
Section 8

Distance Geometry
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A gem in Distance Geometry

I Heron’s theorem

I Heron lived
around year 0

I Hang out at
Alexandria’s library

a

c

b

A =

p
s(s� a)(s� b)(s� c)

I A = area of triangle
I s = 1

2(a+ b+ c)

Useful to measure areas of agricultural land
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Heron’s theorem: Proof
A. 2↵+ 2� + 2� = 2⇡ ) ↵+ � + � = ⇡

r + ix = uei↵

r + iy = vei�

r + iz = wei�

) (r+ ix)(r+ iy)(r+ iz) = (uvw)ei(↵+�+�) =

uvw ei⇡ = �uvw 2 R

) Im((r + ix)(r + iy)(r + iz)) = 0

) r2(x+ y+ z) = xyz ) r =

q
xyz

x+y+z

B. s = 1
2 (a+ b+ c) = x+ y + z

s� a = x+ y + z � y � z = x

s� b = x+ y + z � x� z = y

s� c = x+ y + z � x� y = z

A =

1

2

(ra+ rb+ rc) = r
a+ b+ c

2

= rs =
p

s(s� a)(s� b)(s� c)
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Heron’s gifted disciple
I This proof byMilesEdwards as a high school student in 2007

lhsblogs.typepad.com/files/
a-proof-of-heron-formula-miles-edwards.pdf

(tried to contact him, never got an answer)
I Beats all other proofs for compactness and elegance

. . .Other people think so too!
jwilson.coe.uga.edu/emt725/Heron/HeronComplex.html

I He was ranked 16th in the PutnamCompetition 2010
newsinfo.iu.edu/news/page/normal/13885.html

I Want to see what kind of exercises he was able to solve?
kskedlaya.org/putnam-archive/2010.pdf

I An example:

Given thatA,B,C are noncollinear points in the plane
with integer coordinates such that the distancesAB,
AC andBC are integers, what is the smallest possible
value ofAB?

189 / 246



Another gem in DG
I [I. Schoenberg,Remarks to Maurice Fréchet’s article “Sur
la dé�nition axiomatique d’une classe d’espaces distanciés
vectoriellement applicable sur l’espace de Hilbert”,
Ann. Math., 1935]

I Question: Given n⇥ n symmetric matrixD, what are
necessary and su�cient conditions s.t.D is a EDM1
corresponding to n points x1, . . . , xn 2 RK withK
minimum?

I Main theorem:
Thm.
D = (dij) is an EDM i� 1

2(d
2
1i + d21j � d2ij | 2  i, j  n) is

PSD of rankK

I Gave rise to one of themost important results in data
science: ClassicMultidimensional Scaling

1Euclidean Distance Matrix
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Gram in function of EDM

I x = (x1, . . . , xn) ✓ RK , written as n⇥K matrix
I matrixG = xx>

= (xi · xj) is theGrammatrix of x
I Schoenberg’s theorem: relation between EDMs and
Grammatrices

G = �

1

2

JD2J (§)

I D2
= (d2ij), J = In �

1
n
11>
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Multidimensional scaling (MDS)

I Often get approximate EDMs ˜D from raw data
(dissimilarities, discrepancies, di�erences)

I ˜G = �

1
2J

˜D2J is an approximate Grammatrix
I Approximate Gram) spectral decomposition P ˜

⇤P> has ˜⇤ 6� 0

I Let ⇤ closest PSD diagonal matrix to ˜

⇤:
zero the negative components of ˜⇤

I x = P
p

⇤ is an “approximate realization” of ˜D
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Classic MDS: Main result

1. ProveG = �

1
2J

˜D2J

2. Provematrix is Gram i� it is PSD
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Classic MDS: Proof 1/3
I Assume zero centroidWLOG (can translate x as needed)
I Expand: d2

ij

= kx
i

� x
j

k

2
2 = (x

i

� x
j

)(x
i

� x
j

) = x
i

x
i

+ x
j

x
j

� 2x
i

x
j

(⇤)
I Aim at “inverting” (⇤) to express x

i

x
j

in function of d2
ij

I Sum (⇤) over i:
P

i

d2
ij

=
P

i

x
i

x
i

+ nx
j

x
j

� 2x
j⇠⇠⇠: 0 by zero centroidP

i

x
i

I Similarly for j and divide by n, get:

1

n

X

in

d2
ij

=
1

n

X

in

x
i

x
i

+ x
j

x
j

(†)

1

n

X

jn

d2
ij

= x
i

x
i

+
1

n

X

jn

x
j

x
j

(‡)

I Sum (†) over j, get:

