(1+\varepsilon) D_{\min }^{m}\right)=1
$$

Note " $\exists i$ " suffices since $\forall m$ we have X_{i}^{m} iid w.r.t. i
[Beyer et al. 1999]

Preliminary results

- Lemma. $\left\{B^{m}\right\}_{m}$ seq. of rnd. vars with finite variance and $\lim _{m \rightarrow \infty} \mathbb{E}\left(B^{m}\right)=b \wedge \lim _{m \rightarrow \infty} \operatorname{Var}\left(B^{m}\right)=0$; then

$$
\forall \varepsilon>0 \lim _{m \rightarrow \infty} \mathbb{P}\left(\left\|B^{m}-b\right\| \leq \varepsilon\right)=1
$$

denoted $B^{m} \rightarrow_{\mathbb{P}} b$

- Slutsky's theorem. $\left\{B^{m}\right\}_{m}$ seq. of rnd. vars and g a continuous function; if $B^{m} \rightarrow_{\mathbb{P}} b$ and $g(b)$ exists, then $g\left(B^{m}\right) \rightarrow_{\mathbb{P}} g(b)$
- Corollary. If $\left\{A^{m}\right\}_{m},\left\{B^{m}\right\}_{m}$ seq. of rnd. vars. s.t. $A^{m} \rightarrow_{\mathbb{P}} a$ and $B^{m} \rightarrow_{\mathbb{P}} b \neq 0$ then $\left\{\frac{A^{m}}{B^{m}}\right\}_{m} \rightarrow_{\mathbb{P}} \frac{a}{b}$

Proof

1. $\mu_{m}=\mathbb{E}\left(\left(d^{m}\left(Z^{m}, X_{i}^{m}\right)\right)^{p}\right)$ independent of i (since all X_{i}^{m} iid)
2. $V_{m}=\frac{\left(d^{m}\left(Z^{m}, X_{i}^{m}\right)\right)^{p}}{\mu_{m}} \rightarrow_{\mathbb{P}} 1$:

- $\mathbb{E}\left(V_{m}\right)=1$ (rnd. var. over mean) $\Rightarrow \lim _{m} \mathbb{E}\left(V_{m}\right)=1$
- Hypothesis of thm. $\Rightarrow \lim _{m} \operatorname{Var}\left(V_{m}\right)=0$
- Lemma $\Rightarrow V_{m} \rightarrow_{\mathbb{P}} 1$

3. $\mathbf{D}^{m}=\left(\left(d^{m}\left(Z^{m}, X_{i}^{m}\right)\right)^{p} \mid i \leq \ell\right) \rightarrow_{\mathbb{P}} \mathbf{1}$ (by iid)
4. Slutsky's thm. $\Rightarrow \min \left(\mathbf{D}^{m}\right) \rightarrow_{\mathbb{P}} \min (\mathbf{1})=1$ simy for max
5. Corollary $\Rightarrow \frac{\max \left(\mathbf{D}^{m}\right)}{\min \left(\mathbf{D}^{m}\right)} \rightarrow_{\mathbb{P}} 1$
6. $\frac{D_{\text {max }}^{m}}{D_{\text {min }}^{m}}=\frac{\mu_{m} \max \left(\mathbf{D}^{m}\right)}{\mu_{m} \min \left(\mathbf{D}^{m}\right)} \rightarrow_{\mathbb{P}} 1$
7. Result follows (defn. of $\rightarrow_{\mathbb{P}}$ and $D_{\max }^{m} \geq D_{\min }^{m}$)

When it applies

- iid random variables from any distribution
- Particular forms of correlation e.g. $U_{i} \sim \operatorname{Uniform}(0, \sqrt{i}), X_{1}=U_{1}, X_{i}=U_{i}+\left(X_{i-1} / 2\right)$ for $i>1$
- Variance tending to zero e.g. $X_{i} \sim \mathrm{~N}(0,1 / i)$
- Discrete uniform distribution on m-dimensional hypercube for both data and query
- Computational experiments with k-means: instability already with $n>15$

... and when it doesn't

- Complete linear dependence on all distributions can be reduced to NN in 1D
- Exact and approximate matching query point $=($ or $\approx)$ data point
- Query point in a well-separated cluster in data
- Implicitly low dimensionality
project; but NN must be stable in lower dim.

Subsection 4

MP formulations

MP formulation

$$
\left.\begin{array}{rll}
\min _{x, y, s} & \sum_{i \leq n} \sum_{j \leq k}\left\|p_{i}-y_{j}\right\|_{2}^{2} x_{i j} & \\
\forall j \leq k & \frac{1}{s_{j}} \sum_{i \leq n} p_{i} x_{i j} & =y_{j} \\
\forall i \leq n & \sum_{j \leq k} x_{i j} & =1 \\
\forall j \leq k & \sum_{i \leq n} x_{i j} & =s_{j} \\
\forall j \leq k & y_{j} & \in \mathbb{R}^{m} \\
x & \in\{0,1\}^{n k} \\
s & \in \mathbb{N}^{k}
\end{array}\right\} \quad \text { (NSC) }
$$

MINLP: nonconvex terms; continuous, binary and integer variables

Reformulation

The (MSSC) formulation has the same optima as:

$$
\begin{array}{rlrl}
\min _{x, y, P} & \sum_{i \leq n} \sum_{j \leq k} P_{i j} x_{i j} & \\
\forall i \leq n, j \leq k & \left\|p_{i}-y_{j}\right\|_{2}^{2} & \leq P_{i j} \\
\forall j \leq k & \sum_{i \leq n} p_{i} x_{i j} & =\sum_{i \leq n} y_{j} x_{i j} \\
\forall i \leq n & \sum_{j \leq k} x_{i j} & =1 \\
\forall j \leq k & y_{j} & \in\left(\left[\min _{i \leq n} p_{i h}, \max _{i \leq n} p_{i h}\right] \mid h \leq k\right) \\
x & \in\{0,1\}^{n k} \\
P & \in\left[0, P^{U}\right]^{n k}
\end{array}
$$

- The only nonconvexities are products of binary by continuous bounded variables

Products of binary and continuous vars.

- Suppose term $x y$ appears in a formulation
- Assume $x \in\{0,1\}$ and $y \in[0,1]$ is bounded
- means "either $z=0$ or $z=y$ "
- Replace xy by a new variable z
- Adjoin the following constraints:

$$
\begin{aligned}
z & \in[0,1] \\
y-(1-x) \leq & z \leq y+(1-x) \\
-x \leq & z \leq x
\end{aligned}
$$

- \Rightarrow Everything's linear now!

Products of binary and continuous vars.

- Suppose term $x y$ appears in a formulation
- Assume $x \in\{0,1\}$ and $y \in\left[y^{L}, y^{U}\right]$ is bounded
- means "either $z=0$ or $z=y$ "
- Replace xy by a new variable z
- Adjoin the following constraints:

$$
\begin{aligned}
& z \in\left[\min \left(y^{L}, 0\right), \max \left(y^{U}, 0\right)\right] \\
& y-(1-x) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq z \leq y+(1-x) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \\
& -x \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq z \leq x \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \\
& \Rightarrow \Rightarrow \text { Everything's linear now! }
\end{aligned}
$$

MSSC is a convex MINLP

$$
\begin{aligned}
& \min _{x, y, P, \chi, \xi} \sum_{i \leq n} \sum_{j \leq k} \chi_{i j} \\
& \forall i \leq n, j \leq k \quad 0 \leq \quad \chi_{i j} \quad \leq P_{i j} \\
& \forall i \leq n, j \leq k \quad P_{i j}-\left(1-x_{i j}\right) P^{U} \leq \quad \chi_{i j} \quad \leq x_{i j} P^{U} \\
& \forall i \leq n, j \leq k \quad\left\|p_{i}-y_{j}\right\|_{2}^{2} \quad \leq \quad P_{i j} \\
& \forall j \leq k \quad \sum_{i \leq n} p_{i} x_{i j} \quad=\quad \sum_{i \leq n} \xi_{i j} \\
& \forall i \leq n, j \leq k \quad y_{j}-\left(1-x_{i j}\right) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq \quad \xi_{i j} \quad \leq y_{j}+\left(1-x_{i j}\right) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \\
& \forall i \leq n, j \leq k \quad-x_{i j} \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq \quad \xi_{i j} \quad \leq x_{i j} \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \\
& \forall i \leq n \quad \sum_{j \leq k} x_{i j}=1 \\
& \forall j \leq k \quad y_{j} \quad \in \quad\left[y^{L}, y^{U}\right] \\
& x \in\{0,1\}^{n k} \\
& P \in\left[0, P^{U}\right]^{n k} \\
& \chi \in\left[0, P^{U}\right]^{n k} \\
& \forall i \leq n, j \leq k \quad \xi_{i j} \quad \in \quad\left[\min \left(y^{L}, 0\right), \max \left(y^{U}, 0\right)\right]
\end{aligned}
$$

$y_{j}, \xi_{i j}, y^{L}, y^{U}$ are vectors in \mathbb{R}^{m}

How to solve it

- cMINLP is NP-hard
- Algorithms:
- Outer Approximation (OA)
- Branch-and-Bound (BB)
- Best (open source) solver: Bonmin
- Another good (commercial) solver: KNitro
- With $k=2$, unfortunately...

