
TD #1
AdvancedMathematical Programming

Leo Liberti, CNRS LIX Ecole Polytechnique
liberti@lix.polytechnique.fr

INF580— 2017

1 / 18

liberti@lix.polytechnique.fr

Software

Modelling

Implementation
2 / 18

Section 1

Software

2 / 18

Structured and flat formulations

I Mathematical Programs (MP) describing problems involve sets
and parameters
e.g.min{c>x | Ax ≥ b}

I For each set of values assigned to the parameters, MP describes
a different instance
e.g.min{x1 + 2x2 | x1 + x2 >= 1}

I Humans reason in terms of problems (structured formulations)
I Solvers provide solutions for instances (flat formulations)
I Need a translation from problems to instances: modelling
languages
(e.g. AMPL, Python+PyOMO,Matlab+YALMIP,
Julia+JuMP, . . .)

3 / 18

Structured and flat formulations

I Mathematical Programs (MP) describing problems involve sets
and parameters
e.g.min{c>x | Ax ≥ b}

I For each set of values assigned to the parameters, MP describes
a different instance
e.g.min{x1 + 2x2 | x1 + x2 >= 1}

I Humans reason in terms of problems (structured formulations)
I Solvers provide solutions for instances (flat formulations)
I Need a translation from problems to instances: modelling
languages
(e.g. AMPL, Python+PyOMO,Matlab+YALMIP,
Julia+JuMP, . . .)

3 / 18

AMPL vs. Python

I AMPL
I wonderful syntax close to mathematics
I interfaces with lots of solvers, includingMINLP (but little
SDP)

I imperative sub-language: poor (no function calls, no libraries)
I good for rapid prototyping or “just use the solver”

I Python
I mixture of declarative (PyOMO) and imperative (Python)
I interfaces with many solvers, including SDP (but little
MINLP)

I excellent imperative sub-language (Python itself)
I good for “doing further stuff with the solution”

4 / 18

Installing AMPL
I Windows (64bit)

1. make directory C:\ampl
2. copy ampl_mswin64.zip inside C:\ampl and unzip it
3. insert C:\ampl in the PATH environment variable

System Properties dialog/Advanced tab/Environment Variables
button/Path field/Edit button/add C:\ampl to the string,
separated by semicolons

I MacOSX: open terminal, and type

cd ; mkdir ampl ; cd ampl
unzip ~/Downloads/ampl_macosx64.zip
cd ; echo "export PATH=$PATH:~/ampl" >> ~/.bash_profile
source ~/.bash_profile

I Linux (64bit): as for MacOSX
but replace ampl_macosx64.zip by ampl_linux-intel64.zip

5 / 18

Testing AMPL
1. open a command prompt / terminal window
2. Save the following to test.run

set M := 1..50;
set N := 1..10;
param c{N} default Uniform01();
param A{M,N} default Uniform(0,1);
param b{M} default Uniform(1,2);
var x{N} >= 0;
minimize f: sum{j in N} c[j]*x[j];
subject to C{i in M}:

sum{j in N} A[i,j]*x[j] >= b[i];
option solver cplex;
solve;
display x,f,solve_result;

3. type ampl < test.run
4. optimal objective function value is f = 1.34199

6 / 18

Section 2

Modelling

7 / 18

The transportation problem

Given a set P of production facilities with produc-
tion capacities ai for i ∈ P , a setQ of customer sites
with demands bj for j ∈ Q, and knowing that the
unit transportation cost from facility i ∈ P to cus-
tomer j ∈ Q is cij , find the optimal transportation
plan

8 / 18

The art of modelling!