1

n

X

i,j

d2
ij

= n
1

n

X

i

x
i

x
i

+
X

j

x
j

x
j

= 2
X

i

x
i

x
i

I Divide by n, get:
1

n2

X

i,j

d2
ij

=
2

n

X

i

x
i

x
i

(⇤⇤)
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Classic MDS: Proof 2/3
I Rearrange (⇤), (†), (‡) as follows:

2x
i

x
j

= x
i

x
i

+ x
j

x
j

� d2
ij

(5)

x
i

x
i

=
1

n

X

j

d2
ij

�

1

n

X

j

x
j

x
j

(6)

x
j

x
j

=
1

n

X

i

d2
ij

�

1

n

X

i

x
i

x
i

(7)

I Replace LHS of Eq. (6)-(7) in Eq. (5), get

2x
i

x
j

=
1

n

X

k

d2
ik

+
1

n
d2
kj

� d2
ij

�

2

n

X

k

x
k

x
k

I By (⇤⇤) replace 2
n

P
i

x
i

x
i

with 1
n

2

P
i,j

d2
ij

, get

2x
i

x
j

=
1

n

X

k

(d2
ik

+ d2
kj

)� d2
ij

�

1

n2

X

h,k

d2
hk

(§)

which expresses x
i

x
j

in function ofD
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Classic MDS: Proof 3/3
I Gram✓ PSD

I x is an n⇥K real matrix
I G = xx> its Grammatrix
I For each y 2 Rn we have

yGy> = y(xx>)y> = (yx)(x>y>) = (yx)(yx)> = kyxk22 � 0

I
) G ⌫ 0

I PSD✓Gram
I LetG ⌫ 0 be n⇥ n
I Spectral decomposition: G = P⇤P>

(P orthogonal,⇤ � 0 diagonal)

I
⇤ � 0)

p

⇤ exists
I G = P⇤P>

= (P
p

⇤)(

p

⇤

>

P>

) = (P
p

⇤)(P
p

⇤)

>

I Let x = P
p

⇤, thenG is the Grammatrix of x
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Principal Component Analysis (PCA)

I You want to draw x = P
p

⇤ in 2D or 3D
but rank(⇤) = K > 3

I Only keep 2 or 3 largest components of ⇤
zero the rest

I Get realization in desired space
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Example 1/3
Mathematical genealogy skeleton
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Example 2/3
A partial view

Euler Thibaut Pfa� Lagrange Laplace Möbius Gudermann Dirksen Gauss
Kästner 10 1 1 9 8 2 2 2 2
Euler 11 9 1 3 10 12 12 8
Thibaut 2 10 10 3 1 1 3
Pfa� 8 8 1 3 3 1

Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Möbius 4 4 2

Gudermann 2 4
Dirksen 4

D =

0

BBBBBBBBBBBBB@

0 10 1 1 9 8 2 2 2 2
10 0 11 9 1 3 10 12 12 8
1 11 0 2 10 10 3 1 1 3
1 9 2 0 8 8 1 3 3 1
9 1 10 8 0 2 9 11 11 7
8 3 10 8 2 0 9 11 11 7
2 10 3 1 9 9 0 4 4 2
2 12 1 3 11 11 4 0 2 4
2 12 1 3 11 11 4 2 0 4
2 8 3 1 7 7 2 4 4 0

1

CCCCCCCCCCCCCA
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Example 3/3

In 2D In 3D

200 / 246



The Distance Geometry Problem (DGP)

GivenK 2 N andG = (V,E, d)with d : E ! R+,
�nd x : V ! RK s.t.

8{i, j} 2 E kxi � xjk
2
2 = d2ij

Given a weighted graph , draw it so edges are drawn as

segments with lengths= weights
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Some applications

I clock synchronization (K = 1)
I sensor network localization (K = 2)
I molecular structure from distance data (K = 3)
I autonomous underwater vehicles (K = 3)
I distancematrix completion (whateverK)
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Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from a partial
measurements of their time di�erences

I K = 1

I V : timestamps
I

{u, v} 2 E if known time di�erence between u, v
I d: values of the time di�erences

Used in time synchronization of distributed networks
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Clock synchronization
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Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to
locate a set of geographically distributed objects using
measurements of the distances between some object pairs

I K = 2

I V : (mobile) sensors
I

{u, v} 2 E i� distance between u, v is measured
I d: distance values

Used whenever GPS not viable (e.g. underwater)
duv /
⇠

battery consumption in P2P communication betw. u, v
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Sensor network localization
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Molecular structure from distance data
From [Liberti et al., SIAMRev., 2014]