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution, best possible 6.1855969 (32142.17 seconds)

- Interesting feature: the bound guarantees we can't to better than bound all BB algorithms provide it

Bonmin's first solution

Alstom	Vinci
Elektrobit	AXA
Ford	Deezer
Llamasoft	Accenture
Amazon 2	Expedia
CSX	Google
MITRE	Aledade
Clarity	Marriott
fragment 2	Amazon 1\&3
	WestRock
	fragment 1

Couple of things left to try

- Approximate ℓ_{2} by ℓ_{1} norm
ℓ_{1} is a linearizable norm
- Randomly project the data
lose dimensions but keep approximate shape

Linearizing convexity

- Replace $\left\|p_{i}-y_{j}\right\|_{2}^{2}$ by $\left\|p_{i}-y_{j}\right\|_{1}$
- Warning: optima will change but still within "clustering by distance" principle

$$
\forall i \leq n, j \leq k \quad\left\|p_{i}-y_{j}\right\|_{1}=\sum_{a \leq d}\left|p_{i a}-y_{j a}\right|
$$

- Replace each $|\cdot|$ term by new vars. $Q_{i j a} \in\left[0, P^{U}\right]$ Adjust P^{U} in terms of $\|\cdot\|_{1}$
- Adjoin constraints

$$
\begin{aligned}
\forall i \leq n, j \leq k \quad \sum_{a \leq d} Q_{i j a} & \leq P_{i j} \\
\forall i \leq n, j \leq k, a \leq d \quad-Q_{i j a} & \leq p_{i a}-y_{j a} \leq Q_{i j a}
\end{aligned}
$$

- Obtain a MLLP

Most advanced MILP solver: CPLEX

CPLEX's first solution

objective 112.24, bound 39.92, in 44.74 s

Interrupted after 281s with bound 59.68

Subsection 5

Clustering in high dimensions

The magic of random projections

- "Mathematics of big data"
- In a nutshell

- Clustering on A^{\prime} rather than A
- Approximate results with arbitrarily high probability (wahp)

The magic of random projections

- "Mathematics of big data"
- In a nutshell

1. Given pts. $A_{i}, \ldots, A_{n} \in \mathbb{R}^{m}$ with m large and $\varepsilon \in(0,1)$
2. Pick "appropriate" $k \approx O\left(\frac{1}{\varepsilon^{2}} \ln n\right)$
3. Sample $k \times d$ matrix T (each comp. i.i.d. $\mathcal{N}\left(0, \frac{1}{\sqrt{k}}\right)$)
4. Consider projected points $A_{i}^{\prime}=T A_{i} \in \mathbb{R}^{k}$ for $i \leq n$
5. With prob $\rightarrow 1$ exponentially fast as $k \rightarrow \infty$

$$
\forall i, j \leq n \quad(1-\varepsilon)\left\|A_{i}-A_{j}\right\|_{2} \leq\left\|A_{i}^{\prime}-A_{j}^{\prime}\right\|_{2} \leq(1+\varepsilon)\left\|A_{i}-A_{j}\right\|_{2}
$$

Clustering Google images

[L. \& Lavor, in press]

k-means without random projections

$\mathrm{VHcl}=$ Timing[ClusteringComponents[VHimg, 3, 1]] Out [29] $=\{0.405908,\{1,2,2,2,2,2,3,2,2,2,3\}\}$

Too slow!

k-means with random projections

```
Get["Projection.m"];
VKimg = JohnsonLindenstrauss[VHimg, 0.1];
VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]
Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}
```


From 0.405s CPU time to $0.00232 s$ Same clustering

Works on the MSSC MP formulation too!

$$
\begin{aligned}
& \min _{x, y, s} \sum_{i \leq n} \sum_{j \leq d}\left\|T p_{i}-T y_{j}\right\|_{2}^{2} x_{i j} \\
& \forall j \leq d \quad \frac{1}{s_{j}} \sum_{i \leq n} T p_{i} x_{i j}=T y_{j} \\
& \forall i \leq n \\
& \forall j \leq d \\
& \begin{array}{l}
\sum_{j \leq d} x_{i j}=1 \\
\sum_{i \leq n} x_{i j}=s_{j}
\end{array} \\
& \forall j \leq d \\
& \begin{aligned}
y_{j} & \in \mathbb{R}^{m} \\
x & \in\{0,1\}^{n d} \\
s & \in \mathbb{N}^{d}
\end{aligned}
\end{aligned}
$$

where T is a $k \times m$ random projector replace $T y$ by y^{\prime}

Works on the MSSC MP formulation too!

$$
\begin{aligned}
\min _{x, y^{\prime}, s} & \sum_{i \leq n} \sum_{j \leq d}\left\|T p_{i}-y_{j}^{\prime}\right\|_{2}^{2} x_{i j} & \\
\forall j \leq d & \frac{1}{s_{j}} \sum_{i \leq n} T p_{i} x_{i j} & =y_{j}^{\prime} \\
\forall i \leq n & \sum_{j \leq d} x_{i j} & =1 \\
\forall j \leq d & \sum_{i \leq n} x_{i j} & =s_{j} \\
\forall j \leq d & y_{j}^{\prime} & \in \mathbb{R}^{k}
\end{aligned}
$$

$\left(\right.$ MSSC $\left.^{\prime}\right)$

- where $k=O\left(\frac{1}{\varepsilon^{2}} \ln n\right)$
- less data, $\left|y^{\prime}\right|<|y| \Rightarrow$ get solutions faster
- Yields smaller cMINLP

Bonmin on randomly proj. data

 objective 5.07 , bound 0.48 , stopped at 180 s| Deezer | Vinci |
| :--- | ---: |
| Ford | AXA |
| Amazon 1-3 | Accenture |
| CSX | Alstom |
| MITRE | Expedia |
| fragment 1 | Elektrobit |
| | Google |
| | Aledade |
| | Marriott |
| | Llamasoft |
| | WestRock |
| | Clarity |
| | fragment 2 |

CPLEX on randomly proj. data

...although it doesn't make much sense for $\|\cdot\|_{1}$ norm...
objective 53.19, bound 20.68, stopped at 180s

Vinci	AXA
Deezer	Accenture
Expedia	Alstom
Google	Elektrobit
Aledade	Marriott
Ford	Llamasoft
Amazon 1-3	WestRock
CSX	MITRE
Clarity	fragmentl-2

Many clusterings

- We obtained many different clusterings
- Is there any common sense?
- How do we compare them?
- Can we extract useful information from the comparison?
- How many clusters should we look for? Is $k=2$ OK?
- Did we just turn the issue of "I have too many data" into "I have too many solutions"?

Outline

Introduction
Decidability
Efficiency and Hardness
Some combinatorial
problems
NP-hardness

Systematics

Distance Geometry
The universal isometric
embedding
Dimension reduction
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap for the DGP
Concluding remarks
Clustering in Natural Language

Clustering on graphs
Clustering in Euclidean
spaces
Distance resolution limit
MP formulations
Clustering in high
dimensions

Random projections in LP

Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression
Sparsity and ℓ_{1} minimization
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound

The gist

- Let A, b be very large, consider LP

$$
\min \left\{c^{\top} x \mid A x=b \wedge x \geq 0\right\}
$$

- T short \& fat normally sampled

- Then

$$
A x=b \wedge x \geq 0 \Leftrightarrow T A x=T b \wedge x \geq 0
$$

with high probability

Linear feasibility

Restricted Linear Membership $\left(\right.$ RLM $\left._{X}\right)$
Given $A_{1}, \ldots, A_{n}, b \in \mathbb{R}^{m}$ and $X \subseteq \mathbb{R}^{n}, \exists$? $x \in X$ s.t.

$$
b=\sum_{i \leq n} x_{i} A_{i}
$$

- Linear Feasibility Problem (LFP) with $X=\mathbb{R}_{+}^{n}$
- Integer Feasibility Problem (IFP) with $X=\mathbb{Z}_{+}^{n}$

The shape of a set of points

- Lose dimensions but not too much accuracy Given $A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}$ find $k \ll m$ and points $A_{1}^{\prime}, \ldots, A_{n}^{\prime} \in \mathbb{R}^{k}$ s.t. A and A^{\prime} "have almost the same shape"
-What is the shape of a set of points?

congruent sets have the same shape
- Approximate congruence \Leftrightarrow distortion: A, A^{\prime} have almost the same shape if
$\forall i<j \leq n \quad(1-\varepsilon)\left\|A_{i}-A_{j}\right\| \leq\left\|A_{i}^{\prime}-A_{j}^{\prime}\right\| \leq(1+\varepsilon)\left\|A_{i}-A_{j}\right\|$
for some small $\varepsilon>0$

Losing dimensions in the RLM

Given $X \subseteq \mathbb{R}^{n}$ and $b, A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}$, find $k \ll m$, $b^{\prime}, A_{1}^{\prime}, \ldots, A_{n}^{\prime} \in \mathbb{R}^{k}$ such that:

with high probability

Losing dimensions $=$ "projection"

In the plane, hopeless

In 3D: no better

Johnson-Lindenstrauss Lemma

Thm.
Given $A \subseteq \mathbb{R}^{m}$ with $|A|=n$ and $\varepsilon>0$ there is $k \sim O\left(\frac{1}{\varepsilon^{2}} \ln n\right)$ and a $k \times m$ matrix T s.t.
$\forall x, y \in A \quad(1-\varepsilon)\|x-y\| \leq\|T x-T y\| \leq(1+\varepsilon)\|x-y\|$

If $k \times m$ matrix T is sampled componentwise from $N\left(0, \frac{1}{\sqrt{k}}\right)$, then A and $T A$ have almost the same shape

Sketch of a JLL proof by pictures

Mean invariance

Thm.

