Section 8

Distance Geometry

A gem in Distance Geometry

- Heron's theorem
- Heron lived around year 0
- Hang out at Alexandria's library

$A=\sqrt{s(s-a)(s-b)(s-c)}$
- $A=$ area of triangle
- $s=\frac{1}{2}(a+b+c)$

Useful to measure areas of agricultural land

Heron's theorem: Proof

$$
\text { A. } 2 \alpha+2 \beta+2 \gamma=2 \pi \Rightarrow \alpha+\beta+\gamma=\pi
$$

a

$$
\begin{aligned}
r+i x & =u e^{i \alpha} \\
r+i y & =v e^{i \beta} \\
r+i z & =w e^{i \gamma}
\end{aligned}
$$

$$
\Rightarrow(r+i x)(r+i y)(r+i z)=(u v w) e^{i(\alpha+\beta+\gamma)}=
$$

$$
u v w e^{i \pi}=-u v w \in \mathbb{R}
$$

$$
\Rightarrow \operatorname{Im}((r+i x)(r+i y)(r+i z))=0
$$

$$
\Rightarrow r^{2}(x+y+z)=x y z \Rightarrow r=\sqrt{\frac{x y z}{x+y+z}}
$$

B. $s=\frac{1}{2}(a+b+c)=x+y+z$

$$
\begin{gathered}
s-a=x+y+z-y-z=x \\
s-b=x+y+z-x-z=y \\
s-c=x+y+z-x-y=z \\
\mathcal{A}=\frac{1}{2}(r a+r b+r c)=r \frac{a+b+c}{2}=r s=\sqrt{s(s-a)(s-b)(s-c)}
\end{gathered}
$$

Heron's gifted disciple

- This proof by Miles Edwards as a high school student in 2007 lhsblogs.typepad.com/files/

```
a-proof-of-heron-formula-miles-edwards.pdf
    (tried to contact him, never got an answer)
```

- Beats all other proofs for compactness and elegance

...Other people think so too!

jwilson.coe.uga.edu/emt725/Heron/HeronComplex.html

- He was ranked 16th in the Putnam Competition 2010 newsinfo.iu.edu/news/page/normal/13885.html
- Want to see what kind of exercises he was able to solve? kskedlaya.org/putnam-archive/2010.pdf
- An example:

Given that A, B, C are noncollinear points in the plane with integer coordinates such that the distances $A B$, $A C$ and $B C$ are integers, what is the smallest possible value of $A B$?

Another gem in DG

- [I. Schoenberg, Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espace de Hilbert", Ann. Math., 1935]
- Question: Given $n \times n$ symmetric matrix D, what are necessary and sufficient conditions s.t. D is a EDM ${ }^{1}$ corresponding to n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{K}$ with K minimum?
- Main theorem:

Thm.
$D=\left(d_{i j}\right)$ is an EDM iff $\frac{1}{2}\left(d_{1 i}^{2}+d_{1 j}^{2}-d_{i j}^{2} \mid 2 \leq i, j \leq n\right)$ is PSD of rank K

- Gave rise to one of the most important results in data science: Classic Multidimensional Scaling

[^0]
Gram in function of EDM

- $x=\left(x_{1}, \ldots, x_{n}\right) \subseteq \mathbb{R}^{K}$, written as $n \times K$ matrix
- matrix $G=x x^{\top}=\left(x_{i} \cdot x_{j}\right)$ is the Gram matrix of x
- Schoenberg's theorem: relation between EDMs and Gram matrices

$$
\begin{equation*}
G=-\frac{1}{2} J D^{2} J \tag{§}
\end{equation*}
$$

- $D^{2}=\left(d_{i j}^{2}\right), J=I_{n}-\frac{1}{n} \mathbf{1 1}{ }^{\top}$

Multidimensional scaling (MDS)