I K = 3

I V : atoms
I

{u, v} 2 E i� distance between u, v is known
I d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances/ 5.5measured approximately by NMR
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Complexity

I DGP1 with d : E ! Q+ is inNP
I if instance YES 9 realization x 2 Rn⇥1

I if some component xi 62 Q translate x so xi 2 Q
I consider some other xj

I let ` = (length sh. pathp : i! j) =
P

{u,v}2p

duv 2 Q

I then xj = xi ± `! xj 2 Q
I
) veri�cation of

8{i, j} 2 E |xi � xj | = dij

in polytime
I DGPK may not be inNP forK > 1

don’t know how to verify kxi � xjk2 = dij for x 62 QnK
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Hardness
P�������� isNP-hard
Given a = (a1, . . . , an) 2 Nn, 9 I ✓ {1, . . . , n} s.t.

P
i2I

ai =
P
i 62I

ai ?

I Reduce P�������� to DGP1

I a �! cycleC
V (C) = {1, . . . , n},E(C) = {{1, 2}, . . . , {n, 1}}

I For i < n let di,i+1 = ai
dn,n+1 = dn1 = an

I E.g. for a = (1, 4, 1, 3, 3), get cycle graph:

[Saxe, 1979] 209 / 246



P�������� is YES)DGP
1

is YES

I Given: I ⇢ {1, . . . , n} s.t.
P
i2I

ai =
P
i 62I

ai

I Construct: realization x ofC inR
1. x1 = 0 // start

2. induction step: suppose xi known
if i 2 I
let xi+1 = xi + di,i+1 // go right

else
let xi+1 = xi � di,i+1 // go left

I Correctnessproof: by the same induction
but careful when i = n: have to show xn+1 = x1
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P�������� is YES)DGP
1

is YES

(1) =

X

i2I

(xi+1 � xi) =

X

i2I

di,i+1 =

=

X

i2I

ai =

X

i 62I

ai =

=

X

i 62I

di,i+1 =

X

i 62I

(xi � xi+1) = (2)

(1) = (2))

X

i2I

(xi+1 � xi) =

X

i 62I

(xi � xi+1))

X

in

(xi+1 � xi) = 0

) (xn+1 � xn) + (xn � xn�1) + · · ·+ (x3 � x2) + (x2 � x1) = 0

) xn+1 = x1
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P�������� is NO)DGP
1

is NO
I By contradiction: suppose DGP1 is YES, x realization ofC
I F = {{u, v} 2 E(C) | xu  xv},

E(C)r F = {{u, v} 2 E(C) | xu > xv}

I Trace x1, . . . , xn: follow edges in F (!) and inE(C)r F ( )

X

{u,v}2F

(x
v

� x

u

) =
X

{u,v} 62F

(x
u

� x

v

)

X

{u,v}2F

|x
u

� x

v

| =
X

{u,v} 62F

|x
u

� x

v

|

X

{u,v}2F

d

uv

=
X

{u,v} 62F

d

uv

I Let J = {i < n | {i, i+ 1} 2 F} [ {n | {n, 1} 2 F}

)

X

i2J

ai =
X

i 62J

ai

I So J solves Partition instance, contradiction
I
)DGP isNP-hard, DGP1 isNP-complete
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Number of solutions: with congruences

I
(G,K): DGP instance

I ˜X ✓ RKn: set of solutions

I Congruence: composition of translations, rotations, re�ections

I C = set of congruences inRK

I x ⇠ ymeans 9⇢ 2 C (y = ⇢x):
distances inxarepreserved in y through ⇢

I
) if | ˜X| > 0, | ˜X| = 2

@0
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Number of solutions: without congruences

I Congruence is an equivalence relation⇠ on ˜X
(re�exive, symmetric, transitive)

I Partitions ˜X into equivalence classes

I X =

˜X/⇠: sets of representatives of equivalence classes

I Focuson |X| rather than | ˜X|
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Rigidity, �exibility and |X|

I infeasible, |X| = 0

I rigid graph, |X| < @0
I globally rigid graph, |X| = 1

I �exible graph, |X| = 2

@0

I
|X| = @0: impossible byMilnor’s theorem
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Milnor’s theorem implies |X| 6= @
0

I System S of polynomial equations of degree 2

8i  m pi(x1, . . . , xnK) = 0

I LetX be the set of x 2 RnK satisfying S

I Numberof connectedcomponents ofX isO(3

nK
)

[Milnor 1964]

I If |X| is countably1 thenG cannot be �exible
) incongruent elts ofX are separate connected components
) byMilnor’s theorem, there’s �nitely many of them
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Examples
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