- T a $k \times m$ rnd proj matrix, samples from $N(0,1 / \sqrt{k})$
- $u \in \mathbb{R}^{m},\|u\|=1$
- $\Rightarrow\|T u\|=\|u\|=1$

Pf.

- $T u=\left(y_{1}, \ldots, y_{k}\right) \Rightarrow \forall i \leq k y_{i}=\sum_{j \leq m} T_{i j} u_{j}$
- $\mathbb{E}\left(y_{i}\right)=\sum_{j} \mathbb{E}\left(T_{i j}\right) u_{j}=\sum_{j} 0 u_{j}=0$
- $\mathbb{V}\left(y_{i}\right)=\sum_{j} \mathbb{V}\left(T_{i j}\right) u_{j}^{2}=\sum_{j} \frac{1}{k} u_{j}^{2}=\frac{1}{k}\|u\|^{2}(\forall i)$
- $\frac{1}{k}\|u\|^{2}=\mathbb{V}\left(y_{i}\right)=\mathbb{E}\left(y_{i}^{2}-\left(\mathbb{E}\left(y_{i}\right)\right)^{2}\right)=\mathbb{E}\left(y_{i}^{2}\right)(\forall i)$
- $\mathbb{E}\left(\|T u\|^{2}\right)=\mathbb{E}\left(\|y\|^{2}\right)=\mathbb{E}\left(\sum_{i} y_{i}^{2}\right)=\sum_{i} \mathbb{E}\left(y_{i}^{2}\right)=$ $\frac{1}{k} \sum_{i \leq k}\|u\|^{2}=\|u\|^{2}$

Sampling to desired accuracy

- Distortion has low probability:

$$
\begin{array}{ll}
\forall x, y \in A & \mathbf{P}(\|T x-T y\| \leq(1-\varepsilon)\|x-y\|) \leq \frac{1}{n^{2}} \\
\forall x, y \in A & \mathbf{P}(\|T x-T y\| \geq(1+\varepsilon)\|x-y\|) \leq \frac{1}{n^{2}}
\end{array}
$$

- Probability \exists pair $x, y \in A$ distorting Euclidean distance: union bound over $\binom{n}{2}$ pairs

$$
\begin{aligned}
\mathbf{P}(\neg(A \text { and } T A \text { have almost the same shape })) & \leq\binom{ n}{2} \frac{2}{n^{2}}=1-\frac{1}{n} \\
\mathbf{P}(A \text { and } T A \text { have almost the same shape }) & \geq \frac{1}{n}
\end{aligned}
$$

\Rightarrow re-sampling T gives JLL with arbitrarily high probability

In practice

- Empirically, sample T very few times (e.g. once will do!'
on average $\|T x-T y\| \approx\|x-y\|$, and distortion decreases exponentially with n

We only need a logarithmic number of dimensions in function of the number of points

Surprising fact:
k is independent of the original number of dimensions m

Subsection 1

Projecting feasibility

Projecting infeasibility (easy cases)

Thm.
$T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ a JLL random projection, $b, A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}$ a RLM $_{X}$ instance. For any given vector $x \in X$, we have:
(i) If $b=\sum_{i=1}^{n} x_{i} A_{i}$ then $T b=\sum_{i=1}^{n} x_{i} T A_{i}$
(ii) If $b \neq \sum_{i=1}^{n} x_{i} A_{i}$ then $\mathbf{P}\left(T b \neq \sum_{i=1}^{n} x_{i} T A_{i}\right) \geq 1-2 e^{-\mathcal{C} k}$
(iii) If $b \neq \sum_{i=1}^{n} y_{i} A_{i}$ for all $y \in X \subseteq \mathbb{R}^{n}$, where $|X|$ is finite, then

$$
\mathbf{P}\left(\forall y \in X T b \neq \sum_{i=1}^{n} y_{i} T A_{i}\right) \geq 1-2|X| e^{-\mathcal{C} k}
$$

for some constant $\mathcal{C}>0$ (independent of n, k).

Separating hyperplanes

When $|X|$ is large, project separating hyperplanes instead

- Convex $C \subseteq \mathbb{R}^{m}, x \notin C$: then \exists hyperplane c separating x, C
- In particular, true if $C=\operatorname{cone}\left(A_{1}, \ldots, A_{n}\right)$ for $A \subseteq \mathbb{R}^{m}$
- We can show $x \in C \Leftrightarrow T x \in T C$ with high probability
- As above, if $x \in C$ then $T x \in T C$ by linearity of T Difficult part is proving the converse

We can also project point-to-cone distances

Projecting the separation

Thm.
Given $c, b, A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}$ of unit norm s.t. $b \notin \operatorname{cone}\left\{A_{1}, \ldots, A_{n}\right\}$ pointed, $\varepsilon>0$, $c \in \mathbb{R}^{m}$ s.t. $c^{\top} b<-\varepsilon, c^{\top} A_{i} \geq \varepsilon(i \leq n)$, and T a random projector:

$$
\mathbf{P}\left[T b \notin \operatorname{cone}\left\{T A_{1}, \ldots, T A_{n}\right\}\right] \geq 1-4(n+1) e^{-\mathcal{C}\left(\varepsilon^{2}-\varepsilon^{3}\right) k}
$$

for some constant \mathcal{C}.

Proof

Let \mathscr{A} be the event that T approximately preserves $\|c-\chi\|^{2}$ and $\|c+\chi\|^{2}$ for all $\chi \in$ $\left\{b, A_{1}, \ldots, A_{n}\right\}$. Since \mathscr{A} consists of $2(n+1)$ events, by the JLL Corollary (squared version) and the union bound, we get

$$
\mathbf{P}(\mathscr{A}) \geq 1-4(n+1) e^{-\mathcal{C}\left(\varepsilon^{2}-\varepsilon^{3}\right) k}
$$

Now consider $\chi=b$

$$
\begin{aligned}
\langle T c, T b\rangle & =\frac{1}{4}\left(\|T(c+b)\|^{2}-\|T(c-b)\|^{2}\right) \\
\text { by JLL } & \leq \frac{1}{4}\left(\|c+b\|^{2}-\|c-b\|^{2}\right)+\frac{\varepsilon}{4}\left(\|c+b\|^{2}+\|c-b\|^{2}\right) \\
& =c^{\top} b+\varepsilon<0
\end{aligned}
$$

and similarly $\left\langle T c, T A_{i}\right\rangle \geq 0$

The feasibility projection theorem

Thm.
Given $\delta>0, \exists$ sufficiently large $m \leq n$ such that:
for any LFP input A, b where A is $m \times n$
we can sample a random $k \times m$ matrix T with $k \ll m$ and
$\mathbf{P}($ orig. LFP feasible \Longleftrightarrow proj. LFP feasible $) \geq 1-\delta$

Subsection 2

Projecting optimality

Notation

- $P \equiv \min \{c x \mid A x=b \wedge x \geq 0\}$ (original problem)
- $T P \equiv \min \{c x \mid T A x=T b \wedge x \geq 0\}$ (projected problem)
- $v(P)=$ optimal objective function value of P
- $v(T P)=$ optimal objective function value of $T P$

The optimality projection theorem

- Assume feas (P) is bounded
- Assume all optima of P satisfy $\sum_{j} x_{j} \leq \theta$ for some given $\theta>0$
(prevents cones from being "too flat")
Thm.
Given $\delta>0$,

$$
v(P)-\delta \leq v(T P) \leq v(P)
$$

holds with arbitrarily high probability (w.a.h.p.)
in fact (*) holds with prob. $1-4 n e^{-\mathcal{C}\left(\varepsilon^{2}-\varepsilon^{3}\right) k}$ where $\varepsilon=\delta /(2(\theta+1) \eta)$ and $\eta=O\left(\|y\|_{2}\right)$ where y is a dual optimal solution of P having minimum norm

The easy part

Show $v(T P) \leq v(P)$:

- Constraints of $P: A x=b \wedge x \geq 0$
- Constraints of $T P: T A x=T b \wedge x \geq 0$
- \Rightarrow constraints of $T P$ are lin. comb. of constraints of P
- \Rightarrow any solution of P is feasible in $T P$
(btw, the converse holds almost never)
- P and $T P$ have the same objective function
- $\Rightarrow T P$ is a relaxation of $P \Rightarrow v(T P) \leq v(P)$

The hard part (sketch)

- Eq. (11) equivalent to P for $\delta=0$

$$
\left.\begin{array}{rl}
c x & \leq v(P)-\delta \tag{11}\\
A x & =b \\
x & \geq 0
\end{array}\right\}
$$

Note: for $\delta>0$, Eq. (11) is infeasible

- By feasibility projection theorem,

$$
\left.\begin{array}{rl}
c x & \leq v(P)-\delta \\
T A x & =T b \\
x & \geq 0
\end{array}\right\}
$$

is infeasible w.a.h.p. for $\delta>0$

- Hence $c x<v(P)-\delta \wedge T A x=T b \wedge x \geq 0$ infeasible w.a.h.p.
- $\Rightarrow c x \geq v(P)-\delta$ holds w.a.h.p. for $x \in$ feas $(T P)$
- $\Rightarrow v(P)-\delta \leq v(T P)$

Subsection 3

Solution retrieval

Projected solutions are infeasible in P

- $A x=b \Rightarrow T A x=T b$ by linearity
- However, Thm.
For $x \geq 0$ s.t. $T A x=T b, A x=b$ with probability zero
- Can't get solution for original LFP using projected LFP!