- Often get approximate EDMs \tilde{D} from raw data (dissimilarities, discrepancies, differences)
- $\tilde{G}=-\frac{1}{2} J \tilde{D}^{2} J$ is an approximate Gram matrix
- Approximate Gram \Rightarrow spectral decomposition $P \tilde{\Lambda} P^{\top}$ has $\tilde{\Lambda} \nsupseteq 0$
- Let Λ closest PSD diagonal matrix to $\tilde{\Lambda}$:
zero the negative components of $\tilde{\Lambda}$
- $x=P \sqrt{\Lambda}$ is an "approximate realization" of \tilde{D}

Classic MDS: Main result

1. Prove $G=-\frac{1}{2} J \tilde{D}^{2} J$
2. Prove matrix is Gram iff it is PSD

Classic MDS: Proof 1/3

- Assume zero centroid WLOG (can translate x as needed)
- Expand: $d_{i j}^{2}=\left\|x_{i}-x_{j}\right\|_{2}^{2}=\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)=x_{i} x_{i}+x_{j} x_{j}-2 x_{i} x_{j}$
- Aim at "inverting" $(*)$ to express $x_{i} x_{j}$ in function of $d_{i j}^{2}$
- $\operatorname{Sum}(*)$ over $i: \sum_{i} d_{i j}^{2}=\sum_{i} x_{i} x_{i}+n x_{j} x_{j}-2 x_{j} \sum_{i}{\overrightarrow{x_{i}}}^{0}$ by zero centroid
- Similarly for j and divide by n, get:

$$
\begin{align*}
\frac{1}{n} \sum_{i \leq n} d_{i j}^{2} & =\frac{1}{n} \sum_{i \leq n} x_{i} x_{i}+x_{j} x_{j} \\
\frac{1}{n} \sum_{j \leq n} d_{i j}^{2} & =x_{i} x_{i}+\frac{1}{n} \sum_{j \leq n} x_{j} x_{j}
\end{align*}
$$

- Sum (\dagger) over j, get:

$$
\frac{1}{n} \sum_{i, j} d_{i j}^{2}=n \frac{1}{n} \sum_{i} x_{i} x_{i}+\sum_{j} x_{j} x_{j}=2 \sum_{i} x_{i} x_{i}
$$

- Divide by n, get:

$$
\frac{1}{n^{2}} \sum_{i, j} d_{i j}^{2}=\frac{2}{n} \sum_{i} x_{i} x_{i}
$$

Classic MDS: Proof 2/3

- Rearrange $(*),(\dagger),(\ddagger)$ as follows:

$$
\begin{align*}
2 x_{i} x_{j} & =x_{i} x_{i}+x_{j} x_{j}-d_{i j}^{2} \tag{5}\\
x_{i} x_{i} & =\frac{1}{n} \sum_{j} d_{i j}^{2}-\frac{1}{n} \sum_{j} x_{j} x_{j} \tag{6}\\
x_{j} x_{j} & =\frac{1}{n} \sum_{i} d_{i j}^{2}-\frac{1}{n} \sum_{i} x_{i} x_{i} \tag{7}
\end{align*}
$$

- Replace LHS of Eq. (6)-(7) in Eq. (5), get

$$
2 x_{i} x_{j}=\frac{1}{n} \sum_{k} d_{i k}^{2}+\frac{1}{n} d_{k j}^{2}-d_{i j}^{2}-\frac{2}{n} \sum_{k} x_{k} x_{k}
$$

- $\mathbf{B y}(* *)$ replace $\frac{2}{n} \sum_{i} x_{i} x_{i}$ with $\frac{1}{n^{2}} \sum_{i, j} d_{i j}^{2}$, get

$$
\begin{equation*}
2 x_{i} x_{j}=\frac{1}{n} \sum_{k}\left(d_{i k}^{2}+d_{k j}^{2}\right)-d_{i j}^{2}-\frac{1}{n^{2}} \sum_{h, k} d_{h k}^{2} \tag{§}
\end{equation*}
$$

which expresses $x_{i} x_{j}$ in function of D

Classic MDS: Proof 3/3

- $\operatorname{Gram} \subseteq P S D$
- x is an $n \times K$ real matrix
- $G=x x^{\top}$ its Gram matrix
- For each $y \in \mathbb{R}^{n}$ we have

$$
y G y^{\top}=y\left(x x^{\top}\right) y^{\top}=(y x)\left(x^{\top} y^{\top}\right)=(y x)(y x)^{\top}=\|y x\|_{2}^{2} \geq 0
$$

