Section 8

Distance Geometry
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A gem in Distance Geometry

» Heron’s theorem

» Heron lived
around year O

> Hang out at

Alexandria’s library

A=+/s(s—a)(s—b)(s—c)

» A = area of triangle
» s=1(a+b+c)

7777777777777777777777777777777777777777777777777777777

Useﬁd Lo measure areas of agricultural land
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Heron’s theorem: Proof
A2a+28+2yv=2n=a+pB+y=mn

r+ix = ue
r+iy = wve
r+iz = we"’

= (r+iz)(r+iy)(r+iz) = (uvw)et@+tB+7) =
wow e'™ = —uvw € R

= Im((r +iz)(r +iy)(r +1iz)) =0

=ri(z+y+z)=ayz =>r= ,/—xfziz

B.s=%(a+b+c)=x+y+=z

s—a = T+Y+z—yY—z2=2x
s—b = z4+y+z—xr—2=y
s—c = THY+tz—Tr—Yy==z
1 b
Azi(ra+rb—|—rc):ra+2+czrs:\/s(s—a)(s—b)(s—c)
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Heron’s gifted disciple

>

This proof by Miles Edwards as a high school student in 2007
lhsblogs.typepad.com/files/
a-proof-of-heron-formula-miles-edwards.pdf

(tried to contact him, never got an answer)

Beats all other proofs for compactness and elegance
...Other people think so too!
jwilson.coe.uga.edu/emt725/Heron/HeronComplex.html

He was ranked 16th in the Putnam Competition 2010
newsinfo.iu.edu/news/page/normal/13885.html

Want to see what kind of exercises he was able to solve?
kskedlaya.org/putnam-archive/2010.pdf

An example:

Given that A, B, C are noncollinear points in the plane
with integer coordinates such that the distances AB,
AC and BC are integers, what is the smallest possible
value of AB?

189/246



Another gem in DG

> |I. Schoenberg, Remarks to Maurice Fréchet’s article “Sur
la définition axiomatique d’une classe d’espaces distanciés
vectoriellement applicable sur l’espace de Hilbert”,

Ann. Math., 1935]

> Question: Given n x n symmetric matrix D, what are
necessary and sufficient conditions s.t. Dis a EDM!
corresponding to n points zy, ..., x, € RE with K
minimum?

» Maintheorem:
Thm.

PSD of rank K

» Gaverise to one of the most important results in data
science: Classic Multidimensional Scaling

lg uclidean Distance Matrix
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Gram 1n function of EDM

» = (z1,...,7,) C RE, written as n x K matrix
» matrix G = zz' = (x; - z;) is the Gram matrix of z

> Schoenberg’s theorem: relation between EDMs and
Gram matrices

G = —%JDQJ (§)

» D* = (d}),J =1, — 11"
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Multidimensional scaling (MDS)

» Often get approximate EDMs D from raw data
(dissimilarities, discrepancies, differences)

» G = —%J D2Jis an approximate Gram matrix

» Approximate Gram = spectral decomposition PAPT hasA #0

» Let A closest PSD diagonal matrix to A:
zero the negative components of A

» v = Pyv/Alsan “approximate realization” of D
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Classic MDS: Main result

1. Prove G = —%JDQJ

2. Prove matrixis Gram iff it is PSD
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Classic MDS: Proof 1/3

Assume zero centroid WLOG (can translate = as needed)

Expand: d?j = ||lz; — 2|3 = (zi — z;)(xi — xj) = zjwi + x;75 — 23T

Aim at “inverting” (x) to express z;x; in function of d% .

Sum (%) overi: ) . dfj = > TiT; + nxjx; — 2x > T
Similarly for 5 and divide by n, get:

%ngj — %inxi—ijxj (1)

i<n <n
1 § 1
— > di = mai+ = Yz (%)
n - n ’

J<n I1<n

Sum (}) over j, get:
1 5 1
- g dij :’n,g g T;T; + E TjTj =2 g T;T;
i,j i j i

Divide by n, get:

1 2
EOIIEED ST
7

]

0 by zero centroid
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Classic MDS: Proof 2/3

» Rearrange (x), (1), (1) as follows:

2xixj = Xiq + Y d?j (5)
1 1
TiT; = - Zd%j - Zazjxj (6)
J J
1 , 1
TiT; = Zd’ij - szm@ (7)
7 7