Solution retrieval by duality

- Primal $\min \left\{c^{\top} x \mid A x=b \wedge x \geq 0\right\} \Rightarrow$ dual $\max \left\{b^{\top} y \mid A^{\top} y \leq c\right\}$
- Let $x^{\prime}=\operatorname{sol}(T P)$ and $y^{\prime}=\operatorname{sol}(\operatorname{dual}(T P))$
- $\Rightarrow(T A)^{\top} y^{\prime}=\left(A^{\top} T^{\top}\right) y^{\prime}=A^{\top}\left(T^{\top} y^{\prime}\right) \leq c$
- $\Rightarrow T^{\top} y^{\prime}$ is a solution of dual (P)
- \Rightarrow we can compute an optimal basis J for P
- Solve $A_{J} x_{J}=b$, get x_{J}, obtain a solution x^{*} of P
- Won't work in practice: errors in computing J

Solution retrieval by pseudoinverse

- H: optimal basis of $T P$ we can trust that - given by solver
- $|H|=k \Rightarrow A_{H}$ is $m \times k$ (tall and slim)
- Pseudoinverse: solve $k \times k$ system $A_{H}^{\top} A_{H} x_{H}=A_{H}^{\top} b$
- let $x=\left(x_{H}, 0\right)$
- Can prove small feasibility error wahp
- ISSUE: may be slightly infeasible empirically: $x \nsupseteq 0$ but $x^{-} \rightarrow 0$ as $k \rightarrow \infty$

Subsection 4

Quantile regression

Regression

- multivariate random var. X
function $y=f(X)$
sample $\left\{\left(a_{i}, b_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R} \mid i \leq m\right\}$
- sample mean:

$$
\hat{\mu}=\underset{\mu \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left(b_{i}-\mu\right)^{2}
$$

- sample mean conditional to $X=A=\left(a_{i j}\right)$:

$$
\hat{\nu}=\underset{\nu \in \mathbb{R}^{p}}{\arg \min } \sum_{i \leq m}\left(b_{i}-\nu a_{i}\right)^{2}
$$

Quantile regression

- sample median:

$$
\begin{aligned}
\hat{\xi} & =\underset{\xi \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left|b_{i}-\xi\right| \\
& =\underset{\xi \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left(\frac{1}{2} \max \left(b_{i}-\xi, 0\right)-\frac{1}{2} \min \left(b_{i}-\xi, 0\right)\right)
\end{aligned}
$$

- sample τ-quantile:

$$
\hat{\xi}=\underset{\xi \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left(\tau \max \left(b_{i}-\xi, 0\right)-(1-\tau) \min \left(b_{i}-\xi, 0\right)\right)
$$

- sample τ-quantile conditional to $X=A=\left(a_{i j}\right)$:

$$
\hat{\beta}=\underset{\beta \in \mathbb{R}^{p}}{\arg \min } \sum_{i \leq m}\left(\tau \boldsymbol{\operatorname { m a x }}\left(b_{i}-\beta a_{i}, 0\right)-(1-\tau) \min \left(b_{i}-\beta a_{i}, 0\right)\right)
$$

Linear Programming formulation

$$
\left.\min \begin{array}{rl}
\tau u^{+}+(1-\tau) u^{-} & \\
A\left(\beta^{+}-\beta^{-}\right)+u^{+}-u^{-} & =b \\
\beta, u & \geq 0
\end{array}\right\}
$$

- Parameters: A is $m \times p, b \in \mathbb{R}^{m}, \tau \in \mathbb{R}$
- Decision variables: $\beta^{+}, \beta^{-} \in \mathbb{R}^{p}, u^{+}, u^{-} \in \mathbb{R}^{m}$
- LP constraint matrix is $m \times(2 p+2 m)$ density: $p /(p+m)$ - can be high

Large datasets

- Russia Longitudinal Monitoring Survey household data (hh1995f)
- $m=3783, p=855$
- $A=\operatorname{hf} 1995 \mathrm{f}, b=\log \operatorname{avg}(A)$
- 18.5% dense
- poorly scaled data, CPLEX yields infeasible (!!!) after around 70s CPU
- quantreg in R fails
- 14596 RGB photos on my HD, scaled to 90×90
- $m=14596, p=24300$
- each row of A is an image vector, $b=\sum A$
- 62.4% dense
- CPLEX killed by OS after $\approx 30 \mathrm{~min}$ (presumably for lack of RAM) on 16GB

Results on laroe datasets

Instance			Projection				Original		
τ	m	p	k	opt	CPU	feas	opt	CPU	qut err
hh1995f									
0.25	3783	856	411	0.00	8.53	0.038\%	71.34	17.05	0.16
0.50				0.00	8.44	0.035\%	89.17	15.25	0.05
0.75				0.00	8.46	0.041\%	65.37	31.67	3.91
jpegs									
0.25	14596	24300	506	0.00	231.83	0.51\%	0.00	$3.69 \mathrm{E}+5$	0.04
0.50				0.00	227.54	0.51\%	0.00	$3.67 \mathrm{E}+5$	0.05
0.75				0.00	228.57	0.51\%	0.00	$3.68 \mathrm{E}+5$	0.05
	random								
0.25	1500	100	363	0.25	2.38	0.01\%	1.06	6.00	0.00
0.50				0.40	2.51	0.01\%	1.34	6.01	0.00
0.75				0.25	2.57	0.01\%	1.05	5.64	0.00
0.25	2000	200	377	0.35	4.29	0.01\%	2.37	21.40	0.00
0.50				0.55	4.37	0.01\%	3.10	23.02	0.00
0.75				0.35	4.24	0.01\%	2.42	21.99	0.00

$$
\begin{aligned}
\text { feas } & =100 \frac{\|A x-b\|_{2}}{\|b\|_{1} / m} \\
\text { qnterr } & =\frac{\| \text { qnt }- \text { proj. qnt } \|_{2}}{\# \text { cols }}
\end{aligned}
$$

IPM with no simplex crossover: solution w/o opt. guarantee cannot trust results
simplex method won't work due to ill-scaling and size

Subsection 5

Sparsity and ℓ_{1} minimization

Coding problem 1

- Need to send sparse vector $y \in \mathbb{R}^{n}$ with $n \gg 1$

1. Sample full rank $k \times n$ matrix A with $k \ll n$ preliminary: both parties know A
2. Encode $b=A y \in \mathbb{R}^{k}$
3. Send b

- Decode by finding sparsest x s.t. $A x=b$

Coding problem 2

- Need to send a sequence $w \in \mathbb{R}^{k}$
- Encoding $n \times k$ matrix Q, with $n \gg k$, send $z=Q w \in \mathbb{R}^{n}$ preliminary: both parties know Q
- (Low) prob. e of error: en comp. of z sent wrong they can be totally off
- Receive (wrong) vector $\bar{z}=z+x$ where x is sparse
- Can we recover z ?

Sparsest solution of a linear system

- Problem $\min \left\{\|x\|_{0} \mid A x=b\right\}$ is NP-hard

Reduction from Ехact Cover by 3-Sets [Garey\&Johnson 1979, A6[MP5]]

- Relax to $\min \left\{\|x\|_{1} \mid A x=b\right\}$
- Reformulate to LP:

$$
\left.\begin{array}{rrll}
\min & \sum_{j \leq n} & s_{j} & \\
\forall j \leq n & -s_{j} \leq \leq & x_{j} \leq s_{j}
\end{array}\right\}
$$

- Empirical observation: can often find optimum

Too often for this to be a coincidence

- Theoretical justification by Candès, Tao, Donoho "Mathematics of sparsity", "Compressed sensing"

Graphical intuition 1

- Wouldn't work with ℓ_{2}, ℓ_{∞} norms

$$
A x=b \text { flat at poles -"zero probability of sparse solution" }
$$

Graphical intuition 2

$$
p=1
$$

$p=2$

$p=\infty$

$p=\frac{1}{2}$

- \hat{x} such that $A \hat{x}=b$ approximates x in ℓ_{p} norms
- $p=1$ only convex case zeroing some components

Not for the faint-hearted

1. Hand, Voroninski:
arxiv.org/pdf/1611.03935v1.pdf
2. Candès and Tao:
statweb.stanford.edu/~candes/papers/DecodingLP.pdf
3. Candès:
statweb.stanford.edu/~candes/papers/ICM2014.pdf
4. Davenport et al.:
statweb.stanford.edu/~markad/publications/ ddek-chapter1-2011.pdf
5. Lustig et al.:
people.eecs.berkeley.edu/~${ }^{\sim}$ mlustig/CS/CSMRI.pdf
6. and many more (look for "compressed sensing")

Finding orthogonal A, Q

- [Matousek, Gärtner 2007]:
- sample A componentwise from $N(0,1)$
- approximately preserves Euclidean distances by JLL
- then "find Q s.t. $Q A=0$ "
- in practice, Gaussian elim. on underdet. system $A Q=0$
- Faster:
- sample $n \times n$ matrix from uniform distribution
- full rank with probability 1
- find eigenvectors (orthonormal basis)
- random rotation of standard basis: used inJLL proof
- Q : first k eigenvectors, A : last $n-k$ eigenvectors
- $A Q=0$ by construction!

