Section 8

Distance Geometry

A gem in Distance Geometry

Heron's theorem

- Heron lived around year 0
- Hang out at Alexandria's library

а

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

A = area of triangle
 s = ¹/₂(a + b + c)

Useful to measure areas of agricultural land

Heron's theorem: Proof

A.
$$2\alpha + 2\beta + 2\gamma = 2\pi \Rightarrow \alpha + \beta + \gamma = \pi$$

$$r + ix = ue^{i\alpha}$$
$$r + iy = ve^{i\beta}$$
$$r + iz = we^{i\gamma}$$

$$\Rightarrow (r+ix)(r+iy)(r+iz) = (uvw)e^{i(\alpha+\beta+\gamma)} = uvw e^{i\pi} = -uvw \in \mathbb{R}$$
$$\Rightarrow \operatorname{Im}((r+ix)(r+iy)(r+iz)) = 0$$
$$\Rightarrow r^{2}(x+y+z) = xyz \Rightarrow r = \sqrt{\frac{xyz}{x+y+z}}$$

B.
$$s = \frac{1}{2}(a+b+c) = x+y+z$$

$$s-a = x+y+z-y-z = x$$

$$s-b = x+y+z-x-z = y$$

$$s-c = x+y+z-x-y = z$$

$$\mathcal{A} = \frac{1}{2}(ra + rb + rc) = r\frac{a + b + c}{2} = rs = \sqrt{s(s - a)(s - b)(s - c)}$$

Heron's gifted disciple

This proof by Miles Edwards as a high school student in 2007 lhsblogs.typepad.com/files/ a-proof-of-heron-formula-miles-edwards.pdf

(tried to contact him, never got an answer)

- Beats all other proofs for compactness and elegance ...Other people think so too! jwilson.coe.uga.edu/emt725/Heron/HeronComplex.html
- He was ranked 16th in the Putnam Competition 2010 newsinfo.iu.edu/news/page/normal/13885.html
- Want to see what kind of exercises he was able to solve? kskedlaya.org/putnam-archive/2010.pdf
- ► An example:

Given that A, B, C are noncollinear points in the plane with integer coordinates such that the distances AB, AC and BC are integers, what is the smallest possible value of AB?

Another gem in DG

- [I. Schoenberg, Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espace de Hilbert", Ann. Math., 1935]
- Question: Given $n \times n$ symmetric matrix D, what are necessary and sufficient conditions s.t. D is a EDM¹ corresponding to n points $x_1, \ldots, x_n \in \mathbb{R}^K$ with Kminimum?
- Main theorem: Thm.

 $D=(d_{ij})$ is an EDM iff $\frac{1}{2}(d_{1i}^2+d_{1j}^2-d_{ij}^2\mid 2\leq i,j\leq n)$ is PSD of rank K

 Gave rise to one of the most important results in data science: Classic Multidimensional Scaling

¹Euclidean Distance Matrix

Gram in function of EDM

- $x = (x_1, \ldots, x_n) \subseteq \mathbb{R}^K$, written as $n \times K$ matrix
- matrix $G = xx^{\top} = (x_i \cdot x_j)$ is the *Gram matrix* of x
- Schoenberg's theorem: relation between EDMs and Gram matrices

$$G = -\frac{1}{2}JD^2J \qquad (\S)$$

•
$$D^2 = (d_{ij}^2), J = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^\top$$

Multidimensional scaling (MDS)

- Often get approximate EDMs *D* from raw data (dissimilarities, discrepancies, differences)
- $\tilde{G} = -\frac{1}{2}J\tilde{D}^2J$ is an approximate Gram matrix
- Approximate Gram \Rightarrow spectral decomposition $P\tilde{\Lambda}P^{\top}$ has $\tilde{\Lambda} \geq 0$
- Let Λ closest PSD diagonal matrix to Λ̃:
 zero the negative components of Λ̃
- $x = P\sqrt{\Lambda}$ is an "approximate realization" of \tilde{D}

Classic MDS: Main result

1. Prove $G = -\frac{1}{2}J\tilde{D}^2J$ 2. Prove matrix is Gram iff it is PSD

Classic MDS: Proof 1/3

- Assume zero centroid WLOG (can translate x as needed)
- Expand: $d_{ij}^2 = \|x_i x_j\|_2^2 = (x_i x_j)(x_i x_j) = x_i x_i + x_j x_j 2x_i x_j$ (*)
- Aim at "inverting" (*) to express $x_i x_j$ in function of d_{ij}^2
- Sum (*) over $i: \sum_{i} d_{ij}^2 = \sum_{i} x_i x_i + n x_j x_j 2x_j \sum_{i} x_i$ ⁰ by zero centroid
- **Similarly for** *j* **and divide by** *n*, get:

$$\frac{1}{n} \sum_{i \le n} d_{ij}^2 = \frac{1}{n} \sum_{i \le n} x_i x_i + x_j x_j \quad (\dagger)$$
$$\frac{1}{n} \sum_{j \le n} d_{ij}^2 = x_i x_i + \frac{1}{n} \sum_{j \le n} x_j x_j \quad (\ddagger)$$