- $\Rightarrow G \succeq 0$
- PSD \subseteq Gram
- Let $G \succeq 0$ be $n \times n$
- Spectral decomposition: $G=P \Lambda P^{\top}$
(P orthogonal, $\Lambda \geq 0$ diagonal)
- $\Lambda \geq 0 \Rightarrow \sqrt{\Lambda}$ exists
- $G=P \Lambda P^{\top}=(P \sqrt{\Lambda})\left(\sqrt{\Lambda}^{\top} P^{\top}\right)=(P \sqrt{\Lambda})(P \sqrt{\Lambda})^{\top}$
- Let $x=P \sqrt{\Lambda}$, then G is the Gram matrix of x

Principal Component Analysis (PCA)

- You want to draw $x=P \sqrt{\Lambda}$ in 2D or 3D

$$
\text { but } \operatorname{rank}(\Lambda)=K>3
$$

- Only keep 2 or 3 largest components of Λ zero the rest
- Get realization in desired space

Example 1/3

Mathematical genealogy skeleton

Example 2/3

A partial view

	Euler	Thibaut	Pfaff	Lagrange	Laplace	Möbius	Gudermann	Dirksen	Gauss
Kästner	10	1	1	9	8	2	2	12	12
Euler		11	9	1	3	10	8		
Thibaut			2	10	10	3	1	1	3
Pfaff				8	8	1	3	3	1
Lagrange					2	9	11	11	7
Laplace					9	11	11	7	
Möbius						4	4	2	
Gudermann							2	4	
Dirksen							4		

$$
D=\left(\begin{array}{cccccccccc}
0 & 10 & 1 & 1 & 9 & 8 & 2 & 2 & 2 & 2 \\
10 & 0 & 11 & 9 & 1 & 3 & 10 & 12 & 12 & 8 \\
1 & 11 & 0 & 2 & 10 & 10 & 3 & 1 & 1 & 3 \\
1 & 9 & 2 & 0 & 8 & 8 & 1 & 3 & 3 & 1 \\
9 & 1 & 10 & 8 & 0 & 2 & 9 & 11 & 11 & 7 \\
8 & 3 & 10 & 8 & 2 & 0 & 9 & 11 & 11 & 7 \\
2 & 10 & 3 & 1 & 9 & 9 & 0 & 4 & 4 & 2 \\
2 & 12 & 1 & 3 & 11 & 11 & 4 & 0 & 2 & 4 \\
2 & 12 & 1 & 3 & 11 & 11 & 4 & 2 & 0 & 4 \\
2 & 8 & 3 & 1 & 7 & 7 & 2 & 4 & 4 & 0
\end{array}\right)
$$

Example 3/3

The Distance Geometry Problem (DGP)

Given $K \in \mathbb{N}$ and $G=(V, E, d)$ with $d: E \rightarrow \mathbb{R}_{+}$, find $x: V \rightarrow \mathbb{R}^{K}$ s.t.

$$
\forall\{i, j\} \in E \quad\left\|x_{i}-x_{j}\right\|_{2}^{2}=d_{i j}^{2}
$$

Given a weighted graph
 , draw it so edges are drawn as
segments with lengths = weights

Some applications

- clock synchronization ($K=1$)
- sensor network localization $(K=2)$
- molecular structure from distance data $(K=3)$
- autonomous underwater vehicles $(K=3)$
- distance matrix completion (whatever K)

Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from a partial measurements of their time differences

- $K=1$
- V: timestamps
- $\{u, v\} \in E$ if known time difference between u, v
- d : values of the time differences

Used in time synchronization of distributed networks

Clock synchronization

Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to locate a set of geographically distributed objects using measurements of the distances between some object pairs