From message to recovery

Procedure:

1. message: character string s
2. $w=\operatorname{bin}($ char2asc(s))
3. send $z=Q w$, receive $\bar{z}=z+x$, let $b=A \bar{z}$
$\delta=$ sparsity of x, Q is $n \times k$ full rank with $n \gg k$
4. use (\dagger) to find sparsest x^{\prime} satisfying $A x=b$
5. $z^{\prime}=\bar{z}-x^{\prime}$
6. $w^{\prime}=\operatorname{cap}\left(\operatorname{round}\left(\left(Q^{\top} Q\right)^{-1} Q^{\top} z^{\prime}\right),[0,1]\right)$
7. $s^{\prime}=\operatorname{asc} 2 \operatorname{char}\left(\operatorname{bytechunk}\left(w^{\prime}\right)\right)$
8. evaluate $s_{\text {err }}=\left\|s-s^{\prime}\right\|$

Parameter choice [Matousek]:

- $\delta=0.08$
- $n=4 k$

Improvements

- Reduce CPU time spent on LP
- $n=4 k$ redundancy for $\delta=0.08$ error seems excessive

LP size reduction

- $A x=b$ is an $(n-k) \times n$ system
- $n-k$ "relatively close" to n
- Exploit JLL to project columns!

Computational results

k	n	δ	ϵ	α	$s_{\text {err }}^{\text {org }}$	$s_{\text {err }}^{\text {prj }}$	CPU $^{\text {org }}$	CPU
$\mathbf{8 0}$	320	0.08	0.20	0.02	$\mathbf{0}$	$\mathbf{0}$	1.05	0.56
128	512	0.08	0.20	0.02	$\mathbf{0}$	$\mathbf{0}$	2.72	1.10
216	$\mathbf{8 6 4}$.08	.20	0.02	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{8 . 8 3}$	2.12
248	992	.08	0.20	0.02	$\mathbf{0}$	$\mathbf{0}$	12.53	2.53
320	1280	0.08	.20	0.02	$\mathbf{0}$	$\mathbf{0}$	23.70	3.35
$\mathbf{4 0 8}$	$\mathbf{1 6 3 2}$	0.08	0.20	0.02	$\mathbf{0}$	$\mathbf{0}$	43.80	4.75

- $k=|s|, n=4 k, \delta=0.08, \epsilon=0.2$
- $\alpha=$ Achlioptas density

$$
\begin{aligned}
& \mathrm{P}\left(T_{i j}=-1\right)=\mathrm{P}\left(T_{i j}=1\right)=\frac{\alpha}{2} \\
& \mathrm{P}\left(T_{i j}=0\right)=1-\alpha
\end{aligned}
$$

- $s_{\text {err }}=$ number of different characters
- CPU: seconds of elapsed time

- 1 sampling of A, Q, T

Sentence: Conticuere omnes intentique ora tenebant, inde toro [...]

Reducing redundancy in n

- How about taking $n=(1+\delta) k$?
- $n-k \approx \delta k$ is very small
- Makes $A x=b$ very short and fat
- Prevents compressed sensing from working correctly
- Need $n-k \approx k, n \approx k$ and $A Q=0$: impossible
- Relax to $A Q \approx 0$?

The JLL again

$\operatorname{Aim} A^{\top}, Q$ of size $n \times k$ with $A Q \approx 0$

- JLLCorollary:
$\exists O\left(e^{d}\right)$ approximately orthogonal vectors in \mathbb{R}^{d}
- Algorithm:

1. $d=O(\ln n)$
2. T sampled componentwise from $N\left(0, \frac{1}{\sqrt{d}}\right)$ (as in JLL)
3. cols of $T I_{n}$ are $n=O\left(e^{d}\right)$ almost orthog. vect. in \mathbb{R}^{d}
4. Pf.: JLL approximately preserves distances and scalar products

Concentration of measure: accuracy increases with d

Strategy

- Aim at $k \times n A$ and $n \times k Q$ s.t. $A Q \approx 0$ with $n=\left(1+\delta^{\prime}\right) k$ and δ^{\prime} "small" (say $\delta^{\prime}<1$)
- $\Rightarrow 2 k$ approxim. orthog. vectors in \mathbb{R}^{n} with $n<2 k$
- JLL: errors too large for such "small" sizes
- Note we only need $A Q=0$: accept non-orthogonality in rows of $A \&<\operatorname{cols}$ of Q

LP for almost orthogonality

- Sample Q and compute A using an LP WLOG: we could sample A and compute Q
- max $\sum_{\substack{i \leq k \\ j \leq n}} \operatorname{Uniform}(-1,1) A_{i j}$
- subject to $A Q=0$ and $A \in[-1,1]$
- for $k=328$ and $n=590$ (i.e. $\delta^{\prime}=0.8$):
- error: $\sum A_{i} Q^{j}=O\left(10^{-10}\right)$
- rank: full
- CPU:688s (meh)
- for $k=328$ and $n=492$ (i.e. $\delta^{\prime}=0.5$): the same
- for $k=328$ and $n=426$ (i.e. $\delta^{\prime}=0.3$): CPU 470s
- Reduce CPU time by solving k LPs deciding A_{i} (for $i \leq k$)

Computational results

k	n	δ^{\prime}	$s_{\mathrm{err}}^{\text {org }}$	$s_{\mathrm{err}}^{\mathrm{prj}}$	CPU $^{\text {org }}$	CPU $^{\text {prj }}$
328	426	0.3	182	15	2.45	1.87
328	426	0.3	154	0	2.20	1.49
328	459	0.4	0	1	4.47	2.45
328	459	0.4	5	17	2.86	1.46
328	492	0.5	60	0	4.53	1.18
328	492	0.5	34	0	5.38	1.18
328	590	0.8	14	0	8.30	1.41
328	590	0.8	107	4	6.76	1.43

- CPU for computing A, Q not counted: precomputation is possible
- Approximate beats precise!

Conclusion

- If s is short, set $\delta^{\prime}=\delta$ and use compressed sensing (CS)
- If s is longer, try increasing δ^{\prime} and use CS
- If s is very long, use JLL-projected CS
- Can use approximately orthogonal A, Q too

Conticuere omnes, intentique ora tenebant.
Inde toro pater Aeneas sic orsus ab alto:
Infandum, regina, iubes renovare dolorem.
Troianas ut opes et lamentabile regnum eruerint Danai
Quaequae ipse miserrima vidi et quorum pars magna fui.
[Virgil, Aeneid, Cantus II]
$k=1896, n=2465$
$\delta^{\prime}=0.3$: min s.t. CS is accurate

method	error	CPU
CS	0	29.67 s
JLL-CS	2	17.13 s

These results are consistent over 3 samplings

Technique applies to all sparse retrieval problems

Outline

Introduction
Decidability
Efficiency and Hardness
Some combinatorial
problems
NP-hardness
Systematics
Distance Geometry
The universal isometric
embedding
Dimension reduction
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok's Naive Algorithm
Isomap for the DGP
Concluding remarks
Clustering in Natural Language

Clustering on graphs
Clustering in Euclidean
spaces
Distance resolution limit
MP formulations
Clustering in high
dimensions
Random projections in LP
Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression
Sparsity and ℓ_{1} minimization
Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory's upper bound
Delsarte's upper bound
Pfender's upper bound

Definition

- Optimization version. Given $K \in \mathbb{N}$, determine the maximum number $\mathrm{kn}(K)$ of unit spheres that can be placed adjacent to a central unit sphere so their interiors do not overlap
- Decision version. Given $n, K \in \mathbb{N}$, is $\mathrm{kn}(K) \leq n$? in other words, determine whether n unit spheres can be placed adjacent to a central unit sphere so that their interiors do not overlap

Funny story: Newton and Gregory went down the pub...

Some examples

$n=12, K=3$
more dimensions

n	τ (lattice)	τ (nonlattice)
0	0	
1	2	
2	6	
3	12	
4	24	
5	40	
6	72	
7	126	
8	240	
9	272	$(306)^{*}$
10	336	$(500)^{*}$
11	438	$(582)^{*}$
12	756	$(840)^{*}$
13	918	$(1130)^{*}$
14	1422	$(1582)^{*}$
15	2340	
16	4320	
17	5346	
18	7398	
19	10668	
20	17400	
21	27720	
22	49896	

Radius formulation

Given $n, K \in \mathbb{N}$, determine whether there exist n vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{K}$ such that:

$$
\begin{aligned}
\forall i \leq n \quad\left\|x_{i}\right\|_{2}^{2} & =4 \\
\forall i<j \leq n \quad\left\|x_{i}-x_{j}\right\|_{2}^{2} & \geq 4
\end{aligned}
$$

Contact point formulation

Given $n, K \in \mathbb{N}$, determine whether there exist n vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{K}$ such that:

$$
\begin{aligned}
\forall i \leq n \quad\left\|x_{i}\right\|_{2}^{2} & =1 \\
\forall i<j \leq n \quad\left\|x_{i}-x_{j}\right\|_{2}^{2} & \geq 1
\end{aligned}
$$