Sum (†) over j, get:

$$\frac{1}{n}\sum_{i,j}d_{ij}^2 = n\frac{1}{n}\sum_i x_i x_i + \sum_j x_j x_j = 2\sum_i x_i x_i$$

Divide by *n*, get:

$$\frac{1}{n^2} \sum_{i,j} d_{ij}^2 = \frac{2}{n} \sum_i x_i x_i \quad (**)$$

Classic MDS: Proof 2/3

► Rearrange (*), (†), (‡) as follows:

$$2x_i x_j = x_i x_i + x_j x_j - d_{ij}^2$$
 (5)

$$x_{i}x_{i} = \frac{1}{n}\sum_{j}d_{ij}^{2} - \frac{1}{n}\sum_{j}x_{j}x_{j}$$
(6)

$$x_{j}x_{j} = \frac{1}{n}\sum_{i}d_{ij}^{2} - \frac{1}{n}\sum_{i}x_{i}x_{i}$$
(7)

▶ Replace LHS of Eq. (6)-(7) in Eq. (5), get

$$2x_i x_j = \frac{1}{n} \sum_k d_{ik}^2 + \frac{1}{n} d_{kj}^2 - d_{ij}^2 - \frac{2}{n} \sum_k x_k x_k$$

• By (**) replace $\frac{2}{n} \sum_{i} x_i x_i$ with $\frac{1}{n^2} \sum_{i,j} d_{ij}^2$, get $2x_i x_j = \frac{1}{n} \sum_{k} (d_{ik}^2 + d_{kj}^2) - d_{ij}^2 - \frac{1}{n^2} \sum_{h,k} d_{hk}^2 \quad (\S)$

which expresses $x_i x_j$ in function of D

Classic MDS: Proof 3/3

• $Gram \subseteq PSD$

- x is an $n \times K$ real matrix
- $G = xx^{\top}$ its Gram matrix
- For each $y \in \mathbb{R}^n$ we have

$$yGy^{\top} = y(xx^{\top})y^{\top} = (yx)(x^{\top}y^{\top}) = (yx)(yx)^{\top} = ||yx||_2^2 \ge 0$$

 $\blacktriangleright \Rightarrow G \succeq 0$

- ▶ $PSD \subseteq Gram$
 - Let $G \succeq 0$ be $n \times n$
 - Spectral decomposition: $G = P \Lambda P^{\top}$

(*P* orthogonal, $\Lambda \geq 0$ diagonal)

- $\Lambda \ge 0 \Rightarrow \sqrt{\Lambda} \text{ exists}$
- $G = P\Lambda P^{\top} = (P\sqrt{\Lambda})(\sqrt{\Lambda}^{\top}P^{\top}) = (P\sqrt{\Lambda})(P\sqrt{\Lambda})^{\top}$
- Let $x = P\sqrt{\Lambda}$, then G is the Gram matrix of x

Principal Component Analysis (PCA)

- You want to draw $x = P\sqrt{\Lambda} \text{ in } 2D \text{ or } 3D$ **but** rank $(\Lambda) = K > 3$
- Only keep 2 or 3 largest components of Λ zero the rest
- Get realization in desired space

Mathematical genealogy skeleton

A partial view

	Euler	Thibaut	Pfaff	La	Lagrange		Laplace		Möbius		ermann	Dirksen	Gauss
Kästner	10	1	1		9		8	2		2		2	2
Euler		11	9		1		3	3 10		12		12	8
Thibaut			2		10		10	3		1		1	3
Pfaff					8		8	1		3		3	1
Lagrange							2		9		11	11	7
Laplace									9		11	11	7
Mö̈́bius											4	4	2
Gudermann												2	4
Dirksen													4
	D	$= \begin{pmatrix} 0 \\ 10 \\ 1 \\ 9 \\ 8 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}$	$10 \\ 0 \\ 11 \\ 9 \\ 1 \\ 3 \\ 10 \\ 12 \\ 12 \\ 8$	$egin{array}{c} 1 \\ 11 \\ 0 \\ 2 \\ 10 \\ 10 \\ 3 \\ 1 \\ 1 \\ 3 \end{array}$	$ \begin{array}{c} 1 \\ 9 \\ 2 \\ 0 \\ 8 \\ 1 \\ 3 \\ 1 \\ 1 \end{array} $	$9 \\ 1 \\ 10 \\ 8 \\ 0 \\ 2 \\ 9 \\ 11 \\ 11 \\ 7$	$egin{array}{c} 8 \\ 3 \\ 10 \\ 8 \\ 2 \\ 0 \\ 9 \\ 11 \\ 11 \\ 7 \end{array}$	$2 \\ 10 \\ 3 \\ 1 \\ 9 \\ 9 \\ 0 \\ 4 \\ 4 \\ 2$	$2 \\ 12 \\ 1 \\ 3 \\ 11 \\ 11 \\ 4 \\ 0 \\ 2 \\ 4$	$2 \\ 12 \\ 1 \\ 3 \\ 11 \\ 11 \\ 4 \\ 2 \\ 0 \\ 4$	$\begin{pmatrix} 2 \\ 8 \\ 3 \\ 1 \\ 7 \\ 7 \\ 2 \\ 4 \\ 4 \\ 0 \end{pmatrix}$		