I Use drawings — they help to think

a1

a2

a3

b1

b2

c11c
12

c21

c22 c 31

c32

9 / 18

First fundamental question

1. What decisions does the problem require?

1. what’s given?
2. costs — unit, refers to quantities
3. capacities and demand based on quantities
4. ⇒ let’s decide quantities
5. (pitfall: the question “quantity of what?” is

irrelevant— and you don’t know in advance
which questions are irrelevant)

I As you go on with the model, you might find your initial choices
were poor — you might have to go back and change them

10 / 18

First fundamental question

1. What decisions does the problem require?

1. what’s given?
2. costs — unit, refers to quantities
3. capacities and demand based on quantities
4. ⇒ let’s decide quantities
5. (pitfall: the question “quantity of what?” is

irrelevant— and you don’t know in advance
which questions are irrelevant)

I As you go on with the model, you might find your initial choices
were poor — you might have to go back and change them

10 / 18

First fundamental question

1. What decisions does the problem require?

1. what’s given?
2. costs — unit, refers to quantities
3. capacities and demand based on quantities
4. ⇒ let’s decide quantities
5. (pitfall: the question “quantity of what?” is

irrelevant— and you don’t know in advance
which questions are irrelevant)

I As you go on with the model, you might find your initial choices
were poor — you might have to go back and change them

10 / 18

Second fundamental question

1. How can the decision be encoded?

let’s go back to the drawing

I How about:
zi = qty. produced at i
yj = qty. demanded at j

11 / 18

Second fundamental question

1. How can the decision be encoded?
let’s go back to the drawing

I How about:
zi = qty. produced at i
yj = qty. demanded at j

11 / 18

Second fundamental question

1. How can the decision be encoded?
let’s go back to the drawing

I How about:
zi = qty. produced at i
yj = qty. demanded at j

11 / 18

Let’s try this choice
1. Sets and indices

a. i ∈ P ⊂ N
b. j ∈ Q ⊂ N

2. Parameters
a. ∀i ∈ P ai ∈ R+

b. ∀j ∈ Q bj ∈ R+

c. ∀i ∈ P, j ∈ Q cij ∈ R+

3. Decision variables
a. ∀i ∈ P zi ∈ [0, ai]
b. ∀j ∈ Q yj ∈ [bj ,∞]

4. Constraints
a. All that is produced must be delivered:

∑
i∈P

zi =
∑
j∈Q

yj

necessary condition, but is it sufficient?
5. Objective function: ???

no way of knowing what fraction of the production out of iwent to
j, so how do we consider transportation costs?

12 / 18

Bummer! Let’s go back
I Failure to express “fraction of i going to j” must inspire us!
Let’s try xij = qty. transported from i to j

1. Sets: as before
2. Parameters: as before
3. Decision variables

a. ∀i ∈ P, j ∈ Q xij ∈ R+

4. Objective function
min

∑
i∈P

∑
j∈Q

cijxij

5. Constraints
a. No facility can produce more than the maximum:
∀i ∈ P

∑
j∈Q

xij ≤ ai

b. No customer must receive less than its demand:
∀j ∈ Q

∑
i∈P

xij ≥ bj

Much better!
13 / 18

Section 3

Implementation

14 / 18

The AMPL encoding

I Three files:
I file.mod: themodel file
containing the description of the structured formulation

I file.dat: the data file
containing the description of the instance

I file.run: the run file
the “imperative part”: choice of solver, run, analyze solution. . .

I Run “ampl < file.run” and get results on file or screen

15 / 18

The transportation problem in AMPL: .mod

transportation.mod
param Pmax integer;
param Qmax integer;
set P := 1..Pmax;
set Q := 1..Qmax;
param a{P};
param b{Q};
param c{P,Q};
var x{P,Q} >= 0;
minimize cost: sum{i in P, j in Q} c[i,j]*x[i,j];
subject to production{i in P}:

sum{j in Q} x[i,j] <= a[i];
subject to demand{j in Q}:

sum{i in P} x[i,j] >= b[j];

16 / 18

The transportation problem in AMPL: .dat

transportation.dat
param Pmax := 2;
param Qmax := 1;
param a :=
1 2.0
2 2.0

;
param b :=
1 1.0

;
param c :=
1 1 1.0
2 1 2.0

;

17 / 18

The transportation problem in AMPL: .run

transportation.run
model transportation.mod;
data transportation.dat;
option solver cplex;
solve;
display x, cost;

18 / 18

	Software
	Modelling
	Implementation