Spherical codes

- $S^{K-1} \subset \mathbb{R}^{K}$ unit sphere centered at origin
- K-dimensional spherical z-code:
- (finite) subset $\mathcal{C} \subset S^{K-1}$
- $\forall x \neq y \in \mathcal{C} \quad x \cdot y \leq z$
- non-overlapping interiors:

$$
\begin{aligned}
\forall i<j \quad\left\|x_{i}-x_{j}\right\|_{2}^{2} & \geq 1 \\
\Leftrightarrow \quad\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i} \cdot x_{j} & \geq 1 \\
\Leftrightarrow 1+1-2 x_{i} \cdot x_{j} & \geq 1 \\
\Leftrightarrow \quad 2 x_{i} \cdot x_{j} & \leq 1 \\
\Leftrightarrow \quad x_{i} \cdot x_{j} & \leq \frac{1}{2}=\cos \left(\frac{\pi}{3}\right)=z
\end{aligned}
$$

Subsection 1

Lower bounds

Lower bounds

- Construct spherical $\frac{1}{2}$-code \mathcal{C} with $|\mathcal{C}|$ large
- Nonconvex NLP formulations
- SDP relaxations
- Combination of the two techniques

MINLP formulation

Maculan, Michelon, Smith 1995

Parameters:

- K : space dimension
- n : upper bound to $\mathrm{kn}(K)$

Variables:

- $x_{i} \in \mathbb{R}^{K}:$ center of i-th vector
- $\alpha_{i}=1$ iff vector i in configuration
$\left.\begin{array}{rrll}\max & \sum_{i=1}^{n} \alpha_{i} & & \\ \forall i \leq n & \left\|x_{i}\right\|^{2} & = & \alpha_{i} \\ \forall i<j \leq n & \left\|x_{i}-x_{j}\right\|^{2} & \geq & \alpha_{i} \alpha_{j} \\ \forall i \leq n & x_{i} & \in & {[-1,1]^{K}} \\ \forall i \leq n & \alpha_{i} & \in\{0,1\}\end{array}\right\}$

Reformulating the binary products

- Additional variables: $\beta_{i j}=1$ iff vectors i, j in configuration
- Linearize $\alpha_{i} \alpha_{j}$ by $\beta_{i j}$
- Add constraints:

$$
\begin{array}{ll}
\forall i<j \leq n & \beta_{i j} \leq \alpha_{i} \\
\forall i<j \leq n & \beta_{i j} \leq \alpha_{j} \\
\forall i<j \leq n & \beta_{i j} \geq \alpha_{i}+\alpha_{j}-1
\end{array}
$$

Computational experiments

AMPL and Baron

- Certifying YES
- $n=6, K=2$: OK, 0.60 s
- $n=12, K=3: \mathbf{O K}, \mathbf{0 . 0 7 s}$
- $n=24, K=4$: FAIL, CPU time limit (100s)
- Certifying NO
- $n=7, K=2$: FAIL, CPU time limit (100 s)
- $n=13, K=3$: FAIL, CPU time limit (100s)
- $n=25, K=4$: FAIL, CPU time limit (100s)

Almost useless

Modelling the decision problem

$$
\left.\begin{array}{rll}
\max _{x, \alpha} & \alpha & \\
\forall i \leq n & \left\|x_{i}\right\|^{2} & =1 \\
\forall i<j \leq n & \left\|x_{i}-x_{j}\right\|^{2} & \geq \alpha \\
\forall i \leq n & x_{i} & \in[-1,1]^{K} \\
& \alpha & \geq 0
\end{array}\right\}
$$

- Feasible solution $\left(x^{*}, \alpha^{*}\right)$
- KNP instance is YES iff $\alpha^{*} \geq 1$
[Kucherenko, Belotti, Liberti, Maculan, Discr.Appl. Math. 2007]

Computational experiments AMPL and Baron

- Certifying YES
- $n=6, K=2$: FALL, CPU time limit (100s)
- $n=12, K=3$: FAL, CPU time limit (100 s)
- $n=24, K=4$: FAL, CPU time limit (100s)
- Certifying NO
- $n=7, K=2$: FAL, CPU time limit (100s)
- $n=13, K=3$: FAL, CPU time limit (100s)
- $n=25, K=4$: FAL, CPU time limit (100s)

Apparently even more useless
But more informative (arccos $\alpha=$ min. angular sep)
Certifying YES by $\alpha \geq 1$

- $n=6, K=2$: OK, 0.06s
- $n=12, K=3:$ OK, 0.05 s
- $n=24, K=4$: OK, 1.48s
- $n=40, K=5:$ FAIL, CPU time limit (100s)

What about polar coordinates?

- $\forall i \leq n \quad x_{i}=\left(x_{i 1}, \ldots, x_{i K}\right) \mapsto\left(\vartheta_{i 1}, \ldots, \vartheta_{i, K-1}\right)$
- Formulation

$$
\begin{aligned}
(\dagger) \quad \forall k \leq K \quad \rho \sin \vartheta_{i, k-1} \prod_{h=k}^{K-1} \cos \vartheta_{i h} & =x_{i k} \\
(\ddagger) \quad \forall i<j \leq n \quad\left\|x_{i}-x_{j}\right\|_{2}^{2} & \geq \rho^{2} \\
\forall i \leq n, k \leq K \quad\left(\sin \left(\vartheta_{i k}\right)\right)^{2}+\left(\cos \left(\vartheta_{i k}\right)\right)^{2} & =1 \\
\text { (optional) } \quad \rho & =1
\end{aligned}
$$

- Only need to decide $s_{i k}=\sin \vartheta_{i k}$ and $c_{i k}=\cos \vartheta_{i k}$
- Replace x in (\ddagger) using (\dagger): get polyprog in s, c
- Numerically more challenging to solve (polydeg 2K)
- OPEN QUESTION: useful for bounds?

Subsection 2

Upper bounds from SDP?

SDP relaxation of Euclidean distances

- Linearization of scalar products

$$
\forall i, j \leq n \quad x_{i} \cdot x_{j} \longrightarrow X_{i j}
$$

where X is an $n \times n$ symmetric matrix

- $\left\|x_{i}\right\|_{2}^{2}=x_{i} \cdot x_{i}=X_{i i}$
- $\left\|x_{i}-x_{j}\right\|_{2}^{2}=\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i} \cdot x_{j}=X_{i i}+X_{j j}-2 X_{i j}$
- $X=x x^{\top} \Rightarrow X-x x^{\top}=0$ makes linearization exact
- Relaxation:

$$
X-x x^{\top} \succeq 0 \Rightarrow \operatorname{Schur}(X, x)=\left(\begin{array}{cc}
I_{K} & x^{\top} \\
x & X
\end{array}\right) \succeq 0
$$

SDP relaxation of binary constraints

- $\forall i \leq n \quad \alpha_{i} \in\{0,1\} \Leftrightarrow \alpha_{i}^{2}=\alpha_{i}$
- Let A be an $n \times n$ symmetric matrix
- Linearize $\alpha_{i} \alpha_{j}$ by $A_{i j}\left(\right.$ hence α_{i}^{2} by $\left.A_{i i}\right)$
- $A=\alpha \alpha^{\top}$ makes linearization exact
- Relaxation: $\operatorname{Schur}(A, \alpha) \succeq 0$

SDP relaxation of [MMS95]

$$
\begin{aligned}
& \sum_{i=1}^{n} \alpha_{i} \\
& X_{i i}=\alpha_{i} \\
& \forall i<j \leq n \quad X_{i i}+X_{j j}-2 X_{i j} \geq A_{i j} \\
& \forall i \leq n \quad A_{i i}=\alpha_{i} \\
& \forall i<j \leq n \\
& \forall i<j \leq n \\
& \forall i<j \leq n \\
& A_{i j} \leq \alpha_{j} \\
& A_{i j} \leq \alpha_{i} \\
& \operatorname{Schur}(X, x) \succeq 0 \\
& \operatorname{Schur}(A, \alpha) \succeq 0 \\
& \forall i \leq n \\
& x_{i} \in[-1,1]^{K} \\
& \alpha \in[0,1]^{n} \\
& X \in[-1,1]^{n^{2}} \\
& A \in[0,1]^{n^{2}}
\end{aligned}
$$

Computational experiments

- Python, PICOS and Mosek or Octave and SDPT3
- bound always equal to n
- prominent failure :-(
-Why?
- can combine inequalities to remove A from SDP

$$
\begin{aligned}
& \forall i<j X_{i i}+X_{j j}-2 X_{i j} \geq A_{i j} \geq \alpha_{i}+\alpha_{i}-1 \\
& \quad \Rightarrow X_{i i}+X_{j j}-2 X_{i j} \geq \alpha_{i}+\alpha_{i}-1
\end{aligned}
$$

(then eliminate all constraints in A)

- integrality of α completely lost

SDP relaxation of [KBLM07]

$$
\begin{aligned}
& \max \alpha \\
& \\
& \forall i \leq n X_{i i}
\end{aligned}=1
$$

Computational experiments

With $K=2$

n	α^{*}
2	4.00
3	3.00
4	2.66
5	2.50
6	2.40
7	2.33
8	2.28
9	2.25
10	2.22
11	2.20
12	2.18
13	2.16
14	2.15
15	2.14

Computational experiments

With $K=3$

Always $\longrightarrow 2$?

An SDP-based heuristic?

1. $X^{*} \in \mathbb{R}^{n^{2}}$: SDP relaxation solution of [KBLM07]
2. Perform PCA, get $\bar{x} \in \mathbb{R}^{n K}$
3. Local NLP solver on [KBLM07] with starting point \bar{x}

However...