In 2D In 3D Moebius ٠ 0.5 aplace Laplace kacener -2 2 6 8 10 4 Plaff Gauss -0.5 0 -1.0 -1 . Lagrange -1.5 Thibaut Diskisemann • Thibaut Glidesenn -2 Gauss Euler -2.0 Lagrange Moebiu -2.5 E 10 5 0

The Distance Geometry Problem (DGP)

Given $K \in \mathbb{N}$ and G = (V, E, d) with $d : E \to \mathbb{R}_+$, find $x : V \to \mathbb{R}^K$ s.t.

$$\forall \{i, j\} \in E \quad ||x_i - x_j||_2^2 = d_{ij}^2$$

Some applications

- clock synchronization (K = 1)
- sensor network localization (K = 2)
- molecular structure from distance data (K = 3)
- autonomous underwater vehicles (K = 3)
- b distance matrix completion (whatever K)

Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from a partial measurements of their time differences

- ► *K* = 1
- ► V: timestamps
- ▶ $\{u, v\} \in E$ if known time difference between u, v
- d: values of the time differences

Used in time synchronization of distributed networks

Clock synchronization

Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to locate a set of geographically distributed objects using measurements of the distances between some object pairs

- ► *K* = 2
- ► V: (mobile) sensors
- ▶ $\{u, v\} \in E$ iff distance between u, v is measured
- d: distance values

Used whenever GPS not viable (e.g. underwater) $d_{uv} \propto$ battery consumption in P2P communication betw. u, v

Sensor network localization

Molecular structure from distance data

From [Liberti et al., SIAM Rev., 2014]

- ► *K* = 3
- ► V: atoms
- ▶ $\{u, v\} \in E$ iff distance between u, v is known
- d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid) Covalent bond lengths and angles known precisely Distances $\lessapprox 5.5$ measured approximately by NMR

Complexity

- **DGP**₁ with $d: E \to \mathbb{Q}_+$ is in **NP**
 - if instance YES \exists realization $x \in \mathbb{R}^{n \times 1}$
 - if some component $x_i \notin \mathbb{Q}$ translate x so $x_i \in \mathbb{Q}$
 - consider some other x_j
 - let $\ell = ($ length sh. path $p : i \to j) = \sum_{\{u,v\} \in p} d_{uv} \in \mathbb{Q}$

• then
$$x_j = x_i \pm \ell \to x_j \in \mathbb{Q}$$

• \Rightarrow verification of

$$\forall \{i, j\} \in E \quad |x_i - x_j| = d_{ij}$$

in polytime

► **DGP**_K may not be in **NP** for K > 1don't know how to verify $||x_i - x_j||_2 = d_{ij}$ for $x \notin \mathbb{Q}^{nK}$

Hardness

PARTITION *is* **NP**-*hard*
Given
$$a = (a_1, \ldots, a_n) \in \mathbb{N}^n, \exists I \subseteq \{1, \ldots, n\}$$
 s.t. $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

• Reduce Partition to DGP_1

•
$$a \longrightarrow \text{cycle } C$$

 $V(C) = \{1, \dots, n\}, E(C) = \{\{1, 2\}, \dots, \{n, 1\}\}$

► For
$$i < n$$
 let $d_{i,i+1} = a_i$
 $d_{n,n+1} = d_{n1} = a_n$

• *E.g. for*
$$a = (1, 4, 1, 3, 3)$$
, get cycle graph:

Partition is $YES \Rightarrow DGP_1$ is YES

• Given: $I \subset \{1, \ldots, n\}$ s.t. $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$

• **Construct:** realization x of C in \mathbb{R}

1. $x_1 = 0$ // start 2. induction step: suppose x_i known if $i \in I$ let $x_{i+1} = x_i + d_{i,i+1}$ // go right else