> Replace LHS of Eq. (6)-(7) in Eq. (5), get
Vi — 1 Zd2 + ld2 _—d? — szm
[l n - 1k n kg 1] n -
> By (xx) replace % > xix; with % > d?ja get
i i
1 1
2rir; = — Z(dzzk: +dy;) —di; — — Zd%k (8)
oy e ok

which expresses z;z; in function of D
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Classic MDS: Proof 3/3
» Gram C PSD

» risann X K real matrix

» G = zx ' its Gram matrix
» For each y € R™ we have

yGy' =y(zz )y = (y2)(z y") = (yz)(yz) " = ||lyz||3 >0

» =G =0
» PSD C Gram

» LetG = 0ben xn
> Spectral decomposition: G = PAP'
(P orthogonal, A > 0 diagonal)
» A > 0= VA exists
» G = PAPT = (PVA)(VA' PT) = (PVA)(PVA)'
» Letx = Pv/A, then G is the Gram matrix of x
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Principal Component Analysis (PCA)

» You want to draw z = PvAin 2D or 3D
but rank(A) = K > 3

> Only keep 2 or 3 largest components of A
zero the rest

» Get realization in desired space
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Example 1/3

Mathematical genealogy skeleton

Kastrwr
/\ Fuler
; Phaff /
Thibaut F E /Wplm
Guberrmarm  Dirlusen Ga“ﬂ_ﬁ;hq Fourier Poissor
*ﬁﬁ' \/
WeierstraB Jacobi § Dirichlet
| Gortvan s s
Kovalevslaya Lipschitz
'/”_
Klein
Noether

" ﬁ
Livverarnm  Furtwingler

/ |

Hilbert Taussloy-Tovd

198/246



Example 2/3

A partial view

Euler Thibaut Pfaff Lagrange Laplace Mobius Gudermann Dirksen Gauss

Kastner 10 1 1 9 3 2 2 2 2
Euler 11 9 1 3 10 12 12 8
Thibaut 2 10 10 3 1 1 3
Pfaff 8 8 1 3 3 1
Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Mobius 4 4 2
Gudermann 2 4
Dirksen 4

( 0 10 1 1 9 8 2 2 2 2

10 0 11 9 1 3 10 12 12 8

1 11 0 2 10 10 3 1 1 3

1 9 2 0 8 8 1 3 3 1

H_| 9 1 108 0 2 9 11 1 7

- 8 3 10 8 2 0 9 11 11 7

2 10 3 1 9 9 0 4 4 2

2 12 1 3 11 11 4 0 2 4

2 12 1 3 11 11 4 2 0 4

\ 2 8 3 1 7 7 2 4 4 0
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Example 3/3

In2D

L gt
F 4 ]

=10}

fi.rimlmann - r
Thibaut

20 L qafaﬁ

L
I
2
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The Distance Geometry Problem (DGP)

Given K e NandG = (V,E,d) withd : E — R_,
findz : V — R" sit.

V{i,j} € E |l — ;|3 = &,

. . AT .
Given a weighted graph {% s draw it so edges are drawn as

segments with lengths = weights N
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Some applications

» clock synchronization (K = 1)

» sensor network localization (K = 2)

» molecular structure from distance data (K = 3)
» autonomous underwater vehicles (K = 3)

» distance matrix completion (whatever K)
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Clock synchronization

From

Determine a set of unknown timestamps from a partial
measurements of their time differences

» K =1

> V: timestamps

» {u,v} € Fif known time difference between u, v
» d: values of the time differences

Used in time synchronization of distributed networks
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Clock synchronization

S [Atomic clock (S) }

16:27

A C S B

16:21 16:23 16:25 16:27 16:29 16:31

I | | | I I | | I I I |
I I | I I ! | | I I I |

16:20 16:22 16:24 16:26 16:28 16:30
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Sensor network localization

From

The positioning problem arises when it is necessary to
locate a set of geographically distributed objects using
measurements of the distances between some object pairs

» K =2
» /: (mobile) sensors
» {u,v} € Fiff distance between u, v is measured

» d: distance values

Used whenever GPS not viable (e.g. underwater)

dyy X battery consumption in P2P communication betw. u, v
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Sensor network localization
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Molecular structure from distance data
From |Liberti et al., SIAM Rev., 2014]

» /: atoms
» {u,v} € Fiff distance between u, v is known
» d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)

Covalent bond lengths and angles known precisely

Distances $ 5.5 measured approximately by NMR

207/246



Complexity

» DGPywithd: £ — Q. 1sin NP
if instance YES Jrealization z € R™*!