The Uselessness Theorem

Thm.

1. The SDP relaxation of [KBLM07] is useless
2. In fact, it is extremely useless
3. Part 1: Uselessness

- Independent of K : no useful bounds in function of K

2. Part 2: Extreme uselessness
(a) For all n, the bound is $\frac{2 n}{n-1}$
(b) \exists opt. X^{*} with eigenvalues $0, \frac{n}{n-1}, \ldots, \frac{n}{n-1}$

By 2(b), applying MDS/PCA makes no sense

Proof of extreme uselessness

Strategy:

- Pull a simple matrix solution out of a hat
- Write primal and dual SDP of [KBLM07]
- Show it is feasible in both
- Hence it is optimal
- Analyse solution:
- all $n-1$ positive eigenvalues are equal
- its objective function value is $2 n /(n-1)$

Primal SDP

$$
\forall 1 \leq i \leq j \leq n \text { let } B_{i j}=\left(1_{i j}\right) \text { and } 0 \text { elsewhere }
$$

quantifier	natural form	standard form	dual var
$\begin{aligned} \forall i & \leq n \\ \forall i<j & \leq n \end{aligned}$	$\max \alpha$	$\max \alpha$	
	$X_{i i}=1$	$E_{i i} \bullet X=1$	u_{i}
	$X_{i i}+X_{j j}-2 X_{i j} \geq \alpha$	$A_{i j} \bullet X+\alpha \leq 0$	$w_{i j}$
		$A_{i j}=-E_{i i}-E_{j j}+E_{i j}+E_{j i}$	
$\begin{aligned} & \forall i<j \leq n \\ & \forall i<j \leq n \end{aligned}$	$X_{i j} \leq 1$	$\left(E_{i j}+E_{j i}\right) \bullet X \leq 2$	$y_{i j}$
	$X_{i j} \geq-1$	$\left(-E_{i j}-E_{j i}\right) \bullet X \leq 2$	$z_{i j}$
	$X \succeq 0$	$X \succeq 0$	
	$\alpha \geq 0$	$\alpha \geq 0$	

Dual SDP

$$
\begin{array}{r}
\min \sum_{i} u_{i}+2 \sum_{i<j}\left(y_{i j}+z_{i j}\right) \\
\sum_{i} u_{i} E_{i i}+\sum_{i<j}\left(\left(y_{i j}-z_{i j}\right)\left(E_{i j}-E_{j i}\right)+w_{i j} A_{i j}\right) \\
\succeq 0 \\
\sum_{i<j} w_{i j} \geq 1 \\
w, y, z \geq 0
\end{array}
$$

Simplify $|v|=y+z, v=y-z:$

$$
\begin{aligned}
\min \sum_{i} u_{i}+2 \sum_{i<j}\left|v_{i j}\right| & \\
\sum_{i} u_{i} E_{i i}+\sum_{i<j}\left(v_{i j}\left(E_{i j}-E_{j i}\right)+w_{i j} A_{i j}\right) & \succeq 0 \\
\sum_{i<j} w_{i j} & \geq 1 \\
w, v \geq 0 &
\end{aligned}
$$

Pulling a solution out of a hat

$$
\begin{aligned}
\alpha^{*} & =\frac{2 n}{n-1} \\
X^{*} & =\frac{n}{n-1} I_{n}-\frac{1}{n-1} \mathbf{1}_{n} \\
u^{*} & =\frac{2}{n-1} \\
w^{*} & =\frac{1}{n(n-1)} \\
v^{*} & =0
\end{aligned}
$$

where $\mathbf{1}_{n}=$ all-one $n \times n$ matrix

Solution verification

- linear constraints: by inspection
- $X \succeq 0$: eigenvalues of X^{*} are $0, \frac{n}{n-1}, \ldots, \frac{n}{n-1}$
- $\sum_{i} u_{i} E_{i i}+\sum_{i<j}\left(v_{i j}\left(E_{i j}-E_{j i}\right)+w_{i j} A_{i j}\right) \succeq 0:$

$$
\begin{aligned}
& \sum_{i} u_{i}^{*} E_{i i}+\sum_{i<j} w_{i j}^{*} A_{i j} \\
= & \frac{2}{n-1} \sum_{i} E_{i i}+\frac{1}{n(n-1)} \sum_{i<j} A_{i j} \\
= & \frac{2}{n-1} I_{n}+\frac{1}{n(n-1)}\left(-(n-1) I_{n}+\left(\mathbf{1}_{n}-I_{n}\right)\right) \\
= & \frac{1}{n(n-1)} \mathbf{1}_{n} \succeq 0
\end{aligned}
$$

Corollary

$$
\lim _{n \rightarrow \infty} \mathrm{v}\left(n,[\text { KBLMO7] })=\lim _{n \rightarrow \infty} \frac{2 n}{n-1}=2\right.
$$

as observed in computational experiments

Subsection 3

Gregory's upper bound

Surface upper bound

Gregory 1694, Szpiro 2003
Consider a kn(3) configuration inscribed into a super-sphere of radius 3. Imagine a lamp at the centre of the central sphere that casts shadows of the surrounding balls onto the inside surface of the super-sphere. Each shadow has a surface area of 7.6; the total surface of the superball is 113.1. So $\frac{113.1}{7.6}=14.9$ is an upper bound to $\mathrm{kn}(3)$.

At end of XVII century, yielded Newton/Gregory dispute

Subsection 4

Delsarte's upper bound

Pair distribution on sphere surface

- Spherical z-code \mathcal{C} has $x_{i} \cdot x_{j} \leq z(i<j \leq n=|\mathcal{C}|)$

$$
\forall t \in[-1,1] \quad \sigma_{t}=\frac{1}{n}\left|\left\{(i, j) \mid i, j \leq n \wedge x_{i} \cdot x_{j}=t\right\}\right|
$$

- t-code: let $\sigma_{t}=0$ for $t \in(1 / 2,1)$
- $|\mathcal{C}|=n<\infty$: only finitely many $\sigma_{t} \neq 0$

$$
\begin{aligned}
\left.\int_{[-1,1]} \sigma_{t} d t=\sum_{t \in[-1,1]} \sigma_{t}=\frac{1}{n} \right\rvert\, \text { all pairs } \left\lvert\,=\frac{n^{2}}{n}\right. & =n \\
\sigma_{1}=\frac{1}{n} n & =1 \\
\forall t \in(1 / 2,1) \quad \sigma_{t} & =0 \\
\forall t \in[-1,1] \quad \sigma_{t} & \geq 0 \\
\left|\left\{\sigma_{t}>0 \mid t \in[-1,1]\right\}\right| & <\infty
\end{aligned}
$$

Growing Delsarte's LP

- Decision variables: σ_{t}, for $t \in[-1,1]$
- Objective function:

$$
\begin{aligned}
\max |\mathcal{C}|=\max n & =\max _{\sigma} \sum_{t \in[-1,1]} \sigma_{t} \\
=\sigma_{1}+\max _{\sigma} \sum_{t \in[-1,1 / 2]} \sigma_{t} & =1+\max _{\sigma} \sum_{t \in[-1,1 / 2]} \sigma_{t}
\end{aligned}
$$

Note n not a parameter in this formulation

- Constraints:

$$
\forall t \in[-1,1 / 2] \quad \sigma_{t} \geq 0
$$

- LP unbounded! - need more constraints

Gegenbauer cuts

- Look for function family $\mathscr{F}:[-1,1] \rightarrow \mathbb{R}$ s.t.

$$
\forall \phi \in \mathscr{F} \quad \sum_{t \in[-1,1 / 2]} \phi(t) \sigma_{t} \geq 0
$$

- Most popular \mathscr{F} : Gegenbauer polynomials G_{h}^{K}
- Special case $G_{h}^{K}=P_{h}^{\gamma, \gamma}$ of Jacobi polynomials (where $\left.\gamma=(K-2) / 2\right)$

$$
P_{h}^{\alpha, \beta}=\frac{1}{2^{h}} \sum_{i=0}^{h}\binom{h+\alpha}{i}\binom{h+\beta}{h-1}(t+1)^{i}(t-1)^{h-i}
$$

- Matlab knows them: $G_{h}^{K}(t)=$ gegenbauerC $(h,(K-2) / 2, t)$
- Octave knows them: $G_{h}^{K}(t)=$ gsl_sf_gegenpoly_n $\left(h, \frac{K-2}{2}, t\right)$ need command pkg load gsl before function call
- They encode dependence on K

Delsarte's LP

- Primal:

$$
\left.\begin{array}{rc}
1+\max & \sum_{t \in\left[-, \frac{1}{2}\right]} \sigma_{t} \\
\forall h \in H & \sum_{t \in\left[-1, \frac{1}{2}\right]} G_{h}^{K}(t) \sigma_{t} \\
\in\left[-1, \frac{1}{2}\right] & \sigma_{t} \geq 0 .
\end{array}\right\}[\mathrm{GelP}]
$$

- Dual:

$$
\left.\begin{array}{rll}
1+\min & \sum_{h \in H}\left(-G_{h}^{K}(1)\right) d_{h} & \\
\forall t \in\left[-1, \frac{1}{2}\right] & \sum_{h \in H} G_{h}^{K}(t) d_{h} & \geq 1 \\
\forall h \in H & d_{h} & \leq 0 .
\end{array}\right\}[\mathrm{DelD}]
$$