- $K=2$
- V : (mobile) sensors
- $\{u, v\} \in E$ iff distance between u, v is measured
- d: distance values

```
Used whenever GPS not viable (e.g. underwater)
duv}~~\mathrm{ battery consumption in P2P communication betw. u,v
```


Sensor network localization

Molecular structure from distance data

From [Liberti et al., SIAM Rev., 2014]

- $K=3$
- V : atoms
- $\{u, v\} \in E$ iff distance between u, v is known
- d: distance values

```
Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances \lesssim 5.5 measured approximately by NMR
```


Complexity

- DGP $_{1}$ with $d: E \rightarrow \mathbb{Q}_{+}$is in NP
- if instance YES \exists realization $x \in \mathbb{R}^{n \times 1}$
- if some component $x_{i} \notin \mathbb{Q}$ translate x so $x_{i} \in \mathbb{Q}$
- consider some other x_{j}
- let $\ell=$ (length sh. path $p: i \rightarrow j$) $=\sum_{\{u, v\} \in p} d_{u v} \in \mathbb{Q}$
- then $x_{j}=x_{i} \pm \ell \rightarrow x_{j} \in \mathbb{Q}$
- \Rightarrow verification of

$$
\forall\{i, j\} \in E \quad\left|x_{i}-x_{j}\right|=d_{i j}
$$

in polytime

- DGP ${ }_{K}$ may not be in NP for $K>1$ don't know how to verify $\left\|x_{i}-x_{j}\right\|_{2}=d_{i j}$ for $x \notin \mathbb{Q}^{n K}$

Hardness

Partition is NP-hard

Given $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}, \exists I \subseteq\{1, \ldots, n\}$ s.t. $\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}$?

- Reduce Partition to DGP 1
- $a \longrightarrow$ cycle C

$$
V(\dot{C})=\{1, \ldots, n\}, E(C)=\{\{1,2\}, \ldots,\{n, 1\}\}
$$

- For $i<n$ let $d_{i, i+1}=a_{i}$
$d_{n, n+1}=d_{n 1}=a_{n}$
- E.g. for $a=(1,4,1,3,3)$, get cycle graph:

Partition is $\mathrm{YES} \Rightarrow \mathrm{DGP}_{1}$ is YES

- Given: $I \subset\{1, \ldots, n\}$ s.t. $\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}$
- Construct: realization x of C in \mathbb{R}

1. $x_{1}=0 \quad / /$ start
2. induction step: suppose x_{i} known
if $i \in I$

$$
\text { let } x_{i+1}=x_{i}+d_{i, i+1} \quad \text { // go right }
$$

else

$$
\text { let } x_{i+1}=x_{i}-d_{i, i+1} \quad / / \text { go left }
$$

- Correctness proof: by the same induction but careful when $i=n$: have to show $x_{n+1}=x_{1}$

Partition is $\mathrm{YES} \Rightarrow \mathrm{DGP}_{1}$ is YES

$$
\begin{gathered}
(1)=\sum_{i \in I}\left(x_{i+1}-x_{i}\right)=\sum_{i \in I} d_{i, i+1}= \\
=\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}= \\
=\sum_{i \notin I} d_{i, i+1}=\sum_{i \notin I}\left(x_{i}-x_{i+1}\right)=(2) \\
(1)=(2) \Rightarrow \sum_{i \in I}\left(x_{i+1}-x_{i}\right)=\sum_{i \notin I}\left(x_{i}-x_{i+1}\right) \Rightarrow \sum_{i \leq n}\left(x_{i+1}-x_{i}\right)=0 \\
\Rightarrow\left(x_{n+1}-x_{n}\right)+\left(x_{n}-x_{n-1}\right)+\cdots+\left(x_{3}-x_{2}\right)+\left(x_{2}-x_{1}\right)=0 \\
\Rightarrow x_{n+1}
\end{gathered} \begin{aligned}
= & x_{1}
\end{aligned}
$$