 $\operatorname{let} x_{i+1} = x_i - d_{i,i+1} \qquad \qquad // \text{ go left}$

► Correctness proof: by the same induction but careful when i = n: have to show x_{n+1} = x₁

Partition is $YES \Rightarrow DGP_1$ is YES

$$(1) = \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \in I} d_{i,i+1} =$$
$$= \sum_{i \in I} a_i = \sum_{i \notin I} a_i =$$
$$= \sum_{i \notin I} d_{i,i+1} = \sum_{i \notin I} (x_i - x_{i+1}) = (2)$$

$$(1) = (2) \Rightarrow \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \notin I} (x_i - x_{i+1}) \Rightarrow \sum_{i \leq n} (x_{i+1} - x_i) = 0$$

$$\Rightarrow (x_{n+1} - x_n) + (x_n - x_{n-1}) + \dots + (x_3 - x_2) + (x_2 - x_1) = 0$$

$$\Rightarrow x_{n+1} = x_1$$

Partition is $NO \Rightarrow DGP_1$ is NO

- **•** By contradiction: suppose DGP_1 is YES, x realization of C
- ► $F = \{\{u, v\} \in E(C) \mid x_u \le x_v\},\ E(C) \smallsetminus F = \{\{u, v\} \in E(C) \mid x_u > x_v\}$
- Trace x_1, \ldots, x_n : follow edges in $F (\rightarrow)$ and in $E(C) \smallsetminus F (\leftarrow)$

- Let $J = \{i < n \mid \{i, i+1\} \in F\} \cup \{n \mid \{n, 1\} \in F\}$ $\Rightarrow \sum_{i \in J} a_i = \sum_{i \notin J} a_i$
- So J solves Partition instance, contradiction
- ► \Rightarrow DGP is NP-hard, DGP₁ is NP-complete

Number of solutions: with congruences

- (G, K): DGP instance
- $\tilde{X} \subseteq \mathbb{R}^{Kn}$: set of solutions
- ► *Congruence*: composition of translations, rotations, reflections
- $C = \text{set of congruences in } \mathbb{R}^K$
- ► $x \sim y$ means $\exists \rho \in C \ (y = \rho x)$: distances in x are preserved in y through ρ
- $\blacktriangleright \Rightarrow \mathbf{if} \, |\tilde{X}| > 0, |\tilde{X}| = 2^{\aleph_0}$

Number of solutions: without congruences

• Congruence is an *equivalence relation* \sim on \tilde{X} (reflexive, symmetric, transitive)

- ▶ Partitions \tilde{X} into equivalence classes
- ► $X = \tilde{X} / \sim$: sets of representatives of equivalence classes
- ▶ Focus on |X| rather than $|\tilde{X}|$

Rigidity, flexibility and |X|

- infeasible $\Leftrightarrow |X| = 0$
- rigid graph $\Leftrightarrow |X| < \aleph_0$
- ▶ globally rigid graph $\Leftrightarrow |X| = 1$
- flexible graph $\Leftrightarrow |X| = 2^{\aleph_0}$
- $|X| = \aleph_0$: impossible by Milnor's theorem

Milnor's theorem implies $|X| \neq \aleph_0$

► System *S* of polynomial equations of degree 2

$$\forall i \le m \quad p_i(x_1, \dots, x_{nK}) = 0$$

- Let X be the set of $x \in \mathbb{R}^{nK}$ satisfying S
- Number of connected components of X is O(3^{nK})
 [Milnor 1964]
- If |X| is countably ∞ then G cannot be flexible
 ⇒ incongruent elts of X are separate connected components
 ⇒ by Milnor's theorem, there's finitely many of them

Examples

$$V^1 = \{1, 2, 3\}$$

 $E^1 = \{\{u, v\} \mid u < v\}$
 $d^1 = 1$

$$V^2 = V^1 \cup \{4\}$$

 $E^2 = E^1 \cup \{\{1,4\},\{2,4\}\}$
 $d^2 = 1 \land d_{14} = \sqrt{2}$

 $V^3 = V^2$ $E^3 = \{\{u, u+1\} | u \le 3\} \cup \{1, 4\}$ $d^1 = 1$

 ρ congruence in \mathbb{R}^2 $\Rightarrow \rho x$ valid realization |X| = 1

 ρ reflects x_4 wrt $\overline{x_1, x_2}$ $\Rightarrow \rho x$ valid realization $|X| = 2 (\triangle, \bigcirc)$

 ρ rotates $\overline{x_2x_3}$, $\overline{x_1x_4}$ by θ $\Rightarrow \rho x$ valid realization |X| is uncountable $(\Box, \Box, \Box, \Box, \ldots)$