Delsarte's theorem

- [Delsarte et al., 1977]

Theorem

Let $d_{0}>0$ and $F:[-1,1] \rightarrow \mathbb{R}$ such that:

$$
\begin{aligned}
& \text { (i) } \exists H \subseteq(\mathbb{N} \cup\{0\}) \text { and } d \in \mathbb{R}_{+}^{|H|} \geq 0 \\
& \text { s.t. } F(t)=\sum_{h \in H} d_{h} G_{h}^{K}(t)
\end{aligned}
$$

(ii) $\quad \forall t \in[-1, z] F(t) \leq 0$

Then $k n(K) \leq \frac{F(1)}{d_{0}}$

- Proof based on properties of Gegenbauer polynomials
- Best upper bound: $\min F(1) / d_{0} \Rightarrow \min _{d_{0}=1} F(1) \Rightarrow$ [DelD]
- [DelD] "models" Delsarte's theorem

Delsarte's normalized LP $\left(G_{h}^{K}(1)=1\right)$

- Primal:

$$
\left.\begin{array}{rl}
1+\max & \sum_{t \in\left[-1, \frac{1}{2}\right]} \sigma_{t} \\
\forall h \in H & \sum_{t \in\left[-1, \frac{1}{2}\right]} G_{h}^{K}(t) \sigma_{t} \\
\in\left[-1, \frac{1}{2}\right] & \sigma_{t} \geq 0
\end{array}\right\}[\text { DelP }]
$$

- Dual:

$$
\left.\begin{array}{rll}
1+\min & \sum_{h \in H}(-1) d_{h} & \\
\forall t \in\left[-1, \frac{1}{2}\right] & \sum_{h \in H} G_{h}^{K}(t) d_{h} & \geq 1 \\
\forall h \in H & d_{h} \leq 0
\end{array}\right\}[\text { DelD }]
$$

- $d_{0}=1 \Rightarrow$ remove 0 from H

Focus on normalized [DelD]

Rewrite $-d_{h}$ as d_{h} :

$$
\left.\begin{array}{rlrl}
1+\min & \sum_{h \in H} d_{h} & \\
\in\left[-1, \frac{1}{2}\right] & \sum_{h \in H} G_{h}^{K}(t) d_{h} & \leq-1 \\
\forall h \in H & d_{h} & \geq 0
\end{array}\right\}[\text { DelD }]
$$

Issue: semi-infinite LP (SILP) (how do we solve it?)

Approximate SLLP solution

- Only keep finitely many constraints
- Discretize $[-1,1]$ with a finite $T \subset[-1,1]$
- Obtain relaxation $[\mathrm{DelD}]_{T}$:

$$
\operatorname{val}\left([\operatorname{DelD}]_{T}\right) \leq \operatorname{val}([\mathrm{DelD}])
$$

- Risk: val $\left([\operatorname{DelD}]_{T}\right)<\min F(1) / d_{0}$ not a valid bound to $\mathrm{kn}(K)$
- Happens if soln. of $[\mathrm{DelD}]_{T}$ infeasible in [DelD] i.e. infeasible w.r.t. some of the ∞ ly many removed constraints

SILP feasibility

- Given SLLP $\bar{S} \equiv \min \left\{c^{\top} x \mid \forall i \in \bar{I} a_{i}^{\top} x \leq b_{i}\right\}$
- Relax to LP $S \equiv \min \left\{c^{\top} x \mid \forall i \in I a_{i}^{\top} x \leq b_{i}\right\}$, where $I \subsetneq \bar{I}$
- Solve S, get solution x^{*}
- Let $\epsilon=\max \left\{a_{i}^{\top} x^{*}-b_{i} \mid i \in \bar{I}\right\}$ continuous optimization w.r.t. single var. 2
- If $\epsilon \leq 0$ then x^{*} feasible in \bar{S} $\Rightarrow \operatorname{val}(\bar{S}) \leq c^{\top} x^{*}$
- If $\epsilon>0$ refine S and repeat
- Apply to $[\mathrm{DelD}]_{T}$, get solution d^{*} feasible in [DelD]

[DelD] feasibility

1. Choose discretization T of $[-1,1 / 2]$
2. Solve

$$
\left.\begin{array}{rrl}
1+\min & \sum_{h \in H} d_{h} & \\
\forall t \in T & \sum_{h \in H} G_{h}^{K}(t) d_{h} & \leq-1 \\
\forall h \in H & d_{h} & \geq 0
\end{array}\right\}[\mathrm{DelD}]_{T}
$$

get solution d^{*}
3. Solve $\epsilon=\max \left\{1+\sum_{h \in H} G_{h}^{K}(t) d_{h} \mid t \in[-1,1 / 2]\right\}$
4. If $\epsilon \leq 0$ then d^{*} feasible in [DelD]

$$
\Rightarrow \mathrm{kn}(K) \leq 1+\sum_{h \in H} d_{h}^{*}
$$

5. Else refine T and repeat from Step 2

Subsection 5

Pfender's upper bound

Pfender's upper bound theorem

Thm.

Let $\mathcal{C}_{z}=\left\{x_{i} \in \mathbb{S}^{K-1} \mid i \leq n \wedge \forall j \neq i\left(x_{i} \cdot x_{j} \leq z\right)\right\} ; c_{0}>0 ; f:[-1,1] \rightarrow \mathbb{R}$ s.t.: (i) $\sum_{i, j \leq n} f\left(x_{i} \cdot x_{j}\right) \geq 0 \quad$ (ii) $f(t)+c_{0} \leq 0$ for $t \in[-1, z] \quad$ (iii) $f(1)+c_{0} \leq 1$ Then $n \leq \frac{1}{c_{0}}$

([Pfender 2006])

Let $g(t)=f(t)+c_{0}$

$$
\begin{aligned}
n^{2} c_{0} & \leq n^{2} c_{0}+\sum_{i, j \leq n} f\left(x_{i} \cdot x_{j}\right) \quad \text { by (i) } \\
& =\sum_{i, j \leq n}\left(f\left(x_{i} \cdot x_{j}\right)+c_{0}\right)=\sum_{i, j \leq n} g\left(x_{i} \cdot x_{j}\right) \\
& \leq \sum_{i \leq n} g\left(x_{i} \cdot x_{i}\right) \quad \text { since } g(t) \leq 0 \text { for } t \leq z \text { and } x_{i} \in \mathcal{C}_{z} \text { for } i \leq n \\
& =n g(1) \quad \text { since }\left\|x_{i}\right\|_{2}=1 \text { for } i \leq n \\
& \leq n \quad \text { since } g(1) \leq 1 .
\end{aligned}
$$

Pfender's LP

- Condition (i) of Theorem valid for conic combinations of suitable functions \mathcal{F} :

$$
f(t)=\sum_{h \in H} c_{h} f_{h}(t) \quad \text { for some } c_{h} \geq 0
$$

$$
\text { e.g. } \mathcal{F}=\text { Gegenbauer polynomials (again) }
$$

- Get SILP
$\left.\begin{array}{rlll}\max _{\substack{c \mathbb{R}|H| \\ \forall t \in[-1, z]}} \begin{array}{rl}c_{0} & \\ & \sum_{h \in H} c_{h} G_{h}^{K}(t)+c_{0}\end{array} \leq 0 & \text { (ii) } \\ & \sum_{h \in H} c_{h} G_{h}^{K}(1)+c_{0} \leq 1 & \text { (iii) } \\ \forall h \in H & c_{h} \geq 0 & \text { (conic comb.) }\end{array}\right\}$
- Discretize $[-1, z]$ by finite T, solve $L P$, check validity (again)

Delsarte's and Pfender's theorem compared

- Delsarte \& Pfender's theorem look similar:

Delsarte	Pfender
(i) $F(t) \mathbf{G}$. poly comb	(i) $f(t) \mathbf{G}$. poly comb
(ii) $\forall t \in[-1, z] F(t) \leq 0$	(ii) $\forall t \in[-1, z] f(t)+c_{0} \leq 0$
	(iii) $f(1)+c_{0} \leq 1$
$\Rightarrow \mathrm{kn}(K) \leq \frac{F(1)}{d_{0}}$	$\Rightarrow \mathrm{kn}(K) \leq \frac{1}{c_{0}}$

- Try setting $F(t)=f(t)+c_{0}$: condition (ii) is the same
- By condition (iii) in Pfender's theorem

$$
\mathrm{kn}(K) \leq \frac{F(1)}{d_{0}}=\frac{f(1)+c_{0}}{c_{0}} \leq \frac{1}{c_{0}}
$$

\Rightarrow Delsarte bound at least as tight as Pfender's

- Delsarte $(\mathbf{i}) \Rightarrow \int_{[-1,1]} F(t) d t \geq 0 \Rightarrow \int_{[-1,1]}\left(f(t)+c_{0}\right) d t \geq 0$ Pfender (i) $\Rightarrow \int_{[-1,1]} f(t) d t \geq 0$ more stringent
- Delsarte requires weaker condition and yields tighter bound Conditioned on $F(t)=f(t)+c_{0}$, not a proof! Verify computationally

The final, easy improvement

- However you compute your upper bound B :
- The number of surrounding balls is integer
- If $\mathrm{kn}(K) \leq B$, then in fact $\mathrm{kn}(K) \leq\lfloor B\rfloor$

THE END

[^0]: ${ }^{1}$ Euclidean Distance Matrix