if some component z; ¢ Q translate v soz; € Q
consider some other z;

let { = (length sh.pathp:i = j) = > d,, €Q

{u,v}€p

vV v v Y

\4

thenxj =x;, 0 — Tj € Q
— verification of

\4

Vi, j} € B |z — x| = dyj

in polytime
» DGPx may not be in NP for K > 1

don’t know how to verify ||z; — z||2 = d;; for x ¢ Q&
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Hardness

PARrTITION 1s NP-hard

Givena = (a1,...,a,) e N, ITCH{1,... ,n}st.> a;=> a;?
icl i1

» Reduce PartiTION to DGP4

> a — cycle C
V(CO) = {1,...,n}, E(C) = {{1,2},..., {n,1}}
» Fori < nlet dz’,i—H =
dn,n—|—1 — dnl — Qp

>
2 4 3
o @
1/ \\\1
1 @ e
3 —~@ 3
5

[Saxe, 1979] 209/246



ParTITION 1s YES = DGP, 1s YES

» Given: I C {1,...,n}st.> a;, =) a;

icl il
» Construct: realization z of C'in R
1. x1 =0 // start
2. induction step: suppose x; known
ifiel
let Tit1l = T + df,;/H_l // go right
else
let z;.1 = x; — df,;7i_|_1 // go left

» Correctness proof: by the same induction
but careful when i = n: have to show x,, 1 =
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ParTITION 1s YES = DGP, 1s YES

(D) =) (@is1— ) = > diip1=

el el
Ya - Y-
icl i1
= diit1 = ) (zi—zip) = (2)
i1 i1

(D=2 =) (@1 —x) =) (zi—zip1) =D (w1 —x) = 0

icl i1 i<n
= (Tpa1 —xn) + (@n —Tp_1)+ -+ (r3—2x2) + (22 —21) = O

= Tpt1 = X3
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ParTITION 1s NO = DGP{1s NO

>

>

By contradiction: suppose DGP; is YES, z realization of C

F={{u,v} € E(C) | xy <z},
E(C)NF ={{u,v} € E(C) | xy >z}

Trace x4, ..., x,: follow edges in F' (—) and in E(C) \ F (+)
Z (v — ) = Z (Ty — xTo)
L4 L1 L5 L3 L2 {u,v}EF {u,v}EF
¢ | . | -
3 2 -1 0 1 2 3 > lwu—wel = 3 zw =@l
{u,v}E€F {u,v}&F
- Z dyv = Z duwv
{u,v}eF {u,v}&F

letJ={i<n|{i,i+1} e F}U{n|{n,1} € F}
- Ta-Ya
ieJ idJ
So J solves Partition instance, contradiction

= DGP is NP-hard, DGP; is NP-complete
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Number of solutions: with congruences

» (G, K): DGP instance

» X C RE": get of solutions

» (Congruence: composition of translations, rotations, reflections
> C = set of congruences in R*

» x~ymeansdp € C (y = px):
distancesinz are preserved iny through p

> = if [ X] > 0,|X| = 2%
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Number of solutions: without congruences

[ Congruence 1S an equivalence relation ~ on X
(reflexive, symmetric, transitive)

» Partitions X into equivalence classes
» X = X /~:sets of representatives of equivalence classes

» Focuson|X|rather than |X|
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Rigidity, flexibility and | X|

» infeasible & | X| =0
» rigid graph & | X| < X,
» globally rigid graph & | X| =1

» flexible graph < | X| = 2%

» | X| = Ny: impossible by Milnor’s theorem

215/246



Milnor’s theorem implies | X| # N,

> System S of polynomial equations of degree 2
Vi <m pi(xla' . ,anK) =0

» Let X be the set of x € R™& satistying S

> Number of connected components of X is O(3")

[Milnor 1964]

» 1f | X|is countably oo then G cannot be flexible
= incongruent elts of X are separate connected components
= by Milnor’s theorem, there’s finitely many of them
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Examples

vi={1,2,3}

E' = {{u,v} | u < v}

dl =1

VZ=viu{4}

E? = E'U {{1,4},{2,4}}

d? =1Ad=V2

Vi=vV2

E3? = {{u,u+1}ju < 3}U{1,4}
dt=1

T

T

T4

T

T3
T2
Ta
T3
T2
I3
2

p congruence in R?
= px valid realization
|1 X| =1

p reflects z4 wrt 71,22
= pz valid realization
X|=2 (4,9

p rotates z>x3, T1z4 by 6
= pz valid realization

| X| is uncountable

O, ,,~,...)
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