Partition is $\mathrm{NO} \Rightarrow \mathrm{DGP}_{1}$ is NO

- By contradiction: suppose DGP $_{1}$ is YES, x realization of C
- $F=\left\{\{u, v\} \in E(C) \mid x_{u} \leq x_{v}\right\}$, $E(C) \backslash F=\left\{\{u, v\} \in E(C) \mid x_{u}>x_{v}\right\}$
- Trace x_{1}, \ldots, x_{n} : follow edges in $F(\rightarrow)$ and in $E(C) \backslash F(\leftarrow)$

- Let $J=\{i<n \mid\{i, i+1\} \in F\} \cup\{n \mid\{n, 1\} \in F\}$

$$
\Rightarrow \quad \sum_{i \in J} a_{i}=\sum_{i \notin J} a_{i}
$$

- So J solves Partition instance, contradiction
- \Rightarrow DGP is NP-hard, DGP $_{1}$ is NP-complete

Number of solutions: with congruences

- (G, K) : DGP instance
- $\tilde{X} \subseteq \mathbb{R}^{K n}$: set of solutions
- Congruence: composition of translations, rotations, reflections
- $C=$ set of congruences in \mathbb{R}^{K}
- $x \sim y$ means $\exists \rho \in C(y=\rho x):$ distances in x are preserved in y through ρ
$\bullet \Rightarrow$ if $|\tilde{X}|>0,|\tilde{X}|=2^{\aleph_{0}}$

Number of solutions: without congruences

- Congruence is an equivalence relation \sim on \tilde{X} (reflexive, symmetric, transitive)

- Partitions \tilde{X} into equivalence classes
- $X=\tilde{X} / \sim$: sets of representatives of equivalence classes
- Focus on $|X|$ rather than $|\tilde{X}|$

Rigidity, flexibility and $|X|$

- infeasible $\Leftrightarrow|X|=0$
- rigid graph $\Leftrightarrow|X|<\aleph_{0}$
- globally rigid graph $\Leftrightarrow|X|=1$
- flexible graph $\Leftrightarrow|X|=2^{\aleph_{0}}$
- $|X|=\aleph_{0}$: impossible by Milnor's theorem

Milnor's theorem implies $|X| \neq \aleph_{0}$

- System S of polynomial equations of degree 2

$$
\forall i \leq m \quad p_{i}\left(x_{1}, \ldots, x_{n K}\right)=0
$$

- Let X be the set of $x \in \mathbb{R}^{n K}$ satisfying S
- Number of connected components of X is $O\left(3^{n K}\right)$ [Milnor 1964]
- If $|X|$ is countably ∞ then G cannot be flexible \Rightarrow incongruent elts of X are separate connected components \Rightarrow by Milnor's theorem, there's finitely many of them

Examples

$$
\begin{aligned}
& V^{1}=\{1,2,3\} \\
& E^{1}=\{\{u, v\} \mid u<v\} \\
& d^{1}=1 \\
& V^{2}=V^{1} \cup\{4\} \\
& E^{2}=E^{1} \cup\{\{1,4\},\{2,4\}\} \\
& d^{2}=1 \wedge d_{14}=\sqrt{2} \\
& \\
& V^{3}=V^{2} \\
& E^{3}=\{\{u, u+1\} \mid u \leq 3\} \cup\{1,4\} \\
& d^{1}=1
\end{aligned}
$$

ρ congruence in \mathbb{R}^{2}
$\Rightarrow \rho x$ valid realization $|X|=1$
ρ reflects x_{4} wrt $\overline{x_{1}, x_{2}}$
$\Rightarrow \rho x$ valid realization $|X|=2(\triangle, \triangleleft)$
ρ rotates $\overline{x_{2} x_{3}}, \overline{x_{1} x_{4}}$ by θ
$\Rightarrow \rho x$ valid realization
$|X|$ is uncountable
$(\square, \square, \square, \varnothing, \ldots)$

[^0]: ${ }^{1}$ Euclidean Distance Matrix

